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Preface
An embedded system is a device with a computer inside that doesn't look like a 
computer. Washing machines, televisions, printers, cars, aircraft, and robots are all 
controlled by a computer of some sort, and in some cases, more than one. As these 
devices become more complex, and as our expectations of the things that we can do 
with them expand, the need for a powerful operating system to control them grows.

Linux is only one component of the operating system. Many other components are 
needed to create a working system, from basic tools, such as a command shell, to 
graphical user interfaces, with web content and communicating with cloud services.

The Linux kernel together with an extensive range of other open source components 
allow you to build a system that can function in a wide range of roles.

The Linux kernel is at the heart of a large number of embedded products being 
designed today. Over the last 10 years, this operating system has developed from 
dominating the server market to being the most used operating system in embedded 
systems, even those with real-time requirements. 

But at the same time, an embedded Linux product is not only the Linux kernel. 
Companies need to build an embedded system over the operating system, and  
that's where embedded Linux was finding it difficult to make its place—until  
Yocto arrived.

The Yocto Project brings all the benefits of Linux into the development of embedded 
systems. It provides a standard build system that allows you to develop embedded 
products in a quick, reliable, and controlled way.
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What this learning path covers
Module 1, Learning Embedded Linux Using the Yocto, introduces you to embedded 
Linux software and hardware architecture, cross compiling, bootloader. You will 
also get an overview of the available Yocto Project components.

Module 2, Embedded Linux Projects Using Yocto Project, helps you set up and configure 
the Yocto Project tools. You will learn the methods to share source code and 
modifications

Module 3, Mastering Embedded Linux, takes you through the product cycle and gives 
you an in-depth description of the components and options that are available at  
each stage.

What you need for this learning path
Before reading this learning path, prior knowledge of embedded Linux and Yocto 
would be helpful, though not mandatory. In this learning path, a number of exercises 
are available, and to do them, a basic understanding of the GNU/Linux environment 
would be useful.

The examples have been tested with an Ubuntu 14.04 LTS system, but any Linux 
distribution supported by the Yocto Project can be used. Any piece of i.MX-based 
hardware can be used to follow the examples.

The versions of the main packages for the target are U-Boot 2015.07, Linux 4.1, Yocto 
Project 1.8 "Fido", and Buildroot 2015.08.

Who this learning path is for
If you are a developer who wants to build embedded systems using Linux, this 
learning path is for you. It is an ideal guide for you to become proficient and 
broaden your knowledge with examples that are immediately applicable to your 
embedded developments. A basic understanding of C programming and experience 
with systems programming is needed. Experienced embedded Yocto developers 
will find new insight into working methodologies and ARM specific development 
competence.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this learning path—what you liked or disliked. Reader feedback is important for us 
as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt product, we have a number of things 
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this learning path from your account 
at http://www.packtpub.com. If you purchased this learning path elsewhere, you 
can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the learning path in the Search box.
5. Select the learning path for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this learning path 

from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
learning path's webpage at the Packt Publishing website. This page can be accessed 
by entering the learning path's name in the Search box. Please note that you need to 
be logged in to your Packt account.
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Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the learning path is also hosted on GitHub at https://github.
com/PacktPublishing/Embedded-Linux-for-Developers. We also have other 
code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our learning path —maybe a mistake in 
the text or the code—we would be grateful if you could report this to us. By doing 
so, you can save other readers from frustration and help us improve subsequent 
versions of this learning path. If you find any errata, please report them by visiting 
http://www.packtpub.com/submit-errata, selecting your learning path, clicking 
on the Errata Submission Form link, and entering the details of your errata. Once 
your errata are verified, your submission will be accepted and the errata will be 
uploaded to our website or added to any list of existing errata under the Errata 
section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the learning path in the search field. The 
required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.
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Questions
If you have a problem with any aspect of this learning path, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Introduction
In this chapter, you will be presented with the advantages of Linux and open source 
development. There will be examples of systems running embedded Linux, which 
a vast number of embedded hardware platforms support. After this, you will be 
introduced to the architecture and development environment of an embedded Linux 
system, and, in the end, the Yocto Project, where its Poky build system's properties 
and purposes are summarized.

Advantages of Linux and open source 
systems
Most of the information available in this book, and the examples presented as 
exercises, have one thing in common: the fact that they are freely available for 
anyone to access. This book tries to offer guidance to you on how to interact with 
existing and freely available packages that could help an embedded engineer, such 
as you, and at the same time, also try to arouse your curiosity to learn more.

More information on open source can be gathered from the Open Source 
Initiative (OSI) at http://opensource.org/.

The main advantage of open source is represented by the fact that it permits 
developers to concentrate more on their products and their added value. Having an 
open source product offers access to a variety of new possibilities and opportunities, 
such as reduced costs of licensing, increased skills, and knowledge of a company. 
The fact that a company uses an open source product that most people have access 
to, and can understand its working, implies budget savings. The money saved could 
be used in other departments, such as hardware or acquisitions.

http://opensource.org/
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Usually, there is a misconception about open source having little or no control over 
a product. However, the opposite is true. The open source system, in general, offers 
full control over software, and we are going to demonstrate this. For any software, 
your open source project resides on a repository that offers access for everyone to 
see. Since you're the person in charge of a project, and its administrator as well, you 
have all the right in the world to accept the contributions of others, which lends them 
the same right as you, and this basically gives you the freedom to do whatever you 
like. Of course, there could be someone who is inspired by your project and could do 
something that is more appreciated by the open source community. However, this 
is how progress is made, and, to be completely honest, if you are a company, this 
kind of scenario is almost invalid. Even in this case, this situation does not mean the 
death of your project, but an opportunity instead. Here, I would like to present the 
following quote:

"If you want to build an open source project, you can't let your ego stand in the 
way. You can't rewrite everybody's patches, you can't second-guess everybody, 
and you have to give people equal control."

                                                                                                – Rasmus Lerdorf

Allowing access to others, having external help, modifications, debugging, and 
optimizations performed on your open source software implies a longer life for the 
product and better quality achieved over time. At the same time, the open source 
environment offers access to a variety of components that could easily be integrated 
in your product if there's a requirement for them. This permits a quick development 
process, lower costs, and also shifts a great deal of the maintenance and development 
work from your product. Also, it offers the possibility to support a particular 
component to make sure that it continues to suit your needs. However, in most 
instances, you would need to take some time and build this component for your 
product from zero.

This brings us to the next benefit of open source, which involves testing and quality 
assurance for our product. Besides the lesser amount of work that is needed for 
testing, it is also possible to choose from a number of options before deciding which 
components fits best for our product. Also, it is cheaper to use open source software, 
than buying and evaluating proprietary products. This takes and gives back 
process, visible in the open source community, is the one that generates products 
of a higher quality and more mature ones. This quality is even greater than that of 
other proprietary or closed source similar products. Of course, this is not a generally 
valid affirmation and only happens for mature and widely used products, but here 
appears the term community and foundation into play.
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In general, open source software is developed with the help of communities of 
developers and users. This system offers access to a greater support on interaction 
with the tools directly from developers - the sort of thing that does not happen 
when working with closed source tools. Also, there is no restriction when you're 
looking for an answer to your questions, no matter whether you work for a 
company or not. Being part of the open source community means more than bug 
fixing, bug reporting, or feature development. It is about the contribution added 
by the developers, but, at the same time, it offers the possibility for engineers to get 
recognition outside their working environment, by facing new challenges and trying 
out new things. It can also be seen as a great motivational factor and a source of 
inspiration for everyone involved in the process.

Instead of a conclusion, I would also like to present a quote from the person who 
forms the core of this process, the man who offered us Linux and kept it open source:

"I think, fundamentally, open source does tend to be more stable software. It's the 
right way to do things."

                                                                                                – Linus Torvalds

Embedded systems
Now that the benefits of open source have been introduced to you, I believe we can 
go through a number of examples of embedded systems, hardware, software, and 
their components. For starters, embedded devices are available anywhere around us: 
take a look at your smartphone, car infotainment system, microwave oven, or even 
your MP3 player. Of course, not all of them qualify to be Linux operating systems, 
but they all have embedded components that make it possible for them to fulfill their 
designed functions.

General description
For Linux to be run on any device hardware, you will require some hardware-
dependent components that are able to abstract the work for hardware-independent 
ones. The boot loader, kernel, and toolchain contain hardware-dependent components 
that make the performance of work easier for all the other components. For example, 
a BusyBox developer will only concentrate on developing the required functionalities 
for his application, and will not concentrate on hardware compatibility. All these 
hardware-dependent components offer support for a large variety of hardware 
architectures for both 32 and 64 bits. For example, the U-Boot implementation is the 
easiest to take as an example when it comes to source code inspection. From this, we 
can easily visualize how support for a new device can be added.
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We will now try to do some of the little exercises presented previously, but before 
moving further, I must present the computer configuration on which I will continue 
to do the exercises, to make sure that that you face as few problems as possible. I am 
working on an Ubuntu 14.04 and have downloaded the 64-bit image available on the 
Ubuntu website at http://www.ubuntu.com/download/desktop

Information relevant to the Linux operation running on your computer can be 
gathered using this command:

uname –srmpio

The preceding command generates this output:

Linux 3.13.0-36-generic x86_64 x86_64 x86_64 GNU/Linux

The next command to gather the information relevant to the Linux operation is as 
follows:

cat /etc/lsb-release

The preceding command generates this output: 

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS"

Examples
Now, moving on to exercises, the first one requires you fetch the git repository 
sources for the U-Boot package:

sudo apt-get install git-core

git clone http://git.denx.de/u-boot.git

After the sources are available on your machine, you can try to take a look inside 
the board directory; here, a number of development board manufacturers will be 
present. Let's take a look at board/atmel/sama5d3_xplained, board/faraday/
a320evb, board/freescale/imx, and board/freescale/b4860qds. By observing 
each of these directories, a pattern can be visualized. Almost all of the boards 
contain a Kconfig file, inspired mainly from kernel sources because they present the 
configuration dependencies in a clearer manner. A maintainers file offers a list with 
the contributors to a particular board support. The base Makefile file takes from the 
higher-level makefiles the necessary object files, which are obtained after a board-
specific support is built. The difference is with board/freescale/imx which only 
offers a list of configuration data that will be later used by the high-level makefiles.

http://www.ubuntu.com/download/desktop
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At the kernel level, the hardware-dependent support is added inside the arch file. 
Here, for each specific architecture besides Makefile and Kconfig, various numbers 
of subdirectories could also be added. These offer support for different aspects of a 
kernel, such as the boot, kernel, memory management, or specific applications.

By cloning the kernel sources, the preceding information can be easily visualized by 
using this code:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git

Some of the directories that can be visualized are arch/arc and arch/metag.

From the toolchain point of view, the hardware-dependent component is represented 
by the GNU C Library, which is, in turn, usually represented by glibc. This 
provides the system call interface that connects to the kernel architecture-dependent 
code and further provides the communication mechanism between these two entities 
to user applications. System calls are presented inside the sysdeps directory of the 
glibc sources if the glibc sources are cloned, as follows:

git clone http://sourceware.org/git/glibc.git

The preceding information can be verified using two methods: the first one involves 
opening the sysdeps/arm directory, for example, or by reading the ChangeLog.
old-ports-arm library. Although it's old and has nonexistent links, such as ports 
directory, which disappeared from the newer versions of the repository, the latter 
can still be used as a reference point.

These packages are also very easily accessible using the Yocto Project's poky 
repository. As mentioned at https://www.yoctoproject.org/about:

"The Yocto Project is an open source collaboration project that provides templates, 
tools and methods to help you create custom Linux-based systems for embedded 
products regardless of the hardware architecture. It was founded in 2010 as a 
collaboration among many hardware manufacturers, open-source operating 
systems vendors, and electronics companies to bring some order to the chaos of 
embedded Linux development."

Most of the interaction anyone has with the Yocto Project is done through the Poky  
build system, which is one of its core components that offers the features and 
functionalities needed to generate fully customizable Linux software stacks. The first 
step needed to ensure interaction with the repository sources would be to clone them:

git clone -b dizzy http://git.yoctoproject.org/git/poky

https://www.yoctoproject.org/about


Introduction

[ 8 ]

After the sources are present on your computer, a set of recipes and configuration 
files need to be inspected. The first location that can be inspected is the U-Boot 
recipe, available at meta/recipes-bsp/u-boot/u-boot_2013.07.bb. It contains 
the instructions necessary to build the U-Boot package for the corresponding 
selected machine. The next place to inspect is in the recipes available in the kernel. 
Here, the work is sparse and more package versions are available. It also provides 
some bbappends for available recipes, such as meta/recipes-kernel/linux/
linux-yocto_3.14.bb and meta-yocto-bsp/recipes-kernel/linux/linux-
yocto_3.10.bbappend. This constitutes a good example for one of the kernel 
package versions available when starting a new build using BitBake.

Toolchain construction is a big and important step for host generated packages.  
To do this, a set of packages are necessary, such as gcc, binutils, glibc library, 
and kernel headers, which play an important role. The recipes corresponding 
to this package are available inside the meta/recipes-devtools/gcc/, meta/
recipes-devtools/binutils, and meta/recipes-core/glibc paths. In all the 
available locations, a multitude of recipes can be found, each one with a specific 
purpose. This information will be detailed in the next chapter.

The configurations and options for the selection of one package version in favor of 
another is mainly added inside the machine configuration. One such example is the 
Freescale MPC8315E-rdb low-power model supported by Yocto 1.6, and its machine 
configuration is available inside the meta-yocto-bsp/conf/machine/mpc8315e-
rdb.conf file.

More information on this development board can be found at http://
www.freescale.com/webapp/sps/site/prod_summary.
jsp?code=MPC8315E.

Introducing GNU/Linux
GNU/Linux, or Linux as it's commonly known, represents a name that has a long 
line of tradition behind it, and is one of the most important unions of open source 
software. Shortly, you will be introduced to the history of what is offered to people 
around the world today and the choice available in terms of selecting personal 
computer operating systems. Most of all, we will look at what is offered to hardware 
developers and the common ground available for the development of platforms.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8315E
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8315E
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8315E
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GNU/Linux consists of the Linux kernel and has a collection of user space applications 
that are put on top of GNU C Library; this acts as a computer operating system. It may 
be considered as one of the most prolific instances of open source and free software 
available, which is still in development. Its history started in 1983 when Richard 
Stallman founded the GNU Project with the goal of developing a complete Unix-like  
operating system, which could be put together only from free software. By the 
beginning of the 1990s, GNU already offered a collection of libraries, Unix-like shells, 
compilers, and text editors. However, it lacked a kernel. They started developing their 
own kernel, the Hurd, in 1990. The kernel was based on a Mach micro-kernel design, 
but it proved to be difficult to work with and had a slow development process.

Meanwhile, in 1991, a Finnish student started working on another kernel as a 
hobby while attending the University of Helsinki. He also got help from various 
programmers who contributed to the cause over the Internet. That student's name 
was Linus Torvalds and, in 1992, his kernel was combined with the GNU system. 
The result was a fully functional operating system called GNU/Linux that was free 
and open source. The most common form of the GNU system is usually referred 
to as a GNU/Linux system, or even a Linux distribution, and is the most popular 
variant of GNU. Today, there are a great number of distributions based on GNU 
and the Linux kernel, and the most widely used ones are: Debian, Ubuntu, Red Hat 
Linux, SuSE, Gentoo, Mandriva, and Slackware. This image shows us how the two 
components of Linux work together:



Introduction

[ 10 ]

Although not originally envisioned to run on anything else then x86 PCs, today, 
the Linux operating system is the most widespread and portable operating system. 
It can be found on both embedded devices or supercomputers because it offers 
freedom to its users and developers. Having tools to generate customizable Linux 
systems is another huge step forward in the development of this tool. It offers access 
to the GNU/Linux ecosystem to new categories of people who, by using a tool, 
such as BitBake, end up learning more about Linux, its architecture differences, root 
filesystem construction and configuration, toolchains, and many other things present 
in the Linux world.

Linux is not designed to work on microcontrollers. It will not work properly if it 
has less then 32 MB of RAM, and it will need to have at least 4 MB of storage space. 
However, if you take a look at this requirement, you will notice that it is very 
permissive. Adding to this is the fact that it also offers support for a variety of  
communication peripherals and hardware platforms, which gives you a clear  
image of why it is so widely adopted.

Well, it may work on 8MB of RAM, but that depends on the 
application's size as well.

Working with a Linux architecture in an embedded environment requires certain 
standards. This is an image that represents graphically an environment which was 
made available on one of free-electrons Linux courses:



Chapter 1

[ 11 ]

The preceding image presents the two main components that are involved in the 
development process when working with Linux in the embedded devices world:

• Host machine: This is the machine where all the development tools reside. 
Outside the Yocto world, these tools are represented by a corresponding 
toolchain cross-compiled for a specific target and its necessary applications 
sources and patches. However, for an Yocto user, all these packages, and the 
preparation work involved, is reduced to automatized tasks executed before 
the actual work is performed. This, of course, has to be prioritized adequately.

• Target machine: This is the embedded system on which the work is done and 
tested. All the software available on the target is usually cross-compiled on 
the host machine, which is a more powerful and more efficient environment. 
The components that are usually necessary for an embedded device to boot 
Linux and operate various application, involve using a bootloader for basic 
initiation and loading of the Linux kernel. This, in turn, initializes drivers 
and the memory, and offers services for applications to interact with through 
the functions of the available C libraries.

There are also other methods of working with embedded devices, 
such as cross-canadian and native development, but the ones 
presented here are the most used and offer the best results for both 
developers and companies when it comes to software development 
for embedded devices.

To have a functional Linux operating system on an development board, a developer 
first needs to make sure that the kernel, bootloader, and board corresponding drives 
are working properly before starting to develop and integrate other applications  
and libraries.

Introduction to the Yocto Project
In the previous section, the benefits of having an open source environment were 
presented. Taking a look at how embedded development was done before the advent 
of the Yocto Project offers a complete picture of the benefits of this project. It also 
gives an answer as to why it was adopted so quickly and in such huge numbers.
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Using the Yocto Project, the whole process gets a bit more automatic, mostly because 
the workflow permitted this. Doing things manually requires a number of steps to be 
taken by developers:

1. Select and download the necessary packages and components.
2. Configure the downloaded packages.
3. Compile the configured packages.
4. Install the generated binary, libraries, and so on, on rootfs available on 

development machine.
5. Generate the final deployable format.

All these steps tend to become more complex with the increase in the number of 
software packages that need to be introduced in the final deployable state. Taking 
this into consideration, it can clearly be stated that manual work is suitable only for  
a small number of components; automation tools are usually preferred for large  
and complex systems.

In the last ten years, a number of automation tools could be used to generate an 
embedded Linux distribution. All of them were based on the same strategy as the 
one described previously, but they also needed some extra information to solve 
dependency related problems. These tools are all built around an engine for the 
execution of tasks and contain metadata that describes actions, dependencies, 
exceptions, and rules.

The most notable solutions are Buildroot, Linux Target Image Builder (LTIB), 
Scratchbox, OpenEmbedded, Yocto, and Angstrom. However, Scratchbox doesn't 
seem to be active anymore, with the last commit being done in April 2012. LTIB was 
the preferred build tool for Freescale and it has lately moved more toward Yocto;  
in a short span of time, LTIB may become deprecated also.

Buildroot
Buildroot as a tool tries to simplify the ways in which a Linux system is generated 
using a cross-compiler. Buildroot is able to generate a bootloader, kernel image, root 
filesystem, and even a cross-compiler. It can generate each one of these components, 
although in an independent way, and because of this, its main usage has been 
restricted to a cross-compiled toolchain that generates a corresponding and custom 
root filesystem. It is mainly used in embedded devices and very rarely for x86 
architectures; its main focus being architectures, such as ARM, PowerPC, or MIPS. 
As with every tool presented in this book, it is designed to run on Linux, and certain 
packages are expected to be present on the host system for their proper usage. There 
are a couple of mandatory packages and some optional ones as well.
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There is a list of mandatory packages that contain the certain packages, and are 
described inside the Buildroot manual available at http://buildroot.org/
downloads/manual/manual.html. These packages are as follows:

• which

• sed

• make (version 3.81 or any later ones)
• binutils

• build-essential (required for Debian-based systems only)
• gcc (version 2.95 or any later ones)
• g++ (version 2.95 or any later ones)
• bash

• patch

• gzip

• bzip2

• perl(version 5.8.7 or any later ones)
• tar

• cpio

• python(version 2.6 or 2.7 ones)
• unzip

• rsync

• wget

Beside these mandatory packages, there are also a number of optional packages. 
They are very useful for the following:

• Source fetching tools: In an official tree, most of the package retrieval is done 
using wget from http, https, or even ftp links, but there are also a couple of 
links that need a version control system or another type of tool. To make sure 
that the user does not have a limitation to fetch a package, these tools can  
be used:

 ° bazaar

 ° cvs

 ° git

 ° mercurial

 ° rsync

http://buildroot.org/downloads/manual/manual.html
http://buildroot.org/downloads/manual/manual.html
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 ° scp

 ° subversion

• Interface configuration dependencies: They are represented by the packages 
that are needed to ensure that the tasks, such as kernel, BusyBox, and U-Boot 
configuration, are executed without problems:

 ° ncurses5 is used for the menuconfig interface
 ° qt4 is used for the xconfig interface
 ° glib2, gtk2, and glade2 are used for the gconfig interface

• Java related package interaction: This is used to make sure that when a user 
wants to interact with the Java Classpath component, that it will be done 
without any hiccups:

 ° javac: this refers to the Java compiler
 ° jar: This refers to the Java archive tool

• Graph generation tools: The following are the graph generation tools:
 ° graphviz to use graph-depends and <pkg>-graph-depends
 ° python-matplotlib to use graph-build

• Documentation generation tools: The following are the tools necessary for 
the documentation generation process:

 ° asciidoc, version 8.6.3 or higher
 ° w3m

 ° python with the argparse module (which is automatically available 
in 2.7+ and 3.2+ versions)

 ° dblatex (necessary for pdf manual generation only)

Buildroot releases are made available to the open source community at http://
buildroot.org/downloads/ every three months, specifically in February, May, 
August, and November, and the release name has the buildroot-yyyy-mm format. 
For people interested in giving Buildroot a try, the manual described in the previous 
section should be the starting point for installing and configuration. Developers 
interested in taking a look at the Buildroot source code can refer to http://git.
buildroot.net/buildroot/.

http://buildroot.org/downloads/
http://buildroot.org/downloads/
http://git.buildroot.net/buildroot/. 
http://git.buildroot.net/buildroot/. 
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Before cloning the Buildroot source code, I suggest taking a quick look 
at http://buildroot.org/download. It could help out anyone 
who works with a proxy server.

Next, there will be presented a new set of tools that brought their contribution to this 
field and place on a lower support level the Buildroot project. I believe that a quick 
review of the strengths and weaknesses of these tools would be required. We will 
start with Scratchbox and, taking into consideration that it is already deprecated, 
there is not much to say about it; it's being mentioned purely for historical reasons. 
Next on the line is LTIB, which constituted the standard for Freescale hardware until 
the adoption of Yocto. It is well supported by Freescale in terms of Board Support 
Packages (BSPs) and contains a large database of components. On the other hand, it 
is quite old and it was switched with Yocto. It does not contain the support of new 
distributions, it is not used by many hardware providers, and, in a short period of 
time, it could very well become as deprecated as Scratchbox. Buildroot is the last of 
them and is easy to use, having a Makefile base format and an active community 
behind it. However, it is limited to smaller and simpler images or devices, and it is 
not aware of partial builds or packages.

OpenEmbedded
The next tools to be introduced are very closely related and, in fact, have the same 
inspiration and common ancestor, the OpenEmbedded project. All three projects 
are linked by the common engine called Bitbake and are inspired by the Gentoo 
Portage build tool. OpenEmbedded was first developed in 2001 when the Sharp 
Corporation launched the ARM-based PDA, and SL-5000 Zaurus, which run Lineo, 
an embedded Linux distribution. After the introduction of Sharp Zaurus, it did not 
take long for Chris Larson to initiate the OpenZaurus Project, which was meant to 
be a replacement for SharpROM, based on Buildroot. After this, people started to 
contribute many more software packages, and even the support of new devices, 
and, eventually, the system started to show its limitations. In 2003, discussions were 
initiated around a new build system that could offer a generic build environment 
and incorporate the usage models requested by the open source community; this was 
the system to be used for embedded Linux distributions. These discussions started 
showing results in 2003, and what has emerged today is the Openembedded project. 
It had packages ported from OpenZaurus by people, such as Chris Larson, Michael 
Lauer, and Holger Schurig, according to the capabilities of the new build system.

http://buildroot.org/download
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The Yocto Project is the next evolutionary stage of the same project and has the Poky 
build system as its core piece, which was created by Richard Purdie. The project 
started as a stabilized branch of the OpenEmbedded project and only included a 
subset of the numerous recipes available on OpenEmbedded; it also had a limited 
set of devices and support of architectures. Over time, it became much more 
than this: it changed into a software development platform that incorporated a 
fakeroot replacement, an Eclipse plug-in, and QEMU-based images. Both the Yocto 
Project and OpenEmbedded now coordinate around a core set of metadata called 
OpenEmbedded-Core (OE-Core).

The Yocto Project is sponsored by the Linux Foundation, and offers a starting 
point for developers of Linux embedded systems who are interested in developing 
a customized distribution for embedded products in a hardware-agnostic 
environment. The Poky build system represents one of its core components and 
is also quite complex. At the center of all this lies Bitbake, the engine that powers 
everything, the tool that processes metadata, downloads corresponding source 
codes, resolves dependencies, and stores all the necessary libraries and executables 
inside the build directory accordingly. Poky combines the best from OpenEmbedded 
with the idea of layering additional software components that could be added or 
removed from a build environment configuration, depending on the needs of  
the developer.

Poky is build system that is developed with the idea of keeping simplicity in mind. 
By default, the configuration for a test build requires very little interaction from the 
user. Based on the clone made in one of the previous exercises, we can do a new 
exercise to emphasize this idea:

cd poky

source oe-init-build-env ../build-test

bitbake core-image-minimal

As shown in this example, it is easy to obtain a Linux image that can be later used 
for testing inside a QEMU environment. There are a number of images footprints 
available that will vary from a shell-accessible minimal image to an LSB compliant 
image with GNOME Mobile user interface support. Of course, that these base 
images can be imported in new ones for added functionalities. The layered 
structure that Poky has is a great advantage because it adds the possibility to extend 
functionalities and to contain the impact of errors. Layers could be used for all sort of 
functionalities, from adding support for a new hardware platform to extending the 
support for tools, and from a new software stack to extended image features. The sky 
is the limit here because almost any recipe can be combined with another.
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All this is possible because of the Bitbake engine, which, after the environment setup 
and the tests for minimal systems requirements are met, based on the configuration 
files and input received, identifies the interdependencies between tasks, the 
execution order of tasks, generates a fully functional cross-compilation environment, 
and starts building the necessary native and target-specific packages tasks exactly as 
they were defined by the developer. Here is an example with a list of the available 
tasks for a package:

More information about Bitbake and its baking process can be found in 
Embedded Linux Development with Yocto Project, by Otavio Salvador and 
Daiane Angolini.

The metadata modularization is based on two ideas—the first one refers to the 
possibility of prioritizing the structure of layers, and the second refers to the 
possibility of not having the need for duplicate work when a recipe needs changes. 
The layers are overlapping. The most general layer is meta, and all the other layers 
are usually stacked over it, such as meta-yocto with Yocto-specific recipes, machine 
specific board support packages, and other optional layers, depending on the 
requirements and needs of developers. The customization of recipes should be done 
using bbappend situated in an upper layer. This method is preferred to ensure that 
the duplication of recipes does not happen, and it also helps to support newer and 
older versions of them.
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An example of the organization of layers is found in the previous example that 
specified the list of the available tasks for a package. If a user is interested in 
identifying the layers used by the test build setup in the previous exercise that 
specified the list of the available tasks for a package, the bblayers.conf file is a good 
source of inspiration. If cat is done on this file, the following output will be visible:

# LAYER_CONF_VERSION is increased each time  
build/conf/bblayers.conf
# changes incompatibly
LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
  /home/alex/workspace/book/poky/meta \
  /home/alex/workspace/book/poky/meta-yocto \
  /home/alex/workspace/book/poky/meta-yocto-bsp \
  "
BBLAYERS_NON_REMOVABLE ?= " \
  /home/alex/workspace/book/poky/meta \
  /home/alex/workspace/book/poky/meta-yocto \
  "

The complete command for doing this is:

cat build-test/conf/bblayers.conf

Here is a visual mode for the layered structure of a more generic build directory:
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Yocto as a project offers another important feature: the possibility of having an 
image regenerated in the same way, no matter what factors change on your host 
machine. This is a very important feature, taking into consideration not only that, 
in the development process, changes to a number of tools, such as autotools, 
cross-compiler, Makefile, perl, bison, pkgconfig, and so on, could occur, but 
also the fact that parameters could change in the interaction process with regards 
to a repository. Simply cloning one of the repository branches and applying 
corresponding patches may not solve all the problems. The solution that the Yocto 
Project has to these problems is quite simple. By defining parameters prior to any of 
the steps of the installation as variables and configuration parameters inside recipes, 
and by making sure that the configuration process is also automated, will minimize 
the risks of manual interaction are minimized. This process makes sure that image 
generation is always done as it was the first time.

Since the development tools on the host machine are prone to change, Yocto usually 
compiles the necessary tools for the development process of packages and images, 
and only after their build process is finished, the Bitbake build engine starts building 
the requested packages. This isolation from the developer's machine helps the 
development process by guaranteeing the fact that updates from the host machine do 
not influence or affect the processes of generating the embedded Linux distribution.

Another critical point that was elegantly solved by the Yocto Project is represented 
by the way that the toolchain handles the inclusion of headers and libraries; because 
this could bring later on not only compilation but also execution errors that are 
very hard to predict. Yocto resolves these problems by moving all the headers and 
libraries inside the corresponding sysroots directory, and by using the sysroot 
option, the build process makes sure that no contamination is done with the native 
components. An example will emphasize this information better:

ls -l build-test/tmp/sysroots/

total 12K

drwxr-xr-x 8 alex alex 4,0K sep 28 04:17 qemux86/

drwxr-xr-x 5 alex alex 4,0K sep 28 00:48 qemux86-tcbootstrap/

drwxr-xr-x 9 alex alex 4,0K sep 28 04:21 x86_64-linux/
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ls -l build-test/tmp/sysroots/qemux86/ 

total 24K

drwxr-xr-x 2 alex alex 4,0K sep 28 01:52 etc/

drwxr-xr-x 5 alex alex 4,0K sep 28 04:15 lib/

drwxr-xr-x 6 alex alex 4,0K sep 28 03:51 pkgdata/

drwxr-xr-x 2 alex alex 4,0K sep 28 04:17 sysroot-providers/

drwxr-xr-x 7 alex alex 4,0K sep 28 04:16 usr/

drwxr-xr-x 3 alex alex 4,0K sep 28 01:52 var/

The Yocto project contributes to making reliable embedded Linux development 
and because of its dimensions, it is used for lots of things, ranging from board 
support packages by hardware companies to new software solutions by software 
development companies. Yocto is not a perfect tool and it has certain drawbacks:

• Requirements for disk space and machine usage are quite high
• Documentation for advanced usage is lacking 
• Tools, such as Autobuilder and Eclipse plug-ins, now have functionality 

problems

There are also other things that bother developers, such as ptest integration 
and SDK sysroot's lack of extensibility, but a part of them are solved by the big 
community behind the project, and until the project shows its limitations, a new one 
will still need to wait to take its place. Until this happens, Yocto is the framework to 
use to develop custom embedded Linux distribution or products based in Linux.

Summary
In this chapter, you were presented with the advantages of open source, and examples 
of how open source helped the Linux kernel, Yocto Project, OpenEmbedded, and 
Buildroot for the development and growth of projects, such as LTIB and Scratchbox; 
the lack of open source contribution meant the deprecation and disappearance of them 
over time. The information presented to you will be in the form of examples, which 
will give you a clearer idea of the concepts in this book.

In the next chapter, there will be more information on toolchains and its constituent 
components. Exercises that give you a better idea of toolchains will be generated 
using both the manual and automatic approach.
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Cross-compiling
In this chapter, you will learn about toolchains, how to use and customize them, and 
how code standards apply to them. A toolchain contains a myriad of tools, such as 
compilers, linkers, assemblers, debuggers, and a variety of miscellaneous utilities 
that help to manipulate the resulting application binaries. In this chapter, you will 
learn how to use the GNU toolchain and become familiar with its features. You will 
be presented with examples that will involve manual configurations, and at the same 
time, these examples will be moved to the Yocto Project environment. At the end 
of the chapter, an analysis will be made to identify the similarities and differences 
between manual and automatic deployment of a toolchain, and the various usage 
scenarios available for it.

Introducing toolchains
A toolchain represents a compiler and its associated utilities that are used with the 
purpose of producing kernels, drivers, and applications necessary for a specific 
target. A toolchain usually contains a set of tools that are usually linked to each 
other. It consists of gcc, glibc, binutils, or other optional tools, such as a debugger 
optional compiler, which is used for specific programming languages, such as C++, 
Ada, Java, Fortran, or Objective-C.
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Usually a toolchain, which is available on a traditional desktop or server, executes 
on these machines and produces executables and libraries that are available and 
can run on the same system. A toolchain that is normally used for an embedded 
development environment is called is a cross toolchain. In this case, programs, such 
as gcc, run on the host system for a specific target architecture, for which it produces 
a binary code. This whole process is referred to as cross-compilation, and it is the 
most common way to build sources for embedded development.

In a toolchain environment, three different machines are available:

• The build machine that represents the machine on which the toolchain  
was created

• The host machine that represents the machine on which the toolchain  
is executed

• The target machine that represents the machine that the toolchain produces  
a binary code for

These three machine are used to generate four different toolchain build procedures:

• A native toolchain: This is usually available on a normal Linux distribution 
or on your normal desktop system. This is usually compiled and run, and 
generates code for the same architecture.

• A cross-native toolchain: This represents a toolchain built on one system, 
though it runs and produces a binary code for the target system. A normal 
use case is when a native gcc is needed on the target system without 
building it on the target platform.

• A cross-compilation toolchain: This is the most widespread toolchain type 
used for embedded development. It is compiled and run on an architecture 
type, usually x86, and produces a binary code for the target architecture.
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• A cross-canadian build: This represents a process that involves building a 
toolchain on system A. This toolchain is then run on another system, such as 
B, which produces a binary code for a third system, called C. This is one of 
the most underused build processes.

The three machines that generate four different toolchain build procedures is 
described in the following diagram:

Toolchains represent a list of tools that make the existence of most of great projects 
available today possible. This includes open source projects as well. This diversity 
would not have been possible without the existence of a corresponding toolchain. 
This also happens in the embedded world where newly available hardware needs 
the components and support of a corresponding toolchain for its Board Support 
Package (BSP).

Toolchain configuration is no easy process. Before starting the search for a prebuilt 
toolchain, or even building one yourself, the best solution would be to check for a 
target specific BSP; each development platform usually offers one.

Components of toolchains
The GNU toolchain is a term used for a collection of programming tools under the 
GNU Project umbrella. This suite of tools is what is normally called a toolchain,  
and is used for the development of applications and operating systems. It plays  
an important role in the development of embedded systems and Linux systems,  
in particular.
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The following projects are included in the GNU toolchain:

• GNU make: This represents an automation tool used for compilation  
and build

• GNU Compiler Collection (GCC): This represents a compiler's suite that is 
used for a number of available programming languages

• GNU Binutils: This contains tools, such as linkers, assemblers, and so  
on - these tools are able to manipulate binaries

• GNU Bison: This is a parser generator
• GNU Debugger (GDB): This is a code debugging tool
• GNU m4: This is an m4 macro processor
• GNU build system (autotools): This consists of the following:

 ° Autoconf
 ° Autoheaders
 ° Automake
 ° Libtool

The projects included in the toolchain is described in the following diagram:

An embedded development environment needs more than a cross-compilation 
toolchain. It needs libraries and it should target system-specific packages, such as 
programs, libraries, and utilities, and host specific debuggers, editors, and utilities. In 
some cases, usually when talking about a company's environment, a number of servers 
host target devices, and an certain hardware probes are connected to the host through 
Ethernet or other methods. This emphasizes the fact that an embedded distribution 
includes a great number of tools, and, usually, a number of these tools require 
customization. Presenting each of these will take up more than a chapter in a book.
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In this book, however, we will cover only the toolchain building components. These 
include the following:

• binutils

• gcc

• glibc (C libraries)
• kernel headers

I will start by the introducing the first item on this list, the GNU Binutils package. 
Developed under the GNU GPL license, it represents a set of tools that are used to 
create and manage binary files, object code, assembly files, and profile data for a 
given architecture. Here is a list with the functionalities and names of the available 
tools for GNU Binutils package:

• The GNU linker, that is ld
• The GNU assembler, that is as
• A utility that converts addresses into filenames and line numbers, that  

is addr2line
• A utility to create, extract, and modify archives, that is ar
• A tool used to listing the symbols available inside object files, that is nm
• Copying and translating object files, that is objcopy
• Displaying information from object files, that is objdump
• Generating an index to for the contents of an archive, that is ranlib
• Displaying information from any ELF format object file, that is readelf
• Listing the section sizes of an object or archive file, that is size
• Listing printable strings from files, that is strings
• Discarding the symbols utility that is strip
• Filtering or demangle encoded C++ symbols, that is c++filt
• Creating files that build use DLLs, that is dlltool
• A new, faster, ELF-only linker, which is still in beta testing, that is gold
• Displaying the profiling information tool, that is gprof
• Converting an object code into an NLM, that is nlmconv
• A Windows-compatible message compiler, that is windmc
• A compiler for Windows resource files, that is windres
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The majority of these tools use the Binary File Descriptor (BFD) library for low-level 
data manipulation, and also, many of them use the opcode library to assemble and 
disassemble operations.

Useful information about binutils can be found at http://www.
gnu.org/software/binutils/.

In the toolchain generation process, the next item on the list is represented by kernel 
headers, and are needed by the C library for interaction with the kernel. Before 
compiling the corresponding C library, the kernel headers need to be supplied so 
that they can offer access to the available system calls, data structures, and constants 
definitions. Of course, any C library defines sets of specifications that are specific to 
each hardware architecture; here, I am referring to application binary interface (ABI).

An application binary interface (ABI) represents the interface between two modules. 
It gives information on how functions are called and the kind of information that 
should be passed between components or to the operating system. Referring to a 
book, such as The Linux Kernel Primer, will do you good, and in my opinion, is a 
complete guide for what the ABI offers. I will try to reproduce this definition for you.

An ABI can be seen as a set of rules similar to a protocol or an agreement that offers 
the possibility for a linker to put together compiled modules into one component 
without the need of recompilation. At the same time, an ABI describes the binary 
interface between these components. Having this sort of convention and conforming 
to an ABI offers the benefits of linking object files that could have been compiled 
with different compilers.

It can be easily seen from both of these definitions that an ABI is dependent on 
the type of platform, which can include physical hardware, some kind of virtual 
machine, and so on. It may also be dependent on the programming language that  
is used and the compiler, but most of it depends on the platform.

The ABI presents how the generated codes operate. The code generation process 
must also be aware of the ABI, but when coding in a high-level language, attention 
given to the ABI is rarely a problem. This information could be considered as 
necessary knowledge to specify some ABI related options.

http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
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As a general rule, ABI must be respected for its interaction with external 
components. However, with regard to interaction with its internal modules, the 
user is free to do whatever he or she wants. Basically, they are able to reinvent the 
ABI and form their own dependence on the limitations of the machine. The simple 
example here is related to various citizens who belong to their own country or 
region, because they learned and know the language of that region since they were 
born. Hence, they are able to understand one another and communicate without 
problems. For an external citizen to be able to communicate, he or she will need to 
know the language of a region, and being in this community seems natural, so it will 
not constitute a problem. Compilers are also able to design their own custom calling 
conventions where they know the limitations of functions that are called within a 
module. This exercise is typically done for optimization reasons. However, this can 
be considered an abuse of the ABI term.

The kernel in reference to a user space ABI is backward compatible, and it makes 
sure that binaries are generated using older kernel header versions, rather than the 
ones available on the running kernel, will work best. The disadvantages of this are 
represented by the fact that new system calls, data structures, and binaries generated 
with a toolchain that use newer kernel headers, might not work for newer features. 
The need for the latest kernel headers can be justified by the need to have access to 
the latest kernel features.

The GNU Compiler Collection, also known as GCC, represents a compiler system 
that constitutes the key component of the GNU toolchain. Although it was originally 
named the GNU C Compiler, due to the fact that it only handled the C programming 
language, it soon begun to represent a collection of languages, such as C, C++, 
Objective C, Fortran, Java, Ada, and Go, as well as the libraries for other languages 
(such as libstdc++, libgcj, and so on).

It was originally written as the compiler for the GNU operating system and 
developed as a 100 percent free software. It is distributed under the GNU GPL. This 
helped it extend to its functionalities across a wide variety of architectures, and it 
played an important role in the growth of open source software.
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The development of GCC started with the effort put in by Richard Stallman to 
bootstrap the GNU operating system. This quest led Stallman to write his own 
compiler from scratch. It was released in 1987, with Stallman as the author and other 
as contributors to it. By 1991, it had already reached a stable phase, but it was unable 
to include improvements due to its architectural limitations. This meant that the 
starting point for work on GCC version 2 had begun, but it did not take long until 
the need for development of new language interfaces started to appear in it as well, 
and developers started doing their own forks of the compiler source code. This fork 
initiative proved to be very inefficient, and because of the difficulty of accepting the 
code procedure, working on it became really frustrating.

This changed in 1997, when a group of developers gathered as the Experimental/
Enhanced GNU Compiler System (EGCS) workgroup started merging several forks 
in one project. They had so much success in this venture, and gathered so many 
features, that they made Free Software Foundation (FSF) halt their development 
of GCC version 2 and appointed EGCS the official GCC version and maintainers 
by April 1999. They united with each other with the release of GCC 2.95. More 
information on the history and release history of the GNU Compiler Collection can 
be found at https://www.gnu.org/software/gcc/releases.html and http://
en.wikipedia.org/wiki/GNU_Compiler_Collection#Revision_history.

The GCC interface is similar to the Unix convention, where users call a language-
specific driver, which interprets arguments and calls a compiler. It then runs an 
assembler on the resulting outputs and, if necessary, runs a linker to obtain the final 
executable. For each language compiler, there is a separate program that performs 
the source code read.

The process of obtaining an executable from source code has some execution steps. 
After the first step, an abstract syntax tree is generated and, in this stage, compiler 
optimization and static code analysis can be applied. The optimizations and static 
code analysis can be both applied on architecture-independent GIMPLE or its 
superset GENERIC representation, and also on architecture-dependent Register 
Transfer Language (RTL) representation, which is similar to the LISP language. The 
machine code is generated using pattern-matching algorithm, which was written by 
Jack Davidson and Christopher Fraser.

GCC was initially written almost entirely in C language, although the Ada frontend 
is written mostly in Ada language. However, in 2012, the GCC committee announced 
the use of C++ as an implementation language. The GCC library could not be 
considered finished as an implementation language, even though its main activities 
include adding new languages support, optimizations, improved runtime libraries, 
and increased speed for debugging applications.

https://www.gnu.org/software/gcc/releases.html
http://en.wikipedia.org/wiki/GNU_Compiler_Collection#Revision_history
http://en.wikipedia.org/wiki/GNU_Compiler_Collection#Revision_history
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Each available frontend generated a tree from the given source code. Using this 
abstract tree form, different languages can share the same backend. Initially, GCC 
used Look-Ahead LR (LALR) parsers, which were generated using Bison, but over 
time, it moved on to recursive-descendent parsers for C, C++, and Objective-C in 
2006. Today, all available frontends use handwritten recursive-descendent parsers.

Until recently, the syntax tree abstraction of a program was not independent of a 
target processor, because the meaning of the tree was different from one language 
frontend to the other, and each provided its own tree syntax. All this changed 
with the introduction of GENERIC and GIMPLE architecture-independent 
representations, which were introduced with the GCC 4.0 version.

GENERIC is a more complex intermediate representation, while GIMPLE is a 
simplified GENERIC and targets all the frontends of GCC. Languages, such as 
C, C++ or Java frontends, directly produce GENERIC tree representations in the 
frontend. Others use different intermediate representations that are then parsed  
and converted to GENERIC representations.

The GIMPLE transformation represents complex expressions that are split into a 
three address code using temporary variables. The GIMPLE representation was 
inspired by the SIMPLE representation used on the McCAT compiler for simplifying 
the analysis and optimization of programs.

The middle stage representation of GCC involves code analysis and optimization, 
and works independently in terms of a compiled language and the target 
architecture. It starts from the GENERIC representation and continues to the 
Register Transfer Language (RTL) representation. The optimization mostly 
involves jump threading, instruction scheduling, loop optimization, sub expression 
elimination, and so on. The RTL optimizations are less important than the ones done 
through GIMPLE representations. However, they include dead code elimination, 
global value numbering, partial redundancy elimination, sparse conditional constant 
propagation, scalar replacement of aggregates, and even automatic vectorization or 
automatic parallelization.

The GCC backend is mainly represented by preprocessor macros and specific target 
architecture functions, such as endianness definitions, calling conventions, or word 
sizes. The initial stage of the backend uses these representations to generate the 
RTL; this suggests that although GCC's RTL representation is nominally processor-
independent, the initial processing of abstract instructions is adapted for each 
specific target.
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A machine-specific description file contains RTL patterns, also code snippets, or 
operand constraints that form a final assembly. In the process of RTL generation, 
the constraints of the target architecture are verified. To generate an RTL snippet, it 
must match one or a number RTL patterns from the machine description file, and 
at the same time also satisfy the limitations for these patterns. If this is not done, 
the process of conversion for the final RTL into machine code would be impossible. 
Toward the end of compilation, the RTL representation becomes a strict form. Its 
representation contains a real machine register correspondence and a template from 
the target's machine description file for each instruction reference.

As a result, the machine code is obtained by calling small snippets of code, which 
are associated with corresponding patterns. In this way, instructions are generated 
from target instruction sets. This process involves the usage of registers, offsets, and 
addresses from the reload phase.

More information about a GCC compiler can be found at http://
gcc.gnu.org/ or http://en.wikipedia.org/wiki/GNU_
Compiler_Collection.

The last element that needs to be introduced here is the C library. It represents the 
interface between a Linux kernel and applications used on a Linux system. At the 
same time, it offers aid for the easier development of applications. There are a couple 
of C libraries available in this community:

• glibc

• eglibc

• Newlib

• bionic

• musl

• uClibc

• dietlibc

• Klibc

The choice of the C library used by the GCC compiler will be executed in the 
toolchain generation phase, and it will be influenced not only by the size and 
application support offered by the libraries, but also by compliance of standards, 
completeness, and personal preference.

http://gcc.gnu.org/
http://gcc.gnu.org/
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
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Delving into C libraries
The first library that we'll discuss here is the glibc library, which is designed for 
performance, compliance of standards, and portability. It was developed by the Free 
Software Foundation for the GNU/Linux operating system and is still present today 
on all GNU/Linux host systems that are actively maintained. It was released under 
the GNU Lesser General Public License.

The glibc library was initially written by Roland McGrath in the 1980s and it 
continued to grow until the 1990s when the Linux kernel forked glibc, calling it 
Linux libc. It was maintained separately until January 1997 when the Free Software 
Foundation released glibc 2.0. The glibc 2.0 contained so many features that 
it did not make any sense to continue the development of Linux libc, so they 
discontinued their fork and returned to using glibc. There are changes that are 
made in Linux libc that were not merged into glibc because of problems with the 
authorship of the code.

The glibc library is quite large in terms of its dimensions and isn't a suitable fit for 
small embedded systems, but it provides the functionality required by the Single 
UNIX Specification (SUS), POSIX, ISO C11, ISO C99, Berkeley Unix interfaces, 
System V Interface Definition, and the X/Open Portability Guide, Issue 4.2, with all 
its extensions common with X/Open System Interface compliant systems along with 
X/Open UNIX extensions. In addition to this, GLIBC also provides extensions that 
have been deemed useful or necessary while developing GNU.

The next C library that I'm going to discuss here is the one that resides as the main C 
library used by the Yocto Project until version 1.7. Here, I'm referring to the eglibc 
library. This is a version of glibc optimized for the usage of embedded devices and 
is, at the same time, able to preserve the compatibility standards.

Since 2009, Debian and a number of its derivations chose to move from the GNU 
C Library to eglibc. This might be because there is a difference in licensing 
between GNU LGPL and eglibc, and this permits them to accept patches that 
glibc developers my reject. Since 2014, the official eglibc homepage states that 
the development of eglibc was discontinued because glibc had also moved to the 
same licensing, and also, the release of Debian Jessie meant that it had moved back 
to glibc. This also happened in the case of Yocto support when they also decided to 
make glibc their primary library support option.

The newlib library is another C library developed with the intention of being used in 
embedded systems. It is a conglomerate of library components under free software 
licenses. Developed by Cygnus Support and maintained by Red Hat, it is one of the 
preferred versions of the C library used for non-Linux embedded systems.
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The newlib system calls describe the usage of the C library across multiple operation 
systems, and also on embedded systems that do not require an operating system. It is 
included in commercial GCC distributions, such as Red Hat, CodeSourcery, Attolic, 
KPIT and others. It also supported by architecture vendors that include ARM, 
Renesas, or Unix-like environments, such as Cygwin, and even proprietary operating 
systems of the Amiga personal computer.

By 2007, it also got support from the toolchain maintainers of Nintendo DS, 
PlayStation, portable SDK Game Boy Advance systems, Wii, and GameCube 
development platforms. Another addition was made to this list in 2013 when  
Google Native Client SDK included newlib as their primary C library.

Bionic is a derivate of the BSD C library developed by Google for Android based on 
the Linux kernel. Its development is independent of Android code development. It is 
licensed as 3-clause BSD license and its goals are publically available. These include 
the following:

• Small size: Bionic is smaller in size compared to glibc
• Speed: This has designed CPUs that work at low frequencies
• BSD license: Google wished to isolate Android apps from GPL and LGPL 

licenses, and this is the reason it moved to a non-copyleft license which are  
as follows:

 ° Android is based on a Linux kernel which is based on a  
GPLv2 license

 ° glibc is based on LGPL, which permits the linking of dynamic 
proprietary libraries but not with static linking

It also has a list of restrictions compared to glibc, as follows: 

• It does not include C++ exception handling, mainly because most the code 
used for Android is written in Java.

• It does not have wide character support.
• It does not include a Standard Template library, although it can be  

included manually.
• It functions within Bionic POSIX and even system call headers are  

wrappers or stubs for Android -specific functions. This may lead to odd 
behavior sometimes.

• When Android 4.2 released, it included support for glibc FORTIFY_SOURCE 
features. These features are very often used in Yocto, and embedded systems 
in general, but are only present in the gcc version for Android devices with 
ARM processors.
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The next C library that will be discussed is musl. It is a C library intended for use 
with Linux operating systems for embedded and mobile systems. It has a MIT license 
and was developed with the idea of having a clean, standard-compliant libc, which 
is time efficient, since it's been developed from scratch. As a C library, it is optimized 
for the linking of static libraries. It is compatible with C99 standard and POSIX 2008, 
and implements Linux, glibc, and BSD non-standard functions.

Next, we'll discuss uClibc, which is a C standard library designed for Linux 
embedded systems and mobile devices. Although initially developed for μClinux 
and designed for microcontrollers, it gathered track and became the weapon of 
choice for anyone who's has limited space on their device. This has become popular 
due to the following reasons:

• It focuses on size rather than performance
• It has a GNU Lesser General Public License (LGPL) free license
• It is much smaller the glibc and reduces compilation time
• It has high configurability due to the fact that many of its features can 

be enabled using a menuconfig interface similar to the one available on 
packages, such as Linux kernel, U-Boot, or even BusyBox

The uClibc library also has another quality that makes it quite useful. It introduces 
a new ideology and, because of this, the C library does not try to support as many 
standards as possible. However, it focuses on embedded Linux and consists of the 
features necessary for developers who face the limitation of available space. Due 
to this reason, this library was written from scratch, and even though it has its fair 
share of limitations, uClibc is an important alternative to glibc. If we take into 
consideration the fact that most of the features used from C libraries are present in 
it, the final size is four times smaller, and WindRiver, MontaVista, and TimeSys are 
active maintainers of it.

The dietlibc library is a standard C library that was developed by Felix von 
Leitner and released under the GNU GPL v2 license. Although it also contains some 
commercial licensed components, its design was based on the same idea as uClibc: 
the possibility of compiling and linking software while having the smallest size 
possible. It has another resemblance to uClibc; it was developed from scratch and 
has only implemented the most used and known standard functions. Its primary 
usage is mainly in the embedded devices market.

The last in the C libraries list is the klibc standard C library. It was developed by H. 
Peter Anvin and it was developed to be used as part of the early user space during 
the Linux startup process. It is used by the components that run the the kernel 
startup process but aren't used in the kernel mode and, hence, they do not have 
access to the standard C library.
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The development of klibc started in 2002 as an initiative to remove the Linux 
initialization code outside a kernel. Its design makes it suitable for usage in 
embedded devices. It also has another advantage: it is optimized for small size and 
correctness of data. The klibc library is loaded during the Linux startup process 
from initramfs (a temporary Ram filesystem) and is incorporated by default into 
initramfs using the mkinitramfs script for Debian and Ubuntu-based filesystems. It 
also has access to a small set of utilities, such as mount, mkdir, dash, mknod, fstype, 
nfsmount, run-init and so on, which are very useful in the early init stage.

More information on initramfs can be found using the kernel 
documentation at https://www.kernel.org/doc/
Documentation/filesystems/ramfs-rootfs-initramfs.txt.

The klibc library is licensed under GNU GPL since it uses some components from 
the Linux kernel, so, as a whole, it is visible as a GPL licensed software, limiting its 
applicability in commercial embedded software. However, most of the source code 
of libraries is written under the BSD license.

Working with toolchains
When generating a toolchain, the first thing that needs to be done is the establishment 
of an ABI used to generate binaries. This means that the kernel needs to understand 
this ABI and, at the same time, all the binaries in the system need to be compiled with 
the same ABI.

When working with the GNU toolchain, a good source of gathering information 
and understanding the ways in which work is done with these tools is to consult 
the GNU coding standards. The coding standard's purposes are very simple: to 
make sure that the work with the GNU ecosystem is performed in a clean, easy, and 
consistent manner. This is a guideline that needs to be used by people interested in 
working with GNU tools to write reliable, solid, and portable software. The main 
focus of the GNU toolchain is represented by the C language, but the rules applied 
here are also very useful for any programming languages. The purpose of each rule 
is explained by making sure that the logic behind the given information is passed to 
the reader.

The main language that we will be focusing on will also be the C programming 
language. With regard to the GNU coding standard compatibility regarding libraries 
for GNU, exceptions or utilities and their compatibility should be very good when 
compared with standards, such as the ones from Berkeley Unix, Standard C, or 
POSIX. In case of conflicts in compatibility, it is very useful to have compatibility 
modes for that programming language.

https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
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Standards, such as POSIX and C, have a number of limitations regarding the support 
for extensions - however, these extensions could still be used by including a —posix, 
—ansi, or —compatible option to disable them. In case the extension offers a high 
probability of breaking a program or script by being incompatible, a redesign of its 
interface should be made to ensure compatibility.

A large number of GNU programs suppress the extensions that are known to cause 
conflict with POSIX if the POSIXLY_CORRECT environment variable is defined. The 
usage of user defined features offers the possibility for interchanging GNU features 
with other ones totally different, better, or even use a compatible feature. Additional 
useful features are always welcomed.

If we take a quick look at the GNU Standard documentation, some useful 
information can be learned from it:

It is better to use the int type, although you might consider defining a narrower data 
type. There are, of course, a number of special cases where this could be hard to use. 
One such example is the dev_t system type, because it is shorter than int on some 
machines and wider on others. The only way to offer support for non-standard C 
types involves checking the width of dev_t using Autoconf and, after this, choosing 
the argument type accordingly. However, it may not worth the trouble.

For the GNU Project, the implementation of an organization's standard specifications is 
optional, and this can be done only if it helps the system by making it better overall. In 
most situations, following published standards fits well within a users needs because 
their programs or scripts could be considered more portable. One such example is 
represented by the GCC, which implements almost all the features of Standard C, 
as the standard requires. This offers a great advantage for the developers of the C 
program. This also applies to GNU utilities that follow POSIX.2 specifications.

There are also specific points in the specifications that are not followed, but this 
happens with the sole reason of making the GNU system better for users. One such 
example would be the fact that the Standard C program does not permit extensions 
to C, but, GCC implements many of them, some being later embraced by the 
standard. For developers interested in outputting an error message as required by the 
standard, the --pedantic argument can be used. It is implemented with a view to 
making sure that GCC fully implements the standard.

The POSIX.2 standard mentions that commands, such as du and df, should output 
sizes in units of 512 bytes. However, users want units of 1KB and this default behavior 
is implemented. If someone is interested in having the behavior requested by POSIX 
standard, they would need to set the POSIXLY_CORRECT environment variable.
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Another such example is represented by the GNU utilities, which don't always 
respect the POSIX.2 standard specifications when referring to support for long 
named command-line options or intermingling of options with arguments. This 
incompatibility with the POSIX standard is very useful in practice for developers. 
The main idea here is not to reject any new feature or remove an older one, although 
a certain standard mentions it as deprecated or forbidden.

For more information regarding the GNU Coding Standards, refer to 
https://www.gnu.org/prep/standards/html_node/.

Advice on robust programming
To make sure that you write robust code, a number of guidelines should be 
mentioned. The first one refers to the fact that limitations should not be used for any 
data structure, including files, file names, lines, and symbols, and especially arbitrary 
limitations. All data structures should be dynamically allocated. One of the reasons 
for this is represented by the fact that most Unix utilities silently truncate long lines; 
GNU utilities do not do these kind of things.

Utilities that are used to read files should avoid dropping null characters or 
nonprinting characters. The exception here is when these utilities, that are intended 
for interfacing with certain types of printers or terminals, are unable to handle the 
previously mentioned characters. The advice that I'd give in this case would be to 
try and make programs work with a UTF-8 character set, or other sequences of bytes 
used to represent multibyte characters.

Make sure that you check system calls for error return values; the exception here is 
when a developer wishes to ignore the errors. It would be a good idea to include the 
system error text from strerror, perror, or equivalent error handling functions, 
in error messages that result from a crashed on system call, adding the name of the 
source code file, and also the name of the utility. This is done to make sure that the 
error message is easy to read and understand by anyone involved in the interaction 
with the source code or the program.

Check the return value for malloc or realloc to verify if they've returned zero. In 
case realloc is used in order to make a block smaller in systems that approximate 
block dimensions to powers of 2, realloc may have a different behavior and get a 
different block. In Unix, when realloc has a bug, it destroys the storage block for a 
zero return value. For GNU, this bug does not occur, and when it fails, the original 
block remains unchanged. If you want to run the same program on Unix and do not 
want to lose data, you could check if the bug was resolved on the Unix system or use 
the malloc GNU.

https://www.gnu.org/prep/standards/html_node/
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The content of the block that was freed is not accessible to alter or for any other 
interactions from the user. This can be done before calling free.

When a malloc command fails in a noninteractive program, we face a fatal error. In 
case the same situation is repeated, but, this time, an interactive program is involved, 
it would be better to abort the command and return to the read loop. This offers the 
possibility to free up virtual memory, kill other processes, and retry the command.

To decode arguments, the getopt_long option can be used.

When writing static storage during program execution, use C code for its initialization. 
However, for data that will not be changed, reserve C initialized declarations.

Try to keep away from low-level interfaces to unknown Unix data structures - this 
could happen when the data structure do not work in a compatible fashion. For 
example, to find all the files inside a directory, a developer could use the readdir 
function, or any high-level interface available function, since these do not have 
compatibility problems.

For signal handling, use the BSD variant of signal and the POSIX sigaction function. 
The USG signal interface is not the best alternative in this case. Using POSIX signal 
functions is nowadays considered the easiest way to develop a portable program. 
However, the use of one function over another is completely up to the developer.

For error checks that identify impossible situations, just abort the program, since 
there is no need to print any messages. These type of checks bear witness to the 
existence of bugs. To fix these bugs, a developer will have to inspect the available 
source code and even start a debugger. The best approach to solve this problem 
would be to describe the bugs and problems using comments inside the source code. 
The relevant information could be found inside variables after examining them 
accordingly with a debugger.

Do not use a count of the encountered errors in a program as an exit status. This 
practice is not the best, mostly because the values for an exit status are limited to 8 
bits only, and an execution of the executable might have more than 255 errors. For 
example, if you try to return exit status 256 for a process, the parent process will see 
a status of zero and consider that the program finished successfully.

If temporary files are created, checking that the TMPDIR environment variable would 
be a good idea. If the variable is defined, it would be wise to use the /tmp directory 
instead. The use of temporary files should be done with caution because there is 
the possibility of security breaches occurring when creating them in world-writable 
directories. For C language, this can be avoided by creating temporary files in the 
following manner:

fd = open (filename, O_WRONLY | O_CREAT | O_EXCL, 0600);



Cross-compiling

[ 38 ]

This can also be done using the mkstemps function, which is made available  
by Gnulib.

For a bash environment, use the noclobber environment variable, or the set -C 
short version, to avoid the previously mentioned problem. Furthermore, the mktemp 
available utility is altogether a better solution for making a temporary file a shell 
environment; this utility is available in the GNU Coreutils package.

More information about GNU C Standards can be found at https://
www.gnu.org/prep/standards/standards.html.

Generating the toolchain
After the introduction of the packages that comprise a toolchain, this section will 
introduce the steps needed to obtain a custom toolchain. The toolchain that will be 
generated will contain the same sources as the ones available inside the Poky dizzy 
branch. Here, I am referring to the gcc version 4.9, binutils version 2.24, and 
glibc version 2.20. For Ubuntu systems, there are also shortcuts available. A generic 
toolchain can be installed using the available package manager, and there are also 
alternatives, such as downloading custom toolchains available inside Board Support 
Packages, or even from third parties, including CodeSourcery and Linaro. More 
information on toolchains can be found at http://elinux.org/Toolchains. The 
architecture that will be used as a demo is an ARM architecture.

The toolchain build process has eight steps. I will only outline the activities required 
for each one of them, but I must mention that they are all automatized inside the 
Yocto Project recipes. Inside the Yocto Project section, the toolchain is generated 
without notice. For interaction with the generated toolchain, the simplest task would 
be to call meta-ide-support, but this will be presented in the appropriate section  
as follows:

• The setup: This represents the step in which top-level build directories  
and source subdirectories are created. In this step, variables such as TARGET, 
SYSROOT, ARCH, COMPILER, PATH, and others are defined.

• Geting the sources: This represents the step in which packages, such as 
binutils, gcc, glibc, linux kernel headers, and various patches are  
made available for use in later steps.

https://www.gnu.org/prep/standards/standards.html
https://www.gnu.org/prep/standards/standards.html
http://elinux.org/Toolchains
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• GNU Binutils setup - This represents the steps in which the interaction  
with the binutils package is done, as shown here:

 ° Unzip the sources available from the corresponding release
 ° Patch the sources accordingly, if this applies
 ° Configure, the package accordingly
 ° Compile the sources
 ° Install the sources in the corresponding location

• Linux kernel headers setup: This represents the steps in which the 
interaction with the Linux kernel sources is presented, as shown here:

 ° Unzip the kernel sources.
 ° Patch the kernel sources, if this applies.
 ° Configure the kernel for the selected architecture. In this step, the 

corresponding kernel config file is generated. More information 
about Linux kernel will be presented in Chapter 4, Linux Kernel.

 ° Compile the Linux kernel headers and copy them in the 
corresponding location.

 ° Install the headers in the corresponding locations.

• Glibc headers setup: This represents the steps used to setting the glibc 
build area and installation headers, as shown here:

 ° Unzip the glibc archive and headers files
 ° Patch the sources, if this applies
 ° Configure the sources accordingly enabling the -with-headers 

variable to link the libraries to the corresponding Linux kernel headers
 ° Compile the glibc headers files
 ° Install the headers accordingly

• GCC first stage setup: This represents the step in which the C runtime files, 
such as crti.o and crtn.o, are generated:

 ° Unzip the gcc archive
 ° Patch the gcc sources if necessary
 ° Configure the sources enabling the needed features
 ° Compile the C runtime components
 ° Install the sources accordingly
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• Build the glibc sources: This represents the step in which the glibc sources 
are built and the necessary ABI setup is done, as shown here:

 ° Configure the glibc library by setting the mabi and march variables 
accordingly

 ° Compile the sources
 ° Install the glibc accordingly

• GCC second stage setup: This represents the final setup phase in which the 
toolchain configuration is finished, as shown here:

 ° Configure the gcc sources
 ° Compile the sources
 ° Install the binaries in the corresponding location

After these steps are performed, a toolchain will be available for the developer to use. 
The same strategy and build procedure steps is followed inside the Yocto Project.

The Yocto Project reference
As I have mentioned, the major advantage and available feature of the Yocto Project 
environment is represented by the fact that a Yocto Project build does not use the 
host available packages, but builds and uses its own packages. This is done to make 
sure that a change in the host environment does not influence its available packages 
and that builds are made to generate a custom Linux system. A toolchain is one 
of the components because almost all packages that are constituents of a Linux 
distribution need the usage of toolchain components.

The first step for the Yocto Project is to identify the exact sources and packages that 
will be combined to generate the toolchain that will be used by later built packages, 
such as U-Boot bootloader, kernel, BusyBox and others. In this book, the sources  
that will be discussed are the ones available inside the dizzy branch, the latest poky 
12.0 version, and the Yocto Project version 1.7. The sources can be gathered using  
the following command:

git clone -b dizzy http://git.yoctoproject.org/git/poky
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Gathering the sources and investigating the source code, we identified a part of the 
packages mentioned and presented in the preceding headings, as shown here:

cd poky

find ./ -name "gcc"

./meta/recipes-devtools/gcc

find ./ -name "binutils"  

./meta/recipes-devtools/binutils

./meta/recipes-devtools/binutils/binutils

find ./ -name "glibc"

./meta/recipes-core/glibc

./meta/recipes-core/glibc/glibc

$ find ./ -name "uclibc"

./meta-yocto-bsp/recipes-core/uclibc

./meta-yocto-bsp/recipes-core/uclibc/uclibc

./meta/recipes-core/uclibc   

The GNU CC and GCC C compiler package, which consists of all the preceding 
packages, is split into multiple fractions, each one with its purpose. This is mainly 
because each one has its purpose and is used with different scopes, such as sdk 
components. However, as I mentioned in the introduction of this chapter, there are 
multiple toolchain build procedures that need to be assured and automated with the 
same source code. The available support inside Yocto is for gcc 4.8 and 4.9 versions. 
A quick look at the gcc available recipes shows the available information:

meta/recipes-devtools/gcc/

├── gcc-4.8

├── gcc_4.8.bb

├── gcc-4.8.inc

├── gcc-4.9

├── gcc_4.9.bb

├── gcc-4.9.inc

├── gcc-common.inc

├── gcc-configure-common.inc
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├── gcc-cross_4.8.bb

├── gcc-cross_4.9.bb

├── gcc-cross-canadian_4.8.bb

├── gcc-cross-canadian_4.9.bb

├── gcc-cross-canadian.inc

├── gcc-cross.inc

├── gcc-cross-initial_4.8.bb

├── gcc-cross-initial_4.9.bb

├── gcc-cross-initial.inc

├── gcc-crosssdk_4.8.bb

├── gcc-crosssdk_4.9.bb

├── gcc-crosssdk.inc

├── gcc-crosssdk-initial_4.8.bb

├── gcc-crosssdk-initial_4.9.bb

├── gcc-crosssdk-initial.inc

├── gcc-multilib-config.inc

├── gcc-runtime_4.8.bb

├── gcc-runtime_4.9.bb

├── gcc-runtime.inc

├── gcc-target.inc

├── libgcc_4.8.bb

├── libgcc_4.9.bb

├── libgcc-common.inc

├── libgcc.inc

├── libgcc-initial_4.8.bb

├── libgcc-initial_4.9.bb

├── libgcc-initial.inc

├── libgfortran_4.8.bb

├── libgfortran_4.9.bb

└── libgfortran.inc

The GNU Binutils package represents the binary tools collection, such as GNU 
Linker, GNU Assembler, addr2line, ar, nm, objcopy, objdump, and other tools and 
related libraries. The Yocto Project offers support for the Binutils version 2.24, and is 
also dependent on the available toolchain build procedures, as it can be viewed from 
the inspection of the source code:
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meta/recipes-devtools/binutils/

├── binutils

├── binutils_2.24.bb

├── binutils-2.24.inc

├── binutils-cross_2.24.bb

├── binutils-cross-canadian_2.24.bb

├── binutils-cross-canadian.inc

├── binutils-cross.inc

├── binutils-crosssdk_2.24.bb

└── binutils.inc

The last components is represented by C libraries that are present as components 
inside the Poky dizzy branch. There are two C libraries available that can be used by 
developers. The first one is represented by the GNU C library, also known as glibc, 
which is the most used C library in Linux systems. The sources for glibc package 
can be viewed here:

meta/recipes-core/glibc/

├── cross-localedef-native

├── cross-localedef-native_2.20.bb

├── glibc

├── glibc_2.20.bb

├── glibc-collateral.inc

├── glibc-common.inc

├── glibc.inc

├── glibc-initial_2.20.bb

├── glibc-initial.inc

├── glibc-ld.inc

├── glibc-locale_2.20.bb

├── glibc-locale.inc

├── glibc-mtrace_2.20.bb

├── glibc-mtrace.inc

├── glibc-options.inc

├── glibc-package.inc

├── glibc-scripts_2.20.bb

├── glibc-scripts.inc
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├── glibc-testing.inc

├── ldconfig-native-2.12.1

├── ldconfig-native_2.12.1.bb

└── site_config

From these sources, the same location also includes tools, such as ldconfig, a 
standalone native dynamic linker for runtime dependencies and a binding and cross 
locale generation tool. In the other C library, called uClibc, as previously mentioned, 
a library designed for embedded systems has fewer recipes, as it can be viewed from 
the Poky source code:

meta/recipes-core/uclibc/

├── site_config

├── uclibc-config.inc

├── uclibc-git

├── uclibc_git.bb

├── uclibc-git.inc

├── uclibc.inc

├── uclibc-initial_git.bb

└── uclibc-package.inc

The uClibc is used as an alternative to glibc C library because it generates smaller 
executable footprints. At the same time, uClibc is the only package from the ones 
presented in the preceding list that has a bbappend applied to it, since it extends 
the support for two machines, genericx86-64 and genericx86. The change 
between glibc and uClibc can be done by changing the TCLIBC variable to the 
corresponding variable in this way: TCLIBC = "uclibc".

As mentioned previously, the toolchain generation process for the Yocto Project is 
simpler. It is the first task that is executed before any recipe is built using the Yocto 
Project. To generate the cross-toolchain inside using Bitbake, first, the bitbake 
meta-ide-support task is executed. The task can be executed for the qemuarm 
architecture, for example, but it can, of course, be generated in a similar method for 
any given hardware architecture. After the task finishes the execution process, the 
toolchain is generated and it populates the build directory. It can be used after this 
by sourcing the environment-setup script available in the tmp directory:

cd poky

source oe-init-build-env ../build-test
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Set the MACHINE variable to the value qemuarm accordingly inside the conf/local.
conf file:

bitbake meta-ide-support

source tmp/environment-setup

The default C library used for the generation of the toolchain is glibc, but it can 
be changed according to the developer's need. As seen from the presentation in the 
previous section, the toolchain generation process inside the Yocto Project is very 
simple and straightforward. It also avoids all the trouble and problems involved in 
the manual toolchain generation process, making it very easy to reconfigure also.

Summary
In this chapter, you were presented with the necessary information needed to 
understand the constituent components of a Linux toolchain, and the steps undertaken 
by developers to work or configure a Linux toolchain that is specific for a board or 
architecture. You were also presented information on the packages available inside the 
Yocto Project sources, and how the processes defined inside the Yocto Project are very 
similar to the ones already used outside of the Yocto Project context.

In the next chapter, we will breeze through information on bootloaders, with special 
emphasis given to U-Boot bootloader. You will also be given information on a boot 
sequence and a board's configurations inside the U-Boot sources.
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Bootloaders
In this chapter, you will be presented with one of the most important components 
necessary for using a Linux system in an embedded environment. Here, I am 
referring to the bootloader, a piece of software that offers the possibility of 
initializing a platform and making it ready to boot a Linux operating system. In 
this chapter, the benefits and roles of bootloaders will be presented. This chapter 
mainly focuses on the U-Boot bootloaders, but readers are encouraged to have a 
look at others, such as Barebox, RedBoot, and so on. All these bootloaders have their 
respective features and there isn't one in particular that suits every need; therefore, 
experimentation and curiosity are welcome when this chapter. You have already 
been introduced to the the Yocto Project reference in the last chapter; hence, you will 
now be able to understand how this development environment works with various 
bootloaders, and especially the ones available inside a Board Support Package 
(BSP).

The main purpose of this chapter is to present the main properties of embedded 
bootloaders and firmware, their booting mechanisms, and the problems that appear 
when firmware is updated or modified. We will also discuss the problems related 
to safety, installation, or fault tolerance. With regard to bootloader and firmware 
notions, we have multiple definitions available and a number of them refer to 
traditional desktop systems, which we are not interested in.

A firmware usually represents a fixed and small program that is used on a system 
to control hardware. It performs low-level operations and is usually stored on 
flash, ROM, EPROM, and so on. It is not changed very often. Since there have been 
situations where this term has confused people and was sometimes used only 
to define hardware devices or represent data and its instructions, it was avoided 
altogether. It represents a combination of the two: computer data and information, 
along with the hardware device combined in a read-only piece of software available 
on the device.



Bootloaders

[ 48 ]

The bootloader represents the piece of software that is first executed during system 
initialization. It is used to load, decompress, and execute one or more binary 
applications, such as a Linux kernel or a root filesystem. Its role involves adding 
the system in a state where it can execute its primary functions. This is done after 
loading and starting the correct binary applications that it receives or has already 
saved on the internal memory. Upon initializing, the hardware bootloader may need 
to initialize the phase-locked loop (PLL), set the clocks, or enable access to the RAM 
memory and other peripherals. However, these initializations are done on a basic 
level; the rest are done by kernels drivers and other applications.

Today, a number of bootloaders are available. Due to limited space available for 
this topic, and also the fact that their number is high, we will only discuss the 
most popular ones. U-Boot is one of the most popular bootloaders available for 
architectures, such as PowerPC, ARM, MIPS, and others. It will constitute the 
primary focus of this chapter.

The role of the bootloader
The first time that electricity runs into a development board processor, a great 
number of hardware components need to be prepared before running a program. 
For each architecture, hardware manufacturer, and even processor, this initialization 
process is different. In most cases, it involves a set of configurations and actions are 
different for a variety of processors and ends up fetching the bootstrap code from 
a storage device available in the proximity of the processor. This storage device is 
usually a flash memory and the bootstrap code is the first stage of the bootloader,  
and the one that initializes the processor and relevant hardware peripherals.

The majority of the available processors when power is applied to them go to 
a default address location, and after finding the first bytes of binary data, start 
executing them. Based on this information, the hardware designers define the  
layout for the flash memory and the address ranges that could later be used to  
load and boot the Linux operating system from predictable addresses.

In the first stage of initialization, the board init is done, usually in the assembler 
language specific to the processor and after this is finished, the entire ecosystem is 
prepared for the operating system booting process. The bootloader is responsible 
for this; it is the component that offers the possibility to load, locate, and execute 
primary components of the operating system. Additionally, it can contain other 
advanced features, such as the capability to upgrade the OS image, validate an OS 
image, choose between several OS images, and even the possibility to upgrade itself. 
The difference between the traditional PC BIOS and an embedded bootloader is the 
fact that in an embedded environment, the bootloader is overwritten after the Linux 
kernel starts execution. It, in fact, ceases to exist after it offers control to the OS image.
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Bootloaders need to carefully initialize peripherals, such as flash or DRAM, before 
they are used. This is not an easy task to do. For example, the DRAM chips cannot be 
read or written in a direct method - each chip has a controller that needs to be enabled 
for read and write operations. At the same time, the DRAM needs to be continually 
refreshed because the data will be lost otherwise. The refresh operation, in fact, 
represents the reading of each DRAM location within the time frame mentioned by the 
hardware manufacturer. All these operations are the DRAM controller's responsibility, 
and it can generate a lot of frustration for the embedded developer because it requires 
specific knowledge about the architecture design and DRAM chip.

A bootloader does not have the infrastructure that a normal application has. It does 
not have the possibility to only be called by its name and start executing. After 
being switched on when it gains control, it creates its own context by initializing the 
processor and necessary hardware, such as DRAM, moves itself in the DRAM for 
faster execution, if necessary and finally, starts the actual execution of code.

The first element that poses as a complexity is the compatibility of the start up code 
with the processor's boot sequence. The first executable instructions need to be at a 
predefined location in the flash memory, which is dependent of the processor and 
even hardware architecture. There is also the possibility for a number of processors 
to seek for those first executable instructions in several locations based on the 
hardware signals that are received.

Another possibility is to have the same structure on many of the newly available 
development boards, such as the Atmel SAMA5D3-Xplained:



Bootloaders

[ 50 ]

For the Atmel SAMA5D3-Xplained board and others similar to it, the booting starts 
from an integrated boot code available in the ROM memory called BootROM on 
AT91 CPUs, which loads the first stage bootloader called AT91Bootstrap on SRAM 
and starts it. The first stage bootloader initializes the DRAM memory and starts the 
second stage bootloader, which is U-Boot in this case. More information on boot 
sequence possibilities can be found in the boot sequence header available, which 
you'll read about shortly.

The lack of an execution context represents another complexity. Having to write 
even a simple "Hello World" in a system without a memory and, therefore, without 
a stack on which to allocate information, would look very different from the well-
known "Hello World" example. This is the reason why the bootloader initializes the 
RAM memory to have a stack available and is able to run higher-level programs or 
languages, such as C.

Comparing various bootloaders
As we read earlier, a number of bootloaders are available for embedded systems.  
The ones that will be presented here are as follows:

• U-Boot: This is also called the Universal Bootloader and is available mostly 
for PowerPC and ARM architectures for embedded Linux systems

• Barebox: This was initially known as U-Boot v2 and was started in 2007 with 
the scope to solve the limitations of U-Boot; it changed its name over time 
because the design goals and community changed

• RedBoot: This is a RedHat bootloader derived from eCos, an open-source  
real-time operating system that is portable and devised for embedded systems

• rrload: This is a bootloader for ARM and is based on embedded Linux systems
• PPCBOOT: This is a bootloader for PowerPC and is based on embedded 

Linux systems
• CLR/OHH: This represents a flash bootloader for embedded Linux systems 

based on an ARM architecture
• Alios: This is a bootloader that is written mostly in assembler, does ROM and 

RAM initializations, and tries to completely remove the need for firmware on 
embedded systems

There are a number of bootloaders available and this is a natural outcome of the fact 
that there are a huge number of different architectures and devices, so many, in fact, 
that it is almost near impossible to have one that would be good for all systems. The 
variety of bootloaders is high; the differentiator factors are represented by the board 
types and structure, SOC differences and even CPUs.
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Delving into the bootloader cycle
As mentioned previously, the bootloader is the component that is first run after 
initializing the system, and prepares the entire ecosystem for the operating system 
boot process. This process differs from one architecture to the other. For example, for 
the x86 architecture, the processor has access to BIOS, a piece of software available in 
a nonvolatile memory, which is usually a ROM. Its role starts out after resetting the 
system when it is executed and initializes the hardware components that will later be 
used by the first stage bootloader. It also executes the first stage of the bootloader.

The first stage bootloader is very small in terms of dimensions - in general, it is only 
512 bytes and resides on a volatile memory. It performs the initialization for the full 
bootloader during the second stage. The second stage bootloaders usually reside next 
to the first stage ones, they contain the most number of features and do most of the 
work. They also know how to interpret various filesystem formats, mostly because 
the kernel is loaded from a filesystem.

For x86 processors, there are more bootloader solutions that are available:

• GRUB: The Grand Unified Bootloader is the most used and powerful 
bootloader available for Linux systems from desktop PC platforms. It is a 
component of the GNU Project and is one of the most potent bootloaders 
available for x86 architecture systems. This is because it is able to understand 
a large variety of filesystems and kernel images formats. It is able to change 
the the boot configuration during boot time. GRUB also has support for a 
network boot and command-line interface. It has a configuration file that is 
processed at boot time and can be modified. More information about it can 
be found at http://www.gnu.org/software/grub/.

• Lilo: The Linux Loader a bootloader mostly used in commercial Linux 
distributions. Similar to the previous point, it is available for desktop PC 
platforms. It has more than one component, the first component for historical 
reasons is available on the first sector of a disk drive; it is the bootstrap 
component. Due to the same historical reasons, it is limited to the 512 bytes 
dimension and it loads and offers control to the second stage bootloader that 
does most of the bootloader's work. Lilo has a configuration utility that is 
mainly used as a source of information for the Linux kernel booting process. 
More information about it can be found at http://www.tldp.org/HOWTO/
LILO.html.

• Syslinux: It is used for removable media or network booting. Syslinux is a 
Linux operating system bootloader that runs on MS-DOS or Windows FAT 
filesystems and is mainly used for rescue and first time installations of Linux. 
More information on it can be found at http://www.kernel.org/pub/
linux/utils/boot/syslinux/.

http://www.gnu.org/software/grub/
http://www.tldp.org/HOWTO/LILO.html
http://www.tldp.org/HOWTO/LILO.html
http://www.kernel.org/pub/linux/utils/boot/syslinux/
http://www.kernel.org/pub/linux/utils/boot/syslinux/
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For most embedded systems, this booting process does not apply, although there 
are some that replicate this behavior. There are two types of situations that will be 
presented next. The first one is a situation where the code execution starts from a 
fixed address location, and the second one refers to a situation where the CPU has  
a code available in the ROM memory that is called.

The right-hand side of the image is presented as the previously mentioned booting 
mechanism. In this case, the hardware requires a NOR flash memory chip, available 
at the start address to assure the start of the code execution.

A NOR memory is preferred over the NAND one because it allows random address 
access. It is the place where the first stage bootloader is programmed to start the 
execution, and this doesn't make it the most practical mechanism of booting.

Although it is not the most practical method used for the bootloader boot process,  
it is still available. However, it somehow becomes usable only on boards that are  
not suitable for more potent booting options.
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The U-Boot bootloader
There are many open source bootloaders available today. Almost all of them have 
features to load and execute a program, which usually involves the operating 
system, and its features are used for serial interface communication. However, not 
all of them have the possibility to communicate over Ethernet or update themselves. 
Another important factor is represented by the widespread use of the bootloader. It 
is very common for organizations and companies to choose only one bootloader for 
the diversity of boards, processors, and architectures that they support. A similar 
thing happened with the Yocto Project when a bootloader was chosen to represent 
the official supported bootloader. They, and other similar companies, chose U-Boot 
bootloader, which is quite well known in the Linux community.

The U-Boot bootloader, or Das U-Boot as its official name, is developed and 
maintained by Wolfgang Denx with the support of the community behind it. It is 
licensed under GPLv2, its source code is freely available inside a git repository, as 
shown in the first chapter, and it has a two month intervals between releases. The 
release version name is shown as U-boot vYYYY.MM. The information about U-Boot 
loader is available at http://www.denx.de/wiki/U-Boot/ReleaseCycle.

The U-Boot source code has a very well defined directory structure. This can be 
easily seen with this console command:

tree -d -L 1

.

├── api

├── arch

├── board

├── common

├── configs

├── disk

├── doc

├── drivers

├── dts

http://www.denx.de/wiki/U-Boot/ReleaseCycle
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├── examples

├── fs

├── include

├── lib

├── Licenses

├── net

├── post

├── scripts

├── test

└── tools

19 directories

The arch directory contains architecture-specific files and directories-specific to each 
architecture, CPU or development board. An api contains external applications that 
are independent of a machine or architecture type. A board contains inside boards 
with specific names of directories for all board-specific files. A common is a place 
where misc functions are located. A disk contains disk drive handling functions, 
and documentation is available inside the doc directory. Drivers are available in 
the drivers directory. The filesystem-specific functionality is available inside the 
fs directory. There are still some directories that would need mentioning here, 
such as the include directory, which contains the header files; the lib directory 
contains generic libraries with support for various utilities, such as the flatten device 
tree, various decompressions, a post (Power On Self-Test) and others, but I will let 
them be discovered by the reader's curiosity, one small hint would be to inspect the 
README file in the Directory Hierachy section.

Moving through the U-Boot sources, which were downloaded in the previous 
chapter inside the ./include/configs file, configuration files can be found for  
each supported board. These configuration file is an .h file that contains a number 
of CONFIG_ files and defines information on memory mapping, peripherals and their 
setup, command line output, such as the boot default addresses used for booting 
a Linux system, and so on. More information on the configuration files could be 
found inside the README file in the Configuration Options, section or in a board specific 
configuration file. For Atmel SAMA5D3-Xplained, the configuration file is include/
configs/sama5d3_xplained.h. Also, there are two configurations available for this 
board in the configs directory, which are as follows:

• configs/sama5d3_xplained_mmc_defconfig

• configs/sama5d3_xplained_nandflash_defconfig
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These configurations are used to define the board Secondary Program Loader (SPL) 
initialization method. SPL represents a small binary built from the U-Boot source 
code that is placed on the SRAM memory and is used to load the U-Boot into the 
RAM memory. Usually, it has less than 4 KB of memory, and this is how the booting 
sequence looks:

Before actually starting the build for the U-Boot source code for a specific board, 
the board configuration must be specified. For the Atmel SAMA5_Xplained 
development board, as presented in the preceding image, there are two available 
configurations that could be done. The configuration is done with the make 
ARCH=arm CROSS_COMPILE=${CC} sama5d3_xplained_nandflash_defconfig 
command. Behind this command, the include/config.h file is created. This header 
include definitions that are specific for the chosen board, architecture, CPU, and 
also board-specific header includes. The defined CONFIG_* variable read from the 
include/config.h file includes determining the compilation process. After the 
configuration is completed, the build can be started for the U-Boot.
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Another example that can be very useful when inspected relates to the other scenario 
of booting an embedded system, one that requires the use of a NOR memory. In 
this situation, we can take a look at a particular example. This is also well described 
inside the Embedded Linux Primer by Christopher Hallinan, where a processor of the 
AMCC PowerPC 405GP is discussed. The hardcoded address for this processor is 
0xFFFFFFFC and is visible using .resetvec , the reset vector placement. There also 
specifies the fact that the rest of this section is completed with only the value 1 until 
the end of the 0xFFFFFFFF stack; this implies that an empty flash memory array is 
completed only with values of 1. The information about this section is available in 
resetvec.S file, which is located at arch/powerpc/cpu/ppc4xx/resetvec.S. The 
contents of resetvec.S file is as follows:

 /* Copyright MontaVista Software Incorporated, 2000 */
#include <config.h>
  .section .resetvec,"ax"
#if defined(CONFIG_440)
  b _start_440
#else
#if defined(CONFIG_BOOT_PCI) && defined(CONFIG_MIP405)
  b _start_pci
#else
  b _start
#endif
#endif

On inspection of this file's source code, it can be seen that only an instruction is 
defined in this section independently of the available configuration options.

The configuration for the U-Boot is done through two types of configuration 
variables. The first one is CONFIG_*, and it makes references to configuration 
options that can be configured by a user to enable various operational features. The 
other option is called CFG_* and this is used for configuration settings and to make 
references to hardware-specific details. The CFG_* variable usually requires good 
knowledge of a hardware platform, peripherals and processors in general. The 
configure file for the SAMA5D3 Xplained hardware platform is available inside the 
include/config.h header file, as follows:

/* Automatically generated - do not edit */
#define CONFIG_SAMA5D3  1
#define CONFIG_SYS_USE_NANDFLASH        1
#define CONFIG_SYS_ARCH  "arm"
#define CONFIG_SYS_CPU   "armv7"
#define CONFIG_SYS_BOARD "sama5d3_xplained"
#define CONFIG_SYS_VENDOR "atmel"
#define CONFIG_SYS_SOC    "at91"
#define CONFIG_BOARDDIR board/atmel/sama5d3_xplained
#include <config_cmd_defaults.h>
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#include <config_defaults.h>
#include <configs/sama5d3_xplained.h>
#include <asm/config.h>
#include <config_fallbacks.h>
#include <config_uncmd_spl.h>

The configuration variables available here represent the corresponding 
configurations for the SAMA5D3 Xplained board. A part of these configurations 
refer to a number of standard commands available for user interactions with the 
bootloader. These commands can be added or removed for the purpose of extending 
or subtracting commands from the available command line interface.

More information on the U-Boot configurable command interface can be found at 
http://www.denx.de/wiki/view/DULG/UBootCommandLineInterface.

Booting the U-Boot options
In an industrial environment, interaction with the U-Boot is mainly done through the 
Ethernet interface. Not only does an Ethernet interface enable the faster transfer of 
operating system images, but it is also less prone to errors than a serial connection.

One of the most important features available inside a bootloader is related to the 
support for Dynamic Host Control Protocol (DHCP), Trivial File Transfer Protocol 
(TFTP), and even Bootstrap Protocol (BOOTP). BOOTP and DHCP enable an 
Ethernet connection to configure itself and acquire an IP address from a specialized 
server. TFTP enables the download of files through a TFTP server. The messages 
passed between a target device and the DHCP/BOOTP servers are represented in 
the following image in a more generic manner. Initially, the hardware platform sends 
a broadcast message that arrives at all the DHCP/BOOTP servers available. Each 
server sends back its offer, which also contains an IP address, and the client accepts 
the one that suits its purposes the best and declines the other ones. 

http://www.denx.de/wiki/view/DULG/UBootCommandLineInterface
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After the target device has finished communication with DHCP/BOOTP, it remains 
with a configuration that is specific to the target and contains information, such as 
the hostname, target IP and hardware Ethernet address (MAC address), netmask, 
tftp server IP address and even a TFTP filename. This information is bound to the 
Ethernet port and is used later in the booting process.

To boot images, U-Boot offers a number of capabilities that refer to the support of 
storage subsystems. These options include the RAM boot, MMC boot, NAND boot, 
NFS boot and so on. The support for these options is not always easy and could 
imply both hardware and software complexity.

Porting U-Boot
I've mentioned previously that U-Boot is one of the most used and known 
bootloaders available. This is also due to the fact that its architecture enables the 
porting of new development platforms and processors in a very easy manner. At the 
same time, there are a huge number of development platforms available that could 
be used as references. The first thing that any developer who is interested in porting 
a new platform should do is to inspect the board and arch directories to establish 
their baselines, and, at the same time, also identify their similarities with other  
CPUs and available boards.

The board.cfg file is the starting point to register a new platform. Here, the 
following information should be added as a table line:

• Status
• Architecture
• CPU
• SOC
• Vendor
• Board name
• Target
• Options
• Maintainers
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To port a machine similar to SAMA5D3 Xplained, one of the directories that could be 
consulted is the arch directory. It contains files, such as board.c, with information 
related to the initialization process for boards and SOCs. The most notable processes 
are board_init_r(), which does the setup and probing for board and peripherals 
after its relocation in the RAM, board_init_f(), which identifies the stack size and 
reserved address before its relocation in the RAM, and init_sequence[], which is 
called inside the board_init_f for the setup of peripherals. Other important files 
inside the same locations are the bootm.c and interrupts.c files. The former has 
the main responsibility of the boot from memory of the operating system, and the 
latter is responsible for implementation of generic interrupts.

The board directory also has some interesting files and functions that need to be 
mentioned here, such as the board/atmel/sama5d3_xplained/sama5d3_xplained.c 
file. It contains functions, such as board_init(), dram_init(), board_eth_init(),  
board_mmc_init, spl_board_ init(), and mem_init() that are used for 
initialization, and some of them called by the arch/arm/lib/board.c file.

Here are some other relevant directories:

• common: This holds information about user commands, middleware, APIs 
that perform the interfacing between the middleware and user commands, 
and other functions and functionalities used by all available boards.

• drivers: This contains drivers for various device drivers and middleware 
APIs, such as drivers/mmc/mmc.c, drivers/pci/pci.c, drivers/
watchdog/at91sam9_wdt.c and so on.

• fs: Various supported filesystems, such as USB, SD Card, Ext2 FAT, and so 
on are available here.

• include: This represents the location where all the headers necessary for 
most of the boards are present. SOCs and other software is also available. 
Inside include/configs, board-specific configurations are available, and 
include the headers imported from Linux; these could be used for various 
device drivers, porting, or other byte operations.

• tools: This is the place where tools, such as checkpatch.pl, a patch 
examination tool used as a coding style check, are used before sending it to 
the mailing list or the mkimage.c tool. This is also used for the U-Boot generic 
header generation that makes Linux binaries, and assures that they are able 
to be booted using U-Boot.
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More information about the SAMA5D3 Xplained board can be found by inspecting 
the corresponding doc directory and README files, such as README.at91, README.
at91-soc, README.atmel_mci, README.atmel_pmecc, README.ARM-memory-map, 
and so on.

For people interested in committing to the changes they made while porting a 
new development board, CPU, or SOC to U-Boot, a few rules should be followed. 
All of these are related to the git interaction and help you to ensure the proper 
maintenance of your branches.

The first thing that a developer should do is to track the upstream branch that 
corresponds to a local branch. Another piece of advice would be to forget about git 
merge and instead use git rebase. Keeping in contact with the upstream repository 
can be done using the git fetch command. To work with patches, some general 
rules need to be followed, and patches need to have only one logical change, which 
can be any one of these:

• Changes should not contain unrelated or different modifications; only one 
patch is available and acceptable per changeset

• Commits should make the use of git-bisect where possible while detecting 
bugs in sources, when necessary

• If multiple files are impacted by a set of modifications, all of them should be 
submitted in the same patch

• Patches need to have review, and a very thorough one at that

Let's take a look at following diagram, which illustrates the git rebase operation:
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As shown in both the preceding and following diagram, the git rebase operation has 
recreated the work from one branch onto another. Every commit from one branch is 
made available on the succeeding one, just after the last commit from it.

The git merge operation, on the other hand, is a new commit that has two parents: 
the branch from which it was ported, and the new branch on which it was merged. 
In fact, it gathers a series of commits into one branch with a different commit ID, 
which is why they are difficult to manage.

More information related to git interactions can be found at http://git-scm.com/
documentation or http://www.denx.de/wiki/U-Boot/Patches.

Almost always when porting a new feature in U-Boot, debugging is involved. For a 
U-Boot debugger, there are two different situations that can occur:

• The first situation is when lowlevel_init was not executed
• The second situation is when the lowlevel_init was executed; this is the 

most well known scenario

http://git-scm.com/documentation
http://git-scm.com/documentation
 http://www.denx.de/wiki/U-Boot/Patches
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In the next few lines, the second situation will be considered: the baseline enabling 
a debugging session for U-Boot. To make sure that debugging is possible, the elf 
file needs to be executed. Also, it cannot be manipulated directly because the linking 
address will be relocated. For this, a few tricks should be used:

• The first step is to make sure that the environment is clean and that old 
objects are not available any more: make clean

• The next step would be to make sure the dependencies are cleaned:  
find ./ | grep depend | xargs rm

• After the cleaning is finished, the target build can start and the output can  
be redirected inside a log file: make sama5d3_xplained 2>&1 > make.log

• The generated output should be renamed to avoid debugging problems for 
multiple boards: mv u-boot.bin u-boot_sama5d3_xplained.bin

• It is important to enable DEBUG in the board configuration file; inside 
include/configs/ sama5d3_xplained.h, add the #define DEBUG line

An early development platform can be set up after relocation takes place and the 
proper breakpoint should be set after the relocation has ended. A symbol needs to  
be reloaded for U-Boot because the relocation will move the linking address. For  
all of these tasks, a gdb script is indicated as gdb gdb-script.sh:

#!/bin/sh
${CROSS_COMPILE}-gdb u-boot –command=gdb-command-script.txt

vim gdb-command-script.txt
target remote ${ip}:${port}
load
set symbol-reloading
# break the process before calling board_init_r() function
b start.S:79
c
…
# the symbol-file need to be align to the address available after  
relocation
add-symbol-file u-boot ${addr}
# break the process at board_init_r() function for single stepping  
b board.c:494

More information  on relocation can be found at doc/README.
arm-relocation.
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The Yocto Project
The Yocto Project uses various recipes to define interactions to each of the supported 
bootloaders. Since there are multiple stages of booting, there are also multiple recipes 
and packages required inside the BSP. The recipes available for various bootloaders 
are not different from any other recipes available in the Yocto world. However, they 
have some details that make them unique.

The board that we will focus on here is the sama5d3_xplained development board, 
and it is available inside the meta-atmel layer. Inside this layer, the corresponding 
recipes for the first and second stage bootloaders can be found inside the recipes-
bsp directory. Here, I am referring to the at91bootstrap and u-boot recipes. There 
are some misconceptions about first stage and second stage bootloaders. They might 
be referred to as second level and third level bootloaders, because the boot ROM 
code may or may not be taken into account during a discussion. In this book, we 
prefer to call them as first stage and second stage bootloaders.

The AT91bootstrap package represents the first-stage bootloader from Atmel 
available for their SOCs. It manages hardware initialization and also executes the 
second stage bootloader download from a boot media inside the memory; it starts it 
at the end. In the meta-atmel layer, the second stage bootloader is u-boot, and it is 
later used for the Linux operating system boot.

Usually, inside a BSP layer, the support for multiple development boards is offered, 
and this means that multiple versions and bootloader packages are offered as well. 
The distinction between them, however, is on the basis of machine configurations. 
For the SAMA5D3 Xplained development board, the machine configuration 
is available inside the conf/machine/sama5d3_xplained file. In this file, the 
preferred bootloader versions, providers, and configurations are defined. If these 
configurations are not MACHINE specific, they could very well be performed inside the 
package recipe.

This is one example of the configurations available for the sama5d3_xplained 
development board:

PREFERRED_PROVIDER_virtual/bootloader = "u-boot-at91"
UBOOT_MACHINE ?= "sama5d3_xplained_nandflash_config"
UBOOT_ENTRYPOINT = "0x20008000"
UBOOT_LOADADDRESS = "0x20008000"

AT91BOOTSTRAP_MACHINE ?= "sama5d3_xplained"
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Summary
In this chapter, you were presented with information on bootloaders, with particular 
focus on the U-Boot bootloader. We also discussed topics related to U-Boot interaction, 
porting, debugging, general information on bootloaders, U-Boot alternatives and a 
boot sequence inside an embedded environment. There was also a section related 
to the Yocto Project, where you were introduced to the mechanism used to support 
various bootloaders available inside BSP. A number of exercises were presented across 
the chapter, and they offered more clarity on this subject.

In the next chapter, we will discuss the Linux kernel, its features and source code, 
modules and drivers, and, in general, most of the information needed to interact with 
the Linux kernel. As you have already been introduced to it, we will also concentrate 
on the Yocto Project and how it is able to work with various kernel versions for a 
number of boards and exercises. This should ease the understanding of the information 
presented to you.
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Linux Kernel
In this chapter, you will not only learn about the Linux kernel in general, but also 
specific things about it. The chapter will start with a quick presentation of the history 
of Linux and its role and will then continue with an explanation of its various 
features. The steps used to interact with the sources of the Linux kernel will not be 
omitted. You will only be presented with the steps necessary to obtain a Linux kernel 
image from a source code, but also information about what porting for an new ARM 
machine implies, and some of the methods used to debug various problems that 
could appear when working with the Linux kernel sources in general. In the end, the 
context will be switched to the Yocto Project to show how the Linux kernel can be 
built for a given machine, and also how an external module can be integrated and 
used later from a root filesystem image.

This chapter will give you an idea of the Linux kernel and Linux operating system. 
This presentation would not have been possible without the historical component. 
Linux and UNIX are usually placed in the same historical context, but although the 
Linux kernel appeared in 1991 and the Linux operating system quickly became an 
alternative to the UNIX operating system, these two operating systems are members 
of the same family. Taking this into consideration, the history of UNIX operating 
system could not have started from another place. This means that we need to go 
back in time to more than 40 years ago, to be more precise, about 45 years ago to 1969 
when Dennis Ritchie and Ken Thompson started the development of UNIX.
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The predecessor of UNIX was Multiplexed Information and Computing Service 
(Multics), a multiuser operating system project that was not on its best shape at 
the time. Since the Multics had become a nonviable solution for Bell Laboratories 
Computer Sciences Research Center in the summer of 1969, a filesystem design was 
born and it later became what is known today as UNIX. Over time, it was ported on 
multiple machines due to its design and the fact that the source code was distributed 
alongside it. The most prolific contributor to the UNIX was the University of 
California, Berkeley. They also developed their own UNIX version called Berkeley 
Software Distribution (BSD), that was first released in 1977. Until the 1990s, 
multiple companies developed and offered their own distributions of UNIX, their 
main inspirations being Berkeley or AT&T. All of them helped UNIX become a 
stable, robust, and powerful operating system. Among the features that made UNIX 
strong as an operating system, the following can be mentioned:

• UNIX is simple. The number of system calls that it uses are reduced to only a 
couple of hundred and their design is basic

• Everything is regarded as a file in UNIX, making the manipulation of data 
and devices simpler, and it minimizes system calls used for interaction.

• Faster process creation time and the fork() system call.
• The UNIX kernel and utilities written in C language as well as a property 

that makes it easily portable and accessible.
• Simple and robust interprocess communication (IPC) primitives helps in the 

creation of fast and simple programs that accomplish only one thing in the 
best available manner.

Nowadays, UNIX is a mature operating system with support for features, such as 
virtual memory, TCP/IP networking, demand paging preemptive multiprocessing, 
and multithreading. The features spread is wide and varies from small embedded 
devices to systems with hundreds of processors. Its development has moved past 
the idea that UNIX is a research project, and it has become an operating system 
that is general-purpose and practically fits any needs. All this has happened due 
to its elegant design and proven simplicity. It was able to evolve without losing its 
capability to remain simple.
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Linux is as an alternative solution to a UNIX variant called Minix, an operating 
system that was created for teaching purposes, but it lacked easy interaction with the 
system source code. Any changes made to the source code were not easily integrated 
and distributed because of Minix's license. Linus Torvalds first started working at a 
terminal emulator to connect to other UNIX systems from his university. Within the 
same academic year, emulator evolved in a full-fledged UNIX. He released it to be 
used by everyone in 1991.

One of the most attractive features of Linux is that it is an open source operating 
system whose source code is available under the GNU GPL license. When writing 
the Linux kernel, Linus Torvalds used the best design choices and features from 
the UNIX available in variations of the operating system kernel as a source of 
inspiration. Its license is what has propelled it into becoming the powerhouse 
it is today. It has engaged a large number of developers that helped with code 
enhancements, bug fixing, and much more.

Today, Linux is an experienced operating system that is able to run on a multitude of 
architectures. It is able to run on devices that are even smaller than a wristwatch or 
on clusters of supercomputer. It's the new sensation of our days and is being adopted 
by companies and developers around the world in an increasingly diversified 
manner. The interest in the Linux operating system is very strong and this implies 
not only diversity, but also offers a great number of benefits, ranging from security, 
new features, embedded solutions to server solution options, and many more.

Linux has become a truly collaborative project developed by a huge community 
over the internet. Although a great number of changes were made inside this 
project, Linus has remained its creator and maintainer. Change is a constant factor in 
everything around us and this applies to Linux and its maintainer, who is now called 
Greg Kroah-Hartman, and has already been its kernel maintainer for two years now. 
It may seem that in the period that Linus was around, the Linux kernel was a loose-
knit community of developers. This may be because of Linus' harsh comments that 
are known worldwide. Since Greg has been appointed the kernel maintainer, this 
image started fading gradually. I am looking forward to the years to come.
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The role of the Linux kernel
With an impressive numbers of code lines, the Linux kernel is one of the most 
prominent open source projects and at the same time, the largest available one. 
The Linux kernel constitutes a piece of software that helps with the interfacing 
of hardware, being the lowest-level code available that runs in everyone's Linux 
operating system. It is used as an interface for other user space applications, as 
described in the following diagram:

The main roles of the Linux kernel are as follows:

• It provides a set of portable hardware and architecture APIs that offer user 
space applications the possibility to use necessary hardware resources

• It helps with the management of hardware resources, such as a CPU,  
input/output peripherals, and memory

• It is used for the management of concurrent accesses and the usage of 
necessary hardware resources by different applications.

To make sure that the preceding roles are well understood, an example will be 
very useful. Let's consider that in a given Linux operating system, a number of 
applications need access to the same resource, a network interface, or a device. For 
these elements, the kernel needs to multiplex a resource in order to make sure that  
all applications have access to it.
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Delving into the features of the Linux 
kernel
This section will introduce a number of features available inside the Linux kernel. 
It will also cover information about each of them, how they are used, what they 
represent, and any other relevant information regarding each specific functionality. 
The presentation of each feature familiarizes you with the main role of some of the 
features available inside the Linux kernel, as well as the Linux kernel and its source 
code in general.

On a more general note, some of the most valuable features that the Linux kernel has 
are as follows:

• Stability and reliability
• Scalability
• Portability and hardware support
• Compliance with standards
• Interoperability between various standards
• Modularity
• Ease of programming
• Comprehensive support from the community
• Security

The preceding features does not constitute actual functionalities, but have helped 
the project along its development process and are still helping it today. Having said 
this, there are a lot of features that are implemented, such as fast user space mutex 
(futex), netfileters, Simplified Mandatory Access Control Kernel (smack), and so on. 
A complete list of these can be accessed and studied at http://en.wikipedia.org/
wiki/Category:Linux_kernel_features.

http://en.wikipedia.org/wiki/Category:Linux_kernel_features
http://en.wikipedia.org/wiki/Category:Linux_kernel_features
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Memory mapping and management
When discussing the memory in Linux, we can refer to it as the physical and virtual 
memory. Compartments of the RAM memory are used for the containment of the 
Linux kernel variables and data structures, the rest of the memory being used for 
dynamic allocations, as described here:

The physical memory defines algorithms and data structures that are able to 
maintain the memory, and it is done at the page level relatively independently by the 
virtual memory. Here, each physical page has a struct page descriptor associated 
with it that is used to incorporate information about the physical page. Each page has 
a struct page descriptor defined. Some of the fields of this structure are as follows:

• _count: This represents the page counter. When it reaches the 0 value, the 
page is added to the free pages list.

• virtual: This represents the virtual address associated to a physical page. 
The ZONE_DMA and ZONE_NORMAL pages are always mapped, while 
the ZONE_HIGHMEN are not always mapped.

• flags: This represents a set of flags that describe the attributes of the page.
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The zones of the physical memory have been previously. The physical memory is 
split up into multiple nodes that have a common physical address space and a fast 
local memory access. The smallest of them is ZONE_DMA between 0 to 16Mb. The 
next is ZONE_NORMAL, which is the LowMem area between 16Mb to 896Mb, and 
the largest one is ZONE_HIGHMEM, which is between 900Mb to 4GB/64Gb. This 
information can be visible both in the preceding and following images:

The virtual memory is used both in the user space and the kernel space. The 
allocation for a memory zone implies the allocation of a physical page as well as 
the allocation of an address space area; this is done both in the page table and in 
the internal structures available inside the operating system. The usage of the page 
table differs from one architecture type to another. For the Complex instruction set 
computing (CISC) architecture, the page table is used by the processor, but on a 
Reduced instruction set computing (RISC) architecture, the page table is used by 
the core for a page lookup and translation lookaside buffer (TLB) add operations. 
Each zone descriptor is used for zone mapping. It specifies whether the zone is 
mapped for usage by a file if the zone is read-only, copy-on-write, and so on. The 
address space descriptor is used by the operating system to maintain high-level 
information.

The memory allocation is different between the user space and kernel space context 
because the kernel space memory allocation is not able to allocate memory in an easy 
manner. This difference is mostly due to the fact that error management in the kernel 
context is not easily done, or at least not in the same key as the user space context. 
This is one of the problems that will be presented in this section along with the 
solutions because it helps readers understand how memory management is done in 
the context of the Linux kernel.
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The methods used by the kernel for memory handling is the first subject that will be 
discussed here. This is done to make sure that you understand the methods used by 
the kernel to obtain memory. Although the smallest addressable unit of a processor 
is a byte, the Memory Management Unit (MMU), the unit responsible for virtual to 
physical translation the smallest addressable unit is the page. A page's size varies 
from one architecture to another. It is responsible for maintaining the system's page 
tables. Most of 32-bit architectures use 4KB pages, whereas the 64-bit ones usually 
have 8KB pages. For the Atmel SAMA5D3-Xplained board, the definition of the 
struct page structure is as follows:

struct page {
        unsigned long  flags;
        atomic_t        _count;
        atomic_t        _mapcount;
        struct address_space *mapping;
        void        *virtual;
        unsigned long  debug_flags;
        void        *shadow;
        int        _last_nid;

};

This is one of the most important fields of the page structure. The flags field, 
for example, represents the status of the page; this holds information, such as 
whether the page is dirty or not, locked, or in another valid state. The values that 
are associated with this flag are defined inside the include/linux/page-flags-
layout.h header file. The virtual field represents the virtual address associated 
with the page, count represents the count value for the page that is usually 
accessible indirectly through the page_count() function. All the other fields can be 
accessed inside the include/linux/mm_types.h header file.

The kernel divides the hardware into various zone of memory, mostly because there 
are pages in the physical memory that are not accessible for a number of the tasks. 
For example, there are hardware devices that can perform DMA. These actions are 
done by interacting with only a zone of the physical memory, simply called ZONE_
DMA. It is accessible between 0-16 Mb for x86 architectures.

There are four main memory zones available and other two less notable ones that 
are defined inside the kernel sources in the include/linux/mmzone.h header file. 
The zone mapping is also architecture-dependent for the Atmel SAMA5D3-Xplained 
board. We have the following zones defined:

enum zone_type {
#ifdef CONFIG_ZONE_DMA
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        /*
         * ZONE_DMA is used when there are devices that are not able
         * to do DMA to all of addressable memory (ZONE_NORMAL). Then 
we
         * carve out the portion of memory that is needed for these 
devices.
         * The range is arch specific.
         *
         * Some examples
         *
         * Architecture         Limit
         * ---------------------------
         * parisc, ia64, sparc  <4G
         * s390                 <2G
         * arm                  Various
         * alpha                Unlimited or 0-16MB.
         *
         * i386, x86_64 and multiple other arches
         *                      <16M.
         */
        ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
        /*
         * x86_64 needs two ZONE_DMAs because it supports devices that 
are
         * only able to do DMA to the lower 16M but also 32 bit 
devices that
         * can only do DMA areas below 4G.
         */
        ZONE_DMA32,
#endif
        /*
         * Normal addressable memory is in ZONE_NORMAL. DMA operations 
can be
         * performed on pages in ZONE_NORMAL if the DMA devices 
support
         * transfers to all addressable memory.
         */
        ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
        /*
         * A memory area that is only addressable by the kernel 
through
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         * mapping portions into its own address space. This is for 
example
         * used by i386 to allow the kernel to address the memory 
beyond
         * 900MB. The kernel will set up special mappings (page
         * table entries on i386) for each page that the kernel needs 
to
         * access.
         */
        ZONE_HIGHMEM,
#endif
        ZONE_MOVABLE,
        __MAX_NR_ZONES
};

There are allocations that require interaction with more than one zone. One such 
example is a normal allocation that is able to use either ZONE_DMA or ZONE_NORMAL. 
ZONE_NORMAL is preferred because it does not interfere with direct memory accesses, 
though when the memory is at full usage, the kernel might use other available zones 
besides the ones that it uses in normal scenarios. The kernel that is available is a 
struct zone structure that defines each zone's relevant information. For the Atmel 
SAMA5D3-Xplained board, this structure is as shown here:

struct zone {
        unsigned long  watermark[NR_WMARK];
        unsigned long  percpu_drift_mark;
        unsigned long  lowmem_reserve[MAX_NR_ZONES];
        unsigned long  dirty_balance_reserve;
        struct per_cpu_pageset __percpu *pageset;
        spinlock_t        lock;
        int        all_unreclaimable;
        struct free_area        free_area[MAX_ORDER];
        unsigned int            compact_considered;
        unsigned int            compact_defer_shift;
        int                     compact_order_failed;
        spinlock_t              lru_lock;
        struct lruvec           lruvec;
        unsigned long         pages_scanned;
        unsigned long         flags;
        unsigned int        inactive_ratio;
        wait_queue_head_t       * wait_table;
        unsigned long         wait_table_hash_nr_entries;
        unsigned long         wait_table_bits;
        struct pglist_data    *zone_pgdat;
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        unsigned long         zone_start_pfn;
        unsigned long         spanned_pages;
        unsigned long         present_pages;
        unsigned long         managed_pages;
        const char              *name;
};

As you can see, the zone that defines the structure is an impressive one. Some of the 
most interesting fields are represented by the watermark variable, which contain 
the high, medium, and low watermarks for the defined zone. The present_pages 
attribute represents the available pages within the zone. The name field represents 
the name of the zone, and others, such as the lock field, a spin lock that shields the 
zone structure for simultaneous access. All the other fields that can be identified 
inside the corresponding include/linux/mmzone.h header file for the Atmel 
SAMA5D3 Xplained board.

With this information available, we can move ahead and find out how the kernel 
implements memory allocation. All the available functions that are necessary for 
memory allocation and memory interaction in general, are inside the linux/gfp.h 
header file. Some of these functions are:

struct page * alloc_pages(gfp_t gfp_mask, unsigned int order)

This function is used to allocate physical pages in a continuous location. At the 
end, the return value is represented by the pointer of the first page structure if the 
allocation is successful, or NULL if errors occur:

void * page_address(struct page *page)

This function is used to get the logical address for a corresponding memory page:

unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

This one is similar to the alloc_pages() function, but the difference is that the 
return variable is offered in the struct page * alloc_page(gfp_t gfp_mask) 
return argument:

unsigned long __get_free_page(gfp_t gfp_mask)
struct page * alloc_page(gfp_t gfp_mask)

The preceding two functions are wrappers over similar ones, the difference is that 
this function returns only one page information. The order for this function has the 
zero value:

unsigned long get_zeroed_page(unsigned int gfp_mask)



Linux Kernel

[ 76 ]

The preceding function does what the name suggests. It returns the page full of zero 
values. The difference between this function and the __get_free_page() function is 
that after being released, the page is filled with zero values:

void __free_pages(struct page *page, unsigned int order)
void free_pages(unsigned long addr, unsigned int order)
void free_page(unsigned long addr)

The preceding functions are used for freeing the given allocated pages. The passing 
of the pages should be done with care because the kernel is not able to check the 
information it is provided.

Page cache and page writeback
Usually the disk is slower than the physical memory, so this is one of the reasons that 
memory is preferred over disk storage. The same applies for processor's cache levels: 
the closer it resides to the processor the faster it is for the I/O access. The process 
that moves data from the disk into the physical memory is called page caching. The 
inverse process is defined as page writeback. These two notions will be presented in 
this subsection, but is it mainly about the kernel context.

The first time the kernel calls the read() system call, the data is verified if it is 
present in the page cache. The process by which the page is found inside the RAM is 
called cache hit. If it is not available there, then data needs to be read from the disk 
and this process is called cache miss.

When the kernel issues the write() system call, there are multiple possibilities for 
cache interaction with regard to this system call. The easiest one is to not cache the 
write system calls operations and only keep the data in the disk. This scenario is 
called no-write cache. When the write operation updates the physical memory and 
the disk data at the same time, the operation is called write-through cache. The third 
option is represented by write-back cache where the page is marked as dirty. It is 
added to the dirty list and over time, it is put on the disk and marked as not dirty. 
The best synonym for the dirty keyword is represented by the synchronized key 
word.

The process address space
Besides its own physical memory, the kernel is also responsible for user space 
process and memory management. The memory allocated for each user space 
process is called process address space and it contains the virtual memory 
addressable by a given process. It also contains the related addresses used by the 
process in its interaction with the virtual memory.
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Usually a process receives a flat 32 or 64-bit address space, its size being dependent 
on the architecture type. However, there are operating systems that allocate a 
segmented address space. The possibility of sharing the address space between 
the operating systems is offered to threads. Although a process can access a large 
memory space, it usually has permission to access only an interval of memory. 
This is called a memory area and it means that a process can only access a memory 
address situated inside a viable memory area. If it somehow tries to administrate a 
memory address outside of its valid memory area, the kernel will kill the process 
with the Segmentation fault notification.

A memory area contains the following:

• The text section maps source code
• The data section maps initialized global variables
• The bss section maps uninitialized global variables
• The zero page section is used to process user space stack
• The shared libraries text, bss and data-specific sections
• Mapped files
• Anonymous memory mapping is usually linked with functions, such as 

malloc()

• Shared memory segments

A process address space is defined inside the Linux kernel source through a memory 
descriptor. This structure is called struct mm_struct, which is defined inside the 
include/linux/mm_types.h header file and contains information relevant for a 
process address space, such as the number of processes that use the address space, a 
list of memory areas, the last memory area that was used, the number of memory areas 
available, start and finish addresses for the code, data, heap and stack sections.

For a kernel thread, no process address space associated with it; for kernel, the 
process descriptor structure is defined as NULL. In this way, the kernel mentions that 
a kernel thread does not have a user context. A kernel thread only has access to the 
same memory as all the other processes. A kernel thread does not have any pages in 
a user space or access to the user space memory.

Since the processors work only with physical addresses, the translation between 
physical and virtual memory needs to be made. These operations are done by the 
page tables that split the virtual addresses into smaller components with associated 
indexes that are used for pointing purposes. In the majority of available boards and 
architectures in general, the page table lookup is handled by the hardware; the kernel 
is responsible for setting it up.
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Process management
A process, as presented previously, is a fundamental unit in a Linux operating 
system and at the same time, is a form of abstraction. It is, in fact, a program in 
execution, but a program by itself is not a process. It needs to be in an active state 
and have associated resources. A process is able to become a parent by using the 
fork() function, which spawns a child process. Both parent and child processes 
reside in separate address spaces, but both of them have the same content. The 
exec() family of function is the one that is able to execute a different program, create 
an address space, and load it inside that address space.

When fork() is used, the resources that the parent process has are reproduced for 
the child. This function is implemented in a very interesting manner; it uses the 
clone() system call that, at it's base, contains the copy_process() function. This 
functions does the following:

• Calls the dup_task_struct() function to create a new kernel stack. The 
task_struct and thread_info structures are created for a new process.

• Checks that the child does not go beyond the limits of the memory area.
• The child process distinguishes itself from its parent.
• It is set as TASK_UNINTERRUPTIBLE to make sure it does not run.
• Flags are updated.
• PID is associated with the child process.
• The flags that are already set are inspected and proper action is performed 

with respect to their values.
• The clean process is performed at the end when the child process pointer is 

obtained.

Threads in Linux are very similar to processes. They are viewed as processes that 
share various resources, such as memory address space, open files, and so on. The 
creation of threads is similar to a normal task, the exception being the clone() 
function, which passes flags that mention shared resources. For example, the clone 
function calls for a thread, which is clone(CLONE_VM | CLONE_FS | CLONE_FILES | 
CLONE_SIGHAND, 0), while for the normal fork looks similar to clone(SIGCHLD, 0).

The notion of kernel threads appeared as a solution to problems involving tasks 
running in the background of the kernel context. The kernel thread does not have 
an address space and is only available inside the kernel context. It has the same 
properties as a normal process, but is only used for special tasks, such as ksoftirqd, 
flush, and so on.
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At the end of the execution, the process need to be terminated so that the resources 
can be freed, and the parent of the executing process needs to be notified about this. 
The method that is most used to terminate a process is done by calling the exit() 
system call. A number of steps are needed for this process:

1. The PF_EXITING flag is set.
2. The del_timer_sync() function is called to remove the kernel timers.
3. The acct_update_integrals() function is called when writing accounting 

and logging information.
4. The exit_mm() is called to release the mm_struct structure for the process.
5. The exit_sem() is called to dequeue the process from the IPC semaphore.
6. The exit_files() and exit_fs() function are called to remove the links to 

various files descriptors.
7. The task exit code should be set.
8. Call exit_notify() to notify the parent and set the task exit state to EXIT_

ZOMBIE.
9. Call schedule() to switch to a new process.

After the preceding steps are performed, the object associated with this task is freed 
and it becomes unrunnable. Its memory exists solely as information for its parent. 
After its parent announces that this information is of no use to it, this memory is 
freed for the system to use.

Process scheduling
The process scheduler decides which resources are allocated for a runnable process. 
It is a piece of software that is responsible for multitasking, resource allocation to 
various processes, and decides how to best set the resources and processor time. it 
also decides which processes should run next.

The first design of the Linux scheduler was very simplistic. It was not able to scale 
properly when the number of processes increased, so from the 2.5 kernel version, 
a new scheduler was developed. It is called O(1) scheduler and offers a constant 
time algorithm for time slice calculation and a run queue that is defined on a per-
processor basis. Although it is perfect for large servers, it is not the best solution for a 
normal desktop system. From the 2.6 kernel version, improvements have been made 
to the O(1) scheduler, such as the fair scheduling concept that later materialized from 
the kernel version 2.6.23 into the Completely Fair Scheduler (CFS), which became 
the defacto scheduler.
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The CFC has a simple idea behind. It behaves as if we have a perfect multitasking 
processor where each process gets 1/n slice of the processor's time and this time 
slice is an incredibly small. The n value represents the number of running processes. 
Con Kolivas is the Australian programmer that contributed to the fair scheduling 
implementation, also known as Rotating Staircase Deadline Scheduler (RSDL). Its 
implementation required a red-black tree for the priorities of self-balancing and also 
a time slice that is calculated at the nanosecond level. Similarly to the O(1) scheduler, 
CFS applies the notion of weight, which implies that some processes wait more than 
others. This is based on the weighed fair queuing algorithm.

A process scheduler constitutes one of the most important components of the Linux 
kernel because it defines the user interaction with the operating system in general. 
The Linux kernel CFS is the scheduler that appeals to developers and users because 
it offers scalability and performance with the most reasonable approach.

System calls
For processes to interact with a system, an interface should be provided to give 
the user space application the possibility of interacting with hardware and other 
processes.System calls. These are used as an interface between the hardware and 
the user space. They are also used to ensure stability, security, and abstraction, in 
general. These are common layers that constitute an entry point into the kernel 
alongside traps and exceptions, as described here:
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The interaction with most of the system calls that are available inside the Linux 
system is done using the C library. They are able to define a number of arguments 
and return a value that reveals whether they were successful or not. A value of zero 
usually means that the execution ended with success, and in case errors appear, an 
error code will be available inside the errno variable. When a system call is done, the 
following steps are followed:

1. The switch into kernel mode is made.
2. Any restrictions to the kernel space access are eliminated.
3. The stack from the user space is passed into the kernel space.
4. Any arguments from the user space are checked and copied into the kernel 

space.
5. The associated routine for the system call is identified and run.
6. The switch to the user space is made and the execution of the application 

continues.

A system call has a syscall number associated with it, which is a unique number 
used as a reference for the system call that cannot be changed (there is no possibility 
of implementing a system call). A symbolic constant for each system call number is 
available in the <sys/syscall.h> header file. To check the existence of a system call, 
sys_ni_syscall() is used, which returns the ENOSYS error for an invalid system 
call.

The virtual file system
The Linux operating system is able to support a large variety of filesystem options. 
This is done due to the existence of Virtual File System (VFS), which is able to 
provide a common interface for a large number of filesystem types and handle the 
systems calls relevant to them.

The filesystem types supported by the VFS can be put in these three categories:

• Disk-based filesystems: These manage the memory on a local disk or 
devices that are used for disk emulation. Some of the most well known  
ones are:

 ° Linux filesystems, such as Second Extended Filesystem (Ext2), Third 
Extended Filesystem (Ext3), and Forth Extended Filesystem (Ext4)

 ° UNIX filesystems, such as sysv filesystem, UFS, Minix filesystem,  
and so on

 ° Microsoft filesystems, such as MS-DOS, NTFS (available since 
Windows NT), and VFAT (available since Windows 95)
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 ° ISO966 CD-ROM filesystem and disk format DVD filesystem
 ° Proprietary filesystems, such as the ones from Apple, IBM, and other 

companies

• Network filesystems: They are allowed to access various filesystem types 
over a network on other computers. One of the most well known ones is NFS. 
Of course, there are others but they are not as well known. These include 
Andrew filesystem (AFS), Novel's NetWare Core Protocol (NCP), Constant 
Data Availability (Coda), and so on.

• Special filesystems: The /proc filesystem is the perfect example for this 
category of filesystems. This category of filesystems enables an easier 
access for system applications to interrogate data structures of kernels and 
implement various features.

The virtual filesystem system call implementation is very well summarized in this 
image:

In the preceding image, it can be seen how easily the copy is handled from one 
filesystem type to another. It only uses the basic open(), close(), read(), write() 
functions available for all the other filesystem interaction. However, all of them 
implement the specific functionality underneath for the chosen filesystem. For 
example, the open() system calls sys_open()and it takes the same arguments as 
open() and returns the same result. The difference between sys_open() and open() 
is that sys_open() is a more permissive function.

All the other three system calls have corresponding sys_read(), sys_write(), and 
sys_close() functions that are called internally.
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Interrupts
An interrupt is a representation of an event that changes the succession of 
instructions performed by the processor. Interrupts imply an electric signal 
generated by the hardware to signal an event that has happened, such as a key press, 
reset, and so on. Interrupts are divided into more categories depending on their 
reference system, as follows:.

• Software interrupts: These are usually exceptions triggered from external 
devices and user space programs

• Hardware interrupts: These are signals from the system that usually indicate 
a processor specific instruction

The Linux interrupt handling layer offers an abstraction of interrupt handling for 
various device drivers through comprehensive API functions. It is used to request, 
enable, disable, and free interrupts, making sure that portability is guaranteed on 
multiple platforms. It handles all available interrupt controller hardware.

The generic interrupt handling uses the __do_IRQ() handler, which is able to deal 
with all the available types of the interrupt logic. The handling layers are divided in 
two components:

• The top half component is used to respond to the interrupt
• The bottom half component is scheduled by the top half to run at a later time

The difference between them is that all the available interrupts are permitted to act 
in the bottom half context. This helps the top half respond to another interrupt while 
the bottom half is working, which means that it is able to save its data in a specific 
buffer and it permits the bottom half to operate in a safe environment.

For the bottom half processing, there are four defined mechanisms available:

• Softirqs
• Tasklets
• Work queues
• Kernel threads
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The available mechanisms are well presented here:

Although the model for the top and bottom half interrupt mechanism looks simple, it 
has a very complicated function calling mechanism model. This example shows this 
fact for the ARM architecture:
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For the top half component of the interrupt, there are three levels of abstraction 
in the interrupt source code. The first one is the high-level driver API that has 
functions, such as request_irq(), free_irq, disable_irq(), enable_irq(), and 
so on. The second one is represented by the high-level IRQ flow handlers, which 
is a generic layer with predefined or architecture-specific interrupt flow handlers 
assigned to respond to various interrupts during device initialization or boot time. 
It defines a number of predefined functions, such as handle_level_irq(), handle_
simple_irq(), handle_percpu_irq(), and so on. The third is represented by chip-
level hardware encapsulation. It defines the struct irq_chip structure that holds 
chip-relevant functions used in the IRQ flow implementation. Some of the functions 
are irq_ack(), irq_mask(), and irq_unmask().

A module is required to register an interrupt channel and release it afterwards. The 
total number of supported requests is counted from the 0 value to the number of 
IRQs-1. This information is available inside the <asm/irq.h> header file. When 
the registration is done, a handler flag is passed to the request_irq() function to 
specify the interrupt handler's type, as follows:

• SA_SAMPLE_RANDOM: This indicates that the interrupt can contribute to the 
entropy pool, that is, a pool with bits that possess a strong random property, 
by sampling unpredictable events, such as mouse movement, inter-key press 
time, disk interrupts, and so on

• SA_SHIRQ: This shows that the interrupt is sharable between devices.
• SA_INTERRUPT: This indicates a fast interrupt handler, so interrupts are 

disabled on the current processor-it does not represent a situation that is  
very desirable

Bottom halves
The first mechanism that will be discussed regarding bottom half interrupt 
handling is represented by softirqs. They are rarely used but can be found on 
the Linux kernel source code inside the kernel/softirq.c file. When it comes to 
implementation, they are statically allocated at the compile step. They are created 
when an entry is added in the include/linux/interrupt.h header file and the 
system information they provide is available inside the /proc/softirqs file. 
Although not used too often, they can be executed after exceptions, interrupts, 
system calls, and when the ksoftirkd daemon is run by the scheduler.
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Next on the list are tasklets. Although they are built on top of softirqs, they are 
more commonly used for bottom half interrupt handling. Here are some of the 
reasons why this is done:

• They are very fast
• They can be created and destroyed dynamically
• They have atomic and nonblocking code
• They run in a soft interrupt context
• They run on the same processor that they were scheduled for

Tasklets have a struct tasklet_struct structure available. These are also available 
inside the include/linux/interrupt.h header file, and unlike softirqs, tasklets 
are non-reentrant.

Third on the list are work queues that represent a different form of doing the work 
allotted in comparison to previously presented mechanisms. The main differences 
are as follows:

• They are able run in the same time on more the one CPU
• They are allowed to go to sleep
• They runs on a process context
• They can be scheduled or preempted

Although they might have a latency that is slightly bigger the tasklets, the preceding 
qualities are really useful. The tasklets are built around the struct workqueue_
struct structure, available inside the kernel/workqueue.c file.

The last and the newest addition to the bottom half mechanism options is 
represented by the kernel threads that are operated entirely in the kernel mode since 
they are created/destroyed by the kernel. They appeared during the 2.6.30 kernel 
release, and also have the same advantages as the work queues, along with some 
extra features, such as the possibility of having their own context. It is expected that 
eventually the kernel threads will replace the work queues and tasklets, since they 
are similar to the user space threads. A driver might want to request a threaded 
interrupt handler. All it needs to do in this case is to use request_threaded_irq() 
in a similar way to request_irq(). The request_threaded_irq() function offers 
the possibility of passing a handler and thread_fn to split the interrupt handling 
code into two parts. In addition to this, quick_check_handler is called to check 
if the interrupt was called from a device; if that is the case, it will need to call IRQ_
WAKE_THREAD to wake up the handler thread and execute thread_fn.
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Methods to perform kernel synchronization
The number of requests with which a kernel is dealing is likened to the number of 
requests a server has to receive. This situation can deal with race conditions, so a 
good synchronization method would be required. A number of policies are available 
for the way the kernel behaves by defining a kernel control path. Here is an example 
of a kernel control path:

The preceding image offers a clear picture as to why synchronization is necessary. 
For example, a race condition can appear when more than one kernel control path 
is interlinked. To protect these critical regions, a number of measures should be 
taken. Also, it should be taken into consideration that an interrupt handler cannot be 
interrupted and softirqs should not be interleaved.

A number of synchronization primitives have been born:

• Per-CPU variables: This is one of the most simple and efficient 
synchronization methods. It multiplies a data structure so that each one is 
available for each CPU.

• Atomic operations: This refers to atomic read-modify-write instructions.
• Memory barrier: This safeguards the fact that the operations done before the 

barrier are all finished before starting the operations after it.
• Spin lock: This represents a type of lock that implements bust waiting.
• Semaphore: This is a form of locking that implements sleep or blocking 

waiting.
• Seqlocks: This is similar to spin locks, but is based on an access counter.
• Local interrupt disabling: This forbids the use of functions that can be 

postponed on a single CPU.
• Read-copy-update(RCU): This is a method designed to protect the most used 

data structures used for reading. It offers a lock-free access to shared data 
structures using pointers.



Linux Kernel

[ 88 ]

With the preceding methods, race condition situations try to be fixed. It is the job of 
the developer to identify and solve all the eventual synchronization problems that 
might appear.

Timers
Around the Linux kernel, there are a great number of functions that are influenced 
by time. From the scheduler to the system uptime, they all require a time reference, 
which includes both absolute and relative time. For example, an event that needs to 
be scheduled for the future, represents a relative time, which, in fact, implies that 
there is a method used to count time.

The timer implementation can vary depending on the type of the event. The 
periodical implementations are defined by the system timer, which issues an 
interrupt at a fixed period of time. The system timer is a hardware component that 
issues a timer interrupt at a given frequency to update the system time and execute 
the necessary tasks. Another one that can be used is the real-time clock, which is a 
chip with a battery attached that keeps counting time long after the system was shut 
down. Besides the system time, there are dynamic timers available that are managed 
by the kernel dynamically to plan events that run after a particular time has passed.

The timer interrupt has an occurrence window and for ARM, it is 100 times per 
second. This is called the system timer frequency or tick rate and its unit of 
measurement is hertz (Hz). The tick rate differs from one architecture to another. 
If for the most of them, we have the value of 100 Hz, there are others that have 
values of 1024 Hz, such as the Alpha and Itanium (IA-64) architectures, for example. 
The default value, of course, can be changed and increased, but this action has its 
advantages and disadvantages.

Some of the advantages of higher frequency are:

• The timer will be executed more accurately and in a larger number
• System calls that use a timeout are executed in a more precise manner
• Uptime measurements and other similar measurements are becoming more 

precise
• The preemption of process is more accurate

The disadvantages of higher frequency on the other hand, implies a higher overhead. 
The processors spend more time in a timer interrupt context; also, an increase in 
power consumption will take place because more computing is done.



Chapter 4

[ 89 ]

The total number of ticks done on a Linux operation system from the time it started 
booting is stored in a variable called jiffies inside the include/linux/jiffies.h 
header file. At boot time, this variable is initialized to zero and one is added to its 
value each time an interrupt happens. So, the actual value of the system uptime can 
be calculated in the form of jiffies/Hz.

Linux kernel interaction
Until now, you were introduced to some of features of the Linux kernel. Now, it 
is time to present more information about the development process, versioning 
scheme, community contributions, and and interaction with the Linux kernel.

The development process
Linux kernel is a well known open source project. To make sure that developers 
know how to interact with it, information about how the git interaction is done 
with this project, and at the same time, some information about its development and 
release procedures will be presented. The project has evolved and its development 
processes and release procedures have evolved with it.

Before presenting the actual development process, a bit of history will be necessary. 
Until the 2.6 version of the Linux kernel project, one release was made every two 
or three years, and each of them was identified by even middle numbers, such as 
1.0.x, 2.0.x, and 2.6.x. The development branches were instead defined using even 
numbers, such as 1.1.x, 2.1.x, and 2.5.x, and they were used to integrate various 
features and functionalities until a major release was prepared and ready to be 
shipped. All the minor releases had names, such as 2.6.32 and 2.2.23, and they were 
released between major release cycles.
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This way of working was kept up until the 2.6.0 version when a large number of 
features were added inside the kernel during every minor release, and all of them 
were very well put together as to not cause the need for the branching out of a 
new development branch. This implied a faster pace of release with more features 
available. So, the following changes have appeared since the release of the 2.6.14 
kernel:

• All the new minor release versions, such as 2.6.x, contain a two week merge 
window in which a number of features could be introduced in the next 
release

• This merge window will be closed with a release test version called  
2.6.(x+1)-rc1

• Then a 6-8 weeks bug fixing period follows when all the bugs introduced by 
the added features should be fixed

• In the bug fixing interval, tests were run on the release candidate and the 
2.6.(x+1)-rcY test versions were released

• After the final test were done and the last release candidate is considered 
sufficiently stable, a new release will be made with a name, such as 2.6.(x+1), 
and this process will be continued once again

This process worked great but the only problem was that the bug fixes were only 
released for the latest stable versions of the Linux kernel. People needed long term 
support versions and security updates for their older versions, general information 
about these versions that were long time supported, and so on.

This process changed in time and in July 2011, the 3.0 Linux kernel version appeared. 
It appeared with a couple of small changes designed to change the way the 
interaction was to be done to solve the previously mentioned requests. The changes 
were made to the numbering scheme, as follows:

• The kernel official versions would be named 3.x (3.0, 3.1, 3.2, and so on)
• The stable versions would be named 3.x.y (3.0.1, 3.1.3, and so on)

Although it only removed one digit from the numbering scheme, this change was 
necessary because it marked the 20th anniversary of the Linux kernel.

Since a great number of patches and features are included in the Linux kernel 
everyday, it becomes difficult to keep track of all the changes, and the bigger picture 
in general. This changed over time because sites, such as http://kernelnewbies.
org/LinuxChanges and http://lwn.net/, appeared to help developers keep in 
touch with the world of Linux kernel.

http://kernelnewbies.org/LinuxChanges
http://kernelnewbies.org/LinuxChanges
http://lwn.net/,
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Besides these links, the git versioning control system can offer much needed 
information. Of course, this requires the existence of Linux kernel source clones to 
be available on the workstation. Some of the commands that offer a great deal of 
information are:

• git log: This lists all the commits with the latest situated on top of the list
• git log –p: This lists all the commits and with their corresponding diffs
• git tag –l: This lists the available tags
• git checkout <tagname>: This checks out a branch or tag from a working 

repository
• git log v2.6.32..master: This lists all the changes between the given tag 

and the latest version
• git log –p V2.6.32..master MAINTAINERS: This lists all the differences 

between the two given branches in the MAINTAINERS file

Of course, this is just a small list with helpful commands. All the other commands 
are available at http://git-scm.com/docs/.

Kernel porting
The Linux kernel offers support for a large variety of CPU architectures. Each 
architecture and individual board have their own maintainers, and this information 
is available inside the MAINTAINERS file. Also, the difference between board porting 
is mostly given by the architecture, PowerPC being very different from ARM or x86. 
Since the development board that this book focuses on is an Atmel with an ARM 
Cortex-A5 core, this section will try to focus on ARM architecture.

The main focus in our case is the arch/arm directory, which contains sub directories 
such as, boot, common, configs, crypto, firmware, kernel, kvm, lib, mm, net, 
nwfpe, oprofile, tools, vfp, and xen. It also contains an important number of 
directories that are specific for different CPU families, such as the mach-* directories 
or the plat-* directories. The first mach-* category contains support for the CPU 
and several boards that use that CPU, and the second plat-* category contains 
platform-specific code. One example is plat-omap, which contains common code for 
both mach-omap1 and mach-omap2.

http://git-scm.com/docs/
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The development for the ARM architecture has suffered a great change since 2011. 
If until then ARM did not use a device tree, it was because it needed to keep a large 
portion of the code inside the mach-* specific directory, and for each board that had 
support inside the Linux kernel, a unique machine ID was associated and a machine 
structure was associates with each board that contained specific information and a 
set of callbacks. The boot loader passed this machine ID to a specific ARM registry 
and in this way, the kernel knew the board.

The increase in popularity of the ARM architecture came with the refactoring of the 
work and the introduction of the device tree that dramatically reduced the amount 
of code available inside the mach-* directories. If the SoC is supported by the Linux 
kernel, then adding support for a board is as simple as defining a device tree in the 
/arch/arm/boot/dts directory with an appropriate name. For example, for <soc-
name>-<board-name>.d, include the relevant dtsi files if necessary. Make sure that 
you build the device tree blob (DTB) by including the device tree into arch/arm/
boot/dts/Makefile and add the missing device drivers for board.

In the eventuality that the board does not have support inside the Linux kernel, the 
appropriate additions would be required inside the mach-* directory. Inside each 
mach-* directory, there are three types of files available:

• Generic code files: These usually have a single word name, such as clock.c, 
led.c, and so on

• CPU specific code: This is for the machine ID and usually has the <machine-
ID>*.c form - for example, at91sam9263.c, at91sam9263_devices.c, 
sama5d3.c, and so on

• Board specific code: This usually is defined as board-*.c, such as board-
carmeva.c, board-pcontrol-g20.c, board-pcontrol-g20.c, and so on

For a given board, the proper configuration should be made first inside the arch/
arm/mach-*/Kconfig file; for this, the machine ID should be identified for the board 
CPU. After the configuration is done, the compilation can begin, so for this, arch/
arm/mach-*/Makefile should also be updated with the required files to ensure 
board support. Another step is represented by the machine structure that defines 
the board and the machine type number that needs to be defined in the board-
<machine>.c file.

The machine structure uses two macros: MACHINE_START and MACHINE_END. Both 
are defined inside arch/arm/include/asm/march/arch.h and are used to define 
the machine_desc structure. The machine type number is available inside the arch/
arm/tools/mach_types file. This file is used to generate the include/asm-arm/
mach-types.h file for the board.
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The updated number list of the machine type is available at http://
www.arm.linux.org.uk/developer/machines/download.php.

When the boot process starts in the first case, only the dtb is necessary to pass to the 
boot loader and loaded to initialize the Linux kernel, while in the second case, the 
machine type number needs to be loaded in the R1 register. In the early boot process, 
__lookup_machine_type looks for the machine_desc structure and loads it for the 
initialization of the board.

Community interaction
After this information has been presented to you, and if you are eager to contribute 
to the Linux kernel, then this section should be read next. If you want to really 
contribute to the Linux kernel project, then a few steps should be performed before 
starting this work. This is mostly related to documentation and investigation of the 
subject. No one wants to send a duplicate patch or replicate the work of someone 
else in vain, so a search on the Internet on the topic of your interest could save a lot 
of time. Other useful advice is that after you've familiarized yourself with the subject, 
avoid sending a workaround. Try to reach the problem and offer a solution. If not, 
report the problem and describe it thoroughly. If the solution is found, then make 
both the problem and solution available in the patch.

One of the most valuable things in the open source community is the help you 
can get from others. Share your question and issues, but do not forget to mention 
the solution also. Ask the questions in appropriate mailing lists and try to avoid 
the maintainers, if possible. They are usually very busy and have hundreds and 
thousands of e-mails to read and reply. Before asking for help, try to research the 
question you want to raise, it will help both when formulating it but also it could 
offer an answer. Use IRC, if available, for smaller questions and lastly, but most 
importantly, try to not overdo it.

When you are preparing for a patch, make sure that it is done on the corresponding 
branch, and also that you read the Documentation/BUG-HUNTING file first. Identify 
bug reports, if any, and make sure you link your patch to them. Do not hesitate to 
read the Documentation/SubmittingPatches guidelines before sending. Also, 
do not send your changes before testing them properly. Always sign your patches 
and make the first description line as suggestive as possible. When sending the 
patches, find appropriate mailing lists and maintainers and wait for the replies. 
Solve comments and resubmit them if this is needed, until the patch is considered 
acceptable.

http://www.arm.linux.org.uk/developer/machines/download.php
http://www.arm.linux.org.uk/developer/machines/download.php
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Kernel sources
The official location for the Linux kernel is available at http://www.kernel.org, 
but there a lot of smaller communities that contribute to the Linux kernel with their 
features or even maintain their own versions.

Although the Linux core contains the scheduler, memory management, and other 
features, it is quite small in size. The extremely large number of device drivers, 
architectures and boards support together with filesystems, network protocols and 
all the other components were the ones that made the size of the Linux kernel really 
big. This can be seen by taking a look at the size of the directories of the Linux.

The Linux source code structure contains the following directories:

• arch: This contains architecture-dependent code
• block: This contains the block layer core
• crypto: This contains cryptographic libraries
• drivers: This gathers all the implementation of the device drivers with the 

exception of the sound ones
• fs: This gathers all the available implementations of filesystem 
• include: This contains the kernel headers
• init: This has the Linux initialization code
• ipc: This holds the interprocess communication implementation code
• kernel: This is the core of the Linux kernel
• lib: This contains various libraries, such as zlibc, crc, and so on
• mm: This contains the source code for memory management 
• net: This offers access to all the network protocol implementations 

supported inside Linux
• samples: This presents a number of sample implementations, such as kfifo, 

kobject, and so on
• scripts: This is used both internally and externally
• security: This has a bunch of security implementation, such as apparmor, 

selinux, smack, and so on
• sound: This contains sound drivers and support code
• usr: This is the initramfs cpio archive that generates sources
• virt: This holds the source code for the virtualization support
• COPYING: This represents the Linux license and the definition copying 

conditions

http://www.kernel.org
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• CREDITS: This represents the collection of Linux's main contributors 
• Documentation: This contains corresponding documentation of kernel sources
• Kbuild: This represents the top-level kernel build system
• Kconfig: This is the top-level descriptor for configuration parameters
• MAINTAINERS: This a list with the maintainers of each kernel component
• Makefile: This represents the top-level makefile
• README: This file describes what Linux is, it is the starting point for 

understanding the project
• REPORTING-BUGS: This offers information regarding the bug report procedure

As it can be seen, the source code of the Linux kernel is quite large, so a browsing 
tool would be required. There are a number of tools that can be used, such as 
Cscope, Kscope, or the web browser, Linux Cross Reference (LXR). Cscope is a 
huge project that can be also available with extensions for vim and emacs.

Configuring kernel
Before building a Linux kernel image, the proper configuration needs to be done. 
This is hard, taking into consideration that we have access to hundreds and 
thousands of components, such as drivers, filesystems, and other items. A selection 
process is done inside the configuration stage, and this is possible with the help 
of dependency definitions. The user has the chance to use and define a number of 
options that are enabled in order to define the components that will be used to build 
a Linux kernel image for a specific board.

All the configurations specific for a supported board are located inside a 
configuration file, simply named .config, and it is situated on the same level as the 
previously presented files and directory locations. Their form is usually represented 
as configuration_key=value. There are, of course, dependencies between these 
configurations, so they are defined inside the Kconfig files.

Here are a number of variable options available for a configuration key:

• bool: These are the options can have true or false values
• tristate: This, besides the true and false options, also appears as a  

module option
• int : These values, are not that spread but they usually have a well-established 

value range
• string : These values, are also not the most spread ones but usually contain 

some pretty basic information



Linux Kernel

[ 96 ]

With regard to the Kconfig files, there are two options available. The first one makes 
option A visible only when option B is enabled and is defined as depends on, and 
the second option offers the possibility of enabling option A. This is done when the 
option is enabled automatically and is defined as select.

Besides the manual configuration of the .config file, configuration is the worst 
option for a developer, mostly because it can miss dependencies between some of the 
configurations. I would like to suggest to developers to use the make menuconfig 
command that will launch a text console tool for the configuration of a kernel image.

Compiling and installing the kernel
After the configuration is done, the compilation process can be started. A piece of 
advice I would like to give is to use as many threads as possible if the host machine 
offers this possibility because it would help with the build process. An example of 
the build process start command is make –j 8.

At the end of the build process, a vmlinux image is offered and also some 
architecture-dependent images are made available inside the architecture-specific 
files for the ARM architecture. The result of this is available inside arch/arm/
boot/*Image. Also, the Atmel SAMA5D3-Xplained board will offer a specific device 
tree file that is available in arch/arm/boot/dts/*.dtb. If the vmlinux image file is 
an ELF file with debug information that cannot be used for booting except for debug 
purposes, the arch/arm/boot/*Image file is the solution for this purpose.

The installation is the next step when development is done for any other application. 
The same also takes place for the Linux kernel, but in an embedded environment, 
this step seems kind of unnecessary. For Yocto enthusiasts, this step is also available. 
However, in this step, proper configurations are done for the kernel source and 
headers are to be used by the dependencies that do the storing for the deploy step.

The kernel modules, as mentioned in the cross-compilation chapter, need to be later 
used for the compiler build. The install for the kernel modules could be done using 
the make modules_install command, and this offers the possibility to install the 
sources available inside the /lib/modules/<linux-kernel-version> directory 
with all the module dependencies, symbols, and aliases.



Chapter 4

[ 97 ]

Cross-compiling the Linux kernel
In an embedded development, the compilation process implies cross-compilation, 
the most visible difference with the native compilation process being the fact that  
it has a prefix with the target architecture available in the naming. The prefix setup 
can be done using the ARCH variable that defines the name of the architecture of  
the target board and the CROSS_COMPILE variable that defines the prefix for the  
cross-compilation toolchain. Both of them are defined in the top-level Makefile.

The best option would be to set these variables as environment variables to make 
sure that a make process is not run for the host machine. Although it only works in 
the current terminal, it will be the best solution in the situation that no automation 
tool is available for these tasks, such as the Yocto Project. It is not recommended 
though to update the .bashrc shell variables if you are planning to use more than 
one toolchain on the host machine.

Devices and modules
As I mentioned previously, the Linux kernel has a lot of kernel modules and drivers 
that are already implemented and available inside the source code of the Linux 
kernel. A number of them, being so many, are also available outside the Linux kernel 
source code. Having them outside not only reduces the boot time by not initializing 
them at boot time, but is done instead at the request and needs of users. The only 
difference is that the loading and unloading of the modules requires root access.

Loading and interacting with the Linux kernel modules requires logging information 
to be made available. The same happens for any kernel module dependencies. The 
logging information is available through the dmesg command and the level of logging 
enables manual configuration using the loglevel parameter or it can be disabled 
with the quite parameter. Also for the kernel dependencies, information about them is 
available inside the /lib/modules/<kernel-version>/modules.dep file.

For module interaction, multiple utilities used for multiple operations are available, 
such as modinfo, which is used for information gathering about modules; insmod 
is able for loading a module when the fill path to the kernel module is given. 
Similar utilities for a module are available. One of them is called modprobe and the 
difference in modprobe is that the full path is not necessary, as it is responsible for 
loading dependent modules of the chosen kernel object before loading itself. Another 
functionality that modprobe offers is the –r option. It is the remove functionality 
which offers support for removing the module and all its dependencies. An 
alternative to this is the rmmod utility, which removes modules not used anymore. 
The last utility available is lsmod, which lists the loaded modules.
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The simplest kernel module example that can be written looks something similar to 
this:

#define MODULE
#define LINUX
#define __KERNEL__

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int hello_world_init(void)
{
   printk(KERN_ALERT "Hello world!\n");
   return 0;
}

static void hello_world_exit(void)
{
   printk(KERN_ALERT "Goodbye!\n");
}

module_init(hello_world_init);
module_exit(hello_world_exit);

MODULE_LICENSE("GPL");

This is a simple hello world kernel module. Useful information that can be 
gathered from the preceding example is that every kernel module needs a start 
function defined in the preceding example as hello_world_init(). It is called when 
the module is inserted, and a cleanup function called hello_world_exit() is called 
when the module is removed.

Since the Linux kernel version 2.2, there is a possibility of using the _init and __
exit macros in this way:

static int __init hello_world_init (void)
static void __exit hello_world_exit (void)

The preceding macros are removed, the first one after the initialization, and the 
second one when the module is built-in within the Linux kernel sources.
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More information about the Linux kernel modules can be found 
in the Linux Kernel Module Programming Guide available at 
http://www.tldp.org/LDP/lkmpg/2.6/html/index.html.

As mentioned previously, a kernel module is not only available inside a Linux 
kernel, but also outside of the Linux kernel tree. For a built-in kernel module, 
the compile process is similar to the one of other available kernel modules and 
a developer can inspire its work from one of them. The kernel module available 
outside of the Linux kernel drivers and the build process requires access to the 
sources of the Linux kernel or the kernel headers.

For a kernel module available outside of the Linux kernel sources, a Makefile 
example is available, as follows:

KDIR := <path/to/linux/kernel/sources>

PWD := $(shell pwd)

obj-m := hello_world.o

all:

$(MAKE) ARCH=arm CROSS_COMPILE=<arm-cross-compiler-prefix> -C

$(KDIR) M=$(PWD)

For a module that is implemented inside a Linux kernel, a configuration for the 
module needs to be made available inside the corresponding Kconfig file with the 
correct configuration. Also, the Makefile near the Kconfig file needs to be updated 
to let the Makefile system know when the configuration for the module is updated 
and the sources need to be built. We will see an example of this kind for a kernel 
device driver here.

An example of the Kconfig file is as follows:

config HELLO_WORLD_TEST 

  tristate "Hello world module test"

  help

    To compile this driver as a module chose the M option.

     otherwise chose Y option.

An example of the Makefile is as follows:

obj-$(CONFIG_ HELLO_WORLD_TEST)  += hello_world.c

In both these examples, the source code file is hello_world.c and the resulting 
kernel module if it is not built-in is called hello_world.ko.

http://www.tldp.org/LDP/lkmpg/2.6/html/index.html
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A driver is usually used as an interface with a framework that exposes a number of 
hardware features, or with a bus interface used to detect and communicate with the 
hardware. The best example is shown here:

Since there are multiple scenarios of using a device driver and three device mode 
structures are available:

• struct bus_type: This represents the types of busses, such as I2C, SPI, USB, 
PCI, MMC, and so on

• struct device_driver: This represents the driver used to handle a specific 
device on a bus

• struct device: This is used to represent a device connected to a bus

An inheritance mechanism is used to create specialized structures from more generic 
ones, such as struct device_driver and struct device for every bus subsystem. 
The bus driver is the one responsible for representing each type of bus and matching 
the corresponding device driver with the detected devices, detection being done 
through an adapter driver. For nondiscoverable devices, a description is made inside 
the device tree or the source code of the Linux kernel. They are handled by the 
platform bus that supports platform drivers and in return, handles platform devices.
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Debugging a kernel
Having to debug the Linux kernel is not the most easy task, but it needs to 
be accomplished to make sure that the development process moves forward. 
Understanding the Linux kernel is, of course, one of the prerequisites. Some of the 
available bugs are very hard to solve and may be available inside the Linux kernel 
for a long period of time.

For most of the trivial ones, some of the following steps should be taken. First, 
identify the bug properly; it is not only useful when define the problem, but also 
helps with reproducing it. The second step involves finding the source of the problem. 
Here, I am referring to the first kernel version in which the bug was first reported. 
Good knowledge about the bug or the source code of the Linux kernel is always 
useful, so make sure that you understand the code before you start working on it.

The bugs inside the Linux kernel have a wide spread. They vary from a variable not 
being stored properly to race conditions or hardware management problems, they 
have widely variable manifestations and a chain of events. However, debugging 
them is not as difficult as it sounds. Besides some specific problems, such as race 
conditions and time constraints, debugging is very similar to the debugging of any 
large user space application.

The first, easiest, and most handy method to debug the kernel is the one that 
involves the use of the printk() function. It is very similar to the printf() C library 
function, and although old and not recommended by some, it does the trick. The new 
preferred method involves the usage of the pr_*() functions, such as pr_emerg(), 
pr_alert(), pr_crit(), pr_debug(), and so on. Another method involves the 
usage of the dev_*() functions, such as dev_emerg(), dev_alert(), dev_crit(), 
dev_dbg(), and so on. They correspond to each logging level and also have extra 
functions that are defined for debugging purposes and are compiled when  
CONFIG_DEBUG is enabled.

More information about the pr_*() and dev_*() family of functions 
can be found inside the Linux kernel source code at Documentation/
dynamic-debug-howto.txt. You can also find more information 
about loglevel at Documentation/kernel-parameters.txt.

When a kernel oops crash appears, it signals that the kernel has made a mistake. Not 
being able to fix or kill itself, it offers access to a bunch of information, such as useful 
error messages, registers content, and back trace information.
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The Magic SysRq key is another method used in debugging. It is enabled by 
CONFIG_MAGIC_SYSRQ config and can be used to debug and rescue kernel 
information, regardless of its activity. It offers a series of command-line options that 
can be used for various actions, ranging from changing the nice level to rebooting 
the system. Plus, it can be toggled on or off by changing the value in the /proc/sys/
kernel/sysrq file. More information about the system request key can be found at 
Documentation/sysrq.txt.

Although Linus Torvalds and the Linux community do not believe that the existence 
of a kernel debugger will do much good to a project, a better understanding of the 
code is the best approach for any project. There are still some debugger solutions that 
are available to be used. GNU debugger (gdb) is the first one and it can be used in 
the same way as for any other process. Another one is the kgdb a patch over gdb that 
permits debugging of serial connections.

If none of the preceding methods fail to help solve the problem and you've tried 
everything but can't seem to arrive at a solution, then you can contact the open 
source community for help. There will always will be developers there who will  
lend you a hand.

To acquire more information related to the Linux kernel, there are a 
couple of books that can be consulted. I will present a bunch of their 
names here: Embedded Linux Primer by Christopher Hallinan, Linux 
Kernel Development by Robert Love, Linux Kernel In A Nutshell by Greg 
Kroah-Hartman, and last but not the least, Understanding the Linux 
Kernel by Daniel P. Bovet and Marco Cesati.

The Yocto Project reference
Moving on to the Yocto Project, we have recipes available for every kernel version 
available inside the BSP support for each supported board, and recipes for kernel 
modules that are built outside the Linux kernel source tree.

The Atmel SAMA5D3-Xplained board uses the linux-yocto-custom kernel. This is 
defined inside the conf/machine/sama5d3-xplained.conf machine configuration 
file using the PREFERRED_PROVIDER_virtual/kernel variable. No PREFERRED_
VERSION is mentioned, so the latest version is preferred; in this case, we are talking 
about the linux-yocto-custom_3.10.bb recipe.
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The linux-yocto-custom_3.10.bb recipe fetches the kernel sources available inside 
Linux Torvalds' git repository. After a quick look at the sources once the do_fetch 
task is finished, it can be observed that the Atmel repository was, in fact, fetched. 
The answer is available inside the linux-yocto-custom_3.10.bbappend file, which 
offers another SR_URI location. Other useful information you can gather from here 
is the one available in bbappend file, inside it is very well stated that the SAMA5D3 
Xplained machine is a COMPATIBLE_MACHINE:

KBRANCH = "linux-3.10-at91"
SRCREV = "35158dd80a94df2b71484b9ffa6e642378209156"
PV = "${LINUX_VERSION}+${SRCPV}"

PR = "r5"

FILESEXTRAPATHS_prepend := "${THISDIR}/files/${MACHINE}:"

SRC_URI = "git://github.com/linux4sam/linux-at91.git;protocol=git;bran
ch=${KBRANCH};nocheckout=1"
SRC_URI += "file://defconfig"

SRCREV_sama5d4-xplained = "46f4253693b0ee8d25214e7ca0dde52e788ffe95"

do_deploy_append() {
  if [ ${UBOOT_FIT_IMAGE} = "xyes" ]; then
    DTB_PATH="${B}/arch/${ARCH}/boot/dts/"
    if [ ! -e "${DTB_PATH}" ]; then
      DTB_PATH="${B}/arch/${ARCH}/boot/"
    fi

    cp ${S}/arch/${ARCH}/boot/dts/${MACHINE}*.its ${DTB_PATH}
    cd ${DTB_PATH}
    mkimage -f ${MACHINE}.its ${MACHINE}.itb
    install -m 0644 ${MACHINE}.itb ${DEPLOYDIR}/${MACHINE}.itb
    cd -
  fi
}

COMPATIBLE_MACHINE = "(sama5d4ek|sama5d4-xplained 
|sama5d3xek|sama5d3-xplained|at91sam9x5ek 
|at91sam9rlek|at91sam9m10g45ek)"
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The recipe firstly defines repository-related information. It is defined through 
variables, such as SRC_URI and SRCREV. It also indicates the branch of the repository 
through the KBRANCH variable, and also the place from where defconfig needs to be 
put into the source code to define the .config file. As seen in the recipe, there is an 
update made to the do_deploy task for the kernel recipe to add the device driver to 
the tmp/deploy/image/sama5d3-xplained directory alongside the kernel image 
and other binaries.

The kernel recipe inherits the kernel.bbclass and kernel-yocto.bbclass files, 
which define most of its tasks actions. Since it also generates a device tree, it needs 
access to linux-dtb.inc, which is available inside the meta/recipes-kernel/
linux directory. The information available in the linux-yocto-custom_3.10.bb 
recipe is rather generic and overwritten by the bbappend file, as can be seen here:

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git; 
protocol=git;nocheckout=1"

LINUX_VERSION ?= "3.10"
LINUX_VERSION_EXTENSION ?= "-custom"

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

# Override SRCREV to point to a different commit in a bbappend  
file to
# build a different release of the Linux kernel.
# tag: v3.10 8bb495e3f02401ee6f76d1b1d77f3ac9f079e376"
SRCREV = "8bb495e3f02401ee6f76d1b1d77f3ac9f079e376"

PR = "r1"
PV = "${LINUX_VERSION}+git${SRCPV}"

# Override COMPATIBLE_MACHINE to include your machine in a bbappend
# file. Leaving it empty here ensures an early explicit build  
failure.
COMPATIBLE_MACHINE = "(^$)"

# module_autoload is used by the kernel packaging bbclass
module_autoload_atmel_usba_udc = "atmel_usba_udc"
module_autoload_g_serial = "g_serial"
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After the kernel is built by running the bitbake virtual/kernel command, the 
kernel image will be available inside the tmp/deploy/image/sama5d3-xplained 
directory under the zImage-sama5d3-xplained.bin name, which is a symbolic link 
to the full name file and has a larger name identifier. The kernel image was deployed 
here from the place where the Linux kernel tasks were executed. The simplest 
method to discover that place would be to run bitbake –c devshell virtual/
kernel. A development shell will be available to the user for direct interaction with 
the Linux kernel source code and access to task scripts. This method is preferred 
because the developer has access to the same environment as bitbake.

A kernel module, on the other hand, has a different kind of behavior if it is not built-
in inside the Linux kernel source tree. For the modules that are build outside of the 
source tree, a new recipe need to be written, that is, a recipe that inherits another 
bitbake class this time called module.bbclass. One example of an external Linux 
kernel module is available inside the meta-skeleton layer in the recipes-kernel/
hello-mod directory:

SUMMARY = "Example of how to build an external Linux kernel module"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://COPYING;md5=12f884d2ae1ff87c09e5b7ccc2c4ca
7e"

inherit module

PR = "r0"
PV = "0.1"

SRC_URI = "file://Makefile \
           file://hello.c \
           file://COPYING \
          "

S = "${WORKDIR}"

# The inherit of module.bbclass will automatically name module  
packages with
# "kernel-module-" prefix as required by the oe-core build  
environment.
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As mentioned in the example of the Linux kernel external module, the last two  
lines of each kernel module that is external or internal is packaged with the kernel-
module- prefix to make sure that when the IMAGE_INSTALL variable is available, the 
value kernel-modules are added to all kernel modules available inside the /lib/
modules/<kernel-version> directory. The kernel module recipe is very similar to 
any available recipe, the major difference being in the form of the module inherited, 
as shown in the line inherit module.

Inside the Yocto Project, there are multiple commands available to interact with the 
kernel and kernel module recipes. The simplest command is, of course, bitbake 
<recipe-name>, but for the Linux kernel, there are a number of commands available 
to make the interaction easier. The most used one is the bitbake -c menuconfig 
virtual/kernel operation, which offers access to the kernel configuration menu.

Besides already known tasks, such as configure, compile, and devshell, that are 
used mostly in the development process, there are other ones, such as diffconfig, 
which uses the diffconfig script available in the Linux kernel scripts directory. 
The difference between the implementation of the Yocto Project and the available 
script of the Linux kernel is the fact that the former adds the kernel config creation 
phase. These config fragments are used to add kernel configurations into the 
.config file as part of the automation process.

Summary
In this chapter, you learned about the Linux kernel in general, about its features 
and methods of interacting with it. There was also information about debugging 
and porting features. All this was done to make sure that you would get enough 
information about the whole ecosystem before interacting with it. It is my opinion 
that if you understand the whole picture first, it will become easier to focus on the 
more specific things. This is also one of the reasons that the Yocto Project reference 
was kept toward the end. You were introduced to how a Linux kernel recipe and a 
Linux kernel external module are defined and used later by a given machine. More 
information on Linux kernels will also be available in the next chapter, which will 
gather all the previously presented information and will show you how a developer 
can interact with a Linux operating system image.

Besides this information, in the next chapter, there will be an explanation about the 
organization of the root file system and the principles behind it, its content, and 
device drivers. Busybox is another interesting subject that will be discussed and also 
the various support for file systems that are available. Since it tends to become larger, 
information about what a minimal file system should look like will also be presented. 
Having said this, we shall proceed to the next chapter.



[ 107 ]

The Linux Root Filesystem
In this chapter, you will learn about the root filesystem and its structure. You will also 
be presented with information about the root filesystem's content, the various device 
drivers available, and its the communication with the Linux kernel. We will slowly 
make the transition to the Yocto Project and the method used to define the Linux root 
filesystem's content. The necessary information will be presented to make sure that a 
user will be also able to customize the rootfs filesystem according to its needs.

The special requirements of the root filesystem will be presented. You will be given 
information on its content, subdirectories, defined purposes, the various filesystem 
options available, the BusyBox alternative, and also a lot of interesting features.

When interacting with an embedded environment, a lot of developers would start 
from a minimal root filesystem made available by a distribution provider, such as 
Debian, and using a cross-toolchain will enhance it with various packages, tools, and 
utilities. If the number of packages to be added is big, it can be very troublesome work. 
Starting from scratch would be an even bigger nightmare. Inside the Yocto Project, 
this job is automatized and there is no need for manual work. The development is 
started from scratch, and it offers a large number of packages inside the root filesystem 
to make the work fun and interesting. So, let's move ahead and take a look at this 
chapter's content to understand more about root filesystems in general.

Interacting with the root filesystem
A root filesystem consists of a directory and file hierarchy. In this file hierarchy, 
various filesystems can be mounted, revealing the content of a specific storage device. 
The mounting is done using the mount command, and after the operation is done, the 
mount point is populated with the content available on the storage device. The reverse 
operation is called umount and is used to empty the mount point of its content.
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The preceding commands are very useful for the interaction of applications with 
various files available, regardless of their location and format. For example, the 
standard form for the mount command is mount –t type device directory. This 
command asks the kernel to connect the filesystem from the device that has the type 
format mentioned in the command line, along with the directory mentioned in the 
same command. The umount command needs to be given before removing the device 
to make sure the kernel caches are written in the storage point.

A root filesytem is available in the root hierarchy, also known as /. It is the first 
available filesystem and also the one on which the mount command is not used, since 
it is mounted directly by the kernel through the root= argument. The following are 
the multiple options to load the root filesystem:

• From the memory
• From the network using NFS
• From a NAND chip
• From an SD card partition
• From a USB partition
• From a hard disk partition

These options are chosen by hardware and system architects. To make use of these, 
the kernel and bootloader need to be configured accordingly. 

Besides the options that require interaction with a board's internal memory or 
storage devices, one of the most used methods to load the root filesystem is 
represented by the NFS option, which implies that the root filesystem is available 
on your local machine and is exported over the network on your target. This option 
offers the following advantages:

• The size of the root filesystem will not be an issue due to the fact that the 
storage space on the development machine is much larger than the one 
available on the target

• The update process is much easier and can be done without rebooting
• Having access to an over the network storage is the best solution for devices 

with small even inexistent internal or external storage devices
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The downside of the over the network storage is the fact that a sever client 
architecture is needed. So, for NFS, an NFS server functionality will need to 
be available on the development machine. For a Ubuntu host, the required 
configuration involves installing the nfs-kernel–server package, sudo apt-
get install nfs-kernel-server. After the package is installed, the exported 
directory location needs to be specified and configured. This is done using the /
etc/exports file; here, configuration lines similar to /nfs/rootfs <client-IP-
address> (rw,no_root_squash,no_subtree_check) appear, where each line 
defines a location for the over the network shared locations with the NFS client. After 
the configuration is finished, the NFS server needs to be restarted in this way: sudo 
/etc/init.d/nfs-kernel-server restart.

For the client side available on the target, the Linux kernel needs to be configured 
accordingly to make sure that the NFS support is enabled, and also that an IP 
address will be available at boot time. This configurations are CONFIG_NFS_FS=y, 
CONFIG_IP_PNP=y, and CONFIG_ROOT_NFS=y. The kernel also needs to be configured 
with the root=/dev/nfs parameter, the IP address for the target, and the NFS server 
nfsroot=192.168.1.110:/nfs/rootfs information. Here is an example of the 
communication between the two components:
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There is also the possibility of having a root filesystem integrated inside the kernel 
image, that is, a minimal root filesytem whose purpose is to start the full featured 
root filesystem. This root filesystem is called initramfs. This type of filesystem is 
very helpful for people interested in fast booting options of smaller root filesystems 
that only contain a number of useful features and need to be started earlier. It is 
useful for the fast loading of the system at boot time, but also as an intermediate 
step before starting the real root filesystem available on one of the available storage 
locations. The root filesystem is first started after the kernel booting process, so it 
makes sense for it to be available alongside the Linux kernel, as it resides near the 
kernel on the RAM memory. The following image explains this:

To create initramfs, configurations need to be made available. This happens by 
defining either the path to the root filesystem directory, the path to a cpio archive, or 
even a text file describing the content of the initramfs inside the CONFIG_INITRAMFS_
SOURCE. When the kernel build starts, the content of CONFIG_INITRAMFS_SOURCE will 
be read and the root filesystem will be integrated inside the kernel image.

More information about the initramfs filesystem's options can be 
found inside the kernel documentations files at Documentation/
filesystems/ramfs-rootfs-initramfs.txt and 
Documentation/early-userspace/README.

The initial RAM disk or initrd is another mechanism of mounting an early root 
filesystem. It also needs the support enabled inside the Linux kernel and is loaded as 
a component of the kernel. It contains a small set of executables and directories and 
represents a transient stage to the full featured root filesystem. It only represents the 
final stage for embedded devices that do not have a storage device capable of fitting 
a bigger root filesystem.
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On a traditional system, the initrd is created using the mkinitrd tool, which is, in 
fact, a shell script that automates the steps necessary for the creation of initrd. Here 
is an example of its functionality:

#!/bin/bash

# Housekeeping...

rm -f /tmp/ramdisk.img

rm -f /tmp/ramdisk.img.gz

# Ramdisk Constants

RDSIZE=4000

BLKSIZE=1024

# Create an empty ramdisk image

dd if=/dev/zero of=/tmp/ramdisk.img bs=$BLKSIZE count=$RDSIZE

# Make it an ext2 mountable file system

/sbin/mke2fs -F -m 0 -b $BLKSIZE /tmp/ramdisk.img $RDSIZE

# Mount it so that we can populate

mount /tmp/ramdisk.img /mnt/initrd -t ext2 -o loop=/dev/loop0

# Populate the filesystem (subdirectories)

mkdir /mnt/initrd/bin

mkdir /mnt/initrd/sys

mkdir /mnt/initrd/dev

mkdir /mnt/initrd/proc

# Grab busybox and create the symbolic links

pushd /mnt/initrd/bin

cp /usr/local/src/busybox-1.1.1/busybox .
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ln -s busybox ash

ln -s busybox mount

ln -s busybox echo

ln -s busybox ls

ln -s busybox cat

ln -s busybox ps

ln -s busybox dmesg

ln -s busybox sysctl

popd

# Grab the necessary dev files

cp -a /dev/console /mnt/initrd/dev

cp -a /dev/ramdisk /mnt/initrd/dev

cp -a /dev/ram0 /mnt/initrd/dev

cp -a /dev/null /mnt/initrd/dev

cp -a /dev/tty1 /mnt/initrd/dev

cp -a /dev/tty2 /mnt/initrd/dev

# Equate sbin with bin

pushd /mnt/initrd

ln -s bin sbin

popd

# Create the init file

cat >> /mnt/initrd/linuxrc << EOF

#!/bin/ash

echo

echo "Simple initrd is active"

echo

mount -t proc /proc /proc

mount -t sysfs none /sys

/bin/ash --login

EOF

chmod +x /mnt/initrd/linuxrc
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# Finish up...

umount /mnt/initrd

gzip -9 /tmp/ramdisk.img

cp /tmp/ramdisk.img.gz /boot/ramdisk.img.gz

More information on initrd can be found at Documentation/
initrd.txt.

Using initrd is not as simple as initramfs. In this case, an archive needs to be 
copied in a similar manner to the one used for the kernel image, and the bootloader 
needs to pass its location and size to the kernel to make sure that it has started. 
Therefore, in this case, the bootloader also requires the support of initrd. The 
central point of the initrd is constituted by the linuxrc file, which is the first script 
started and is usually used for the purpose of offering access to the final stage of the 
system boot, that is, the real root filesytem. After linuxrc finishes the execution, the 
kernel unmounts it and continues with the real root filesystem.

Delving into the filesystem 
No matter what their provenience is, most of the available root filesystems have the 
same organization of directories, as defined by the Filesystem Hierarchy Standard 
(FHS), as it is commonly called. This organization is of great help to both developers 
and users because it not only mentions a directory hierarchy, but also the purpose 
and content of the directories  The most notable ones are:

• /bin: This refers to the location of most programs 
• /sbin: This refers to the location of system programs
• /boot: This refers to the location for boot options, such as the kernel image, 

kernel config, initrd, system maps, and other information
• /home: This refers to the user home directory
• /root: This refers to the location of the root user's home location
• /usr: This refers to user-specific programs and libraries, and mimics parts  

of the content of the root filesystem
• /lib: This refers to the location of libraries
• /etc: This refers to the system-wide configurations
• /dev: This refers to the location of device files
• /media: This refers to the location of mount points of removable devices 
• /mnt: This refers to the mount location point of static media
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• /proc: This refers to the mounting point of the proc virtual filesystem
• /sys: This refers to the mounting point of the sysfs virtual filesystem
• /tmp: This refers to the location temporary files
• /var: This refers to data files, such as logging data, administrative 

information, or the location of transient data

The FHS changes over time, but not very much. Most of the previously mentioned 
directories remain the same for various reasons - the simplest one being the fact that 
they need to ensure backward compatibility.

The latest available information of the FHS is available at http://
refspecs.linuxfoundation.org/FHS_2.3/fhs-2.3.pdf.

The root filesystems are started by the kernel, and it is the last step done by the 
kernel before it ends the boot phase. Here is the exact code to do this:

/*
  * We try each of these until one succeeds.
  *
  * The Bourne shell can be used instead of init if we are
  * trying to recover a really broken machine.
  */
  if (execute_command) {
    ret = run_init_process(execute_command);
    if (!ret)
      return 0;
    pr_err("Failed to execute %s (error %d).  Attempting  
defaults...\n",execute_command, ret);
  }
  if (!try_to_run_init_process("/sbin/init") ||
    !try_to_run_init_process("/etc/init") ||
    !try_to_run_init_process("/bin/init") ||
    !try_to_run_init_process("/bin/sh"))
      return 0;

  panic("No working init found.  Try passing init= option to  
kernel." "See Linux Documentation/init.txt for guidance.");

http://refspecs.linuxfoundation.org/FHS_2.3/fhs-2.3.pdf
http://refspecs.linuxfoundation.org/FHS_2.3/fhs-2.3.pdf
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In this code, it can easily be identified that there are a number of locations used for 
searching the init process that needs to be started before exiting from the Linux 
kernel boot execution. The run_init_process() function is a wrapper around the 
execve() function that will not have a return value if no errors are encountered in 
the call procedure. The called program overwrites the memory space of the executing 
process, replacing the calling thread and inheriting its PID.

This initialization phase is so old that a similar structure inside the Linux 1.0 version 
is also available. This represents the user space processing start. If the kernel is not 
able to execute one of the four preceding functions in the predefined locations, then 
the kernel will halt and a panic message will be prompted onto the console to issue 
an alert that no init processes can be started. So, the user space processing will not 
start until the kernel space processing is finished.

For the majority of the available Linux systems, /sbin/init is the location where 
the kernel spawns the init process; the same affirmation is also true for the Yocto 
Project's generated root filesystems. It is the first application run in the user space 
context, but it isn't the only necessary feature of the root filesystem. There are a 
couple of dependencies that need to be resolved before running any process inside 
the root filesystem. There are dependencies used to solve dynamically linked 
dependencies references that were not solved earlier, and also dependencies that 
require external configurations. For the first category of dependencies, the ldd 
tool can be used to spot the dynamically linked dependencies, but for the second 
category, there is no universal solution. For example, for the init process, the 
configuration file is inittab, which is available inside the /etc directory.

For developers not interested in running another init process, this option is 
available and can be accessed using the kernel command line with the available 
init= parameter, where the path to the executed binary should be made available. 
This information is also available in the preceding code. The customization of the 
init process is not a method commonly used by developers, but this is because  
the init process is a very flexible one, which makes a number of start up  
scripts available.

Every process started after init uses the parent-child relationship, where init 
acts as the parent for all the processes run in the user space context, and is also the 
provider of environment parameters. Initially, the init process spawns processes 
according to the information available inside the /etc/inittab configuration file, 
which defines the runlevel notion. A runlevel represents the state of the system and 
defines the programs and services that have been started. There are eight runlevels 
available, numbered from 0 to 6, and a special one that is noted as S. Their purpose is 
described here:
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Runlevel 
value

Runlevel purpose

0 It refers to the shutdown and power down command for the whole system
1 It is a single-user administrative mode with a standard login access
2 It is multiuser without a TCP/IP connection
3 It refers to a general purpose multiuser
4 It is defined by the system's owner
5 It refers to graphical interface and TCP/IP connection multiuser systems
6 It refers to a system reboot
s It is a single user mode that offers access to a minimal root shell

Each runlevel starts and kills a number of services. The services that are started begin 
with S, and the ones that a killed begin with K. Each service is, in fact, a shell script 
that defines the behaviour of the provides that it defines.

The /etc/inittab configuration script defines the runlevel and the instructions 
applied to all of them. For the Yocto Project, the /etc/inittab looks similar to this:

# /etc/inittab: init(8) configuration.
# $Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

# The default runlevel.
id:5:initdefault:

# Boot-time system configuration/initialization script.
# This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.
~~:S:wait:/sbin/sulogin

# /etc/init.d executes the S and K scripts upon change
# of runlevel.
#
# Runlevel 0 is halt.
# Runlevel 1 is single-user.
# Runlevels 2-5 are multi-user.
# Runlevel 6 is reboot.
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l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
# Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin
S0:12345:respawn:/sbin/getty 115200 ttyS0
# /sbin/getty invocations for the runlevels.
#
# The "id" field MUST be the same as the last
# characters of the device (after "tty").
#
# Format:
#  <id>:<runlevels>:<action>:<process>
#

1:2345:respawn:/sbin/getty 38400 tty1

When the preceding inittab file is parsed by the init, the first script that is 
executed is the si::sysinit:/etc/init.d/rcS line, identified through the sysinit 
tag. Then, runlevel 5 is entered and the processing of instructions continues until 
the last level, until a shell is finally spawned using /sbin/getty symlink. More 
information on either init or inittab can be found by running man init or man 
inittab in the console.

The last stage of any Linux system is represented by the power off or shutdown 
command. It is very important, because if it's not done appropriately, it can affect 
the system by corrupting data. There are, of course, multiple options to implement 
the shutdown scheme, but the handiest ones remain in the form of utilities, such as 
shutdown, halt, or reboot. There is also the possibility to use init 0 to halt the 
system, but, in fact, what all of them have in common is the use of the SIGTERM and 
SIGKILL signals. SIGTERM is used initially to notify you about the decision to shut 
down the system, to offer the chance to the system to perform necessary actions. 
After this is done, the SIGKILL signal is sent to terminate all the processes.
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Device drivers
One of the most important challenges for the Linux system is the access allowed to 
applications to various hardware devices. Notions, such as virtual memory, kernel 
space, and user space, do not help in simplifying things, but add another layer of 
complexity to this information.

A device driver has the sole purpose of isolating hardware devices and kernel data 
structures from user space applications. A user does not need to know that to write 
data to a hard disk, he or she will be required to use sectors of various sizes. The user 
only opens a file to write inside it and close when finished. The device driver is the 
one that does all the underlying work, such as isolating complexities.

Inside the user space, all the device drivers have associated device nodes, which are, 
in fact, special files that represent a device. All the device files are located in the /dev 
directory and the interaction with them is done through the mknod utility. The device 
nodes are available under two abstractions:

• Block devices: These are composed of fixed size blocks that are usually used 
when interacting with hard disks, SD cards, USB sticks, and so on

• Character devices: These are streams of characters that do not have a size, 
beginning, or end; they are mostly not in the form of block devices, such as 
terminals, serial ports, sound card and so on

Each device has a structure that offers information about it:

• Type identifies whether the device node is a character or block
• Major identifies the category for the device
• Minor holds the identifier of the device node

The mknod utility that creates the device node uses a triplet of information, such as 
mknod /dev/testdev c 234 0. After the command is executed, a new /dev/testdev 
file appears. It should bind itself to a device driver that is already installed and has 
already defined its properties. If an open command is issued, the kernel looks for the 
device driver that registered with the same major number as the device node. The 
minor number is used for handling multiple devices, or a family of devices, with the 
same device driver. It is passed to the device driver so that it can use it. There is no 
standard way to use the minor, but usually, it defines a specific device from a family of 
the devices that share the same major number.
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Using the mknod utility requires manual interaction and root privileges, and lets 
the developer do all the heavy lifting needed to identify the properties of the 
device node and its device driver correspondent. The latest Linux system offers the 
possibility to automate this process and to also complete these actions every time 
devices are detected or disappear. This is done as follows:

• devfs: This refers to a device manager that is devised as a filesystem and is 
also accessible on a kernel space and user space.

• devtmpfs: This refers to a virtual filesystem that has been available since the 
2.6.32 kernel version release, and is an improvement to devfs that is used for 
boot time optimizations. It only creates device nodes for hardware available 
on a local system.

• udev: This refers to a daemon used on servers and desktop Linux systems. 
More information on this can be referred to by accesing https://www.
kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html. The 
Yocto Project also uses it as the default device manager.

• mdev: This offers a simpler solution then udev; it is, in fact, a derivation  
of udev.

Since system objects are also represented as files, it simplifies the method of 
interaction with them for applications. This would not been possible without the use 
of device nodes, that are actually files in which normal file interaction functions can 
be applied, such as open(), read(), write(), and close().

Filesystem options
The root filesystem can be deployed under a very broad form of the filesystem 
type, and each one does a particular task better than the rest. If some filesystems are 
optimized for performance, others are better at saving space or even recovering data. 
Some of the most commonly used and interesting ones will be presented here.

The logical division for a physical device, such as a hard disk or SD card, is called a 
partition. A physical device can have one or more partitions that cover its available 
storage space. It can be viewed as a logical disk that has a filesystem available for 
the user's purposes. The management of partitions in Linux is done using the fdisk 
utility. It can be used to create, list, destroy, and other general interactions, with 
more than 100 partition types. To be more precise, 128 partition types are available 
on my Ubuntu 14.04 development machine.

https://www.kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html
https://www.kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html
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One of the most used and well known filesystem partition formats is ext2. Also 
called second extended filesystem, it was introduced in 1993 by Rémy Card, a 
French software developer. It was used as the default filesystem for a large number 
of Linux distributions, such as Debian and Red Hat Linux, until it was replaced 
by its younger brothers, ext3 and ext4. It continues to remain the choice of many 
embedded Linux distributions and flash storage devices.

The ext2 filesystem splits data into blocks, and the blocks are arranged into block 
groups. Each block group maintains a copy of a superblock and the descriptor 
table for that block group. Superblocks are to store configuration information, and 
hold the information required by the booting process, although there are available 
multiple copies of it; usually, the first copy that is situated in the first block of the 
file system is the one used. All the data for a file is usually kept in a single block so 
that searches can be made faster. Each block group, besides the data it contains, has 
information about the superblock, descriptor table for the block group, inode bitmap 
and table information, and the block bitmap. The superblock is the one that holds  
the information important for the booting process. Its first block is used for the 
booting process. The last notion presented is in the form of inodes, or the index 
nodes, which represent files and directories by their permission, size, location on 
disk, and ownership.

There are multiple applications used for interaction with the ext2 filesystem format. 
One of them is mke2fs, which is used to create an ext2 filesystem on a mke2fs /
deb/sdb1 –L partition (ext2 label partition). The is the e2fsck command, which is 
used to verify the integrity of the filesystem. If no errors are found, these tools give 
you information about the partition filesystem configuration, e2fsck /dev/sdb1. 
This utility is also able to fix some of the errors that appear after improper utilization 
of the device, but cannot be used in all scenarios.

Ext3 is another powerful and well known filesystem. It replaced ext2 and became 
one of the most used filesystems on Linux distributions. It is in fact similar to ext2; 
the difference being that it has the possibility to journalize the information available 
to it. The ext2 file format can be changed in an ext3 file format using the  
tune2fs –j /dev/sdb1 command. It is basically seen as an extension for the ext2 
filesystem format, one that adds the journaling feature. This happens because it was 
engineered to be both forward and backward compatible.
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Journaling is a method that is used to log all the changes made on a filesystem 
form by making the recovery functionality possible. There are also other features 
that ext3 adds besides the ones that are already mentioned; here, I am referring to 
the possibility of not checking for consistencies in the filesystem, mostly because 
journalizing the log can be reversed. Another important feature is that it can be 
mounted without checking whether the shutdown was performed correctly. This 
takes place because the system does not need to conduct a consistency check at 
power down.

Ext4 is the successor of ext3, and was built with the idea of improving the 
performance and the storage limit in ext3. It is also backward compatible with the 
ext3 and ext2 filesystems and also adds a number of features:

• Persistent preallocation: This defines the fallocate() system call that can be 
used to preallocate space, which is most likely in a contiguous form; it is very 
useful for databases and streaming of media

• Delayed allocation: This is also called allocate-on-flush; it is used to delay 
the allocation blocks from the moment data from the disk is flushed, to 
reduce fragmentation and increase performance

• Multi block allocation: This is a side effect of delayed allocation because  
it allows for data buffering and, at the same time, the allocation of  
multiple blocks.

• Increase subdirectory limit: This the ext3 has a limit of 32000 subdirectories, 
the ext4 does not have this limitation, that is, the number of subdirectories 
are unlimited

• Checksum for journal: This is used to improve reliability

Journalling Flash Filesystem version 2 (JFFS2) is a filesystem designed for the 
NAND and NOR flash memory. It was included in the Linux mainline kernel in 
2001, the same year as the ext3 filesystem, although in different months. It was 
released in November for the Linux version 2.4.15, and the JFFS2 filesystem was 
released in September with the 2.4.10 kernel release. Since it's especially used to 
support flash devices, it takes into consideration certain things, such as the need to 
work with small files, and the fact that these devices have a wear level associated 
with them, which solves and reduces them by their design. Although JFFS2 is the 
standard for flash memory, there are also alternatives that try to replace it, such 
as LogFS, Yet Another Flash File System (YAFFS), and Unsorted Block Image File 
System (UBIFS).
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Besides the previously mentioned filesystems, there are also some pseudo filesystems 
available, including proc, sysfs, and tmpfs. In the next section, the first two of them 
will be described, leaving the last one for you to discover by yourself.

The proc filesystem is a virtual filesystem available from the first version of Linux. It 
was defined to allow a kernel to offer information to the user about the processes that 
are run, but over time, it has evolved and is now able to not only offer statistics about 
processes that are run, but also offer the possibility to adjust various parameters 
regarding the management of memory, processes, interrupts, and so on.

With the passing of time, the proc virtual filesystem became a necessity for Linux 
system users since it gathered a very large number of user space functionalities. 
Commands, such as top, ps, and mount would not work without it. For example, the 
mount example given without a parameter will present proc mounted on the  
/proc in the form of proc on /proc type proc (rw,noexec,nosuid,nodev). This 
takes place since it is necessary to have proc mounted on the root filesystem on par 
with directories, such as /etc, /home, and others that are used as the destination of 
the /proc filesystem. To mount the proc filesystem, the mount –t proc nodev/
proc mount command that is similar to the other filesystems available is used. 
More information on this can be found inside the kernel sources documentation at 
Documentation/filesystems/proc.txt.

The proc filesystem has the following structure:

• For each running process, there is an available directory inside /proc/<pid>.
It contains information about opened files, used memory, CPU usage, and 
other process-specific information.

• Information on general devices is available inside /proc/devices, /proc/
interrupts, /proc/ioports, and /proc/iomem.

• The kernel command line is available inside /proc/cmdline.
• Files used to change kernel parameters are available inside /proc/sys. More 

information is also available inside Documentation/sysctl.

The sysfs filesystem is used for the representation of physical devices. It is  
available since the introduction of the 2.6 Linux kernel versions, and offers the 
possibility of representing physical devices as kernel objects and associate device 
drivers with corresponding devices. It is very useful for tools, such as udev and  
other device managers.
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The sysfs directory structure has a subdirectory for every major system device class, 
and it also has a system buses subdirectory. There is also systool that can be used 
to browse the sysfs directory structure. Similar to the proc filesystem, systool also 
can also be visible if the sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) 
mount command is offered on the console. It can be mounted using the mount -t 
sysfs nodev /sys command.

More information on available filesystems can be found at http://
en.wikipedia.org/wiki/List_of_file_systems.

Understanding BusyBox
BusyBox was developed by Bruce Perens in 1999 with the purpose of integrating 
available Linux tools in a single executable. It has been used with great success as 
a replacement for a great number of Linux command line utilities. Due to this, and 
the fact that it is able to fit inside small embedded Linux distributions, it has gained 
a lot of popularity in the embedded environment. It provides utilities from file 
interactions, such as cp, mkdir, touch, ls, and cat, as well as general utilities,  
such as dmesg, kill, fdisk, mount, umount, and many others.

Not only is it very easy to configure and compile, but it is also very easy to use. The 
fact that it is very modular and offers a high degree of configuration makes it the 
perfect choice to use. It may not include all the commands available in a full-blown 
Linux distribution available on your host PC, but the ones that it does are more than 
enough. Also, these commands are just simpler versions of the full-blown ones used 
at implementation level, and are all integrated in one single executable available in  
/bin/busybox as symbolic links of this executable.

A developer interaction with the BusyBox source code package is very simple: just 
configure, compile, and install it, and there you have it. Here are some detailed steps 
to explain the following:

• Run the configuration tool and chose the features you want to make available
• Execute make dep to construct the dependencies tree
• Build the package using the make command

http://en.wikipedia.org/wiki/List_of_file_systems
http://en.wikipedia.org/wiki/List_of_file_systems
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Install the executable and symbolic links on the target. People who 
are interested in interacting with the tool on their workstations should 
note that if the tool is installed for the host system, then the installation 
should be done in a location that does not overwrite any of the utilities 
and start up scripts available to the host.

The configuration of the BusyBox package also has a menuconfig option available, 
similar to the one available for the kernel and U-Boot, that is, make menuconfig. It is 
used to show a text menu that can be used for faster configuration and configuration 
searches. For this menu to be available, first the ncurses package needs to be 
available on the system that calls the make menuconfig command.

At the end of the process, the BusyBox executable is available. If it's called without 
arguments, it will present an output very similar to this:

Usage: busybox [function] [arguments]...

   or: [function] [arguments]...

        BusyBox is a multi-call binary that combines many common Unix

        utilities into a single executable.  Most people will create a

        link to busybox for each function they wish to use and BusyBox

        will act like whatever it was invoked as!

Currently defined functions:

        [, [[, arping, ash, awk, basename, bunzip2, busybox, bzcat, cat,

        chgrp, chmod, chown, chroot, clear, cp, crond, crontab, cut, 
date,

        dd, df, dirname, dmesg, du, echo, egrep, env, expr, false, fgrep,

        find, free, grep, gunzip, gzip, halt, head, hexdump, hostid, 
hostname,

        id, ifconfig, init, insmod, ipcalc, ipkg, kill, killall, 
killall5,

        klogd, length, ln, lock, logger, logread, ls, lsmod, md5sum, 
mesg,

        mkdir, mkfifo, mktemp, more, mount, mv, nc, "netmsg", netstat,

        nslookup, passwd, pidof, ping, pivot_root, poweroff, printf, ps,

        pwd, rdate, reboot, reset, rm, rmdir, rmmod, route, sed, seq,

        sh, sleep, sort, strings, switch_root, sync, sysctl, syslogd,

        tail, tar, tee, telnet, test, time, top, touch, tr, traceroute,

        true, udhcpc, umount, uname, uniq, uptime, vi, wc, wget, which,

        xargs, yes, zcat
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It presents the list of the utilities enabled in the configuration stage. To invoke one  
of the preceding utilities, there are two options. The first option requires the use  
of the BusyBox binary and the number of utilities called, which are represented as  
./busybox ls, while the second option involves the use of the symbolic link already 
available in directories, such as /bin, /sbin, /usr/bin, and so on.

Besides the utilities that are already available, BusyBox also offers implementation 
alternatives for the init program. In this case, the init does not know about a 
runlevel, and all its configurations available inside the /etc/inittab file. Another 
factor that differentiates it from the standard /etc/inittab file is the fact that this 
one also has its special syntax. For more information, examples/inittab available 
inside BusyBox can be consulted. There are also other tools and utilities implemented 
inside the BusyBox package, such as a lightweight version for vi, but I will let you 
discover them for yourself.

Minimal root filesystem
Now that all the information relating to the root filesystem has been presented to 
you, it would be good exercise to describe the must-have components of the minimal 
root filesystem. This would not only help you to understand the rootfs structure 
and its dependencies better, but also help with requirements needed for boot time 
and the size optimization of the root filesystem.

The starting point to describe the components is /sbin/init; here, by using the  
ldd command, the runtime dependencies can be found. For the Yocto Project, the 
ldd /sbin/init command returns:

linux-gate.so.1 (0xb7785000)

libc.so.6 => /lib/libc.so.6 (0x4273b000)

/lib/ld-linux.so.2 (0x42716000)

From this information, the /lib directory structure is defined. Its minimal form is:

lib

|-- ld-2.3.2.so

|-- ld-linux.so.2 -> ld-2.3.2.so

|-- libc-2.3.2.so

'-- libc.so.6 -> libc-2.3.2.so
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The following symbolic links to ensure backward compatibility and version 
immunity for the libraries. The linux-gate.so.1 file in the preceding code is a 
virtual dynamically linked shared object (vDSO), exposed by the kernel at a well 
established location. The address where it can be found varies from one machine 
architecture to another.

After this, init and its runlevel must be defined. The minimal form for this is 
available inside the BusyBox package, so it will also be available inside the /bin 
directory. Alongside it, a symbolic link for shell interaction is necessary, so this is 
how the minimal for the bin directory will look:

bin

|-- busybox

'-- sh -> busybox

Next, the runlevel needs to be defined. Only one is used in the minimal root 
filesystem, not because it is a strict requirement, but due to the fact that it can 
suppress some BusyBox warnings. This is how the /etc directory will look:

etc

'-- init.d

    '-- rcS

At the end, the console device needs to be available to the user for input and output 
operations, so the last piece of the root filesystem is inside the /dev directory:

dev

'-- console

Having mentioned all of this, the minimal root filesystem seems to have only five 
directories and eight files. Its minimal size is below 2 MB and around 80 percent 
of its size is due to the C library package. It is also possible to minimize its size by 
using the Library Optimizer Tool. You can find more information on this at http://
libraryopt.sourceforge.net/.

http://libraryopt.sourceforge.net/
http://libraryopt.sourceforge.net/
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The Yocto Project
Moving to the Yocto Project, we can take a look at the core-image-minimal to identify 
its content and minimal requirements, as defined inside the Yocto Project. The core-
image-minimal.bb image is available inside the meta/recipes-core/images 
directory, and this is how it looks:

SUMMARY = "A small image just capable of allowing a device to boot."

IMAGE_INSTALL = "packagegroup-core-boot ${ROOTFS_PKGMANAGE_BOOTSTRAP} 
${CORE_IMAGE_EXTRA_INSTALL} ldd"

IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

You can see here that this is similar to any other recipe. The image defines the 
LICENSE field and inherits a bbclass file, which defines its tasks. A short summary 
is used to describe it, and it is very different from normal package recipes. It does 
not have LIC_FILES_CHKSUM to check for licenses or a SRC_URI field, mostly because 
it does not need them. In return, the file defines the exact packages that should 
be contained in the root filesystem, and a number of them are grouped inside 
packagegroup for easier handling. Also, the core-image bbclass file defines a 
number of other tasks, such as do_rootfs, which is only specific for image recipes.

Constructing a root filesystem is not an easy task for anyone, but Yocto does it with 
a bit more success. It starts from the base-files recipe that is used to lay down the 
directory structure according to the Filesystem Hierarchy Standard (FHS), and, along 
with it, a number of other recipes are placed. This information is available inside the 
./meta/recipes-core/packagegroups/packagegroup-core-boot.bb recipe. As 
can be seen in the previous example, it also inherits a different kind of class, such as 
packagegroup.bbclass, which is a requirement for all the package groups available. 
However, the most important factor is that it clearly defines the packages that 
constitute packagegroup. In our case, the core boot package group contains packages, 
such as base-files, base-passwd (which contains the base system master password 
and group files), udev, busybox, and sysvinit (a System V similar to init).
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As can be seen in the previously shown file, the BusyBox package is a core component 
of the Yocto Project's generated distributions. Although information was available 
about the fact that BusyBox can offer an init alternative, the default Yocto generated 
distributions do not use this. Instead, they choose to move to the System V-like init, 
which is similar to the one available for Debian-based distributions. Nevertheless, 
a number of shell interaction tools are made available through the BusyBox recipe 
available inside the meta/recipes-core/busybox location. For users interested in 
enhancing or removing some of features made available by the busybox package, 
the same concepts that are available for the Linux kernel configuration are used. The 
busybox package uses a defconfig file on which a number of configuration fragments 
are applied. These fragments can add or remove features and, in the end, the final 
configuration file is obtained. This identifies the final features available inside the  
root filesystem.

Inside the Yocto Project, it is possible to minimize the size of the root filesystem by 
using the poky-tiny.conf distribution policies, which are available inside the  
meta-yocto/conf/distro directory. When they're used, these policies reduce not 
only the boot size, but the boot time as well. The simplest example for this is available 
using the qemux86 machine. Here, changes are visible, but they are somewhat different 
from the ones already mentioned in the Minimal root filesystem section. The purpose of 
the minimization work done on qemux86 was done around the core-image-minimal 
image. Its goals is to reduce the size to under 4 MB of the resulting rootfs and the 
boot time to under 2 seconds.

Now, moving to the selected Atmel SAMA5D3 Xplained machine, another rootfs is 
generated and its content is quite big. Not only has it included the packagegroup-
core-boot.bb package group, but other package groups and separate packages are 
also included. One such example is the atmel-xplained-demo-image.bb image 
available inside the meta-atmel layer in the recipes-core/images directory:

DESCRIPTION = "An image for network and communication."
LICENSE = "MIT"
PR = "r1"

require atmel-demo-image.inc

IMAGE_INSTALL += "\
    packagegroup-base-3g \
    packagegroup-base-usbhost \
    "
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Inside this image, there is also another more generic image definition that is 
inherited. Here, I am referring to the atmel-demo-image.inc file, and when opened, 
you can see that it contains the core of all the meta-atmel layer images. Of course, 
if all the available packages are not enough, a developer could decide to add their 
own. There has two possibilities in front of a developer: to create a new image, or to 
add packages to an already available one. The end result is built using the bitbake 
atmel-xplained-demo-image command. The output is available in various forms, 
and they are highly dependent on the requirements of the defined machine. At the 
end of the build procedure, the output will be used to boot the root filesystem on the 
actual board.

Summary
In this chapter, you have learned about the Linux rootfs in general, and also 
about the communication with the organization of the Linux kernel, Linux rootfs, 
its principles, content, and device drivers. Since communication tends to become 
larger over time, information about how a minimal filesystem should look was also 
presented to you.

Besides this information, in the next chapter, you will be given an overview of the 
available components of the Yocto Project, since most of them are outside Poky. 
You will also be introduced to, and given a brief gist of, each component. After this 
chapter, a bunch of them will be presented to you and elaborated on.
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Components of the  
Yocto Project

In this chapter, you will be given a short introduction to a number of components 
from the ecosystem of the Yocto Project. This chapter is meant to introduce all of 
them so that in subsequent chapters they can be presented more elaborately. It 
also tries to direct readers toward extra readings. For each presented tool, feature, 
or interesting fact, links are offered to help interested readers search for their own 
answers to the questions in this book and those that this chapter does not cover.

This chapter is full of guidance and relevant examples for an embedded 
development process that involves specific Yocto Project tools. The selection of the 
tools was done in a purely subjective manner. Only the tools that are considered 
helpful in the development process have been selected. We also considered the 
fact that some of them could offer new insights into the embedded world and the 
development for embedded systems in general.

Poky
Poky represents the reference build system for the metadata and tools of the Yocto 
Project, which are used as starting points for anyone interested in interacting with 
the Yocto Project. It is platform-independent and provides the tools and mechanisms 
to build and customize the end result, which is in fact a Linux software stack. Poky is 
used as the central piece of interaction with the Yocto Project.
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When working with the Yocto Project as a developer, it is very important to have 
information about mailing lists and an Internet Relay Chat (IRC) channel. Also, 
Project Bugzilla can be a source of inspiration in terms of a list of available bugs and 
features. All of these elements would need a short introduction, so the best starting 
point would be the Yocto Project Bugzilla. It represents a bug tracking application for 
the users of the Yocto Project and is the place where problems are reported. The next 
component is represented by the available channels of IRC. There are two available 
components on a freenode, one used for Poky and the other for discussions related 
to the Yocto Project, such as #poky and #yocto, respectively. The third element is 
represented by the Yocto Project mailing lists, which are used to subscribe to these 
mailing lists of the Yocto Project:

• http://lists.yoctoproject.org/listinfo/yocto: This refers to the 
mailing list where the Yocto Project discussions take place

• http://lists.yoctoproject.org/listinfo/poky: This refers to the 
mailing list where discussions regarding the Poky build of the Yocto Project 
system take place

• http://lists.yoctoproject.org/listinfo/yocto-announce: This refers 
to the mailing list where official announcements of the Yocto Project are 
made, as well as where milestones of the Yocto Project are presented

With the help of http://lists.yoctoproject.org/listinfo, more information 
can be gathered regarding general and project-specific mailing lists. It contains a 
list of all the mailing lists available at https://www.yoctoproject.org/tools-
resources/community/mailing-lists.

In order to initiate development using the Yocto Project in general, and Poky  
in particular, you should not only use the previously mentioned components;  
some information regarding these tolls should also be made available. A very  
good explanation of the Yocto Project is available on their documentation page  
at https://www.yoctoproject.org/documentation. Those of you interested  
in reading a shorter introduction, it may be worth checking out the Embedded  
Linux Development with Yocto Project, Otavio Salvador and Daiane Angolini, by  
Packt Publishing.

To use the Yocto Project, a number of specific requirements are needed:

• A host system: Let's assume that this is a Linux-based host system. However, 
it is not just any host system; Yocto has certain requirements. The supported 
operating systems are available inside the poky.conf file, available inside 
directory meta-yocto/conf/distro. The supported operating systems are 
defined in the SANITY_TESTED_DISTROS variable, and a few of these systems 
are as follows:

http://lists.yoctoproject.org/listinfo/yocto
http://lists.yoctoproject.org/listinfo/poky
http://lists.yoctoproject.org/listinfo/yocto-announce
http://lists.yoctoproject.org/listinfo
https://www.yoctoproject.org/tools-resources/community/mailing-lists
https://www.yoctoproject.org/tools-resources/community/mailing-lists
https://www.yoctoproject.org/documentation
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 ° Ubuntu-12.04
 ° Ubuntu-13.10
 ° Ubuntu-14.04
 ° Fedora-19
 ° Fedora-20
 ° CentOS-6.4
 ° CentOS-6.5
 ° Debian-7.0
 ° Debian-7.1
 ° Debian-7.2
 ° Debian-7.3
 ° Debian-7.4
 ° Debian-7.5
 ° Debian-7.6
 ° SUSE-LINUX-12.2
 ° openSUSE-project-12.3
 ° openSUSE-project-13.1

• Required packages: This contains a list of the minimum requirements for the 
packages available on the host system, besides the ones already available. 
Of course, this is different from one host system to another and the systems 
vary according to their purposes. However, for the Ubuntu host, we need the 
following requirements:

 ° Essentials: This refers to sudo apt-get install gawk wget git-
core diffstat unzip texinfo gcc-multilib build-essential 
chrpath socat

 ° Graphical and Eclipse Plug-in extras: This refers to sudo apt-get 
install libsdl1.2-dev xterm

 ° Documentation: This refers to sudo apt-get install make 
xsltproc docbook-utils fop dblatex xmlto

 ° ADT Installer Extras: This refers to sudo apt-get install 
autoconf automake libtool libglib2.0-dev
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• Yocto Project release: Before staring any work, one of the available Poky 
releases should be chosen. This book is based on the dizzy branch, which 
is the Poky 1.7 version, but a developer can chose whatever fits him or her 
best. Of course, since the interaction with the project is done using the git 
versioning system, the user will first need to clone the Poky repository, 
and any contributions to the project should be submitted as a patch to the 
open source community. There is also a possibility of getting a tar archive, 
but this method has some limitations due to the fact that any changes done 
on the source are harder to trace, and it also limits the interaction with the 
community involved in the project.

There are other extra optional requirements that should be taken care of if special 
requirements are needed, as follows:

• Custom Yocto Project kernel interaction: If a developer decides that the 
kernel source Yocto Projects are maintained and are not suitable for their 
needs, they could get one of the local copies of the Yocto Project supported 
by kernel versions, available at http://git.yoctoproject.org/cgit.cgi 
under the Yocto Linux Kernel section, and modify it according to their needs. 
These changes, of course, along with the rest of the kernel sources, will need 
to reside in a separate repository, preferably git, and it will be introduced to 
the Yocto world through a kernel recipe.

• The meta-yocto-kernel-extras git repository: Here the metadata needed is 
gathered when building and modifying kernel images. It contains a bunch of 
bbappend files that can be edited to indicate to the local that the source code 
has changed, which is a more efficient method to use when you are working 
on the development of features of the Linux kernel. It is available under  
the Yocto Metadata Layers section at http://git.yoctoproject.org/
cgit.cgi.

• Supported Board Support Packages (BSPs): There are a large number 
of BSP layers that are available and supported by the Yocto Project. The 
naming of each BSP layer is very simple, meta-<bsp-name>, and can be 
found at http://git.yoctoproject.org/cgit.cgi under the Yocto 
Metadata Layers section. Each BSP layer is, in fact, a collection of recipes 
that define the behavior and minimum requirements offered by the BSP 
provider. More information regarding the development of BSP can be found 
at http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.
html#developing-a-board-support-package-bsp.

http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#developing-a-board-support-package-bsp
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#developing-a-board-support-package-bsp
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• Eclipse Yocto Plug-ins: For developers who are interested in writing 
applications, an Eclipse Integrated Development Environment (IDE) is 
available with Yocto-specific plug-ins. You can find more information on this 
at http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.
html#setting-up-the-eclipse-ide.

The development process inside the Yocto Project has many meanings. It can refer  
to the various bugs and features that are available inside the Yocto Project Bugzilla. 
The developer can assign one of them to his or her account and solve it. Various 
recipes can be upgraded, and this process also requires the developer's involvement; 
new features can also be added and various recipes need to be written by developers. 
All these tasks need to have a well defined process in place that also involves  
git interaction.

To send changes added in the recipes back into the community, the available  
create-pull-request and send-pull request scripts can be used. These scripts are 
available inside the poky repository in the scripts directory. Also, in this section, there 
are also a bunch of other interesting scripts available, such as the create-recipe 
script, and others that I will let you discover on your own. The other preferred method 
to send the changes upstream would be to use the manual method, which involves 
interaction with git commands, such as git add, git commit –s, git format-
patch, git send-email, and others.

Before moving on to describe the other components presented in this chapter, a 
review of the existing Yocto Project development models will be made. This process 
involves these tools made available by the Yocto Project:

• System development: This covers the development of the BSP, kernel 
development, and its configurations. Each of them has a section in the  
Yocto Project documentation describing respective development processes, 
as shown at http://www.yoctoproject.org/docs/1.7/bsp-guide/bsp-
guide.html#creating-a-new-bsp-layer-using-the-yocto-bsp-script 
and http://www.yoctoproject.org/docs/1.7/kernel-dev/kernel-dev.
html.

• User application development: This covers the development of applications 
for a targeted hardware device. The information regarding the necessary 
setup for the application development on the host system is available at 
http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.
html. This component will also be discussed in the Eclipse ADT Plug-ins 
section of this chapter.

http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#setting-up-the-eclipse-ide
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#setting-up-the-eclipse-ide
http://www.yoctoproject.org/docs/1.7/bsp-guide/bsp-guide.html#creating-a-new-bsp-layer-using-the-yocto-bsp-script 
http://www.yoctoproject.org/docs/1.7/bsp-guide/bsp-guide.html#creating-a-new-bsp-layer-using-the-yocto-bsp-script 
http://www.yoctoproject.org/docs/1.7/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.7/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.html
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• Temporary modification of source code: This covers the temporary 
modifications that appear in the development process. This involves the 
solution for various implementation problems that are available in a project's 
source code. After the problem is solved, the changes need to be available 
upstream and applied accordingly.

• Development of a Hob image: The Hob build system can be used for 
operating and customizing system images. It is a graphical interface developed 
in Python as a more efficient interface with the Bitbake build system.

• Devshell development: This is a method of development that uses the exact 
environment of the Bitbake build system's tasks. It is one of the most efficient 
methods used for debugging or package editing. It is also one of the quickest 
ways to set up the build environment when writing various components of  
a project.

For operating systems where the provided components are too old to satisfy 
the requirements of the Yocto Project, a buildtools toolchain is recommended 
for providing the required versions of the software. There are two methods 
used for installing a buildtools tarball. The first method implies the use of an 
already available prebuilt tarball, and the second one involves building it using 
the Bitbake build system. More information about this option can be found in 
the subsections under the Required Git, tar, and Python Versions section of the 
Yocto documentation mega manual available at http://www.yoctoproject.org/
docs/1.7/mega-manual/mega-manual.html#required-git-tar-and-python-
versions.

Eclipse ADT plug-ins
The Application Development Toolkit, also called ADT, provides a cross-
development platform suitable for custom build and user-targeted applications.  
It is comprised of the following elements:

• A cross-toolchain: It is associated with the sysroot, both of them being 
automatically generated using Bitbake, and the target-specific metadata  
is made available by the target hardware supplier.

• The Quick Emulator environment (Qemu): It is used to simulate the  
target hardware.

• User-space tools: It improves the overall experience of development  
of an application

• Eclipse IDE: It contains Yocto Project-specific plug-ins

http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html#required-git-tar-and-python-versions
http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html#required-git-tar-and-python-versions
http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html#required-git-tar-and-python-versions
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In this section, each of the preceding elements will be discussed, and we will start 
with the cross-development toolchain. It consists of a cross-linker, cross-debugger, 
and a cross-compiler that are used for the application development of a target. It 
also needs the associated target sysroot because the necessary headers and libraries 
are required when building an application that will run on the target device. The 
generated sysroot is obtained from the same configuration that generates the root 
filesystem; this refers to the image recipe.

The toolchain can be generated using multiple methods. The most common one is to 
download the toolchain from http://downloads.yoctoproject.org/releases/
yocto/yocto-1.7/toolchain/, and get the appropriate toolchain installer for your 
host and target. One such example is the poky-glibc-x86_64-core-image-sato-
armv7a-vfp-neon-toolchain-1.7.sh script, which when executed will install the 
toolchain in the default location of the /opt/poky/1.7/ directory. This location can 
be changed if proper arguments are offered in the script before starting the execution 
of the script.

Another method I prefer to use when generating a toolchain involves the use of the 
Bitbake build system. Here, I am referring to meta-ide-support. When running 
bitbake meta-ide-support, the cross-toolchain is generated and it populates 
the build directory. After this task is finished, the same result is obtained as in the 
previously mentioned solution, but in this case, a build directory that is already 
available is used. The only remaining task for both solutions would be to set up the 
environment using the script that contains the environment-setup string and start 
using it.

The Qemu emulator offers the possibility to simulate one hardware device when 
this one is not available. There are multiple ways of making it available in the 
development process:

• Install the ADT using the adt-installer generated script. One of the steps 
available in this script offers the possibility to enable or disable the use of 
Qemu in the development process.

• A Yocto Project release is downloaded and in the development process, the 
environment is set up by default. Then, the Qemu is installed and available 
for use.

• A git clone of the Poky repository is created and the environment is set up. 
In this case, the Qemu is installed and available also.

• The cross-toolchain tarball was downloaded, installed, and the 
environment was set up. This also, by default, enables the use of Qemu  
and installs it for later use.

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/
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The user-space tools are included into the distribution and are used during the 
development process. They are very common on a Linux platform and can include 
the following:

• Perf: It is a Linux performance counter that measures certain hardware and 
software events. More information about this is available at https://perf.
wiki.kernel.org/, and also on the profiling and tracing manual of Yocto, 
where a whole section is devoted to this tool.

• PowerTop: It is a power measurement tool that is used to determine 
the amount of power a software consumes. More information about it is 
available at https://01.org/powertop/.

• LatencyTop: It is a similar tool to PowerTop, the difference being that this 
one focuses on the latency measurement from audio skips and stutters on the 
desktop to server overload; it has measurement for these kind of scenarios 
and answers for the latency problems. Although it seems that no commit has 
been done inside this project since 2009, it is still used today due to the fact 
that it is very useful.

• OProfile: It represents a system-wide profiler for the Linux ecosystem with a 
low overhead. More information about it is available at http://oprofile.
sourceforge.net/about/. It also has a section available in the profiling and 
tracing manual of Yocto.

• SystemTap: It offers information on the infrastructure of a running Linux 
system, as well as the performance and functional problems of the system. 
It is not available though as an Eclipse extension, but only as a tool inside 
the Linux distribution. More information about it can be found at http://
sourceware.org/systemtap. It also has a section defined in the profiling 
and tracing manual of Yocto.

• Lttng-ust: It is the user-space tracer for the lttng project and offers 
information related to user-space activities. More information is available at 
http://lttng.org/.

The last element of the ADT platform is represented by the Eclipse IDE. It is, in 
fact, the most popular development environment, and it offers full support for the 
development of the Yocto Project. With the installation of the Yocto Project Eclipse 
Plug-ins into the Eclipse IDE, the Yocto Project experience is complete. These plugins 
offer the possibility to cross-compile, develop, deploy, and execute the resultant 
binary in a Qemu emulated environment. Activities, such as cross-debugging, 
tracing, remote profiling, and power data collection, are also possible. More 
information about the activities that appear related to working with Eclipse Plug-ins 
for the Yocto Project can be found at http://www.yoctoproject.org/docs/1.7/
mega-manual/mega-manual.html#adt-eclipse.

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
https://01.org/powertop/
http://oprofile.sourceforge.net/about/
http://oprofile.sourceforge.net/about/
http://sourceware.org/systemtap
http://sourceware.org/systemtap
http://lttng.org/
http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html#adt-eclipse
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To better understand the workflow of the application development of the ADT 
toolkit platform and Eclipse, an overview of the whole process is available in the 
following image:

The application development process can also be done with other tools that are 
different from the ones already presented. However, all these options involve the use 
of a Yocto Project component, most notably the Poby reference system. Therefore, ADT 
is the suggested, tested, and recommended option by the open source community.



Components of the Yocto Project

[ 140 ]

Hob and Toaster
The project—Hob—represents a graphical user interface for the Bitbake build system. 
Its purpose was to simplify the interaction with the Yocto Project and create a leaner 
learning curve for the project, allowing users to perform daily tasks in a simpler 
manner. Its primary focus was the generation of a Linux operating system image. 
With time, it evolved and can now be considered a tool suitable for both experienced 
and nonexperienced users. Although I mostly prefer using the command line 
interaction, this statement does not hold true for all Yocto Project users.

It might seem, though, that Hob development stopped with the release of Daisy 1.6. 
The development activity somewhat moved to the new project—Toaster—, which 
will be explained shortly; the Hob project is still in use today and its functionalities 
should be mentioned. So, the current available version of Hob is able to do  
the following:

• Customize an available base image recipe
• Create a completely customized image
• Build any given image
• Run an image using Qemu
• Deploy an image on a USB disk for the purpose of live-booting it on a target

The Hob project can be started in the same way that Bitbake is executed. After the 
environment sources and the build directory are created, the hob command can be 
called and the graphical interface will appear for the user. The disadvantage of this is 
that this tool does not substitute the command-line interaction. If new recipes need to 
be created, then this tool will not be able to provide any help with the task.

The next project is called Toaster. It is an application programming interface and 
also a web interface that the Yocto Project builds. In its current state, it is only able to 
gather and present information relevant to a build process through a web browser. 
These are some of its functionalities:

• Visibility for the executed and reused tasks during the build process
• Visibility for build components, such as recipes and packages of an  

image - this is done in a manner similar to Hob
• Offering information about recipes, such as dependencies, licenses, and so on
• Offering performance-related information, such as disk I/O , CPU usage, and 

so on
• Presenting errors, warnings, and trace reports for the purpose of debugging
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Although it might not seem much, this project promises to offer the possibility to 
build and customize builds the same way that Hob did, along with many other 
goodies. You can find useful information about this tool at: https://wiki.
yoctoproject.org/wiki/Toaster.

Autobuilder
Autobuilder is a project that facilitates the build test automation and conducts 
quality assurance. Through this internal project, the Yocto community tries to set a 
path on which embedded developers are able to publish their QA tests and testing 
plans, develop new tools for automatic testing, continuous integration, and develop 
QA procedures to demonstrate and show them for the benefit of all involved parties.

These points are already achieved by a project that publishes its current status 
using this Autobuilder platform, which is available at http://autobuilder.
yoctoproject.org/. This link is accessible to everyone and testing is performed on 
all the changes related to the Yocto Project, as well as nightly builds for all supported 
hardware platforms. Although started from the Buildbot project, from which it 
borrowed components for continuous integration, this project promises to move 
forward and offer the possibility of performing runtime testing and other must-have 
functionalities.

You can find some useful information about this project at: https://wiki.
yoctoproject.org/wiki/AutoBuilder and https://wiki.yoctoproject.org/
wiki/QA, which offers access to the QA procedures done for every release, as well  
as some extra information.

Lava
The Lava project is not an internal work of the Yocto Project, but is, in fact, a project 
developed by Linaro, which is an automated validation architecture aimed towards 
testing the deployments of Linux systems on devices. Although its primary focus is 
the ARM architecture, the fact that it is open source does not make it a disincentive. 
Its actual name is Linaro Automation and Validation Architecture (LAVA).

This project offers the possibility of deploying an operating system on a hardware or 
virtual platform, defining, tests, and performing them on the project. The tests can 
be of various complexities, they can be combined into bigger and more conclusive 
tests, and the results are tracked in time, after which the resulting data is exported 
for analysis.

https://wiki.yoctoproject.org/wiki/Toaster
https://wiki.yoctoproject.org/wiki/Toaster
http://autobuilder.yoctoproject.org/
http://autobuilder.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/AutoBuilder
https://wiki.yoctoproject.org/wiki/AutoBuilder
https://wiki.yoctoproject.org/wiki/QA
https://wiki.yoctoproject.org/wiki/QA
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This is developed with the idea of a continuous evolving architecture that allows 
test performing along with automation and quality control. At the same time, it 
offers validation for gathered data. Tests can be anything from compiling a boot 
test to a change on the kernel scheduler that may or may not have reduced power 
consumption.

Although it is still young, this project has gained quite an audience, so some 
investigation into the project would not hurt anyone.

The LAVA manual is available at https://validation.linaro.
org/static/docs/

Wic
Wic is more of a feature then a project per se. It is the least documented, and if a 
search is conducted for it, you may find no results. I have decided to mention it here 
because in the development process, some special requirements could appear, such 
as generating a custom root filesystem from available packages (such as .deb, .rpm, 
or .ipk). This job is the one that is best suited for the wic tool.

This tool tries to solve some special requirements from devices or bootloaders, 
such as special formatting or the partitioning of the root filesystem. It is a highly 
customized tool that offers the possibility of extending its features. It has been 
developed from another tool called oeic, which was used to create a certain 
proprietary formatted image for hardware and was imported into the Yocto Project 
to serve a broader purposes for developers who did not wanted to touch recipes and 
had already packaged sources, or required special formatting for their deliverable 
Linux image.

Unfortunately, there is no documentation available for this tool, but I can direct 
those who are interested to its location on the Yocto Project. It resides in the Poky 
repository in the scripts directory under the name of wic. Wic can be used as any 
script, and it provides a help interface where you can seek more information. Also, 
its functionalities will be presented in an extended manner in the coming chapters.

A list with all the available projects developed around the Yocto Project can be found 
at https://www.yoctoproject.org/tools-resources/projects. Some of the 
projects available there were not discussed in the context of this chapter, but I will 
let you discover each one of them. There are also other external projects that did not 
make the list. I encourage you to find out and learn about them on your own.

https://validation.linaro.org/static/docs/
https://validation.linaro.org/static/docs/
https://www.yoctoproject.org/tools-resources/projects
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Summary
In this chapter, you were presented with the elements that will be discussed next in 
this book. In the following chapter, each of the previously mentioned sections will be 
presented in various chapters, and the information will be presented in-depth and in 
a more applied manner.

In the next chapter, the previously mentioned process will start with the Application 
Development Toolkit platform. It will be explained with the steps necessary for 
the setup of the platform, and some usage scenarios will also be introduced to you. 
These involve cross-development, debugging using Qemu, and the interaction 
between specific tools.
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ADT Eclipse Plug-ins
In this chapter, you will be presented with a new perspective of the available 
tool in the Yocto Project. This chapter marks the beginning of the introduction to 
various tools available in the Yocto Project ecosystem, tools that are very useful and 
different from the Poky reference system. In this chapter, a short presentation to the 
Application Development Environment (ADE) is presented with emphasis on the 
Eclipse project and the Yocto Project's added plug-ins. A number of the plug-ins are 
shown along with their configurations and use cases.

A broader view of the Application Development Toolkit (ADT) will also be 
shown to you. This project's main objective is to offer a software stack that is 
able to develop, compile, run, debug, and profile software applications. It tries to 
do this without requiring extra learning from the developer's point of view. Its 
learning curve is very low, taking into consideration the fact that Eclipse is one of 
the most used Integrated Development Environment (IDEs), and over time, it has 
become very user-friendly, stable, and dependable. The ADT user experience is 
very similar to the one that any Eclipse or non-Eclipse user has when they use an 
Eclipse IDE. The available plug-ins try to make this experience as similar as possible 
so that development is similar to any Eclipse IDE. The only difference is between 
configuration steps, and this defines the difference between one Eclipse IDE version 
and another.

The ADT offers the possibility of using a standalone cross-compiler, debugging 
tool profilers, emulators, and even development board interaction in a platform-
independent manner. Although interaction with hardware is the best option for an 
embedded developer, in most cases, the real hardware is missing due to various 
reasons. For these scenarios, it is possible to use a QEMU emulator to simulate the 
necessary hardware.
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The Application Development Toolkit
ADT is one of the components of the Yocto Project and provides a cross-development 
platform, which is perfect for user-specific application development. For the 
development process to take place in an orderly manner, some components  
are required:

• Eclipse IDE Yocto plug-ins
• QEMU emulator for specific hardware simulations
• Cross-toolchain alongside its specific sysroot, which are both  

architecture-specific and are generated using the metadata and  
the build system made available by the Yocto Project

• Userspace tools to enhance a developer's experience with the  
application development process

The Eclipse plug-ins are available when offering full support to the Yocto Project 
with the Eclipse IDE and maximizing the Yocto experience. The end result is  
an environment that is customized for the Yocto developer's needs, with a  
cross-toolchain, deployment on a real hardware, or QEMU emulation features,  
and also a number of tools that are available for collecting data, tracing, profiling,  
and performance reviews.

The QEMU emulator is used to simulate various hardware. It can be obtained with 
these methods:

• Using the ADT installer script, which offers the possibility of installing it
• Cloning a Poky repository and sourcing the environment, access is granted  

to a QEMU environment
• Downloading a Yocto release and sourcing the environment offers for  

the same result
• Installing a cross-toolchain and sourcing the environment to make the  

QEMU environment available

The toolchain contains a cross-debugger, cross-compiler, and cross-linker, which are 
very well used in the process of application development. The toolchain also comes 
with a matching sysroot for the target device because it needs access to various 
headers and libraries necessary to run on the target architecture. The sysroot is 
generated from the root filesystem and uses the same metadata configuration.
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The userspace tools include the tools already mentioned in the previous chapters, 
such as SystemTap, PowerTop, LatencyTop, perf, OProfile, and LTTng-UST. They 
are used for getting information about the system and developed application; 
information, such as power consumption, desktop stutters, counting of events, 
performance overviews, and diagnosing software, hardware, or functional problems, 
and even tracing software activities.

Setting up the environment
Before explaining the ADT Project further, its Eclipse IDE plug-ins, other features, 
and functionalities of the setup would be required. To install the Eclipse IDE, the first 
step involves the setup of a host system. There are multiple methods to do this:

• Using an ADT install script: This is the recommended method to install the 
ADT, mostly because the installation process is completely automated. Users 
are in control of the features that they want available.

• Using the ADT tarball: This method involves a section of an appropriate 
tarball with the architecture-specific toolchain and setting it up using a script. 
The tarball can be both downloaded and manually built using Bitbake. This 
method also has limitations due to the fact that not all of its features are 
available after installation, apart from the cross-toolchain and QEMU emulator.

• Using a toolchain from the build directory: This method takes advantage  
of the fact that a build directory is already available, so the setup of the  
cross-toolchain is very easy. Also, in this case, it faces the same limitation  
as the one mentioned in the preceding point.

The ADT install script is the preferred method to install the ADT. Of course, before 
moving on to the installation step, the necessary dependencies need to be available  
to make sure that the ADT install script runs smoothly.

These packages were already mentioned in the previous chapters, but they will once 
again, be explained here to make things easy for you. I advise you to go back to these 
chapters and refer to the information once again as a memory exercise. To refer to 
packages that might be of interest to you, take a look at the ADT Installer packages, 
such as autoconf automake libtool libglib2.0-dev, Eclipse Plug-ins, and 
graphical support offered by the libsdl1.2-dev xterm packages.

After the host system is prepared with all the required dependencies, the ADT tarball 
can be downloaded from http://downloads.yoctoproject.org/releases/
yocto/yocto-1.7/adt-installer/. At this location, the adt_installer.tar.bz2 
archive is available. It needs to be downloaded and its content extracted.

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/adt-installer/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/adt-installer/


ADT Eclipse Plug-ins

[ 148 ]

This tarball can also be generated using the Bitbake build system inside a build 
directory, and the result will be available inside the tmp/deploy/sdk/adt_
installer.tar.bz2 location. To generate it, the next command needs to be given  
into the build directory, which is bitbake adt-installer. The build directory  
also needs to be properly configured for the target device.

The archive is unpacked using the tar -xjf adt_installer.tar.bz2 command.  
It can be extracted in any directory, and after unpacking the adt-installer 
directory, it is created and contains the ADT installer script called adt_installer.  
It also has a configuration file called adt_installer.conf, which is used to 
define the configurations before running the script. The configuration file defines 
information, such as the filesystem, kernel, QEMU support, and so on.

These are the variables that the configuration file contains:

• YOCTOADT_REPO: This defines the packages and root filesystem on which the 
installation is dependent. Its reference value is defined at http://adtrepo.
yoctoproject.org//1.7. Here, the directory structure is defined and its 
structure is the same between releases.

• YOCTOADT_TARGETS: This defines the target architecture for which the cross 
development environment is set up. There are default values defined that 
can be associated with this variable, such as arm, ppc, mips, x86, and x86_64. 
Also, multiple values can be associated with it and the separation between 
them being is done using the space separator.

• YOCTOADT_QEMU: This variable defines the use of the QEMU emulator. If it is 
set to Y, the emulator will be available after installation; otherwise the value 
is set to N, and hence, the emulator won't be available.

• YOCTOADT_NFS_UTIL: This defines if the NFS user-mode that will be installed. 
The available values are, as defined previously, Y and N. For the use of the 
Eclipse IDE plug-ins, it is necessary to define the Y value for both YOCTOADT_
QEMU and YOCTOADT_NFS_UTIL.

• YOCTOADT_ROOTFS_<arch>: This specifies which architecture root filesystem 
to use from the repository that is defined in the first mentioned YOCTOADT_
REPO variable. For the arch variable, the default values are the ones 
already mentioned in the YOCTOADT_TARGETS variable. This variable's valid 
values are represented by the image files available, such as minimal, sato, 
minimal-dev, sato-sdk,lsb, lsb-sdk, and so on. For multiple arguments to 
the variable, the space separator can be used.

http://adtrepo.yoctoproject.org//1.7
http://adtrepo.yoctoproject.org//1.7
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• YOCTOADT_TARGET_SYSROOT_IMAGE_<arch>: This represents the root 
filesystem from which the sysroot of the cross-development toolchain will 
be generated. The valid values for the 'arch' variable are the same as the 
one mentioned previously. Its value is dependent on what was previously 
defined as values for the YOCTOADT_ROOTFS_<arch> variable. So, if only 
one variable is defines as the value for the YOCTOADT_ROOTFS_<arch> 
variable, the same value will be available for YOCTOADT_TARGET_SYSROOT_
IMAGE_<arch>. Also, if multiple variables are defined in the YOCTOADT_
ROOTFS_<arch> variable, then one of them needs to define the YOCTOADT_
TARGET_SYSROOT_IMAGE_<arch> variable.

• YOCTOADT_TARGET_MACHINE_<arch>: This defines the machine for which 
the image is downloaded, as there could be compilation option differences 
between machines of the same architecture. The valid values for this variable 
are can be mentioned as: qemuarm, qemuppc, ppc1022ds, edgerouter, 
beaglebone, and so on.

• YOCTOADT_TARGET_SYSROOT_LOC_<arch>: This defines the location where 
the target sysroot will be available after the installation process.

There are also some variables defined in the configuration files, such as YOCTOADT_
BITBAKE and YOCTOADT_METADATA, which are defined for future work references. 
After all the variables are defined according to the needs of the developer, the 
installation process can start. This is done by running the adt_installer script:

cd adt-installer

./adt_installer

Here is an example of the adt_installer.conf file:

# Yocto ADT Installer Configuration File

#

# Copyright 2010-2011 by Intel Corp.

#

# Permission is hereby granted, free of charge, to any person obtaining a 
copy 

# of this software and associated documentation files (the "Software"), 
to deal 

# in the Software without restriction, including without limitation the 
rights 

# to use, copy, modify, merge, publish, distribute, sublicense, and/or 
sell 
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# copies of the Software, and to permit persons to whom the Software is 

# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included 
in 

# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR 

# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
THE 

# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, 

# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 
IN 

# THE SOFTWARE.

# Your yocto distro repository, this should include IPKG based packages 
and root filesystem files where the installation is based on

YOCTOADT_REPO="http://adtrepo.yoctoproject.org//1.7"

YOCTOADT_TARGETS="arm x86"

YOCTOADT_QEMU="Y"

YOCTOADT_NFS_UTIL="Y"

#YOCTOADT_BITBAKE="Y"

#YOCTOADT_METADATA="Y"

YOCTOADT_ROOTFS_arm="minimal sato-sdk"

YOCTOADT_TARGET_SYSROOT_IMAGE_arm="sato-sdk"

YOCTOADT_TARGET_MACHINE_arm="qemuarm"

YOCTOADT_TARGET_SYSROOT_LOC_arm="$HOME/test-yocto/$YOCTOADT_TARGET_
MACHINE_arm"
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#Here's a template for setting up target arch of x86 

YOCTOADT_ROOTFS_x86="sato-sdk"

YOCTOADT_TARGET_SYSROOT_IMAGE_x86="sato-sdk"

YOCTOADT_TARGET_MACHINE_x86="qemux86"

YOCTOADT_TARGET_SYSROOT_LOC_x86="$HOME/test-yocto/$YOCTOADT_TARGET_
MACHINE_x86"

#Here's some template of other arches, which you need to change the value 
in ""

YOCTOADT_ROOTFS_x86_64="sato-sdk"

YOCTOADT_TARGET_SYSROOT_IMAGE_x86_64="sato-sdk"

YOCTOADT_TARGET_MACHINE_x86_64="qemux86-64"

YOCTOADT_TARGET_SYSROOT_LOC_x86_64="$HOME/test-yocto/$YOCTOADT_TARGET_
MACHINE_x86_64"

YOCTOADT_ROOTFS_ppc="sato-sdk"

YOCTOADT_TARGET_SYSROOT_IMAGE_ppc="sato-sdk"

YOCTOADT_TARGET_MACHINE_ppc="qemuppc"

YOCTOADT_TARGET_SYSROOT_LOC_ppc="$HOME/test-yocto/$YOCTOADT_TARGET_
MACHINE_ppc"

YOCTOADT_ROOTFS_mips="sato-sdk"

YOCTOADT_TARGET_SYSROOT_IMAGE_mips="sato-sdk"

YOCTOADT_TARGET_MACHINE_mips="qemumips"

YOCTOADT_TARGET_SYSROOT_LOC_mips="$HOME/test-yocto/$YOCTOADT_TARGET_
MACHINE_mips"

After the installation has started, the user is asked the location of the cross-toolchain. 
If no alternative is offered, the default path is selected and the cross-toolchain is 
installed in the /opt/poky/<release> directory. The installation process can be 
visualized both in a silent or interactive way. By using the I option, the installation is 
done in an interactive mode, while the silent mode is enabled using the S option.

At the end of the install procedure, the cross-toolchain will be found in its defined 
location. An environment setup script will be available for later usage, and the image 
tarball in the adt-installer directory, and the sysroot directory is defined in the 
location of the YOCTOADT_TARGET_SYSROOT_LOC_<arch> variable.
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As shown previously, there is more than one method to prepare the ADT 
environment. The second method involves only the installation of the toolchain 
installer—although it offers the possibility of having a prebuilt cross-tooolchain, 
support files and scripts, such as the runqemu script to start something similar to a 
kernel or Linux image in an emulator—which does not offer the same possibilities as 
the first option. Also, this option has its limitations regarding the sysroot directory. 
Although it's been generated, the sysroot directory might still need to be extracted 
and installed in a separate location. This can happened for various reasons, such as 
the need to boot a root filesystem over NFS or develop the application using the root 
filesystem as the target sysroot.

The root filesystem can be extracted from an already generated cross-toolchain 
using the runqemu-extract-sdk script, which should be called only after the cross-
development environment script was set up using source command.

There are two methods to obtain the toolchain installed for this second option. 
The first method involves the use of the toolchain installer available at http://
downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/. Open 
the folder that matches your development host machine. In this folder, multiple 
install scripts are available. Each one matches a target architecture, so the right one 
should be selected for the target you have. One such example can be seen from 
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/
x86_64/poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-toolchain-
1.7.sh, which is, in fact, the installer script for the armv7a target and the x86_64 
host machine.

If your target machine is not one of the ones that are made available by the Yocto 
community, or if you prefer an alternative to this method, then building the toolchain 
installer script is the method for you. In this case, you will require a build directory, 
and you will be presented with two alternatives, both of them are equally good:

• The first one involves the use of the bitbake meta-toolchain command, 
and the end result is an installer script that requires the installation and set 
up of the cross-toolchain in a separate location.

• The second alternative involves the use of the bitbake –c populate_sdk 
<image-name> task, which offers the toolchain installer script and  
the matching sysroot for the target. The advantage here is that the  
binaries are linked with only one and the same libc, making the toolchain 
self-contained. There is, of course, a limitation that each architecture can 
create only one specific build. However, target-specific options are passed 
through the gcc options. Using variables, such as CC or LD, makes the  
process easier to maintain and also saves some space in the build directory.

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/x86_64/poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-toolchain-1.7.sh
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/x86_64/poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-toolchain-1.7.sh
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7/toolchain/x86_64/poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-toolchain-1.7.sh
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After the installer is downloaded, make sure that the install script has set the 
execution correctly, and start the installation with the ./poky-glibc-x86_64-core-
image-sato-armv7a-vfp-neon-toolchain-1.7.sh command.

Some of the information you require includes the place where the installation should 
be made, the default location being the /opt/poky/1.7 directory. To avoid this, the 
script can be called with the –d <install-location> argument and the installation 
can be made in the <install-location> location, as mentioned.

Make sure that the MACHINE variable is set accordingly in the local.
conf file. Also, if the build is done for a different host machine, then 
SDKMACHINE should also be set. More than one MACHINE cross-toolchain 
can be generated in the same build directory, but these variables need to 
be properly configured.

After the installation process is finished, the cross-toolchain will be available in the 
selected location, and the environment script will also be available for sourcing when 
needed.

The third option involves the use of the build directory and the execution of the 
bitbake meta-ide-support command. Inside the build directory, the proper 
environment needs to be set using one of the two available build environment 
setup scripts, which include the oe-init-build-env script or oe-init-build-
env-memres. The local configuration from the local.conf file also needs to be 
set accordingly for the target architecture. After these steps are fulfilled by the 
developer, the bitbake meta-ide-support command could be used to start the 
generation of the cross-toolchain. At the end of the process, an environment setup 
script will be available inside the <build-dir-path>/tmp directory, but in this case, 
the toolchain is tightly linked into the build directory in which it was built.

With the environment set up, writing of an application can start, but the developer 
would still need to complete some steps before finishing the activity, such as testing 
the application on the real root filesystem, debugging, and many others. For the 
kernel module and driver implementation, the kernel source code will be required, 
so the activity is just starting.
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Eclipse IDE
The plug-ins available for Eclipse from the Yocto Project include the functionalities 
for the ADT Project and toolchain. They allow developers to use a cross-compiler, 
debugger, and all the available tools generated with the Yocto Project, Poky, and 
additional meta layers. Not only can these components be used within the Eclipse 
IDE, but they also offer a familiar environment for application development.

The Eclipse IDE is an alternative for developers who are not interested in interacting 
with editors, such as vim, although, in my opinion, vim can be used for all kinds of 
projects. Even if their dimensions or complexities are not a problem, the overhead for 
using vim might not suit all tastes. The Eclipse IDE is the best alternative available 
for all developers. It has a lot of useful features and functionalities that can make 
your life a little easier and it is pretty easy to grasp.

The Yocto Project offers support for two versions of Eclipse, Kepler and Juno. 
The Kepler version is the one recommended with the latest Poky release. I also 
recommend the Kepler 4.3.2 version of Eclipse, the one downloaded from the official 
download site of Eclipse, http://www.eclipse.org/downloads.

From this site, the Eclipse Standard 4.3.2 version containing the Java Development 
Tools (JDT), the Eclipse Platform, and the Development Environment Plug-ins 
for the host machine should be downloaded. After the download is finished, the 
received archive content should be extracted using the tar command:

tar xzf eclipse-standard-kepler-SR2-linux-gtk-x86_64.tar.gzls

The next step is represented by the configuration. With the content extracted, the 
Eclipse IDE needs to be configured before installing the Yocto Project-specific plug-
ins. The configuration starts with initializing the Eclipse IDE:

http://www.eclipse.org/downloads
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The Eclipse IDE is started after executing the ./eclipse executable and setting the 
Workspace location. This is how the starting windows looks:

Eclipse window

To initialize the Eclipse IDE perform the following steps:

1. Select Workbench, and you will be moved into the empty workbench where 
the projects source code will be written.
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2. Now, navigate through the Help menu and select Install New Software.

Help menu

3. A new window will open, and in the Work with: drop-down menu, select 
Kepler - http://download.eclipse.org/releases/kepler, as shown in the 
following screenshot:

Install window
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4. Expand the Linux Tools section and select LTTng – Linux Tracing Toolkit 
box, as shown in the following screenshot:

Install—LTTng – Linux Tracing Toolkit box

5. Expand the Moble and Device Development section and select the 
following:

 ° C/C++ Remote Launch (Requires RSE Remote System Explorer)
 ° Remote System Explorer End-user Runtime
 ° Remote System Explorer User Actions
 ° Target Management Terminal
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 ° TCF Remote System Explorer add-in
 ° TCF Target Explorer

6. Expand the Programming Languages section and select the following:
 ° C/C++ Autotools Support
 ° C/C++ Development Tools
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This is shown in the following screenshot:

Available software list window

7. Finish the installation after taking a quick look at the Install Details menu 
and enabling the license agreement:

Install details window
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After these steps, the Yocto Project Eclipse plug-ins can be installed into the IDE, but 
not before restarting the Eclipse IDE to make sure that the preceding changes take 
effect. The result after the configuration phase is visible here:

Eclipse—Configuring phase results

To install the Eclipse plug-ins for the Yocto Project, these steps are required:

1. Start the Eclipse IDE as mentioned previously.
2. As shown in the previous configuration, select the Install New Software 

option from the Help menu.
3. Click on the Add button and insert downloads.yoctoproject.org/

releases/eclipse-plugin/1.7/kepler/ in the URL section. Give  
a proper name to the new Work with: site as indicated here:

Edit site window
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4. After the OK button is pressed, and the Work with site is updated, new 
boxes appear. Select all of them, as shown in this image, and click on the 
Next button:

Install details window
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5. One final pick at the installed components and the installation is approaching 
its end.

Install details window

6. If this warning message appears, press OK and move further. It only lets you 
know that the installed packages have unsigned content.

Security warning window

The installation finishes only after the Eclipse IDE is restarted for the changes to take 
effect.
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After the installation, the Yocto plug-ins are available and ready to be configured. 
The configuration process involves the setup of the target-specific option and cross-
compiler. For each specific target, the preceding configurations steps need to be 
performed accordingly.

The configuration process is done by selecting the Preferences option from the 
Window menu. A new window will open, and from there, the Yocto Project ADT 
option should be selected. More details are available, as shown in the following 
screenshot:

Eclipse IDE—Preferences

The next thing to do involves the configuration of the available options of the  
cross-compiler. The first option refers to the toolchain type, and there are two options 
available, Standalone prebuilt toolchain and Build system derived toolchain, 
which is the default selected option. The former refers to a toolchain specific for an 
architecture that already has an existing kernel and root filesystem, so the developed 
application will be made available in the image manually. However, this step is not 
a requirement since all the components are separated. The latter option refers to a 
toolchain built inside a Yocto Project build directory.
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The next elements that need to be configured are the toolchain location, sysroot 
location, and the target architecture. The Toolchain Root Location is used to define 
the toolchain install location. For an installation done with the adt_installer script, 
for example, the toolchain will be available in the /opt/poky/<release> directory. 
The second argument, Sysroot Location, represents the location of the target device 
root filesystem. It can be found in the /opt/poky/<release> directory, as seen the 
preceding example, or even inside the build directory if other method to generate it 
were used. The third and last option from this section is represented by the Target 
Architecture and it indicates the type of hardware used or emulated. As it can be 
seen on the window, it is a pull-down menu where the required option is selected, 
and a user will find all the supported architectures listed. In a situation where the 
necessary architecture is not available inside the pull-down menu, the corresponding 
image for the architecture will need to be built.

The last remaining section is represented by the target specific option. This refers 
to the possibility of emulating an architecture using QEMU or running the image 
on the externally available hardware. For external hardware, use the External HW 
option that needs to be selected for the work to be finished, but for the QEMU 
emulation, there are still things to do besides selecting the QEMU option. In this 
scenario, the user will also need to indicate the Kernel and Custom Option. For the 
kernel selection, the process is simple. It is available in the prebuilt image location in 
case the Standalone pre-built toolchain option was selected or in the tmp/deploy/
images/<machine-name> directory if the Build system derived toolchain option 
was selected. For the second option, the Custom Option argument, the process for 
adding it will not be as simple as the preceding options.

The Custom Option field needs to be filled with various options, such as kvm, 
nographic, publicvnc, or serial, which indicate major options for the emulated 
architecture or their parameters. These are kept inside angled brackets, and include 
parameters, such as the memory used (-m 256), networking support (-net), and full 
screen support (-full-screen). More information regarding the available options 
and parameters can be found using the man qemu command. All of the preceding 
configurations can be overwritten using the Change Yocto Project Settings option 
from the Project menu after a project is defined.
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To define a project, these steps need to be taken:

1. Select the Project… option from the File | New menu option, as shown here:

Eclipse IDE—Project

2. Select C project from the C/C++ option. This will open a C Project window:

Eclipse IDE—New project window
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3. In the C Project window, there are multiple options available. Let's select 
Yocto Project ADT Autotools Project, and from there, the Hello World 
ANSI C Autotools Project option. Add a name for the new project, and we 
are ready to move to the next steps:

C project window

4. In the C Project window we you be prompted to add information regarding 
the Author, Copyright notice, Hello world greetings, Source, and License 
fields accordingly:

C project—basic settings window
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5. After all the information is added, the Finish button can be clicked on. The 
user will be prompted in the new C/C++ perspective that is specific for the 
opened project, with the newly created project appearing on the left-hand 
side of the menu.

6. After the project is created and the source code is written, to build the project, 
select the Build Project option from the Project… menu.

QEMU emulator
QEMU is used in the Yocto Project as a virtualization machine and emulator for 
various target architectures. It is very useful to run and test various Yocto generated 
applications and images, apart from fulfilling other purposes. Its primary use outside 
of the Yocto world is its selling point for the Yocto Project too, making it the default 
tool to be used to emulate hardware.

More information about the use case of QEMU can be found by accessing 
http://www.yoctoproject.org/docs/1.7/adt-manual/adt-
manual.html#the-qemu-emulator.

Interaction with the QEMU emulation is done within Eclipse, as shown previously. 
For this to happen, the proper configuration would be required, as instructed in the 
preceding section. Starting the QEMU emulation here is done using the External 
Tools option from the Run menu. A new window will be opened for the emulator, 
and after the corresponding login information is passed to the prompt, the shell will 
be available for user interaction. An application can be deployed and debugged on 
the emulator also.

More information regarding QEMU interaction is available at http://
www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.
html#dev-manual-qemu.

Debugging
Debugging an application can also be done using the QEMU emulator or the actual 
target hardware, if it exists. When the project was configured, a run/debug Eclipse 
configuration was generated as a C/C+ Remote Application instance, and it can be 
found on the basis of its name, which is according to the <project-name>_gdb_-
<suffix> syntax. For example, TestProject_gdb_armv5te-poky-linux-gnueabi 
could be an example of this.

http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.html#the-qemu-emulator
http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.html#the-qemu-emulator
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#dev-manual-qemu
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#dev-manual-qemu
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#dev-manual-qemu
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To connect to the Eclipse GDB interface and start the remote target debugging 
process, the user is required to perform a few steps:

1. Select C/C++ Remote application from the Run | Debug configuration 
menu and choose the run/debug configuration from the C/C++ Remote 
Application available in the left panel.

2. Select the suitable connection from the drop-down list.
3. Select the binary application to deploy. If multiple executables are available 

in your project, by pushing the Search Project button, Eclipse will parse the 
project and provide a list with all the available binaries.

4. Enter the absolute path in which the application will be deployed by setting 
the Remote Absolute File Path for C/C++ Application: field accordingly.

5. Selecting the debugger option is available in the Debugger tab. To debug 
shared libraries, a few extra steps are necessary:

 ° Select the Add | Path Mapping option from the Source tab to make 
sure a path mapping is available for the debug configuration.

 ° Select Load shared libraries symbols automatically from the  
Debug/Shared Library tab and indicate the path of the shared 
libraries accordingly. This path is highly dependent on the 
architecture of the processor, so be very careful which library file 
you indicate. Usually, for the 32-bit architecture, the lib directory is 
selected, and for the 64-bit architecture, the lib64 directory is chosen.

 ° On the Arguments tab, there is a possibility of passing various 
arguments to the application binary during the time of execution.

6. Once all the debug configurations are finished, click on the Apply and 
Debug buttons. A new GDB session will be launched and Debug perspective 
will open. When the debugger is being initialized, Eclipse will open three 
consoles:

 ° A GDB console named after the GDB binary described previously, 
used for command-line interaction

 ° A remote shell used to run an application display results
 ° A local machine console that is named after the binary path, which in 

most of cases, is not used. It remains as an artefact.

7. After the setup of the debug configuration, the application can be rebuilt and 
executed again using the available Debug icon in the toolbar. If, in fact, you 
want only to run and deploy the application, the Run icon can be used.
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Profiling and tracing
Inside the Yocto Tools menu, you can see the supported tools that are used for the 
tracing and profiling of developed applications. These tools are used for enhancing 
various properties of the application and, in general, the development process and 
experience. The tools that will be presented are LTTng, Perf, LatencyTop, PerfTop, 
SystemTap, and KGDB.

The first one we'll take a look at is the LTTng Eclipse Plug-in, which offers the 
possibility of tracing a target session and analyzing the results. To start working  
with the tool, a quick configuration is necessary first, as follows:

1. Start the tracing perspective by selecting Open Perspective from the 
Window menu.

2. Create a new tracing project by selecting Project from the File | New menu.
3. Select Control View from the Window | Show view | Other… | Lttng 

menu. This will enable you to access all these desired operations:

 ° Creating a new connection
 ° Creating a session
 ° Starting/stopping tracing
 ° Enabling events

Next, we'll introduce the user space performance analyzing tool called Perf. It offers 
statistical profiling of the application code and a simple CPU for multiple threads 
and kernel. To do this, it uses a number of performance counters, dynamic probes, or 
trace points. To use the Eclipse Plug-in, a remote connection to the target is required. 
It can be done by the Perf wizard or by using the Remote System Explorer | 
Connection option from the File | New | Other menu. After the remote connection 
is set up, interaction with the tool is the same as in the case of the command line 
support available for the tool.

LatencyTop is an application that is used to identify the latencies available within 
the kernel and also their root cause. This tool is not available for ARM kernels that 
have Symmetric multiprocessing (SMP) support enabled due to the limitation of the 
ARM kernels. This application also requires a remote connection. After the remote 
connection is set up, the interaction is the same as in the case of the command line 
support available for the tool. This application is run from the Eclipse Plug-in  
using sudo.
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PowerTop is used to measure the consumption of electrical power. It analyzes the 
applications, kernel options, and device drivers that run on a Linux system and 
estimates their power consumption. It is very useful to identify components that use 
the most amount of power. This application requires a remote connection. After the 
remote connection is set up, the interaction with the application is the same as for the 
command line available support for the tool. This application is run from the Eclipse 
Plug-in using the –d option to display the output in the Eclipse window.

SystemTap is a tool that enables the use of scripts to get results from a running 
Linux. SystemTap provides free software (GPL) infrastructure to simplify the 
gathering of information about the running Linux system via the tracing of all kernel 
calls. It's very similar to dtrace from Solaris, but it is still not suited for production 
systems, unlike dtrace. It uses a language similar to awk and its scripts have the .stp 
extension. The monitored data can be extracted and various filters and complex 
processing can be done on them. The Eclipse Plug-in uses the crosstap script to 
translate the .stp scripts to a C language to create a Makefile, run a C compiler 
to create a kernel module for the target architecture that is inserted into the target 
kernel, and later, collect the tracing data from the kernel. To start the SystemTap 
plug-in in Eclipse, there are a number of steps to be followed:

1. Select the systemtap option from the Yocto Project Tools menu.
2. In the opened windows, the crosstap argument needs to be passed:

 ° Set the Metadata Location variable to the corresponding poky 
directory

 ° Set Remote User ID by entering the root (the default option)  
because it has ssh access to the target-any other user that has  
the same privileges is also a good choice

 ° Set in the Remote Host variable to the corresponding IP address  
for the target

 ° Use the Systemtap Scripts variable for the full path to the .stp 
scripts

 ° Set additional cross options using the Systemtap Args field

The output of the .stp script should be available in the console view from Eclipse.
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The last tool we'll take a look at is KGDB. This tool is used specifically for the 
debugging of Linux kernel, and is useful only if development on the Linux kernel 
source code is done inside the Eclipse IDE. To use this tool, a number of necessary 
configuration setups are required:

• Disable the C/C++ indexing:
 ° Select the C/C++ Indexer option from the Window | Preferences 

menu
 ° Unselect the Enable indexer checkbox

• Create a project where the kernel source code can be imported:

 ° Select the C/C++ | C Project option from the File | New menu
 ° Select the Makefile project | Empty project option and give a proper 

name to the project
 ° Unselect the Use default location option
 ° Click on the Browse button and identify the kernel source code local 

git repository location
 ° Press the Finish button and the project should be created

After the prerequisites are fulfilled, the actual configuration can start:

• Select the Debug Configuration option from the Run menu.
• Double-click on the GDB Hardware Debugging option to create a default 

configuration named <project name> Default.
• From the Main tab, browse to the location of the vmlinux built image, select 

the Disable auto build radio button, as well as the GDB (DFS) Hardware 
Debugging Launcher option.

• For the C/C++ Application option available in the Debugger tab, browse for 
the location of the GDB binary available inside the toolchain (if ADT installer 
script is available, its default location should be /opt/poky/1.7/sysroots/
x86_64-pokysdk-linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-
linux-gnueabi-gdb). Select Generic serial option from the JTAG Device 
menu. The Use remote target option is a requirement.

• From the Startup tab, select the Load symbols option. Make sure that the 
Use Project binary option indicates the correct vmlinux image and that the 
Load image option is not selected.
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• Press the Apply button to make sure the previous configuration is enabled.
• Prepare the target for the serial communication debugging:

 ° Set the echo ttyS0,115200 | /sys/module/kgdboc/parameters/
kgdboc option to make sure the appropriate device is used for 
debugging

 ° Start KGDB on the echo g | /proc/sysrq-trigger target
 ° Close the terminal with the target but keep the serial connectivity

• Select the Debug Configuration option from the Run menu
• Select the previously created configuration and click on the Debug button

After the Debug button is pressed, the debug session should start and the target will 
be halted in the kgdb_breakpoint() function. From there, all the commands specific 
to GDB are available and ready to be used.

The Yocto Project bitbake commander
The bitbake commander offers the possibility of editing recipes and creating a 
metadata project in a manner similar to the one available in the command line. 
The difference between the two is that the Eclipse IDE is used to do the metadata 
interaction.

To make sure that a user is able to do these sort of actions, a number of steps  
are required:

• Select the Project option from the File | New menu
• Select the Yocto Project BitBake Commander wizard from the opened 

window
• Select the New Yocto Project option and a new window will be opened tp 

define properties of the new project
• Using Project Location, identify the parent of the poky directory
• Use the Project Name option to define the project name. Its default value is 

poky
• For the Remote service provider variable, select the Local choice and make 

use of the same choice for the Connection name drop-down list
• Make sure that the Clone checkbox is not selected for an installed poky 

source directory
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By using the Eclipse IDE, its features are available to be used. One of the most useful 
features is the quick search option that could prove to be very useful for some 
developers. Other benefits include the possibility of creating recipes using templates, 
editing them with syntax highlighting, auto completion, error reports on the fly, and 
many more.

The use of bitbake commander is restricted to local connections only. 
The remote connection causes the IDE to freeze due to a bug available 
upstream.

Summary
In this chapter, you were presented with information about the functionalities of 
the ADE offered by the Yocto Project, and the numerous Eclipse Plug-ins available 
for application development not only as an alternative, but also as a solution for 
developers who are connected to their IDEs. Although the chapter started with 
an introduction to the application development options for the command-line 
enthusiast, it shortly became more about IDE interaction than anything else. This 
happened because alternative solutions need to be available so that developers  
could choose what fits their needs best.

In the next chapter, a number of Yocto Project components will be presented. 
This time, they are not related to application development, but involve metadata 
interaction, quality assurance, and continuous integration services. I will try to 
present yet another face of the Yocto Project that I believe will help readers get a 
better picture of the Yocto Project, and eventually, interact with and contribute to  
the components that suit them and their needs best.
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Hob, Toaster, and Autobuilder
In this chapter, you will be introduced to new tools and components used in the 
Yocto community. As the title suggests, this chapter is dedicated to another category 
of tools. I will start with Hob as a graphical interface, which is slowly dying, and 
in time, will be replaced by a new web interface called Toaster. A new point of 
discussion will also be introduced in this chapter. Here, I am referring to the QA and 
testing component that is, in most cases, absent or lacking from most of the projects. 
Yocto takes this problem very seriously and offers a solution for it. This solution will 
be presented in the last section of the chapter.

You will also be offered a more detailed presentation to components, such as Hob, 
Toaster, and Autobuilder. Each of these components will be assessed separately and 
their benefits and use cases are looked at in detail. For the first two components, (that 
is, Hob and Toaster) information regarding the build process is offered alongside the 
various setup scenarios. Hob is similar to BitBake and is tightly integrated with Poky 
and the Build Directory. Toaster, on the other hand, is a looser alternative that offers 
multiple configuration alternatives and setups, and a performance section that can 
be very useful for any developer interested in improving the build system's overall 
performance. The chapter ends with section on Autobuilder. This project is the 
cornerstone of the Yocto project that is dedicated to making embedded development 
and open source more user-friendly, in general, but also offers more secure and 
error-free projects. I hope that you enjoy this chapter; let's proceed to the first section.

Hob
The Hob project represents a GUI alternative to the BitBake build system. Its purpose 
is to execute the most common tasks in an easier and faster manner, but it does not 
make command-line interactions go away. This is because most parts of recipes and 
configurations still need to be done manually. In the previous chapter, the BitBake 
Commander extension was introduced as an alternative solution for the editing of 
recipes, but in this project, it has its limitations.
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Hob's primary purpose is to allow interaction with the build system made easier 
for users. Of course, there are users who do not prefer the graphical user interface 
alternatives to command-line options, and I kind of agree with them, but this is 
another discussion altogether. Hob can be an option for them also; it is an alternative 
not only for people who prefer having an interface in front of them, but also for those 
who are attached to their command-line interaction.

Hob may not be able to a lot of tasks apart from most common ones, such as building 
an image, modifying its existing recipes, running an image through a QEMU 
emulator, or even deploying it on a USB device for some live-booting operations 
on a target device. Having all these functionalities is not much, but is a lot of fun. 
Your experience with the tools in Yocto Project do not matter here. The previously 
mentioned tasks can be done very easily and in an intuitive manner, and this is the 
most interesting thing about Hob. It offers its users what they need in a very easy 
fashion. People who interact with it can learn from the lessons it has to offer, whether 
they're graphic interface enthusiasts or command-line savvy.

In this chapter, I will show you how to use the Hob project to build a Linux 
operating system image. To demonstrate this, I will use the Atmel SAMA5D3 
Xplained machine, which is what I also used for other demonstrations in previous 
chapters.

First of all, let's see what Hob looks like when you start it for the first time. The result 
is shown in the following screenshot:
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To retrieve the graphical interface, the user needs perform the given steps required 
for the BitBake command-line interaction. Firstly, it needs to create a build directory 
and from this build directory, the user needs to start the Hob graphical interface, 
using the Hob commands, given as follows:

source poky/oe-init-build-env ../build-test

hob

The next step is to establish the layers that are required for your build. You can do 
this by selecting them in the Layers window. The first thing to do for the meta-atmel 
layer is to add it to the build. Although you may start work in an already existing 
build directory, Hob will not be able to retrieve the existing configurations and will 
create a new one over the bblayers.conf and local.conf configuration files. It will 
mark the added lines using the next #added by hob message.
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After the corresponding meta-atmel layer is added to the build directory, all the 
supported machines are available in the Select a machine drop-down, including 
those that are added by the meta-atmel layer. From the available options, the 
sama5d3-xplained machine needs to be selected:

When the Atmel sama5d3-xplained machine is selected, an error, shown in the 
following screenshot, appears:
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After adding the meta-qt5 layer to the layers section, this error disappears and 
the build process can continue. To retrieve the meta-qt5 layer, the following git 
command is necessary:

git clone -b dizzy https://github.com/meta-qt5/meta-qt5.git

Since all the available configuration files and recipes are parsed, the parsing  
process takes a while, and after this, you will see an error, as shown in the  
following screenshot:

After another quick inspection, you will see the following code:

find ../ -name "qt4-embedded*"

./meta/recipes-qt/qt4/qt4-embedded_4.8.6.bb

./meta/recipes-qt/qt4/qt4-embedded.inc

./meta-atmel/recipes-qt/qt4/qt4-embedded-4.8.5

./meta-atmel/recipes-qt/qt4/qt4-embedded_4.8.5.bbappend

The only explanation is the fact the meta-atmel layer does not update its recipes 
but appends them. This can be overcome in two ways. The simplest one would be 
to update the recipe the .bbappend file and make sure that the new available recipe 
is transformed into a patch for the upstream community. A patch with the required 
changes inside the meta-atmel layer will be explained to you shortly, but first, I will 
present the available options and the necessary changes that are needed to resolve 
the problems existing in the build process.
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The other solution would be to include the required recipes that meta-atmel needs 
for the build process. The best place for it to be available would be also in meta-
atmel. However, in this case, the .bbappend configuration file should be merged 
with the recipe, since having a recipe and its appended file in the same place does 
not make much sense.

After this problem is fixed, new options will be available to the user, as depicted in 
the following screenshot:

Now, the user has the chance to select the image that needs to be built, as well as  
the extra configurations that need to be added. These configurations include:

• Selection of the distribution type
• Selection of the image types
• A packaging format
• Other small tweaks around the root filesystem
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Some of these are depicted in the following screenshot:

I've chosen to change the distribution type from poky-tiny to poky, and the resulting 
root filesystem output format is visible in the following screenshot:
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With the tweaks made, the recipes are reparsed, and when this process is finished, 
the resulting image can be selected so that the build process can start. The image that 
is selected for this demonstration is the atmel-xplained-demo-image image, which 
corresponds to the recipes with the same name. This information is also displayed in 
the following screenshot:

The build process is started by clicking on the Build image button. A while after 
the build starts, an error will show up, which tells us that the meta-atmel BSP layer 
requires more of the dependencies that need to be defined by us:
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This information is gathered from the iperf recipe, which is not available in the 
included layers; it is available inside the meta-openembedded/meta-oe layer. After 
a more detailed search and update process, there have been a few revelations. There 
are more layer dependencies than required for the meta-atmel BSP layer, which are 
given as follows:

• The meta-openembedded/meta-oe layer
• The meta-openembedded/meta-networking layer
• The meta-openembedded/meta-ruby layer
• The meta-openembedded/meta-python layer
• The meta-qt5 layer

The end result is available in the BBLAYERS variable that is be found in the 
bblayers.conf file, shown as follows:

#added by hob
BBFILES += "${TOPDIR}/recipes/images/custom/*.bb"
#added by hob
BBFILES += "${TOPDIR}/recipes/images/*.bb"

#added by hob
BBLAYERS = "/home/alex/workspace/book/poky/meta /home/alex/workspace/
book/poky/meta-yocto /home/alex/workspace/book/poky/meta-yocto-bsp /
home/alex/workspace/book/poky/meta-atmel /home/alex/workspace/book/
poky/meta-qt5 /home/alex/workspace/book/poky/meta-openembedded/meta-
oe /home/alex/workspace/book/poky/meta-openembedded/meta-networking /
home/alex/workspace/book/poky/meta-openembedded/meta-ruby /home/alex/
workspace/book/poky/meta-openembedded/meta-python"

There are some required changes in the meta-atmel layer that needs to be made 
before starting a complete build, given as follows:

• Replace packagegroup-core-basic with packagegroup-core-full-
cmdline because the latest Poky has updated the packagegroup names.

• Delete python-setuptools because it is not available in the meta-
openembedded/meta-oe layer anymore, as well as in the new meta-
openembedded/meta-python layer, which is the new placeholder for all 
Python-related recipes. The python-setuptools tool was removed because 
it had the ability to download, build, install, upgrade, and uninstall extra 
Python packages, and is not a mandatory requirement for Yocto. This is its 
general purpose.

• The preceding change regarding the update to qt4-embedded-4.8.6 for 
qt4-embedded-4.8.5, as shown earlier, presented errors.
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All the changes made to the meta-atmel layer are available in following patch:

From 35ccf73396da33a641f307f85e6b92d5451dc255 Mon Sep 17 00:00:00  
2001
From: "Alexandru.Vaduva" <vaduva.jan.alexandru@gmail.com>
Date: Sat, 31 Jan 2015 23:07:49 +0200
Subject: [meta-atmel][PATCH] Update suppport for  
atmel-xplained-demo-image
 image.

The latest poky contains updates regarding the qt4 version support
and also the packagegroup naming.
Removed packages which are no longer available.

Signed-off-by: Alexandru.Vaduva <vaduva.jan.alexandru@gmail.com>
---
 recipes-core/images/atmel-demo-image.inc           |  3 +--
 ...qt-embedded-linux-4.8.4-phonon-colors-fix.patch | 26  
----------------------
 ...qt-embedded-linux-4.8.4-phonon-colors-fix.patch | 26  
++++++++++++++++++++++
 recipes-qt/qt4/qt4-embedded_4.8.5.bbappend         |  2 --
 recipes-qt/qt4/qt4-embedded_4.8.6.bbappend         |  2 ++
 5 files changed, 29 insertions(+), 30 deletions(-)
 delete mode 100644 recipes-qt/qt4/qt4-embedded-4.8.5/qt-embedded- 
linux-4.8.4-phonon-colors-fix.patch
 create mode 100644 recipes-qt/qt4/qt4-embedded-4.8.6/qt-embedded- 
linux-4.8.4-phonon-colors-fix.patch
 delete mode 100644 recipes-qt/qt4/qt4-embedded_4.8.5.bbappend
 create mode 100644 recipes-qt/qt4/qt4-embedded_4.8.6.bbappend

diff --git a/recipes-core/images/atmel-demo-image.inc b/recipes- 
core/images/atmel-demo-image.inc
index fe13303..a019586 100644
--- a/recipes-core/images/atmel-demo-image.inc
+++ b/recipes-core/images/atmel-demo-image.inc
@@ -2,7 +2,7 @@ IMAGE_FEATURES += "ssh-server-openssh package- 
management"
 
 IMAGE_INSTALL = "\
     packagegroup-core-boot \
-    packagegroup-core-basic \
+    packagegroup-core-full-cmdline \
     packagegroup-base-wifi \
     packagegroup-base-bluetooth \
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     packagegroup-base-usbgadget \
@@ -23,7 +23,6 @@ IMAGE_INSTALL = "\
     python-smbus \
     python-ctypes \
     python-pip \
-    python-setuptools \
     python-pycurl \
     gdbserver \
     usbutils \
diff --git a/recipes-qt/qt4/qt4-embedded-4.8.5/qt-embedded-linux- 
4.8.4-phonon-colors-fix.patch b/recipes-qt/qt4/qt4-embedded- 
4.8.5/qt-embedded-linux-4.8.4-phonon-colors-fix.patch
deleted file mode 100644
index 0624eef..0000000
--- a/recipes-qt/qt4/qt4-embedded-4.8.5/qt-embedded-linux-4.8.4- 
phonon-colors-fix.patch
+++ /dev/null
@@ -1,26 +0,0 @@
-diff --git a/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp  
b/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp
-index 89d5a9d..8508001 100644
---- a/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp
-+++ b/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp
-@@ -18,6 +18,7 @@
- #include <QApplication>
- #include "videowidget.h"
- #include "qwidgetvideosink.h"
-+#include <gst/video/video.h>
-
- QT_BEGIN_NAMESPACE
-
-@@ -106,11 +107,7 @@ static GstStaticPadTemplate  
template_factory_rgb =-     GST_STATIC_PAD_TEMPLATE("sink",-  
                            GST_PAD_SINK,
-                             GST_PAD_ALWAYS,
--                            GST_STATIC_CAPS("video/x-raw-rgb, "
--                                            "framerate =  
(fraction) [ 0, MAX ], "
--                                            "width = (int) [ 1,  
MAX ], "
--                                            "height = (int) [ 1,  
MAX ],"
--                                            "bpp = (int) 32"));
-+                            GST_STATIC_CAPS(GST_VIDEO_CAPS_xRGB_
HOST_ENDIAN));
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-
- template <VideoFormat FMT>
- struct template_factory;
-
diff --git a/recipes-qt/qt4/qt4-embedded-4.8.6/qt-embedded-linux- 
4.8.4-phonon-colors-fix.patch b/recipes-qt/qt4/qt4-embedded- 
4.8.6/qt-embedded-linux-4.8.4-phonon-colors-fix.patch
new file mode 100644
index 0000000..0624eef
--- /dev/null
+++ b/recipes-qt/qt4/qt4-embedded-4.8.6/qt-embedded-linux-4.8.4- 
phonon-colors-fix.patch
@@ -0,0 +1,26 @@
+diff --git a/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp  
b/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp
+index 89d5a9d..8508001 100644
+--- a/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp
++++ b/src/3rdparty/phonon/gstreamer/qwidgetvideosink.cpp
+@@ -18,6 +18,7 @@
+ #include <QApplication>
+ #include "videowidget.h"
+ #include "qwidgetvideosink.h"
++#include <gst/video/video.h>
+
+ QT_BEGIN_NAMESPACE
+
+@@ -106,11 +107,7 @@ static GstStaticPadTemplate  
template_factory_rgb =+     GST_STATIC_PAD_TEMPLATE("sink",+  
                            GST_PAD_SINK,+  
                            GST_PAD_ALWAYS,+-  
                           GST_STATIC_CAPS("video/x-raw-rgb, " 
+-                                            "framerate = (fraction) 
[ 0, MAX ], "
+-                                            "width = (int) [ 1,  
MAX ], "
+-                                            "height = (int) [ 1,  
MAX ],"
+-                                            "bpp = (int) 32"));
++                            GST_STATIC_CAPS(GST_VIDEO_CAPS_xRGB_
HOST_ENDIAN));
+
+ template <VideoFormat FMT>
+ struct template_factory;
+



Chapter 8

[ 187 ]

diff --git a/recipes-qt/qt4/qt4-embedded_4.8.5.bbappend b/recipes- 
qt/qt4/qt4-embedded_4.8.5.bbappend
deleted file mode 100644
index bbb4d26..0000000
--- a/recipes-qt/qt4/qt4-embedded_4.8.5.bbappend
+++ /dev/null
@@ -1,2 +0,0 @@
-FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
-SRC_URI += "file://qt-embedded-linux-4.8.4-phonon-colors- 
fix.patch"
diff --git a/recipes-qt/qt4/qt4-embedded_4.8.6.bbappend b/recipes- 
qt/qt4/qt4-embedded_4.8.6.bbappend
new file mode 100644
index 0000000..bbb4d26
--- /dev/null
+++ b/recipes-qt/qt4/qt4-embedded_4.8.6.bbappend
@@ -0,0 +1,2 @@
+FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
+SRC_URI += "file://qt-embedded-linux-4.8.4-phonon-colors- 
fix.patch"
-- 
1.9.1

This patch has been given in the chapter as an example for Git interaction and is a 
necessity when creating a patch that needs to be upstream to the community. At the 
time of writing this chapter, this patch had not yet been released to the upstream 
community, so this could be a gift for anyone interested in adding a contribution to 
the meta-atmel community in particular and the Yocto community in general.

The steps necessary to obtain this patch after the changes have been made, are 
described shortly. They define the steps needed to generate the patch, as shown in 
the following command, and is 0001-Update-suppport-for-atmel-xplained-
demo-image-image.patch. It can be upstream to the community or directly to the 
maintainer of the meta-atmel layer using the information available in the README file 
and the git send-email command:

git status 

git add --all .

git commit -s

git fetch -a

git rebase -i origin/master 

git format-patch -s --subject-prefix='meta-atmel][PATCH' origin/master

vim 0001-Update-suppport-for-atmel-xplained-demo-image-image.patch
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Toaster
Toaster represents an alternative to Hob, which at a given point in time, will replace 
it completely. It is also a web-based interface for the BitBake command line. This tool 
is much more effective than Hob; it is not only able to do the most common tasks in 
a similar manner as Hob, but it also incorporates a build analysis component that 
collects data regarding the build process and the resultant outcome. These results are 
presented in a very easy-to-grasp manner, offering the chance to search, browse, and 
query the information.

From the collected information, we can mention the following:

• Structure of the image directory
• The available build configurations
• The outcome of a build along with the errors and registered warnings
• The packages present in an image recipe
• Recipes and packages that are built
• Tasks that are executed
• Performance data regarding executed tasks, such as CPU usage, time, and 

disk I/O usage
• Dependency and reverse dependencies for recipes

There are also some drawbacks to the Hob solution. Toaster does not yet offer the 
ability to configure and launch a build. However, there are initiatives taken to 
include these functionalities that Hob has inside Toaster, which will be implemented 
in the near future.

The current status of the Toaster Project permits the execution in various setups and 
running modes. Each of them will be presented and accordingly defined as follows:

• Interactive mode: This is the mode available and released with the Yocto 
Project 1.6 release version. It is based on a toasterui build recording 
component and a toastergui build inspection and statistics user interface.

• Managed mode: In addition to the Yocto Project 1.6 release version, this is 
the mode that handles build configurations, scheduling, and executions that 
are triggered from the web interface.

 ° Remote managed mode: This is a hosted Toaster mode and is 
defined for production because it offers support for multiple users 
and customized installations.
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 ° Local managed mode or _local_ is: This is the mode available after a 
Poky checkout and permits running builds using the local machine 
code and build directory. It is the also used by anyone who interacts 
with a Toaster project for the first time.

• For the interactive mode, building with tools, such as AutoBuilder, BuildBot, 
or Jenkins, a set up separated from the hardware on which the Yocto Project 
builds are running will be required. Behind a normal instance of Toaster, 
there are three things that happen:

 ° A BitBake server is started
 ° A Toaster UI is started and connected to the BitBake server as well as 

to an SQL database
 ° A web server is started for the purpose of reading information related 

to a database and displaying it on the web interface

There are scenarios when multiple Toaster instances are running on multiple remote 
machines, or when a single Toaster instance is shared among multiple users and 
build servers. All of them can be resolved by modifying the mode that the Toaster 
starts in and changing the SQL database and location of the web server accordingly. 
By having a common SQL database, a web server, and multiple BitBake servers with 
the Toaster user interface for each separate build directory, you can solve problems 
involved in the previously mentioned scenarios. So, each component in a Toaster 
instance can be run on a different machine, as long as communication is done 
appropriately and the components know about each other.

To set up an SQL server on a Ubuntu machine, a package needs to be installed, using 
the following command:

apt-get install mysgl-server

Having the necessary packages is not enough; setting them up is also required. 
Therefore, the proper username and password for the access web server is necessary, 
along with the proper administration rights for the MySQL account. Also, a 
clone of the Toaster master branch would be necessary for the web server, and 
after the sources are available, make sure that inside the bitbake/lib/toaster/
toastermain/settings.py file, the DATABASES variable indicates the previous setup 
of the database. Make sure that you use the username and password defined for it.

With the set up done, the database synchronization can begin in the following way:

python bitbake/lib/toaster/manage.py syncdb

python bitbake/lib/toaster/manage.py migrate orm

python bitbake/lib/toaster/manage.py migrate bldcontrol
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Now, the web server can be started using the python bitbake/lib/toaster/
manage.py runserver command. For background execution, you can use the nohup 
python bitbake/lib/toaster/manage.py runserver 2>toaster_web.log 
>toaster_web.log & command.

This may be enough for starters, but as case logs are required for the builds, 
some extra setup is necessary. Inside the bitbake/lib/toaster/toastermain/
settings.py file, the DATABASES variable indicates the SQL database for the logging 
server. Inside the build directory, call the source toaster start command and 
make sure that the conf/toaster.conf file is available. Inside this file, make sure 
that the Toaster and build history bbclasses are enabled to record information 
about the package:

INHERIT += "toaster"

INHERIT += "buildhistory"

BUILDHISTORY_COMMIT = "1"

After this set up is available, start the BitBake server and the logging interface with 
these commands:

bitbake --postread conf/toaster.conf --server-only -t xmlrpc -B 
localhost:0 && export BBSERVER=localhost:-1

nohup bitbake --observe-only -u toasterui >toaster_ui.log &

After this is done, the normal build process can be started and builds can begin 
while the build is running inside the web interface logs and data is available to 
be examined. One quick mention, though: do not forget to kill the BitBake server 
after you have finished working inside the build directory using the bitbake –m 
command.

The local is very similar to the builds of the Yocto Project presented until now. This 
is the best mode for individual usage and learning to interact with the tool. Before 
starting the setup process, a few packages are required to be installed, using the 
following command lines:

sudo apt-get install python-pip python-dev build-essential 

sudo pip install --upgrade pip 

sudo pip install --upgrade virtualenv
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After these packages are installed, make sure that you install the components 
required by Toaster; here, I am referring to the Django and South packages:

sudo pip install django==1.6

sudo pip install South==0.8.4

For interaction with the web server, the 8000 and 8200 ports are necessary, so make 
sure that they are not already reserved for other interactions. With this in mind, we 
can start the interaction with Toaster. Using the Poky build directory available from 
the downloads in the previous chapters, call the oe-init-build-env script to 
create a new build directory. This can be done on an already existing build directory, 
but having a new one will help identify the extra configuration files available for 
interaction with Toaster.

After the build directory is set according to your needs, the source toaster start 
command should be called, as mentioned previously, to start Toaster. At http://
localhost:8000 , you will see the following screenshot if no build is executed:
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Run a build in the console, and it will be automatically updated in the web interface, 
as shown in the following screenshot:

After the build is finished, the web interface will be updated accordingly. I closed  
the header image and information to make sure that only the builds are visible in  
the web page.
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As seen in the preceding example, there are two builds that have finished in the 
preceding screenshot. Both of them are kernel builds. The first one finished with 
success, while the second has some errors and warnings. I did this as an example to 
present the user with alternative outputs for their build.

The build that failed took place due to lack of memory and space on the host 
machine, as seen in the following screenshot:

For the failing build, a detailed fail report is available, as displayed in the following 
screenshot:
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The build that finished successfully offers access to a lot of information. The following 
screenshot shows interesting features that a build should have. It shows, for the 
kernel build, all the BitBake variables used, their values, their location, and a short 
description. This information is very useful for all developers, not only because it 
offers all of this at a single location, but also because it offers a search option that 
reduces the search time spent looking for a troublesome variable to a minimum:

To stop Toaster, the source toaster stop command can be used after the 
execution activities are finished.

Inside a build directory, Toaster creates a number of files; their naming and purpose 
are presented in the following lines:

• bitbake-cookerdaemon.log: This log file is necessary for the BitBake server
• .toastermain.pid: This is the file that contains pid of the web server
• .toasterui.pid: It contains the DSI data bridge, pid
• toaster.sqlite: This is the database file
• toaster_web.log: This is the web server log file
• toaster_ui.log: This is the log file used for components of the user 

interface

With all of these factors mentioned, let's move to the next component, but not before 
offering a link to some interesting videos about Toaster.
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Information about Toaster Manual 1.7 can be accessed at https://
www.yoctoproject.org/documentation/toaster-manual-17.

Autobuilder
Autobuilder is the project responsible for QA, and a testing build is available inside 
the Yocto Project. It is based on the BuildBot project. Although this topic isn't dealt 
with in this book, for those of you interested in the BuildBot project, you can find 
more information about it in the following information box.

The starting page of Buildbot can be accssed at http://trac.
buildbot.net/. You can find a guide on quick starting BuildBot at 
http://docs.buildbot.net/0.8.5/tutorial/tour.html, and 
its concepts can be found at http://docs.buildbot.net/latest/
manual/concepts.html.

We are now going to address a software area that is very poorly treated by 
developers in general. Here, I am referring to the testing and quality assurance of a 
development process. This is, in fact, an area that requires more attention from us, 
including me as well. The Yocto Project through the AutoBuilder initiative tries to 
bring more attention to this area. Also, in the past few years, there has been a shift 
toward QA and Continuous Integration (CI) of available open source projects, and 
this can primarily be seen in the Linux Foundation umbrella projects.

The Yocto Project is actively involved in the following activities as part of the 
AutoBuilder project:

• Publishing the testing and QA plans using Bugzilla test cases and plans 
(https://bugzilla.yoctoproject.org).

• Demonstrating these plans and making them accessible for everyone to see. 
Of course, for this, you will need a corresponding account.

• Developing tools, tests, and QA procedures for everyone to use.

Having the preceding activities as a foundation, they offer access to a public 
AutoBuilder that shows the current status of the Poky master branch. Nightly builds 
and test sets are executed for all the supported targets and architectures and are all 
available for everyone at http://autobuilder.yoctoproject.org/.

https://www.yoctoproject.org/documentation/toaster-manual-17
https://www.yoctoproject.org/documentation/toaster-manual-17
http://trac.buildbot.net/
http://trac.buildbot.net/
http://docs.buildbot.net/0.8.5/tutorial/tour.html
http://docs.buildbot.net/latest/manual/concepts.html
http://docs.buildbot.net/latest/manual/concepts.html
https://bugzilla.yoctoproject.org
http://autobuilder.yoctoproject.org/
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If you do not have a Bugzilla account to access the QA activities done 
within the Yocto Project, refer to https://wiki.yoctoproject.
org/wiki/QA.

To interact with the AutoBuilder Project, the setup is defined in the  
README-QUICKSTART file as a four-step procedure:

cat README-QUICKSTART 
Setting up yocto-autobuilder in four easy steps:
------------------------------------------------
git clone git://git.yoctoproject.org/yocto-autobuilder
cd yocto-autobuilder
. ./yocto-autobuilder-setup
yocto-start-autobuilder both

The configuration files for this project are available inside the config directory. 
The autobuilder.conf file is used to define the parameters for the project, such 
as DL_DIR, SSTATE_DIR, and other build artifacts are very useful for a production 
setup, though not so useful for a local one. The next configuration file to inspect is 
yoctoABConfig.py, available in the yocto-controller directory where it defines 
the properties for the executed builds.

At this point, the AutoBuilder should be running. If it is started inside a web 
interface, the result should look similar to the following screenshot:

https://wiki.yoctoproject.org/wiki/QA
https://wiki.yoctoproject.org/wiki/QA
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As it can be visible from the header of the web page, there are multiple options 
available not only for the executed builds, but also for a different view and 
perspective of them. Here is one of the visualization perspectives:

This project has more to offer to its users, but I will let the rest be discovered through 
trial and error and a reading of the README file. Keep in mind that this project was 
built with Buildbot, so the workflow is very similar to it.

Summary
In this chapter, you were presented with a new set of components that are available 
in the Yocto Project. Here, I am referring to the Hob, Toaster, and AutoBuilder 
projects. The chapter first introduced Hob as a BitBake alternative. It was followed 
by the Toaster alternative to Hob, which also comes with a lot of interesting features, 
and although it is not at its best now, over time, it will become a real solution for 
developers who are not interested in learning a new technology. Instead, they only 
interact with a tool to get what they want in a quick and easy manner. This chapter 
finished with the AutoBuilder project that offers a QA and testing platform for the 
Yocto Project community and can be transformed in a continuous integration tool.

In the next chapter, some of the other tools will be presented, but this time, the focus 
will move a little towards the exterior of the community and also its small tools. We 
will also cover projects and tools, such as Swabber, a project that is continuously in a 
developing stage. We will also take a look at Wic, a little tool with great personality, 
and the new sensation from Linaro called LAVA. I hope you enjoy learning all of them.
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Wic and Other Tools
In this chapter, you will be given a brief introduction to a number of tools that 
address various problems and solves them in ingenious ways. This chapter can be 
thought of as an appetizer for you. If any of the tools presented here seem to interest 
you, I encourage you to feed your curiosity and try to find more about that particular 
tool. Of course, this piece of advice applies to any information presented in this 
book. However, this bit of advice holds true particularly for this chapter because 
I've chosen a more general description for the tools I've presented. I've done this as 
I've assumed that some of you may not be interested in lengthy descriptions and 
would only want to focus your interest in the development process, rather than in 
other areas. For the rest of you who are interested in finding out more about other 
key areas, please feel free to go through the extensions of information available 
throughout the chapter.

In this chapter, a more detailed explanation of components, such as Swabber, Wic, and 
LAVA, will be offered. These tools are not the ones, which an embedded developer 
will encounter on everyday jobs, though interaction with such tools could make life a 
little easier. The first thing I should mention about these tools is that they have nothing 
in common with each other, and are very different from each other and address 
different requests. If Swabber, the first tool presented here, is used for access detection 
on a host development machine, the second tool represents a solution to the limitations 
that BitBake has with complex packaging options. Here, I am referring to the wic tool. 
The last element presented in this chapter is the automation testing framework called 
LAVA. It is an initiative from Linaro, a project that, in my opinion, is very interesting 
to watch. They are also combined with a continuous integration tool, like Jenkins, and 
this could make it a killer combination for every taste.
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Swabber
Swabber is a project, which although is presented on Yocto Project's official page, 
is said to be a work in progress; no activity has been done on it since September 18, 
2011. It does not have a maintainers file where you can find more information about 
its creators. However, the committers list should be enough for anyone interested in 
taking a deeper look at this project.

This tool was selected for a short introduction in this chapter because it constitutes 
another point of view of the Yocto Project's ecosystem. Of course, a mechanism for 
access detection into the host system is not a bad idea and is very useful to detect 
accesses that could be problematic for your system, but it is not the first tool that 
comes to mind when developing software. When you have the possibility of redoing 
your build and inspecting your host ecosystem manually, you tend to lose sight of 
the fact that tools could be available for this task too, and that they could make your 
life easier.

For interaction with Swabber, the repository needs to be cloned first. The following 
command can be used for this purpose:

git clone http://git.yoctoproject.org/git/swabber

After the source code is available on the host, the content of the repository should 
look as follows:

tree swabber/

swabber/

├── BUGS

├── canonicalize.c

├── canonicalize.h

├── COPYING

├── detect_distro

├── distros

│   ├── Fedora

│   │   └── whitelist

│   ├── generic

│   │   ├── blacklist

│   │   ├── filters

│   │   └── whitelist

│   ├── Ubuntu

│   │   ├── blacklist
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│   │   ├── filters

│   │   └── whitelist

│   └── Windriver

│       └── whitelist

├── dump_blob.c

├── lists.c

├── lists.h

├── load_distro.c

├── Makefile

├── packages.h

├── README

├── swabber.c

├── swabber.h

├── swabprof.c

├── swabprof.in

├── swab_testf.c

├── update_distro

├── wandering.c

└── wandering.h

5 directories, 28 files

As you can see, this project is not a major one, but consists of a number of tools made 
available by a passionate few. This includes two guys from Windriver: Alex deVries 
and David Borman. They worked on their own on the previously presented tools 
and made them available for the open source community to use. Swabber is written 
using the C language, which is a big shift from the usual Python/Bash tools and 
other projects that are offered by the Yocto Project community. Every tool has its 
own purpose, the similitude being that all the tools are built using the same Makefile. 
Of course, this isn't restricted only to the usage of binaries; there are also two bash 
scripts available for distribution detect and update.

More information about the tool can be found from its creators. Their 
e-mail addresses, which are available in the commits for the project, are 
alex.devries@windriver.com and david.borman@windriver.
com. However, please note that these are the workplace e-mail IDs 
and the people that worked on Swabber may not have the same e-mail 
address at the moment.
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The interaction with the Swabber tools is well described in the README file. Here, 
information regarding the setup and running of Swabber is available, though, 
for your sake, this will also be presented in the next few lines, so that you can 
understand quicker and in an easier manner.

The first required step is the compilation of sources. This is done by invoking the 
make command. After the source code is built and the executables are available, the 
host distribution can be profiled using the update_distro command, followed by 
the location of the distribution directory. The name we've chosen for it is Ubuntu-
distro-test, and it is specific for the host distribution on which the tool is executed. 
This generation process can take some time at first, but after this, any changes to 
the host system will be detected and the process will take lesser time. At the end of 
the profiling process, this is how the content of the Ubuntu-distro-test directory 
looks:

Ubuntu-distro-test/

├── distro

├── distro.blob

├── md5

└── packages

After the host distribution is profiled, a Swabber report can be generated based on 
the profile created. Also, before creating the report, a profile log can be created for 
later use along with the reporting process. To generate the report, we will create a 
log file location with some specific log information. After the logs are available, the 
reports can be generated:

strace -o logs/Ubuntu-distro-test-logs.log -e trace=open,execve -f pwd

./swabber -v -v -c all -l logs/ -o required.txt -r extra.txt -d Ubuntu-
distro-test/ ~ /tmp/

This information was required by the tool, as shown in its help information:

Usage: swabber [-v] [-v] [-a] [-e]

        -l <logpath> ] -o <outputfile> <filter dir 1> <filter dir 2> ...

 Options:

    -v: verbose, use -v -v for more detail

    -a: print progress (not implemented)

    -l <logfile>: strace logfile or directory of log files to read
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    -d <distro_dir>: distro directory

    -n <distro_name>: force the name of the distribution

    -r <report filename>: where to dump extra data (leave empty for 
stdout)

    -t <global_tag>: use one tag for all packages

    -o <outputfile>: file to write output to

    -p <project_dir>: directory were the build is being done

    -f <filter_dir>: directory where to find filters for whitelist,

           blacklist, filters

    -c <task1>,<task2>...: perform various tasks, choose from:

           error_codes: show report of files whose access returned an 
error

           whitelist: remove packages that are in the whitelist

           blacklist: highlight packages that are in the blacklist as

                      being dangerous

           file_detail: add file-level detail when listing packages

           not_in_distro: list host files that are not in the package

                      database

           wandering: check for the case where the build searches for a

                      file on the host, then finds it in the project.

           all: all the above

From the help information attached in the preceding code, the role of the arguments 
selected for the test command can be investigated. Also, an inspection of the tool's 
source code is recommended due to the fact that there are no more than 1550 lines in 
a C file, the biggest one being the swabber.c file.

The required.txt file contains the information about the packages used and also 
about the packages specific files. More information regarding configurations is also 
available inside the extra.txt file. Such information includes files and packages 
that can be accessed, various warnings and files that are not available in the host 
database, and various errors and files that are considered dangerous.

For the command on which the tracing is done, the output information is not much. 
It has only been offered as an example; I encourage you to try various scenarios and 
familiarize yourselves with the tool. It could prove helpful to you later.
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Wic
Wic is a command line tool that can be also seen as an extension of the BitBake build 
system. It was developed due to the need of having a partitioning mechanism and 
a description language. As it can be concluded easily, BitBake lacks in these areas 
and although initiatives were taken to make sure that such a functionality would 
be available inside the BitBake build system, this was only possible to an extent; for 
more complex tasks, Wic can be an alternative solution.

In the following lines, I will try to describe the problem associated with BitBake's 
lack of functionality and how Wic can solve this problem in an easy manner. I will 
also show you how this tool was born and what source of inspiration source was.

When an image is being built using BitBake, the work is done inside an image 
recipe that inherits image.bbclass for a description of its functionality. Inside this 
class, the do_rootfs() task is the one that the OS responsible for the creation of 
the root filesystem directory that will be later be included in the final package and 
includes all the sources necessary to boot a Linux image on various boards. With the 
do_rootf() task finished, a number of commands are interrogated to generate an 
output for each one of the image defined types. The definition of the image type is 
done through the IMAGE_FSTYPE variable and for each image output type, there is an 
IMAGE_CMD_type variable defined as an extra type that is inherited from an external 
layer or a base type described in the image_types.bbclass file.

The commands behind every one of these types are, in fact, a shell command-specific 
for a defined root filesystem format. The best example of this is the ext3 format. 
For this, the IMAGE_CMD_ext3 variable is defined and these commands are invoked, 
shown as follows:

genext2fs -b $ROOTFS_SIZE ... ${IMAGE_NAME}.rootfs.ext3

tune2fs -j ${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext3

After the commands are called, the output is in the form of a image-*.ext3 file. 
It is a newly created EXT3 filesystem according to the FSTYPES defined variable 
value, and it incorporates the root filesystem content. This example presents a very 
common and basic filesystem creation of commands. Of course, more complex 
options could be required in an industry environment, options that incorporate more 
than the root filesystem and add an extra kernel or even the bootloader alongside it, 
for instance. For these complex options, extensive mechanisms or tools are necessary.
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The available mechanism implemented in the Yocto Project is visible inside the 
image_types.bbclass file through the IMAGE_CMD_type variable and has this form:

image_types_foo.bbclass:
  IMAGE_CMD_bar = "some shell commands"
  IMAGE_CMD_baz = "some more shell commands"

To use the newly defined image formats, the machine configuration needs to be 
updated accordingly, using the following commands:

foo-default-settings.inc
  IMAGE_CLASSES += "image_types_foo"

By using the inherit ${IMAGE_CLASSES} command inside the image.bbclass 
file, the newly defined image_types_foo.bbclass file's functionality is visible and 
ready to be used and added to the IMAGE_FSTYPE variable.

The preceding implementation implies that for each implemented filesystem, a 
series of commands are invoked. This is a good and simple method for a very simple 
filesystem format. However, for more complex ones, a language would be required 
to define the format, its state, and in general, the properties of the image format. 
Various other complex image format options, such as vmdk, live, and directdisk 
file types, are available inside Poky. They all define a multistage image formatting 
process.

To use the vmdk image format, a vmdk value needs to be defined in the IMAGE_FSTYPE 
variable. However, for this image format to be generated and recognized, the image-
vmdk.bbclass file's functionalities should be available and inherited. With the 
functionalities available, three things can happen:

• An EXT3 image format dependency is created on the do_rootfs() task to 
make sure the ext3 image format is generated first. The vmdk image format 
depends on this.

• The ROOTFS variable is set for the boot-directdisk functionality.
• The boot-directdisk.bbclass is inherited.

This functionality offers the possibility of generating images that can be copied onto 
a hard disk. At the base of it, the syslinux configuration file can be generated, and 
two partitions are also required for the boot up process. The end result consists of an 
MBR and partition table section followed by a FAT16 partition containing the boot 
files, SYSLINUX and the Linux kernel, and an EXT3 partition for the root filesystem 
location. This image format is also responsible for moving the Linux kernel, the 
syslinux.cfg, and ldlinux.sys configurations on the first partition, and copying 
using the dd command the EXT3 image format onto the second partition. At the end 
of this process, space is reserved for the root with the tune2fs command.



Wic and Other Tools

[ 206 ]

Historically, the usage of directdisk was hardcoded in its first versions. For every 
image recipe, there was a similar implementation that mirrored the basic one and 
hardcoded the heritage inside the recipe for the image.bbclass functionality. In the 
case of the vmdk image format, the inherit boot-directdisk line is added.

With regard to custom-defined image filesystem types, one such example can be 
found inside the meta-fsl-arm layer; this example is available inside the imx23evk.
conf machine definition. This machine adds the next two image filesystem types: 
uboot.mxsboot-sdcard and sdcard.

meta-fsl-arm/imx23evk.conf
  include conf/machine/include/mxs-base.inc
  SDCARD_ROOTFS ?= "${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext3"
  IMAGE_FSTYPES ?= "tar.bz2 ext3 uboot.mxsboot-sdcard sdcard"

The mxs-base.inc file included in the preceding lines is in return including the 
conf/machine/include/fsl-default-settings.inc file, which in return adds 
the IMAGE_CLASSES +="image_types_fsl" line as presented in the general case. 
Using the preceding lines offers the possibility for the IMAGE_CMD commands to be 
first executed for the commands available for the uboot.mxsboot-sdcard format, 
followed by the sdcard IMAGE_CMD commands-specific image format.

The image_types_fsl.bbclass file defines the IMAGE_CMD commands, as follows:

inherit image_types
  IMAGE_CMD_uboot.mxsboot-sdcard = "mxsboot sd ${DEPLOY_DIR_IMAGE}/u-
boot-${MACHINE}.${UBOOT_SUFFIX} \
${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.uboot.mxsboot-sdcard"

At the end of the execution process, the uboot.mxsboot-sdcard command is 
called using the mxsboot command. Following the execution of this command, the 
IMAGE_CMD_sdcard specific commands are called to calculate the SD card size and 
alignment, as well as to initialize the deploy space and set the appropriate partition 
type to the 0x53 value and copy the root filesystem onto it. At the end of the process, 
several partitions are available and they have corresponding twiddles that are used 
to package bootable images.

There are multiple methods to create various filesystems and they are spread over 
a large number of existing Yocto layers with some documentation available for the 
general public. There are even a number of scripts used to create a suitable filesystem 
for a developer's needs. One such example is the scripts/contrib/mkefidisk.
sh script. It is used to create an EFI-bootable direct disk image from another image 
format, that is, a live.hddimg one. However, a main idea remains: this kind of 
activity should be done without any middle image filesystem that is generated in 
intermediary phases and with something other than a partition language that is 
unable to handle complicated scenarios.
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Keeping this information in mind, it seems that in the preceding example, we should 
have used another script. Considering the fact that it is possible to build an image 
from within the build system and also outside of it, the search for a number of tools 
that fit our needs was started. This search ended at the Fedora kickstart project. 
Although it has a syntax that is also suitable for areas involving deployment efforts, 
it is often considered to be of most help to developers.

You can find more information about the Fedora Kickstart project at 
http://fedoraproject.org/wiki/Anaconda/Kickstart.

From this project, the most used and interesting components were clearpart, part, 
and bootloader, and these are useful for our purposes as well. When you take a 
look at the Yocto Project's Wic tool, it is also available inside the configuration files. 
If the configuration file for Wic is defined as .wks inside the Fedora kickstart project, 
the configuration file read uses the .yks extension. One such configuration file is 
defined as follows:

def pre():
    free-form python or named 'plugin' commands

  clearpart commands
  part commands
  bootloader commands
  named 'plugin' commands

  def post():
    free-form python or named 'plugin' commands  

The idea behind the preceding script is very simple: the clearpart component is 
used to clear the disk of any partitions while the part component is used for the 
reverse, that is, the components used for creating and installing the filesystem. The 
third too that is defined is the bootloader component, which is used for installation 
of the bootloader, and also handles the corresponding information received from  
the part component. It also makes sure that the boot process is done as described 
inside the configuration file. The functions defined as pre() and post() are used 
for pre and post calculus for creation of the image, stage image artefacts, or other 
complex tasks.

http://fedoraproject.org/wiki/Anaconda/Kickstart
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As shown in the preceding description, the interaction with the Fedora kickstarter 
project was very productive and interesting, but the source code is written using 
Python inside the Wic project. This is due to the fact that a Python implementation 
for a similar tool was searched for and it was found under the form of the 
pykickstarted library. This is not all that the preceding library was used for by the 
Meego project inside its Meego Image Creator (MIC) tool. This tool was used for a 
Meego-specific image creation process. Later, this project was inherited by the Tizen 
project.

For more about MIC, refer to https://github.com/01org/mic.

Wic, the tool that I promised to present in this section is derived from the MIC 
project and both of them use the kickstarter project, so all three are based on plugins 
that define the behavior of the process of creating various image formats. In the first 
implementation of Wic, it was mostly a functionality of the MIC project. Here, I am 
referring to the Python classes it defines that were almost entirely copied inside 
Poky. However, over time, the project started to have its own implementations, and 
also its own personality. From version 1.7 of the Poky repository, no direct reference 
to MIC Python defined classes remained, making Wic a standalone project that 
had its own defined plugins and implementations. Here is how you can inspect the 
various configuration of formats accessible inside Wic:

tree scripts/lib/image/canned-wks/
scripts/lib/image/canned-wks/
├── directdisk.wks
├── mkefidisk.wks
├── mkgummidisk.wks
└── sdimage-bootpart.wks

There are configurations defined inside Wic. However, considering the fact that 
the interest in this tool has grown in the last few years, we can only hope that the 
number of supported configurations will increase.

I mentioned previously that the MIC and Fedora kickstarter project dependencies 
were removed, but a quick search inside the Poky scripts/lib/wic directory will 
reveal otherwise. This is because Wic and MIC are both have the same foundation, 
the pykickstarted library. Though Wic is now heavily based on MIC and both have 
the same parent, the kickstarter project, their implementations, functionalities, and 
various configurations make them different entities, which although related have 
taken different paths of development.

https://github.com/01org/mic
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LAVA
LAVA (Linaro Automation and Validation Architecture) is a continuous integration 
system that concentrates on a physical target or virtual hardware deployment where 
a series of tests are executed. The executed tests are of a large variety from the 
simplest ones which only requires booting a target to some very complex scenarios 
that require external hardware interaction.

LAVA represents a collection of components that are used for automated validation. 
The main idea behind the LAVA stack is to create a quality controlled testing and 
automation environment that is suitable for projects of all sizes. For a closer look 
at a LAVA instance, the reader could inspect an already created one, the official 
production instance of which is hosted by Linaro in Cambridge. You can access it at 
https://validation.linaro.org/. I hope you enjoy working with it.

The LAVA framework offers support for the following functionalities:

• It supports scheduled automatic testing for multiple packages on various 
hardware packages

• It makes sure that after a device crashes, the system restarts automatically
• It conducts regression testing
• It conducts continuous integration testing
• It conducts platform enablement testing
• It provides support for both local and cloud solutions
• It provides support for result bundles
• It provides measurements for performance and power consumption

LAVA is primarily written using Python, which is no different from what the 
Yocto Project offers us. As seen in the Toaster Project, LAVA also uses the Django 
framework for a web interface and the project is hosted using the Git versioning 
system. This is no surprise since we are talking about Linaro, a not-for-profit 
organization that works on free and open source projects. Therefore, the thumb rule 
applied to all the changes made to the project should return in the upstream project, 
making the project a little easier to maintain. However, it is also more robust and has 
better performance.

For those of you interested in more details about how this project can 
be used, refer to https://validation.linaro.org/static/
docs/overview.html.

https://validation.linaro.org/
https://validation.linaro.org/static/docs/overview.html
https://validation.linaro.org/static/docs/overview.html
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For testing with the LAVA framework, the first step would be to understand 
its architecture. Knowing this helps not only with test definitions, but also with 
extending them, as well as the development of the overall project. The major 
components of this project are as follows:

               +-------------+
               |web interface|
               +-------------+
                      |
                      v
                  +--------+
            +---->|database|
            |     +--------+
            |
+-----------+------[worker]-------------+
|           |                           |
|  +----------------+     +----------+  |
|  |scheduler daemon|---→ |dispatcher|  |
|  +----------------+     +----------+  |
|                              |        |
+------------------------------+--------+
                               |
                               V
                     +-------------------+
                     | device under test |
                     +-------------------+

The first component, the web interface, is responsible for user interaction. It is used 
to store data and submitted jobs using RDBMS, and is also responsible to display 
the results, device navigation, or as job submission receiver activities that are done 
through the XMLRPC API. Another important component is represented by the 
scheduler daemon, which is responsible for the allocation of jobs. Its activity is quite 
simple. It is responsible for pooling the data from a database and reserving devices 
for jobs that are offered to them by the dispatcher, another important component. 
The dispatcher is the component responsible for running actual jobs on the devices. 
It also manages the communication with a device, download images, and collects 
results.

There are scenarios when only the dispatcher can be used; these scenarios involve 
the usage of a local test or a testing feature development. There are also scenarios 
where all the components run on the same machine, such as a single deployment 
server. Of course, the desired scenario is to have components decoupled, the server 
on one machine, database on another one, and the scheduler daemon and dispatcher 
on a separate machine.
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For the development process with LAVA, the recommended host machines are 
Debian and Ubuntu. The Linaro development team working with LAVA prefer the 
Debian distribution, but it can work well on an Ubuntu machine as well. There are 
a few things that need to be mentioned: for the Ubuntu machine, make sure that the 
universe repositories are available and visible by your package manager.

The first package that is necessary is lava-dev; it also has scripts that indicate the 
necessary package dependencies to assure the LAVA working environment. Here 
are the necessary commands required to do this:

sudo apt-get install lava-dev

git clone http://git.linaro.org/git/lava/lava-server.git

cd lava-server

/usr/share/lava-server/debian-dev-build.sh lava-server

git clone http://git.linaro.org/git/lava/lava-dispatcher.git

cd lava-dispatcher

/usr/share/lava-server/debian-dev-build.sh lava-dispatcher

Taking into consideration the location of the changes, various actions are required. 
For example, for a change in the templates directory's HTML content, refreshing 
the browser will suffice, but any changes made in the *_app directory's Python 
implementation will require a restart of the apache2ctl HTTP server. Also, any 
change made in the *_daemon directory's Python sources will require a restart of 
lava-server altogether.

For all of you interested in acquiring more information about LAVA 
development, the development guide constitutes a good resource of 
documentation, which is available at https://validation.linaro.
org/static/docs/#developer-guides.

To install LAVA or any LAVA-related packages on a 64-bit Ubuntu 14.04 machine, 
new package dependencies are required in addition to the enabled support for 
universal repositories deb http://people.linaro.org/~neil.williams/lava 
jessie main, besides the installation process described previously for the Debian 
distribution. I must mention that when the lava-dev package is installed, the user 
will be prompted to a menu that indicates nullmailer mailname. I've chosen to 
let the default one remain, which is actually the host name of the computer running 
the nullmailer service. I've also kept the same configuration defined by default 
for smarthost and the installation process has continued. The following are the 
commands necessary to install LAVA on a Ubuntu 14.04 machine:

https://validation.linaro.org/static/docs/#developer-guides
https://validation.linaro.org/static/docs/#developer-guides
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sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu $(lsb_
release -sc) universe"

sudo apt-get update

sudo add-apt-repository "deb http://people.linaro.org/~neil.williams/lava 
jessie main"

sudo apt-get update

  

sudo apt-get install postgresql

sudo apt-get install lava

sudo a2dissite 000-default

sudo a2ensite lava-server.conf

sudo service apache2 restart

Information about the LAVA installation process is available at 
https://validation.linaro.org/static/docs/installing_
on_debian.html#. Here, you also find the installation processes for 
bot Debian and Ubuntu distributions.

Summary
In this chapter, you were presented a new set of tools. I will honestly admit that 
these tools are not the ones used most often in an embedded environment, but 
they've been introduced in order to offer another point of view to the embedded 
development environment. This chapter tried to explain to developers that there is 
more to the embedded world then just development and the tools that help with 
these tasks. In most cases, the adjacent components are the ones that could inspire 
and influence the development process the most.

In the next chapter, a short presentation of the Linux real-time requirements and 
solutions will be presented. We will emphasize the various features that work 
alongside Linux in this area. A short presentation of the meta-realtime layer will be 
offered, and features, such as Preempt-RT and NOHZ, will be discussed. Without 
further ado, let's proceed to the next chapter. I hope you will enjoy its content.

https://validation.linaro.org/static/docs/installing_on_debian.html#
https://validation.linaro.org/static/docs/installing_on_debian.html#
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Real-time
In this chapter, you will be presented with information on the real-time component 
of the Yocto Project. Also, in the same context, a short discussion regarding the 
general purpose of an operating system and a real-time operating system will be 
explained. We will then move toward the PREEMPT_RT patches that try to change 
normal Linux into a full powered real-time operating system; we will try to look at 
it from more angles and at the end, sum it up and draw a conclusion out of it. This 
is not all, any real-time operation needs its applications, so a short presentation on 
the do's and don'ts of application writing that is suitable in the context of a real-time 
operating system, will also be presented. Keeping all of this in mind, I believe it's 
time to proceed with this chapter content; I hope you enjoy it.

You will find a more detailed explanation of real-time components in this chapter. 
Also, the relation between Linux and real-time will be shown to you. As everyone 
knows already, the Linux operation system was designed as a general purpose 
OS very similar to the already available UNIX. It is very easy to see the fact that 
a multiuser system, such as Linux, and a real-time one are somewhat in conflict. 
The main reason for this is that for a general purpose, multiple user operating 
systems, such as Linux, are configured to obtain a maximal average throughput. 
This sacrifices latencies that offer exactly the opposite requirements for a real-time 
operating system.

The definition for real time is fairly easy to understand. The main idea behind it in 
computing is that a computer or any embedded device is able to offer feedback to its 
environment in time. This is very different from being fast; it is, in fact, fast enough 
in the context of a system and fast enough is different for the automobile industry 
or nuclear power plants. Also, this kind of a system will offer reliable responses to 
take decisions that don't not affect any exterior system. For example, in a nuclear 
power plant, it should detect and prevent any abnormal conditions to ensure that a 
catastrophe is avoided.
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Understanding GPOS and RTOS
When Linux is mentioned, usually General Purpose Operating System (GPOS) 
is related to it, but over time, the need to have the same benefits as Real-Time 
Operating System (RTOS) for Linux has become more stringent. The challenge for 
any real-time system is to meet the given timing constrains in spite of the number 
and type of random asynchronous events. This is no simple task and an extensive 
number of papers and researches were done on theory of the real-time systems. 
Another challenge for a real-time system would be to have an upper limit on latency, 
called a scheduling deadline. Depending on how systems meet this challenge, they 
can be split into hard, firm, and soft:

• Hard real-time system: This represents system for which a deadline miss  
will result in a complete system failure.

• Firm real-time system: This represents systems for which a deadline miss is 
acceptable but the system quality can be degraded. Also, after the deadline is 
missed, the result that is offered is not useful anymore.

• Soft real-time system: This represents systems for which missing of 
deadlines degrades the usefulness of the received result and consequently, 
of the quality of the system. In these kind of systems, the meeting of the 
deadline is seen as a goal than as a strict requirement.

There are multiple reasons for Linux not being suitable as a RTOS:

• Paging: The page swap process through virtual memory is without limits. 
There is no method in place to know the time that will pass until you can get 
a page from a disk, and this implies that there is no upper limit to the delay 
caused by the fault in a page.

• Coarsed-grained synchronization: Here, the definition of the Linux kernel is 
not preemptible. This means that once a process is inside the kernel context, 
it cannot be preempted until it exits the context. At an event occurrence, the 
new event needs to wait for scheduling until the already available one exits 
the kernel context.

• Batching: An operation can be batched for a more efficient use of resources. 
The simplest example of this is the page freeing process. Instead of freeing 
each separate page, Linux is able to pass multiple pages and clean as many  
as possible.

• Request reordering: The I/O requests can be reordered for processes, 
making the process of using hardware more efficient.
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• Fairness in scheduling: This is a UNIX heritage and refers to the fact that a 
scheduler tries to be fair with all running processes. This property offers the 
possibility of lower priority processes that have been waiting for a long time 
to be scheduled before higher priority ones.

All the preceding characteristics constitute the reason why an upper boundary 
cannot be applied to the latency of a task or process, and also why Linux cannot 
become a hard real-time operating system. Let's take a look at the following diagram 
which illustrates the approaches of Linux OS to offer real-time characteristics:

The first thing anyone can do to improve the latency of the standard Linux operating 
system would be to try and make a change to the scheduling policies. The default 
Linux time sharing scheduling policies are called SCHED_OTHER, and they use a 
fairness algorithm, giving all processes zero priority, the lowest one available. Other 
such scheduling policies are SCHED_BATCH for batch scheduling of the processes 
and the SCHED_IDLE, which is suitable for the scheduling of extremely low priority 
jobs. The alternatives to this scheduling policy are SCHED_FIFO and SCHED_RR. 
Both of them are intended as real-time policies and are time-critical applications that 
require precise control processes and their latencies.
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To offer more real-time characteristics to a Linux operating system, there are 
also two more approaches that can be presented. The first one refers to a more 
preemptive implementation of the Linux kernel. This approach can take advantage 
of the already available spinlock mechanism used for SMP support, making sure 
that multiple processes are prevented from executing simultaneously, though in the 
context of a single processor, the spinlocks are no ops. The interrupt handling also 
requires modifications  this rescheduling to make possible if another higher priority 
process appears; in this situation, a new scheduler might also be required. This 
approach offers the advantage of not changing the interaction of a user space and 
the advantage of using APIs, such as POSIX or others. The drawback of this is that 
the kernel changes are very serious and every time a kernel version changes, these 
changes need to be adapted accordingly. If this work was not enough already, the 
end result is not fully real-time operating system, but one that reduces the latency of 
the operating system.

The other available implementation is interrupt abstraction. This approach is based 
on the fact that not all systems require a hard real-time determinism and most 
of them only require a section of their task to be executed in a real-time context. 
The idea behind this approach is to run Linux with the priority of an idle task 
under a real-time kernel and non-real-time tasks to continue to execute them as 
they normally do. This implementation fakes the disabling of an interrupt for the 
real-time kernel, but in fact, it is passed to the real-time kernel. For this type of 
implementation, there are three available solutions:

• RTLinux: It represents the original implementation of the interrupt 
abstraction approach and was developed at the Institute of Mining 
and Technology, New Mexico. Although it still has an open source 
implementation, most of the development is now done through FSMLabs 
engineers, later required by the Wind River System on the commercial 
version of it. The commercial support for RTLinux ended in August 2011.

• RTAI: It is an enhancement made to the RTLinux solution developed in the 
department of Aerospace Engineering from the Politecnico di Milano. This 
project is a very active with a high number of developers and has current 
releases available.

• Xenomai: It represents the third implementation. It's history is a bit twisted: 
it appeared in August 2001, only to be merged with RTAI in 2013 to generate 
a real-time operating system that was fit for production. However, the fusion 
was dispersed in 2005 and it became an independent project again.
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The following diagram presents a basic RTLinux architecture.
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A similar architecture, as shown in the preceding diagram, applies to the two other 
solutions since both of them were born from the RTLinux implementation. The 
difference between them is at the implementation level and each offers various 
benefits.

PREEMPT_RT
The PREEMPT_RT patches are the first option for every developer when a real-time 
solution is required. For some developers, the PREEMPT_RT patches transform Linux 
into a real-time solution suitable for their needs. This solution could not replace a real-
time operation system, but is, in fact, suitable for a large number of systems.

The biggest advantage that PREEMPT_RT has over other real-time solutions for 
Linux is that it actually transforms Linux into a real-time operating system. All the 
other alternatives usually create a microkernel that is executed as a hypervisor and 
Linux is only executed as a task of it, so the communication of real-time tasks with 
the non-real-time ones is done through this microkernel. For the PREEMPT_RT 
patch, this problem is no more.

The standard version of the Linux kernel is only able to offer soft real-time 
requirements, such as basic POSIX user space operations where no deadline is 
guaranteed. Adding patches, such as Ingo Molnar's PREEMPT_RT patch, and also 
Thomas Gheixner's patch with regards to a generic clock event layer that offers a 
high resolution support, you can say that you have a Linux kernel that offers high 
real-time capabilities.
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With the presence of the real-time preemption patch in the industry, a number of 
interesting opportunities have appeared, making it an option for firm and hard 
real-time applications in areas, such as industrial control or professional audio. 
This is mainly because of the design of the PREEMPT_RT patch and its aim toward 
integration inside the mainline kernel. We will learn about its usage further in the 
chapter. The following diagram shows the working of the Preemptible Linux Kernel:

User Space

Kernel Space

Hardware

Preemptible Linux Kernel

Linux
Process

Linux
Process

The PREEMPT_RT patch transforms Linux from a general purpose operating system 
into a preemptible one using the following tricks:

• Protecting critical sections with the preemptible rwlock_t preemptible 
and spinlock_t. The use of the old solutions is still available using raw_
spinlock_t, which shares the same API as spinlock_t.

• The kernel locking mechanisms is preempted by using rtmutexes.
• A priority inversion and priority inheritance mechanism is implemented for 

mutexes, spinlocks and rw_semaphores.
• Converting the available Linux timer API into one with a high resolution 

timer that offers the possibility of having timeouts.
• Implementing the usage of kernel threads for interrupt handlers. The real-

time preemption patch treats soft interrupt handlers into the kernel thread 
context using a task_struct like structure for every user space process. 
There is also the possibility of registering an IRQ into the kernel context.
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For more information on priority inversion, http://www.embedded.
com/electronics-blogs/beginner-s-corner/4023947/
Introduction-to-Priority-Inversion is a good starting point.

Applying the PREEMPT_RT patch
Before moving to the actual configuration part, you should download a suitable 
version for the kernel. The best inspiration source is https://www.kernel.org/, 
which should be the starting point because it does not contain any extra patches. 
After the source code is received, the corresponding rt patches version can be 
downloaded from https://www.kernel.org/pub/linux/kernel/projects/rt/. 
The kernel version chosen for this demonstration is the 3.12 kernel version, but if 
any other kernel version is required, the same steps can be taken with a similar end 
result. The development of the real-time preemption patches is very active, so any 
missing version support is covered very fast. Also, for other sublevel versions, the 
patches can be found in the incr or older subdirectories of that particular kernel 
version. The following is the example for sublevel versions:

wget https://www.kernel.org/pub/linux/kernel/v3.x/linux- 
3.12.38.tar.xz
wget https://www.kernel.org/pub/linux/kernel/projects/rt/3.12/patch- 
3.12.38-rt52.patch.gz

After the source code is received, the sources need to be unpacked and the patches 
applied:

tar xf linux-3.12.38.tar.xz

cd linux-3.12.38/

gzip -cd ../patch-3.12.38-rt52.patch.gz | patch -p1

The next step involves the configuration of the kernel sources. The configuration 
differs from one architecture to another, but the general idea remains. The following 
configurations are required for a QEMU ARM machine supported inside Poky. To 
enable the PREEMPT_RT support for a machine, there are multiple options available. 
You can implement a low-latency support version, which is most suitable for a 
desktop computer using a kernel configuration fragment similar to this:

CONFIG_GENERIC_LOCKBREAK=y
CONFIG_TREE_PREEMPT_RCU=y
CONFIG_PREEMPT_RCU=y
CONFIG_UNINLINE_SPIN_UNLOCK=y
CONFIG_PREEMPT=y

http://www.embedded.com/electronics-blogs/beginner-s-corner/4023947/Introduction-to-Priority-Inversion
http://www.embedded.com/electronics-blogs/beginner-s-corner/4023947/Introduction-to-Priority-Inversion
http://www.embedded.com/electronics-blogs/beginner-s-corner/4023947/Introduction-to-Priority-Inversion
https://www.kernel.org/
https://www.kernel.org/pub/linux/kernel/projects/rt/
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CONFIG_PREEMPT__LL=y
CONFIG_PREEMPT_COUNT=y
CONFIG_DEBUG_PREEMPT=y
CONFIG_RCU_CPU_STALL_VERBOSE=y

This option is one of the most often used and it also constitutes the primary source 
of usage of the PREEMPT_RT patches. The alternative of this would be to enable the 
fully preemptive support for the PREEMPT_RT patches using a configuration similar 
to this:

CONFIG_PREEMPT_RT_FULL=y
CONFIG_HZ_1000=y
CONFIG_HZ=1000

If you're interested in configuring the kernel manually, it can use the menuconfig 
option. The following CONFIG_PREEMPT* configurations are available for easier 
access to the required options. The first image mainly contains the CONFIG_PREEMPT 
and CONFIG_PREEMPT_COUNT variables, which should be the first ones to enable. 
There is also a configuration option called CONFIG_PREEMPT_NONE that is used for no 
forced preemptive actions.
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In the following image, the CONFIG_PREEMPT_RCU and CONFIG_PREEMPT_RT_FULL 
configurations are available. More information related to RCU is available at 
https://lwn.net/Articles/262464/.

The third image contains the CONFIG_PREEMPT__LL configuration. Another 
interesting configuration is CONFIG_PREEMPT_VOLUNTARY, which also reduces the 
latency along with the CONFIG_PREEMPT__LL configuration, for a desktop computer.

https://lwn.net/Articles/262464/
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One interesting argument against the low-latency desktop option is available at 
https://sevencapitalsins.wordpress.com/2007/08/10/low-latency-kernel-
wtf/.

The last one contains the CONFIG_TREE_PREEMPT_RCU configuration used to change 
the RCU implementation. The same process can be used to search and enable the 
other configurations that do not contain the search word in their name.

https://sevencapitalsins.wordpress.com/2007/08/10/low-latency-kernel-wtf/
https://sevencapitalsins.wordpress.com/2007/08/10/low-latency-kernel-wtf/
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For more information regarding the PREEMPT_RT patch, refer to http://varun-
anand.com/preempt.html and http://www.versalogic.com/mediacenter/
whitepapers/wp_linux_rt.asp.

After the kernel image is obtained with the newly applied and configured real-time 
preemptible kernel patch, it needs to be booted to make sure the activity is done 
appropriately so that the end result can be usable. Using the uname –a command, the 
patch rt* revision number is visible and should be applied to the kernel version. 
Of course, there are other methods that can used to identify this information. An 
alternative for the uname –a command is the dmesg command on its output the 
string real-time preemption support should be visible, but only one method should 
be enough. The following image offers a representation of how the uname –a 
command output should look:

http://varun-anand.com/preempt.html
http://varun-anand.com/preempt.html
http://www.versalogic.com/mediacenter/whitepapers/wp_linux_rt.asp
http://www.versalogic.com/mediacenter/whitepapers/wp_linux_rt.asp
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Taking a look at the list of processes, it can be seen, as mentioned earlier, that the 
IRQ handler is treated using kernel threads. This information is visible in the next ps 
command output due to the fact that it is put between square brackets. Single IRQ 
handlers are represented by the task_struct structures that are similar to the user 
space ones, making them easily controllable from the user space:

ps ax 

PID TTY      STAT   TIME COMMAND 

1 ?        S      0:00 init [2] 

2 ?        S      0:00 [softirq-high/0] 

3 ?        S      0:00 [softirq-timer/0] 

4 ?        S      0:00 [softirq-net-tx/] 

5 ?        S      0:00 [softirq-net-rx/] 

6 ?        S      0:00 [softirq-block/0] 

7 ?        S      0:00 [softirq-tasklet] 

8 ?        S      0:00 [softirq-hrtreal] 

9 ?        S      0:00 [softirq-hrtmono] 

10 ?        S<     0:00 [desched/0] 

11 ?        S<     0:00 [events/0] 

12 ?        S<     0:00 [khelper] 

13 ?        S<     0:00 [kthread] 

15 ?        S<     0:00 [kblockd/0] 

58 ?        S      0:00 [pdflush] 

59 ?        S      0:00 [pdflush] 

61 ?        S<     0:00 [aio/0] 

60 ?        S      0:00 [kswapd0] 

647 ?        S<     0:00 [IRQ 7] 

648 ?        S<     0:00 [kseriod] 

651 ?        S<     0:00 [IRQ 12] 

654 ?        S<     0:00 [IRQ 6] 

675 ?        S<     0:09 [IRQ 14] 

687 ?        S<     0:00 [kpsmoused] 

689 ?        S      0:00 [kjournald] 

691 ?        S<     0:00 [IRQ 1] 

769 ?        S<s    0:00 udevd --daemon 

871 ?        S<     0:00 [khubd] 
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882 ?        S<     0:00 [IRQ 10] 

2433 ?        S<     0:00 [IRQ 11] 

[...] 

The next bit of information that needs to be gathered involves the formatting of the 
interrupt process entries, which are a bit different than the ones used for a vanilla 
kernel. This output is visible by inspecting the /proc/interrupts file:

cat /proc/interrupts 

CPU0 

0:     497464  XT-PIC         [........N/  0]  pit 

2:          0  XT-PIC         [........N/  0]  cascade 

7:          0  XT-PIC         [........N/  0]  lpptest 

10:          0  XT-PIC         [........./  0]  uhci_hcd:usb1 

11:      12069  XT-PIC         [........./  0]  eth0 

14:       4754  XT-PIC         [........./  0]  ide0 

NMI:          0 

LOC:       1701 

ERR:          0 

MIS:          0 

Then, information available in the fourth column provides the IRQ line notifications, 
such as: [........N/  0]. Here, each dot represents an attribute and each attribute 
is a value, as described in the following points. Here is the order of their presence:

• I (IRQ_INPROGRESS): This refers to the IRQ handler that is active
• D (IRQ_DISABLED): This represents the IRQ as being disabled
• P (IRQ_PENDING): The IRQ here is presented as being in a pending state
• R (IRQ_REPLAY): In this state, the IRQ has been replied to, but no ACK is 

received yet
• A (IRQ_AUTODETECT): This represents the IRQ as being in an autodetect state
• W (IRQ_WAITING): This refers to the IRQ being in an autodetect state, but not 

seen yet
• L (IRQ_LEVEL): The IRQ is in a level-triggered state
• M (IRQ_MASKED): This represents the state in which the IRQ is not visible as 

being masked anymore
• N (IRQ_NODELAY): This is the state in which the IRQ must be executed 

immediately
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In the preceding example, you can see that multiple IRQs are marked as visible and 
hard IRQs that are run in the kernel context. When an IRQ status is marked as IRQ_
NODELAY, it shows the user that the handler of the IRQ is a kernel thread and it will 
be executed as one. The description of an IRQ can be changed manually, but this is 
not an activity that will be described here.

For more information on how to change the real-time attributes for a 
process, a good starting point is the chrt tool, available at http://
linux.die.net/man/1/chrt.

The Yocto Project -rt kernel
Inside Yocto, kernel recipes with PREEMPT_RT patches are applied. For the 
moment, there are only two recipes that incorporate the PREEMPT_RT patch; both 
are available inside the meta layer. The recipes that refer to kernel versions 3.10 and 
3.14 and their naming are linux-yocto-rt_3.10.bb and linux-yocto-rt_3.14.
bb. The –rt ending in the naming indicates that these recipes fetch the PREEMPT_RT 
branches of the Linux kernel versions maintained by the Yocto community.

The format for the 3.14 kernel recipe is presented here:

cat ./meta/recipes-kernel/linux/linux-yocto-rt_3.14.bb
KBRANCH ?= "standard/preempt-rt/base"
KBRANCH_qemuppc ?= "standard/preempt-rt/qemuppc"

require recipes-kernel/linux/linux-yocto.inc

SRCREV_machine ?= "0a875ce52aa7a42ddabdb87038074381bb268e77"
SRCREV_machine_qemuppc ?=  
"b993661d41f08846daa28b14f89c8ae3e94225bd"
SRCREV_meta ?= "fb6271a942b57bdc40c6e49f0203be153699f81c"

SRC_URI = "git://git.yoctoproject.org/linux-yocto-3.14.git; 
bareclone=1;branch=${KBRANCH},meta;name=machine,meta"

LINUX_VERSION ?= "3.14.19"

PV = "${LINUX_VERSION}+git${SRCPV}"

KMETA = "meta"

http://linux.die.net/man/1/chrt
http://linux.die.net/man/1/chrt
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LINUX_KERNEL_TYPE = "preempt-rt"

COMPATIBLE_MACHINE = "(qemux86|qemux86- 
64|qemuarm|qemuppc|qemumips)"

# Functionality flags
KERNEL_EXTRA_FEATURES ?= "features/netfilter/netfilter.scc  
features/taskstats/taskstats.scc"
KERNEL_FEATURES_append = " ${KERNEL_EXTRA_FEATURES}"
KERNEL_FEATURES_append_qemux86=" cfg/sound.scc  
cfg/paravirt_kvm.scc"
KERNEL_FEATURES_append_qemux86=" cfg/sound.scc  
cfg/paravirt_kvm.scc"
KERNEL_FEATURES_append_qemux86-64=" cfg/sound.scc"

As shown, one of the recipes seemed to have a duplicated line and a patch is 
necessary to remove it:

commit e799588ba389ad3f319afd1a61e14c43fb78a845
Author: Alexandru.Vaduva <Alexandru.Vaduva@enea.com>
Date:   Wed Mar 11 10:47:00 2015 +0100

    linux-yocto-rt: removed duplicated line

    Seemed that the recipe contained redundant information.

    Signed-off-by: Alexandru.Vaduva <Alexandru.Vaduva@enea.com>

diff --git a/meta/recipes-kernel/linux/linux-yocto-rt_3.14.bb  
b/meta/recipes-kernel/linux/linux-yocto-rt_3.14.bb
index 7dbf82c..bcfd754 100644
--- a/meta/recipes-kernel/linux/linux-yocto-rt_3.14.bb
+++ b/meta/recipes-kernel/linux/linux-yocto-rt_3.14.bb
@@ -23,5 +23,4 @@ COMPATIBLE_MACHINE = "(qemux86|qemux86- 
64|qemuarm|qemuppc|qemumips)"
 KERNEL_EXTRA_FEATURES ?= "features/netfilter/netfilter.scc  
features/taskstats/taskstats.scc"
 KERNEL_FEATURES_append = " ${KERNEL_EXTRA_FEATURES}"
 KERNEL_FEATURES_append_qemux86=" cfg/sound.scc  
cfg/paravirt_kvm.scc"
-KERNEL_FEATURES_append_qemux86=" cfg/sound.scc  
cfg/paravirt_kvm.scc"
 KERNEL_FEATURES_append_qemux86-64=" cfg/sound.scc"
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The preceding recipe is very similar to the base one. Here, I am referring to  
linux-yocto_3.14.bb; they are the recipes on which the PREEMPT_RT patches have 
been applied. The difference between them is that each one is taken from its specific 
branch, and until now, none of the Linux kernel versions with the PREEMPT_RT 
patches have provided support for the qemumips64 compatible machine.

Disadvantages of the PREEMPT_RT patches
Linux, a general purpose operating system that is optimized for throughput, is the 
exact opposite of what a real-time operating system is all about. Of course it offers 
a high throughput by using a large, multilayered cache, which is a nightmare for a 
hard real-time operating process.

In order to have a real-time Linux, there are two available options:

• The first one involves the use of the PREEMPT_RT patches, which offer 
preemption by minimizing the latency and executing all activities in a  
thread context.

• The second solution involves the use of real-time extensions that act as layers 
between Linux and the hardware used for the management of real-time 
tasks. This second solution includes the previously mentioned RTLinux, 
RTAI, and XENOMAI solutions, as well as other commercial solutions and 
variations that involve moving the layer and also separating it in multiple 
components.

The variations of the second option imply various solution from the isolation of 
the cores for real-time activities to the assignation of one for such tasks. There are 
also a lot of solutions that involve the usage of a hypervisor or a hook below the 
Linux kernel to serve a number of interrupts to the RTOS. The existence of these 
alternatives have been made available to the reader not only with other options,  
but also due to the fact that the PREEMPT_RT patch has its disadvantages.

One notable disadvantage is that the reduction of latency was done by forcing 
the kernel to preempt a task when a higher priority one appeared. This, of course, 
reduces the throughput for the system because it not only adds a number of context 
switches in the process but also makes the lower priority tasks wait longer than they 
would do the normal Linux kernel.

Another disadvantage of the preempt-rt patches is that they need to be ported from 
one kernel version to another and adapted from one architecture or software vendor 
to another. This only implies that knowledge of the Linux kernel should be available 
in-house for a particular vendor and it should adapt the solution for each of its 
available kernels. This fact alone has made it less likeable for BSP or Linux operating 
system providers.
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One interesting presentation regarding the Linux pre-emption 
is available in the following link. It can be consulted for more 
information regarding a Linux real-time solution, and is available 
at http://www.slideshare.net/jserv/realtime-linux.

Linux real-time applications
Having a real-time operating system may not always be enough for everyone. 
Some people would also require real-time optimized applications running over the 
operating system. To make sure an rt-application can be designed and interacted 
with, the required determinism is necessary on the operating system and hardware. 
With regard to the hardware configuration, the requirements involve a low-latency 
interrupt handling. The mechanisms causing the ISR latencies should register values 
around tens of microseconds.

Regarding the kernel configuration required by real-time applications, the following 
configurations are necessary:

• On-demand CPU scaling: Using this configuration helps with the creation  
of long-latency events when the CPU is in a low-power consumption mode.

• NOHZ: This configurations disables the timer interrupt received by CPUs. 
With this option enabled, the latency spent on a CPU wake up is diminished.

To write an application, there are some things that need to be taken care of, such as 
making sure that the use of swap is disabled to diminish latencies caused by page 
faults. The use of global variables or arrays should be kept to a minimum. The 99 
priority number is not configured to run an application, and other spin locks are not 
implemented instead, it uses priority inheritance futexes. Also avoid input/output 
operations and data sharing between applications.

For a device driver, the advice is a bit different. Previously, we mentioned that 
the interrupt handling for a real-time kernel is done in a thread context, but the 
hardware interrupt context can still play a role here. To recognize the hardware 
interrupt context from the interrupt handler, the IRQF_NODELAY flag can be used.  
If you use the IRQF_NODELAY context, make sure you avoid functions such as  
wake_up(), up(), or complete().

http://www.slideshare.net/jserv/realtime-linux
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Benchmarking
The Linux operating system was for a very long time seen as a GPOS, but in the last 
couple of years, some projects tried to change this by modifying the Linux kernel 
into a RTOS. One such project is the PREEMPT_RT patch, which was mentioned 
previously.

In this section of the chapter, I will discuss a series of tests that could be executed for 
both versions of the Linux OS with or without applying the PREEMPT_RT patches. 
I should mention that for those of you who are interested in some actual results, 
there are a number of papers available that try to investigate the latency effect of the 
PREEMPT_RT or its advantages or disadvantages. One such example is available 
at http://www.versalogic.com/downloads/whitepapers/real-time_linux_
benchmark.pdf.

Before continuing further, I believe it is my duty to define a number of technical 
terms that are necessary to properly understand some information:

• Interrupt latency: This indicates the time that has elapsed since an interrupt 
was generated and until the execution has been started in the interrupt 
handler.

• Scheduling latency: This represents the time between the wake up signal of 
an event and a scheduler that has the opportunity to schedule a thread for it. 
It is also called a dispatch latency.

• Worst-case latency: This indicates the time that has passed since a demand 
was issued and until the response to that demand was received.

• Context-switch: This represents the switching of the CPU from one process 
or thread to another. It only occurs in the kernel mode.

The LPPTest is included in the PREEMPT_RT patch and it contains a Linux driver 
that only changes a bit value on a parallel port to identify the response time. 
Another driver responds to the change in a bit value and a user space application 
that measures the results. The files to look for are drivers/char/lpptest.c and 
scripts/testlpp.c. To perform this test, two machines are required: one to send 
the signal and the other one to receive and send the response. This requirement is 
stringent since the use of a loopback cable can mess with the measurements.

RealFeel is a test for interrupt processing. The program uses /dev/rtc to fire a 
periodic interrupt, measures the duration between one interrupt to another, and 
compares it with the expected value. At the end, it prints the variation from the 
expected value indefinitely so that the variations can be exported in a log file to 
process later.

http://www.versalogic.com/downloads/whitepapers/real-time_linux_benchmark.pdf
http://www.versalogic.com/downloads/whitepapers/real-time_linux_benchmark.pdf
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Linux Real-Time Benchmarking Framework (LRTB) represents a set of scripts and 
drivers that are used to evaluate various performance counters for the Linux kernel 
with a real-time addition. It measures the load imposed by real-time patches and 
their ability to obtain a more deterministic response to interrupts.

For the benchmarking phase, programs such as hackbench, lmbench, or even the 
Ingo Molnar dohell script can be used. There are, of course, a number of other 
tools that can be used for both testing (cyclictest, hourglass, and so on) or 
benchmarking (unixbench, cache-calibrator, or any other stress test that takes 
real-time performances to their limit), but I will let the user test them and apply the 
ones that suit their needs best.

The PREEMPT_RT patch improves the preemptiveness of the Linux kernel, but 
this does not mean it is the best solution to use. The usefulness of PREEMPT_RT 
patch can differ if various aspects of the application domain changes. With regard 
to the PREEMPT_RT patch, it is ready to be used in a hard real-time system. One 
conclusion cannot be made, but I must admit that it can be considered hard real-
time material if it is used in life sustaining or mission-critical systems. This is a 
decision for everybody to make, and for this testing is required. One opinion that 
supports this is from Steven Rostedt, a Linux kernel developer who is the maintainer 
of the stable version of the real-time Linux kernel patch for Red Hat. It is available 
at http://www.linux.com/news/featured-blogs/200-libby-clark/710319-
intro-to-real-time-linux-for-embedded-developers.

Some interesting information on this matter can be accessed at 
http://elinux.org/Realtime_Testing_Best_Practices.

Meta-realtime
The meta-realtime layer is an initiative maintained by Bruce Ashfield from 
WindRiver, which planned to create a place where real-time activities related to 
the Linux kernel or system development. It was created as the placeholder for 
PREEMPT_RT, SCHED_DEADLINE, POSIX real-time, and alternative paring of 
general purpose operating systems and real-time operating systems, whether this 
involved a user space RTOS, a hypervisor, or an AMP solution. Also, this is where 
system partitioning, CPU isolation, and other related applications s reside. Of course, 
none of this would be considered complete without some performance profiling and 
benchmarking applications available for the whole Linux operating system.

http://www.linux.com/news/featured-blogs/200-libby-clark/710319-intro-to-real-time-linux-for-embedded-developers
http://www.linux.com/news/featured-blogs/200-libby-clark/710319-intro-to-real-time-linux-for-embedded-developers
http://elinux.org/Realtime_Testing_Best_Practices
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Although this layer description sounds really exciting at first, its content is really 
poor. It is only able to incorporate a number of testing tools, more accurately, two  
of them: schedtool-dl and rt-app, as well as extra scripts that try to remotely  
run rt-app on the target machine and gather the resulting data.

The first schedtool-dl application is a scheduler testing tool used for deadline 
scheduling. It appears from the need to change or make queries of the CPU-
scheduling policies and even processes levels available under Linux. It can also be 
used to lock processes on various CPUs for SMP/NUMA systems, to avoid skipping 
in audio/video applications, and in general, to maintain a high level of interaction 
and responsiveness even under high loads.

More information about the schedtool-dl application can be 
found at https://github.com/jlelli/schedtool-dl.

The next and last available application is rt-app, which is used as a test application 
for the simulation of real-time loads on a system. It does this by starting multiple 
threads at given periods of time. It offers support for SCHED_FIFO, SCHED_
OTHER, SCHED_RR, SCHED_DEADLINE, as well as the Adaptive Quality of 
Service Architecture (AQuoSA) framework, which is an open source project that 
tries to offer adaptive Quality of Service (QoS) for the Linux kernel.

More information about the rt-app application and the AQuoSa 
framework can be found at https://github.com/scheduler-
tools/rt-app and http://aquosa.sourceforge.net/.

Besides the included packages, the layer also contains an image that incorporates 
them, but this is not nearly enough to make this layer one that contains substantial 
content. Although it does not contain a vast amount of information inside it, this 
layer has been presented in this chapter because it contains the starting point and 
offers a development point of view of all the information presented until now.  
Of course, a number of applications that should reside in this layer are already 
spread across multiple other layers, such as the idlestat package that is available  
in meta-linaro. However, this does not constitute the central point of this 
explanation. I only wanted to point out the most suitable place that can contain  
any real-time relate activities, and in my opinion, meta-realtime is this place.

https://github.com/jlelli/schedtool-dl
https://github.com/scheduler-tools/rt-app
https://github.com/scheduler-tools/rt-app
http://aquosa.sourceforge.net/
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Summary
In this chapter, you were given a short introduction to PREEMPT_RT and other 
alternative solutions for real-time problems of the Linux kernel. We also explored 
a number of tools and applications that can be used for related real-time activities. 
However, this presentation would not be complete without references made to the 
Yocto Project with regards not only to the recipes of the PREEMPT_RT Linux kernel, 
but also to meta-realtime layer applications. Developing an application suitable for 
a new context was also a concern, so this problem was tackled in the Linux real-time 
applications section. In the end, I hope that I was able to present a complete picture 
of this subject through links that were provided throughout the chapter to stir the 
curiosity of the reader.

In the next chapter, a short explanation of meta-security and meta-selinux 
layers will be given and a broader picture of the security requirements of the 
Linux ecosystem in general and the Yocto Project in particular, will be provided. 
Information regarding a number of tools and applications that try to secure our 
Linux systems will also be presented, but this is not all. Take a look at the next 
chapter; I am sure you will enjoy it.
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Security
In this chapter, you will be presented with various security enhancements tools. Our 
first stop is the Linux kernel and here, there are two tools, SELinux and grsecurity, 
both of which are really interesting as well as necessary. Next, the Yocto Project's 
security-specific layers will also be explained. These include the meta-security and 
meta-selinux that contain an impressive number of tools and can be used to secure or 
audit various components of the Linux system. Since this subject is vast, I will also let 
you inspect various other solutions, both implemented in the Linux kernel but also 
externally. I hope you enjoy this chapter and that you find this information interesting 
and useful.

In any operating system, security is a really important concern both for the users 
and developers. It did not pass much time and developers have started to address 
these security problems in various methods. This resulted in a number of security 
methodologies and improvements for available operating systems. In this chapter, a 
number of security enhancement tools will be introduced along with some policies 
and verification routines that are defined to ensure that various components, such 
as the Linux kernel or the Yocto Project, are secure enough to be used. We will also 
take a look at how various threats or problems are handled as they appear during the 
course of this chapter.

SELinux and grsecurity are two noticeable security improvements made to the 
Linux kernel that try to enforce Linux. SELinux is a Mandatory Access Control 
(MAC) mechanism that provides identity and role-based access control as well as 
domain-type enforcement. The second option, grsecurity, is more similar to ACLs 
and is, in fact, more suitable for web servers and other systems that support remote 
connections. With regard to how security is implemented for Linux and how the 
Yocto Project handles this domain, these aspects will be presented in the next section. 
One thing I must admit is that security handling inside the Yocto Project is still a 
young project at the time of writing this chapter, but I am waiting with enthusiasm 
to see how the number of iterations will increase over time.
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Security in Linux
At the core of every Linux system is the Linux kernel. Any malicious code that is 
able to damage or take control of a system also has repercussions that affect the 
Linux kernel. So, it only makes clear to users that having a secure kernel is also an 
important part of the equation. Fortunately, the Linux kernel is secure and has a 
number of security features and programs. The man behind all this is James Morris, 
the maintainer of the Linux kernel security subsystem. There is even a separate Linux 
repository for this that can be accessed at http://git.kernel.org/?p=linux/
kernel/git/jmorris/linux-security.git;a=summary. Also, by inspecting 
http://kernsec.org/wiki/index.php/Main_Page, which is the main page of the 
Linux kernel security subsystem, you can see the exact projects that are managed 
inside this subsystem and maybe lend a hand to them if you're interested.

There is also a workgroup that provides security enhancements and verifications 
to the Linux kernel to make sure that it is secure and also to maintain a certain 
level of trust in the security of the Linux ecosystem. Their activities include, but of 
course, are not limited to verification and testing of critical subsystems for various 
vulnerabilities or the development of tools to assist in the security Linux kernel. The 
workgroup also consists of guidance and maintenance of security subsystems or 
security improvements added to various projects or build tools.

All the other Linux software components have their own security teams. Of course, 
there are some that do not have these teams well defined, or have some internal rules 
related to this subject, but they are still aware of security threats that occur around 
their components and try to repair these vulnerabilities. The Yocto Project tries to 
help with these problems and in some ways unifies these software components. I 
hope that some improvements are made over the years in this area.

SELinux
SELinux is a security enhancement for the Linux kernel, and is developed by the 
National Security Agency's office of Information Assurance. It has a policy-based 
architecture and is one of the Linux security modules that is built on the interface of 
Linux Security Modules (LSM) that aims at military-level security.

Currently, it is shipped with a large number of distributions, including the most well 
known and often used ones, such as Debian, SuSe, Fedora, Red Hat, and Gentoo. It 
is based on MAC on which administrators can control all interactions with the user 
space components of a system. It uses the concept of least privileges: here, by default, 
a user and application have no rights to access the system resources since all of them 
are granted by an administrator entity. This makes up the part of the system security 
policies and its emphasis is shown in the following figure:

http://git.kernel.org/?p=linux/kernel/git/jmorris/linux-security.git;a=summary
http://git.kernel.org/?p=linux/kernel/git/jmorris/linux-security.git;a=summary
http://kernsec.org/wiki/index.php/Main_Page
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The basic functionalities inside SELinux are sandboxed with the help of the 
implementation of MAC. Inside the sandbox, each application is allowed to perform 
only the task it was designed to execute as defined in the security policies. Of 
course, standard Linux permissions are still available for the system and they will be 
consulted before the policies when access attempts are required. If no permissions 
are available, SELinux will not be able to influence the system in any way. However, 
if the permission rights allow access, then the SELinux policies should be consulted 
to offer the final verdict on whether access is permitted or denied.

In the context of SELinux, access decisions are made based on the security context of 
the subject. This may very well be a process associated with a specific user context 
that is compared with the actual attempted action (such as a file read action), and the 
security context of the available object, which can be a file.

Before moving on, we will see how the SELinux support can be enabled on a Ubuntu 
machine. I will first present some basic concepts related to SELinux:

• Users: In the SELinux context, the user is not the same as the one available in 
the UNIX context. The major difference between them is that, in the SELinux 
context, the user does not change during a user session and there is a 
possibility for more UNIX users to operate in the same SELinux user context. 
However, there is also a possibility of operating in a 1:1 user mapping, such 
as the Linux root user and the SELinux root user. Generally, the SELinux 
users have the _u suffix added to their naming.

• Roles: A SELinux user can have one or multiple roles. The meaning of a role 
is defined in the policies. An object usually has the object_r role and the 
role is generally suffixed with the _r string.
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• Types: It's the primary method applied to take authorization decisions. It can 
also be referred to as a domain and is generally suffixed with _t.

• Contexts: Each process and object has its context. It is, in fact, an attribute 
that determines whether access should be allowed between an object and 
process. A SELinux context is expressed as three required fields and as an 
optional one as well, such as user:role:type:range. The first three fields 
represent the SELinux user, role, and the type. The last one represents the 
range of MLS and it will be presented shortly. More information about MLS 
can be gathered at http://web.mit.edu/rhel-doc/5/RHEL-5-manual/
Deployment_Guide-en-US/sec-mls-ov.html.

• Object Classes: An SELinux object class represents the category of objects 
available. Categories, such as dir for directories and file for files, also have 
a set of permissions associated with them.

• Rules: These are the security mechanisms of SELinux. They are used as a type 
of enforcement and are specified using the type of the object and process. The 
rules usually state if a type is allowed to perform various actions.

As mentioned already, the SELinux is so well known and appreciated that it was 
included in most of the available Linux distributions. Its success is also demonstrated 
through the fact that a huge number of books were written on this subject. For more 
information regarding it, refer to http://www.amazon.com/s/ref=nb_ss_gw/102-
2417346-0244921?url=search-alias%3Daps&field-keywords=SELinux&Go.
x=12&Go.y=8&Go=Go. Having said this, let's take a look at the steps required to install 
SELinux on a Ubuntu host machine. The first step refers to the SELinux package 
installation:

sudo apt-get install selinux

With the package installed, the SELinux mode needs to be changed from disabled 
(the mode in which the SELinux policy is not enforced or logged) to one of the other 
two available options:

• Enforcing: This is most useful in a production system:
sudo sed -i 's/SELINUX=.*/SELINUX=enforcing/' /etc/selinux/config 

• Permissive: In this mode, policies are not enforced. However, any denials 
are logged and it is mostly used in debugging activities and when new 
policies are developed:

sudo sed -i 's/SELINUX=.*/SELINUX=permissive/' /etc/selinux/config

With the configuration implemented, the system needs to reboot, to make sure that 
the system files are labeled accordingly.

http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/sec-mls-ov.html
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/sec-mls-ov.html
http://www.amazon.com/s/ref=nb_ss_gw/102-2417346-0244921?url=search-alias%3Daps&field-keywords=SELinux&Go.x=12&Go.y=8&Go=Go
http://www.amazon.com/s/ref=nb_ss_gw/102-2417346-0244921?url=search-alias%3Daps&field-keywords=SELinux&Go.x=12&Go.y=8&Go=Go
http://www.amazon.com/s/ref=nb_ss_gw/102-2417346-0244921?url=search-alias%3Daps&field-keywords=SELinux&Go.x=12&Go.y=8&Go=Go
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More information about SELinux is also available in the Yocto Project. There is an 
entire layer dedicated to SELinux support. Also, for more information regarding 
this tool, you are encouraged to read one of the books dedicated to this matter. If 
you dislike this method, then there are alternative manuals with information related 
to SELinux, available inside various distributions, such as Fedora (https://docs.
fedoraproject.org/en-US/Fedora/19/html/Security_Guide/ch09.html), Red 
Hat (https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux/4/html/SELinux_Guide/index.html), and so on.

Grsecurity
Grsecurity is a suite of patches released under the GNU General Public License, 
available for the Linux kernel and will help with the security enhancements for 
Linux. This suite of patches offers four main benefits:

• Configuration-free operations
• Protection against a large variety of address space change bugs
• It includes an access control list system and a number of auditing systems 

that are quite comprehensive to meet all sorts of demands
• It is able to interact with multiple operating systems and processor 

architectures

The grsecurity software is free and its development began in 2001, by first porting 
a number of security enhancing patches from the Openwall Project. It was first 
released for the 2.4.1 Linux kernel version and since then, development has 
continued. Over time, it included a PaX bundle of patches that offered the possibility 
of protecting memory pages. This is done by using a least-privilege approach, which 
implies that for the execution of a program, no more than the necessary actions 
should be taken with the help of extra or fewer steps.

If you're in interested in finding more about PaX, you can access 
http://en.wikipedia.org/wiki/PaX and https://pax.
grsecurity.net/.

https://docs.fedoraproject.org/en-US/Fedora/19/html/Security_Guide/ch09.html
https://docs.fedoraproject.org/en-US/Fedora/19/html/Security_Guide/ch09.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/SELinux_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/SELinux_Guide/index.html
http://en.wikipedia.org/wiki/PaX
https://pax.grsecurity.net/
https://pax.grsecurity.net/
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Grsecurity has a number of features that are suitable mostly for web servers or 
servers that accept shell access from untrusted users. One of the major feature is 
the Role-based Access Control (RBAC), which is the alternative to the already 
available UNIX Discretionary Access Control (DAC), or even the latter, mandatory 
access control (MAC) that is offered by Smack or SELinux. The aim of RBAC is 
to offer a least privilege system in which the processes and users only have the 
minimum required privileges needed for archiving their tasks. One other feature 
that grsecurity has is related to the hardening of the chroot() system call to make 
sure that privilege escalation is eliminated. In addition to this, there are a number of 
miscellaneous features, such as auditing and /proc restrictions.

I took the liberty of keeping the features of the grsecurity defined in groups, as 
presented on the grsecurity website. They have been presented in the chapter 
because I think that knowing its features will help users and developers make the 
right decision when a security solution is required for their activities. A list with all 
the grsecurity features is mentioned as follows:

• Memory corruption defences:
 ° Automatic response to brute force exploits
 ° Hardened BPF JIT against spray attacks
 ° Hardened userland memory permission
 ° Random padding between thread stacks
 ° Preventing direct userland access by a kernel
 ° Industry leading ASLR
 ° Bound checking kernel copies to/from a userland

• Filesystem Hardening:
 ° Chroot hardening
 ° Eliminating side-channel attacks against admin terminals
 ° Preventing users from tricking Apache into accessing other user files
 ° Hiding the processes of other users from unprivileged users
 ° Providing trusted path execution

• Miscellaneous protections:
 ° Preventing process snooping based on ptrace
 ° Preventing the dumping of unreadable binaries
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 ° Preventing attackers from autoloading vulnerable kernel modules
 ° Denying access to overly permissive IPC objects
 ° Enforcing consistent multithreaded privileges

• RBAC:
 ° Intuitive design
 ° Automatic full system policy learning
 ° Automated policy analysis
 ° Human-readable policies and logs
 ° Stackable with LSM
 ° Unconventional features

• GCC plugins:

 ° Preventing integer overflows in size arguments
 ° Preventing the leakage of stack data from previous syscalls
 ° Adding entropy during early boot and runtime
 ° Randomizing kernel structure layout
 ° Making read-only sensitive kernel structures
 ° Ensuring all kernel function pointers point to the kernel

Keeping the features of grsecurity in mind, we can now move towards the 
installation phase of grsecurity and its administrator called gradm.

The first thing that needs to be done is to get the corresponding packages and 
patches. As shown in the following command lines, the kernel version for which 
grsecurity is enabled is 3.14.19:

wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.14.19.tar.gz

wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.14.19.tar.sign

wget http://grsecurity.net/stable/gradm-3.1-201502222102.tar.gz

wget http://grsecurity.net/stable/gradm-3.1-201502222102.tar.gz.sig

wget http://grsecurity.net/stable/grsecurity-3.1-3.14.36-201503182218.
patch

wget http://grsecurity.net/stable/grsecurity-3.1-3.14.36-201503182218.
patch.sig
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After the packages are available, their signature needs to be checked. The signature 
check process for the Linux kernel is big and different from other systems, as follows:

wget http://grsecurity.net/spender-gpg-key.asc

sudo gpg --import spender-gpg-key.asc

sudo gpg --verify gradm-3.1-201502222102.tar.gz.sig

sudo gpg --verify grsecurity-3.1-3.14.35-201503092203.patch.sig

gzip -d linux-3.14.19.tar.gz

sudo gpg --verify linux-3.14.19.tar.sign

The first time this command is called, the signature is not verified, but the ID field 
is made available for later use. It is used to identify the public key from the PGP 
keyserver:

gpg: Signature made Mi 17 sep 2014 20:20:53 +0300 EEST using RSA key ID 
6092693E

sudo gpg --keyserver hkp://keys.gnupg.net --recv-keys 6092693E

sudo gpg --verify linux-3.14.19.tar.sign

After all the packages are available and properly verified, we can now move to the 
kernel configuration phase. The first step is the patching process, which is done with 
the grsecurity patch, but this requires access to the Linux kernel source code first:

tar xf linux-3.14.19.tar 

cd linux-3.14.19/

patch -p1 < ../grsecurity-3.1-3.14.35-201503092203.patch

In the patching process, include/linux/compiler-gcc5.h is missing from the 
source code, so this part of the patch requires skipping. However, after this, the 
patching process is finished without problems. With this step completed, the 
configuration phase can continue. There are generic configurations that should work 
without any extra modifications, but for each distribution there would always be 
some specific configuration available. To go through them and make sure that each 
one of them matches with your hardware, the following command can be used:

make menuconfig

If you are calling it for the first time, the preceding command has a warning message 
that will prompt you with the following:

HOSTCC  scripts/basic/fixdep

HOSTCC  scripts/kconfig/conf.o

 *** Unable to find the ncurses libraries or the

 *** required header files.
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 *** 'make menuconfig' requires the ncurses libraries.

 *** 

 *** Install ncurses (ncurses-devel) and try again.

 *** 

make[1]: *** [scripts/kconfig/dochecklxdialog] Error 1

make: *** [menuconfig] Error 2

It can be solved by installing the libncurses5-dev package, using the following 
command:

sudo apt-get install libncurses5-dev

With these problems fixed, the configuration process can continue. The grsecurity 
option is available inside the security option subsection, as depicted in the following 
screenshot:



Security

[ 244 ]

Inside the grsecurity option, there are two more submenu options. More details 
about this can be seen in the following screenshot:

The first option refers to the configuration method, which can be Custom or 
Automatic:
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The second option refers to the actual available configuration options:

More information about Grsecurity and the PaX configuration options 
can be found at http://en.wikibooks.org/wiki/Grsecurity/
Appendix/Grsecurity_and_PaX_Configuration_Options.

One piece of advice I would like to offer is that first enable the Automatic 
configuration method and then proceed with the Custom configuration to fine tune 
the Grsecurity and PaX settings if necessary. Another tip would be to enable the 
Grsecurity | Customize Configuration | Sysctl Support option because it offers the 
possibility of changing the grsecurity options without compiling the kernel again. 
Of course, if the Automatic configuration method is selected, this option is enabled 
by default. The auditing option produces a big number of logs, so to prevent log 
flooding, make sure that Grsecurity | Customize Configuration | Logging Options 
is also enabled.

The next tool from the grsecurity family is the gradm administrator, which is a 
powerful parser for ACLs and also optimizes them. To make sure that this utility 
can be installed, the installation process requires that the host operating machine for 
gradm offers grsecurity support or else the compilation process will fail. There are 
also a number of other packages that are required before installing gradm: lex, flex, 
byacc, bison, and even pam, if necessary.

http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
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Once all the dependencies are met, the installation process can start. One last bit of 
information I'd like to give you is that if the distribution that you use comes with a 
kernel that has support for grsecurity patches, then you may first want to check it 
because the patches can also come with the gradm utility pre-installed.

More information about the Grsecurity administration can be found at 
the folllowing links:
http://en.wikibooks.org/wiki/Grsecurity/The_
Administration_Utility

http://en.wikibooks.org/wiki/Grsecurity/Additional_
Utilities

http://en.wikibooks.org/wiki/Grsecurity/Runtime_
Configuration

Inside the Yocto layers, there is support for the gradm recipe that is inside the meta-
oe layer. It is available at recipes-support/gradm/gradm_3.0.bb on the master 
branch. Also, a grsecurity kernel configuration is available on the master branch for 
the meta-accel layer; the exact location for the configuration fragment is recipes-
kernel/linux/linux-yocto-iio/grsec.cfg. For anyone interested in learning 
about the concrete grsecurity support provided in Yocto, I believe the road is clear 
for you to start working on such a thing. One piece of advice, though, you should 
first ask the Yocto Project community whether anyone has started doing this already.

Security for the Yocto Project
In the Yocto Project, the security question is is still young. Since this project was 
announced less than five years ago, it is only normal that discussions about security 
started in the last year or so. There is, of course, a specialized mailing list for the 
security team and it includes a large number of individuals from various companies, 
but their working procedure is not quite finished since it's currently in state of work 
in progress.

The activities that are mainly realized by the members of the security team consist of 
being aware of the latest and most dangerous security threats and making sure that 
they find the fixes, even if it includes fixing themselves and applying the changes 
inside Yocto's available layers.

http://en.wikibooks.org/wiki/Grsecurity/The_Administration_Utility
http://en.wikibooks.org/wiki/Grsecurity/The_Administration_Utility
http://en.wikibooks.org/wiki/Grsecurity/Additional_Utilities
http://en.wikibooks.org/wiki/Grsecurity/Additional_Utilities
http://en.wikibooks.org/wiki/Grsecurity/Runtime_Configuration
http://en.wikibooks.org/wiki/Grsecurity/Runtime_Configuration
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For the time being, the most time consuming of the security activity revolves around 
the Poky reference system, but there are also initiatives taken by various companies 
to try to push a series of patches toward various BSP maintainer layers or other 
third-party layers. For those of you interested, the mailing list of security-related 
discussions is yocto-security@yoctoproject.org. Also, until the group is formed, 
they can be found in the #yocto IRC available at http://webchat.freenode.
net/?channels=#yocto, or even at the Yocto technical team meeting that takes place 
once every two weeks.

More information about the security team can be found on their 
Wiki page. I encourage everyone interested in this subject to visit 
it at least once at https://wiki.yoctoproject.org/wiki/
Security.

Meta-security and meta-selinux
In this section, the layer initiatives related to the security tools of Linux are 
presented. In this chapter, two layers that provide both security and hardening tools 
are available for the Linux kernel and its libraries. Their purpose is to simplify mode 
embedded devices, make sure that they're secure, and maybe offer the security level 
similar to a desktop.

Since embedded devices have become increasingly competent and powerful, 
concerns related to security can only be natural. The Yocto Project's initiative 
layers, here, I am referring to meta-security and meta-selinux, take another step in 
simplifying the process to ensure secure, hardened, and protected Linux systems. 
Together, with the detect and fix vulnerability system, they are implemented inside 
the security team, and help with the ideal of having the same level of security on 
embedded devices as desktops, along with taking this idea a step further. Having 
said this, let's proceed to the actual explanation of layers.

http://webchat.freenode.net/?channels=#yocto
http://webchat.freenode.net/?channels=#yocto
https://wiki.yoctoproject.org/wiki/Security
https://wiki.yoctoproject.org/wiki/Security
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Meta-security
Inside the meta-security layer, there are tools that are used to secure, harden, and 
protect embedded devices that may offer exterior access to various entities. If the 
device is connected to the Internet or is susceptible to any form of attack or hijacking, 
then the meta-security layer may be the first stop for you. With this layer and the 
meta-selinux layer, the Yocto Project tries to provide security levels that are suitable 
for most of the community or embedded user devices. Of course, enhancing the 
support for various tools or adding new ones is not forbidden, so do not hesitate and 
add your contribution for enhancing tools if you feel the need or urge to do so. Any 
new commit or committer is welcome - our community is really friendly.

As you're already used to, the tools provided are open source packages that are 
suitable for embedded devices. Inside the meta-security layer a number of them 
are available, each one trying to offer not only system hardening, but also security 
checking, security, port scanning, and other useful features that target various levels 
of security. The following packages are included:

• Bastille
• Redhat-security
• Pax-utils
• Buck-security
• Libseccomp
• Ckecksecurity
• Nikto
• Nmap
• Clamav
• Isic
• Samhain
• Suricata
• Tripwire

Besides these packages, there are a number of libraries and also TOMOYO, a kernel 
security module for a MAC implementation, which is also very useful as a system 
analysis tool. It was first released in March 2003, and was sponsored by NTT Data 
Corporation, Japan, until March 2012.
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TOMOYO's main focus is the system behavior. For this, every process involved in 
the creation of the system declares its behavior and the required resources necessary 
to achieve a purpose. It consists of two components: one kernel component, linux-
ccs, and a user space one, ccs-tools; both are required for proper functionality. 
TOMOYO tries to provide a MAC implementation that is both practical and easy 
to use. Finally, it likes to let a system be usable for a majority of users, being perfect 
for average users and system administrators. It is different from SELinux because it 
has an automatic policy configuration mechanism offered by the LEARNING mode; 
also, its policy language is very easy to grasp.

After protection is enabled, TOMOYO Linux acts as a watchdog that restricts the 
processes from using more than what they had declared initially. Its main features 
include the following:

• System analysis
• Tools that offer aid in the process of policy generation
• Simple to use and understand syntax
• Easy to use
• Increased security of the system through the MAC implementation
• Contains a small number of dependencies (the embedded GNU C library, 

libncurses, and GNU readline library)
• No modification of the already available binaries inside the root filesystem

• Since the version 2.6.30, the Linux kernel merged with the TOMOYO kernel 
module, making only the enabling of the module in the configuration 
phase necessary. It started as a patch that provided MAC support, and the 
porting inside a mainline kernel required a redesign using hooks into the 
LSM (Linux Security Modules), which also includes SELinux, AppArmor, 
and SMACK. However, since more hooks would be necessary for the 
integration of the remaining MAC functionalities, there are two other parallel 
development lines for the project, as follows:

• TOMOYO Linux 1.x: This is the original code version:
 ° It uses nonstandard specific hooks
 ° It offers all the MAC features
 ° It is released as a patch for the kernel since it does not depend on 

LSM 
 ° Its latest version is 1.7.1
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• TOMOYO Linux 2.x: This is the mainline source code version:
 ° It uses standard LSM hooks
 ° It contains a fewer subset of features
 ° It is an integral component of the 2.6.30 Linux kernel version
 ° The latest version is 2.5.0 and offers support for Linux kernel  

version 3.2

• AKARI and TOMOYO 1.x fork version:
 ° It also uses standard LSM hooks
 ° It is characterized by having a fewer set of features compared to 

TOMOYO 1.x but not with TOMOYO 2.x
 ° It is released as LSM; no recompilation of the kernel is necessary

For those of you interested in a comparison between the three versions, 
refer to http://akari.sourceforge.jp/comparison.html.en.

The next package is samhain, a system integrity monitoring and reporting tool used 
by system administrators that suspect changes or activities on their systems. Its 
operation is based on a client/server environment and is able to monitor multiple 
hosts while providing a centralized maintenance and logging system. Besides 
the already advertised functionalities, it is also able to provide port monitoring, 
detection of rogue SUID, rootkit detection, and also hidden processes that add to the 
fact that it offers support for multiple platforms; it is a really interesting tool to have.

The next element here falls in the same category as samhain and it is called 
tripwire. It is another integrity tool, but this one tries to detect changes for 
filesystem objects and works as a host intrusion detection system. Information 
is stored in a database after each file scan and the results are compared with the 
already available results. Any changes that are made are reported back to the user.

Bastille is a hardening program used to secure the environment and system for 
a Unix host. It uses rules to accomplish its goals and does this by first calling the 
bastille –c command that makes you pass through a long list of questions. After 
they are answered, a configuration file is created and executed and this symbolizes 
the fact that your operating system is now hardened according to your needs. If a 
configuration file is already available on the system by calling bastille –b, it can  
be set up for system hardening.

http://akari.sourceforge.jp/comparison.html.en
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The next tool is redhat-security, which is a collection of scripts used for various 
problems related to security scanning. The following are a collection of the tools 
needed to run a redhat-security script to simply invoke one script in the terminal:

• find-chroot.sh: This tool scans the whole system for ELF files that call 
chroot and also include a call to chdir. The programs that fail this test do 
not contain cwd inside chroot and they are not protected and safe to use.

• find-chroot-py.sh: This tool is similar to the preceding point, but only 
tests Python scripts.

• rpm-chksec.sh: This tool takes an rpm file and checks its content for its 
compiling flags. It does this for security reasons. If the results are green, 
then everything is OK, yellow means passable, and red requires the user's 
attention.

• find-nodrop-groups.sh: This tool scans the whole system for programs 
that change the UID or GID without calling the setgroups and initgroups 
calls.

• rpm-drop-groups.sh: This tool scans the whole system similar to the 
preceding tool, but this one uses the available RPM files.

• find-execstack.sh: This tool scans the whole system for ELF files that 
mark the stack as executable. It is used to identify programs that are 
susceptible to stack buffer overflow.

• find-sh4errors.sh: This tool scans the whole system for shell scripts and 
checks their correctness by using the sh –n command.

• find-hidden-exec.sh: This tool scans the system for hidden executables 
and reports the results back to the user for investigation.

• selinux-ls-unconfined.sh: This tool is used to scan all the running 
processes and look for the initrc_t label or inetd on them (this means that 
they are daemons that are running unconfined). The problems should be 
reported as SELinux policy problems.

• selinux-check-devides.sh: This tool checks all the available devices 
too see if they are correctly labelled. It is also marked as a SELinux policy 
problem that should be solved.

• find-elf4tmp.sh: This tool scans the whole system and checks whether 
the used tmp files are well known, are created with mktemp, or have some 
obscure format.
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• find-sh3tm.sh: This tool also scans the filesystem, although only inside /
tmp and looks for ELF files there. When it finds them, it checks if any of the 
random name generators function was called on them by investigating the 
symbol table. If the result is affirmative, it will output the string value.

• lib-bin-check.sh: This tool checks the packages of libraries and their the 
package they contain. It is based on the idea that the fewer binaries available 
on a system, the more secure it is.

Another tool that is included is pax-utils. It also includes a number of scripts that 
scan ELF binaries mostly for consistency, but this is not all. Take a look at some of 
them:

• scanelf: This tool is used to find pre-information about the ELF structure of 
the binary

• dumpelf: This tool is a user space utility used to dump the internal ELF 
structure in equivalent C structures for debugging or reference purposes

• pspax: This tool is used to scan /proc and list the various ELF types available 
and their corresponding PaX flags, attributes, and filenames

Now, the next tool that will be presented is a security scanner that is different from 
the already presented bastille. Similar to the redhat-security command, this 
one also executes a number of scripts and can be configured to confirm the user's 
needs. It is suitable for Debian and Ubuntu users, and before calling the buck-
security executable, there are a few configurations that need to be done. Use export 
GPG_TTY=`tty` to make sure that all the functionalities of the buck-security are 
enabled and before executing the tool, check inside the conf/buck-security.conf 
configuration file to check that your needs are fulfilled.

Suricata is a high-performance IDS/IPS and Security Monitoring engine for 
the network. It is owned and maintained by OISF (Open Information Security 
Foundation) and its supporters. It uses the HTP library that is a very powerful HTTP 
parser and normalizer and offers some nice features, such as protocol identification, 
MD5 checksum, file identification, and even extraction.

ISIC, on the other hand, is what its name suggests, an IP Stack Integrity Checker. It 
is, in fact, a suite of utilities for IP Stack ad other stacks, such as TCP, ICMP, UDP, 
and others that test either the firewall, or the protocol itself.
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For any web server, nikto is the tool to execute on your device. It is a scanner used to 
run a suite of tests that identifies dangerous CGI1s or other files. It also presents an 
outdated version for more than 1250 servers and various lists of vulnerabilities for 
each version.

Next on the list is the libseccomp library that provides an easy-to-use abstract 
interface to the Linux kernel, syscall, filtering a mechanism called seccomp. It does 
this by abstracting the BPF syscall filter language and presenting it a more user-
friendly format for application developers in general.

Checksecurity is the next package on the line which uses a collection of shell 
scripts and other plugins for testing various changes to setuid programs. Using 
the filter defined in /etc/checksecurity.conf, it scans the mounted filesystems 
and compares the already available list of setuid programs to the newly scanned 
ones and prints the changes for the user to see. It also offers information about these 
filesystems that were mounted unsecure.

ClamAV is an antivirus for Unix that operates from the command line. It is a very 
good engine for tracking trojans, malware, viruses, and detection of other malicious 
threats. It can do a large variety of things from e-mail scanning to web scanning and 
end-point security. It also has a very versatile and scalable daemon, command-line 
scanner, and database interaction tool.

The last on the list is Network Mapper (nmap). It is the most well known and is used 
for security auditing as well as a network discovery tool by network and system 
administrators. It is used to manage service upgrade schedules, network inventory, 
monitoring various services, or even host uptime.

These are the tools supported and offered inside the meta-security layer. I took the 
liberty of presenting most of them in a succinct manner with the purpose of making 
them available to you in an easy fashion. It is my opinion that for security problems, 
one should not overcomplicate things and only keep the solutions that fit your needs 
best. By presenting a large palette of tools and software components, I tried to do 
two things: make a larger number of tools available for the general public and also 
help you make a decision with regard to the tools that might help you in your quest 
to offer and even maintain a secure system. Of course, curiosity is encouraged, so 
make sure that you check out any other tools that might help you on your quest to 
find out more about security, and why they should not be integrated inside the meta-
security layer.
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Meta-selinux
The other available security layer is represented by the meta-selinux layer. This one 
is different from meta-security because it only offers support for one tool, but as 
mentioned in the preceding tool, it is so big and vast that it spreads its wings across 
the whole system.

The layer's purpose is to enable the support for SELinux and offer it through Poky to 
anyone in the Yocto Project community for use if required. As mentioned previously, 
since it influences the whole Linux system, most of the work on this layer is done 
inside the bbappend files. I hope you enjoy working with the functionalities available 
inside this layer and maybe even contribute to it if you see fit.

This layer not only contains a number of impressive bbappend files, but also offers a 
list of packages that could be used not only as SELinux extensions. These packages 
can be used also for other self-contained purposes too. The available packages inside 
the meta-selinx layer are as follows:

• audit
• libcap-ng
• setools
• swig
• ustr

I will start the introduction of this layer with the audit userspace tool, which as the 
name suggests, is a tool that can be used for auditing, more specifically for kernel 
auditing. It uses a number of utilities and libraries to search and store recorded data. 
The data is generated through an audit subsystem available inside the Linux kernel. 
It is designed to work as a standalone component, but it cannot offer Common 
Criteria (CC) or FIPS 140-2 functionalities without a second security component 
being available.

The next element on the list is libcap-ng, an alternative library with simplified POSIX 
capabilities that can be compared to the traditional libcap solution. It offers utilities that 
analyze running applications and print out their capabilities, or if they have an open 
ended bounding set. For an open bounding set that lacks the securebit, NOROOT flag 
will permit only by using an execve() call to retain full capabilities for applications 
that retain the 0 UID. By using the libcap-ng libraries, these applications that have the 
most privileges, are very easy to spot and deal with tools. The interaction and their 
detection is done with other tools, such as netcap, pscap, or filecap.
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SETools is a policy analysis tool. It is in fact, an extension of SELinux and contains a 
collection of libraries, graphical tools, and command-lines that try simply analyze the 
the SELinux policies. The primary tools that this open source project are as follows:

• apol: This is a tool used to analyze SELinux policies
• sediff: This acts as a semantic differentiator between SELinux policies
• seaudit: This is a tool used to analyze audit messages for SELinux
• seaudit-report: This is used to generate a highly customizable audit report 

based on available audit logs
• sechecker: This is a command-line tool that is engaged in modular checks of 

SELinux policies
• secmds: This is another command-line tool that is used to reach and analyze 

SELinux policies

Next is SWIG (Simplified Wrapper and Interface Generator), a software 
development tool used with a variety of target languages to create a high-level 
programming environment, user interfacing, and anything else that is necessary. It is 
usually used for fast testing or prototyping because it generates the glue that a target 
language can call inside the C or C++ code.

The last component to be presented is a micro string API for a C language called 
ustr, which has the benefit of how overheads compared to available APIs. It is very 
easy to use in the C code as it only includes a header file and is ready for usage. Its 
overhead over strdup() for strings varies from 85.45 for 1-9 byte strings to 23.85 for 
1-198 byte strings. For a simpler example, if an 8 byte storage ustr uses 2 bytes, the 
strdup() function uses 3 bytes.

This is where other tools and libraries are available alongside the SELinux 
functionality, although some of them can be used as separate components or in 
tandem with other available software components that were presented here. This 
would add more value to the SELinux product, so it only seems fair to find them in 
the same place.

For those of you interested in obtaining a SELinux enhance distribution, you could 
choose to use one of the two available images in the meta-selinux layer: core-
image-selinux-minimal.bb or core-image-selinux.bb. The alternative would 
be to incorporate one of the available SELinux-specific defined package groups, 
packagegroup-selinux-minimal or packagegroup-core-selinux, into a newly 
defined image according to the needs of a developer. After this choice is made and 
the configuration is done accordingly, the only thing remaining would be to call 
bitbake for the chosen image and at the end of the build process, a custom Linux 
distribution will reveal itself with SELinux support enabled and can be tweaked 
some more if necessary.
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Summary
In this chapter, you were presented with information about both kernel-specific 
security projects as well as external projects. Most of these were presented in a 
bad manner. You were also given information related to how various security 
subsystems and subgroups are keeping pace with various security threats and 
security project implementations.

In the next chapter, we will move on to another interesting subject. Here, I am 
referring to the virtualization area. You will find more about the meta-virtualization 
aspect later along with various virtualization implementations, such as KVM, which 
has gathered a huge track over the last few years and has established itself as a 
standard. I will let the other elements, which will be presented in the next chapter,  
be a secret. Let's now further explore the content of this book.
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Virtualization
In this chapter, you will be presented with information about various concepts 
that appeared in the Linux virtualization section. As some of you might know, this 
subject is quite vast and selecting only a few components to be explained is also a 
challenge. I hope my decision would please most of you interested in this area. The 
information available in this chapter might not fit everyone's need. For this purpose, 
I have attached multiple links for more detailed descriptions and documentation. 
As always, I encourage you to start reading and finding out more, if necessary. I am 
aware that I cannot put all the necessary information in only a few words.

In any Linux environment today, Linux virtualization is not a new thing. It has been 
available for more than ten years and has advanced in a really quick and interesting 
manner. The question now does not revolve around virtualization as a solution for 
me, but more about what virtualization solutions to deploy and what to virtualize.

There are, of course, scenarios in which virtualization is not a solution. In embedded 
Linux, there are a large category of domains for which virtualization does not apply, 
mostly because some workloads are a better fit on top of hardware. However, for 
others that do not have these kind of requirements, there are quite a few advantages 
to using virtualization. More information about the various virtualization strategies, 
cloud computing, and other related topics will be discussed in this chapter, so let's 
have a look.
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Linux virtualization
The first benefit everyone sees when looking at virtualization is the increase in server 
utilization and the decrease in energy costs. Using virtualization, the workloads 
available on a server are maximized, which is very different from scenarios where 
hardware uses only a fraction of the computing power. It can reduce the complexity 
of interaction with various environments and it also offers an easier-to-use 
management system. Today, working with a large number of virtual machines is 
not as complicated as interaction with a few of them because of the scalability most 
tools offer. Also, the time of deployment has really decreased. In a matter of minutes, 
you can deconfigure and deploy an operating system template or create a virtual 
environment for a virtual appliance deploy.

One other benefit virtualization brings is flexibility. When a workload is just too big 
for allocated resources, it can be easily duplicated or moved on another environment 
that suit its needs better on the same hardware or on a more potent server. For a 
cloud-based solution regarding this problem, the sky is the limit here. The limit may 
be imposed by the cloud type on the basis of whether there are tools available for a 
host operating system.

Over time, Linux was able to provide a number of great choices for every need 
and organization. Whether your task involves server consolidation in an enterprise 
data centre, or improving a small nonprofit infrastructure, Linux should have a 
virtualization platform for your needs. You simply need to figure out where and 
which project you should chose.

Virtualization is extensive, mainly because it contains a broad range of technologies, 
and also since large portions of the terms are not well defined. In this chapter, 
you will be presented with only components related to the Yocto Project and also 
to a new initiative that I personally am interested in. This initiative tries to make 
Network Function Virtualization (NFV) and Software-Defined Networking (SDN) 
a reality and is called Open Platform for NFV (OPNFV). It will be explained here 
briefly.

SDN and NFV
I have decided to start with this topic because I believe it is really important that 
all the research done in this area is starting to get traction with a number of open 
source initiatives from all sorts of areas and industries. Those two concepts are not 
new. They have been around for 20 years since they were first described, but the 
last few years have made possible it for them to resurface as real and very possible 
implementations. The focus of this section will be on the NFV section since it has 
received the most amount of attention, and also contains various implementation 
proposals.
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NFV
NFV is a network architecture concept used to virtualize entire categories of network 
node functions into blocks that can be interconnected to create communication 
services. It is different from known virtualization techniques. It uses Virtual 
Network Functions (VNF) that can be contained in one or more virtual machines, 
which execute different processes and software components available on servers, 
switches, or even a cloud infrastructure. A couple of examples include virtualized 
load balancers, intrusion detected devices, firewalls, and so on.

The development product cycles in the telecommunication industry were very 
rigorous and long due to the fact that the various standards and protocols took 
a long time until adherence and quality meetings. This made it possible for fast 
moving organizations to become competitors and made them change their approach.

In 2013, an industry specification group published a white paper on software-defined 
networks and OpenFlow. The group was part of European Telecommunications 
Standards Institute (ETSI) and was called Network Functions Virtualisation. After 
this white paper was published, more in-depth research papers were published, 
explaining things ranging from terminology definitions to various use cases with 
references to vendors that could consider using NFV implementations.

ETSI NFV
The ETSI NFV workgroup has appeared useful for the telecommunication industry 
to create more agile cycles of development and also make it able to respond in time 
to any demands from dynamic and fast changing environments. SDN and NFV 
are two complementary concepts that are key enabling technologies in this regard 
and also contain the main ingredients of the technology that are developed by both 
telecom and IT industries.

The NFV framework consist of six components:

• NFV Infrastructure (NFVI): It is required to offer support to a variety of use 
cases and applications. It comprises of the totality of software and hardware 
components that create the environment for which VNF is deployed. It 
is a multitenant infrastructure that is responsible for the leveraging of 
multiple standard virtualization technologies use cases at the same time. It is 
described in the following NFV Industry Specification Groups (NFV ISG) 
documents:

 ° NFV Infrastructure Overview
 ° NFV Compute
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 ° NFV Hypervisor Domain
 ° NFV Infrastructure Network Domain

The following image presents a visual graph of various use cases and fields 
of application for the NFV Infrastructure.

• NFV Management and Orchestration (MANO): It is the component 
responsible for the decoupling of the compute, networking, and storing 
components from the software implementation with the help of a 
virtualization layer. It requires the management of new elements and the 
orchestration of new dependencies between them, which require certain 
standards of interoperability and a certain mapping.

• NFV Software Architecture: It is related to the virtualization of the already 
implemented network functions, such as proprietary hardware appliances. It 
implies the understanding and transition from a hardware implementation 
into a software one. The transition is based on various defined patterns that 
can be used in a process.

• NFV Reliability and Availability: These are real challenges and the 
work involved in these components started from the definition of various 
problems, use cases, requirements, and principles, and it has proposed 
itself to offer the same level of availability as legacy systems. It relates to the 
reliability component and the documentation only sets the stage for future 
work. It only identifies various problems and indicates the best practices 
used in designing resilient NFV systems.
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• NFV Performance and Portability: The purpose of NFV, in general, is 
to transform the way it works with networks of future. For this purpose, 
it needs to prove itself as wordy solution for industry standards. This 
section explains how to apply the best practices related to performance and 
portability in a general VNF deployment.

• NFV Security: Since it is a large component of the industry, it is concerned 
about and also dependent on the security of networking and cloud 
computing, which makes it critical for NFV to assure security. The Security 
Expert Group focuses on those concerns.

An architectural of these components is presented here:

NFV Management and Orchestration
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After all the documentation is in place, a number of proof of concepts need to be 
executed in order to test the limitation of these components and accordingly adjust 
the theoretical components. They have also appeared to encourage the development 
of the NFV ecosystem.
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For more information about the available roof of concepts and 
specifications for NFV, refer to these links: http://www.etsi.org/
technologies-clusters/technologies/nfv/nfv-poc?tab=2 
and http://www.etsi.org/technologies-clusters/
technologies/nfv.

SDN
Software-Defined Networking (SDN) is an approach to networking that offers 
the possibility to manage various services using the abstraction of available 
functionalities to administrators. This is realized by decoupling the system into a 
control plane and data plane and making decisions based on the network traffic that 
is sent; this represents the control plane realm, and where the traffic is forwarded is 
represented by the data plane. Of course, some method of communication between 
the control and data plane is required, so the OpenFlow mechanism entered into the 
equation at first; however other components could as well take its place.

The intention of SDN was to offer an architecture that was manageable, cost-
effective, adaptable, and dynamic, as well as suitable for the dynamic and high-
bandwidth scenarios that are available today. The OpenFlow component was the 
foundation of the SDN solution. The SDN architecture permitted the following:

• Direct programming: The control plane is directly programmable because it 
is completely decoupled by the data plane.

• Programmatically configuration: SDN permitted management, 
configuration, and optimization of resources though programs. These 
programs could also be written by anyone because they were not dependent 
on any proprietary components.

• Agility: The abstraction between two components permitted the adjustment 
of network flows according to the needs of a developer.

• Central management: Logical components could be centered on the control 
plane, which offered a viewpoint of a network to other applications, engines, 
and so on.

http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc?tab=2
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc?tab=2
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
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• Opens standards and vendor neutrality: It is implemented using open 
standards that have simplified the SDN design and operations because of 
the number of instructions provided to controllers. This is smaller compared 
to other scenarios in which multiple vendor-specific protocols and devices 
should be handled.

Also, meeting market requirements with traditional solutions would have 
been impossible, taking into account newly emerging markets of mobile device 
communication, Internet of Things (IoT), Machine to Machine (M2M), Industry 4.0, 
and others, all require networking support. Taking into consideration the available 
budgets for further development in various IT departments, were all faced to make a 
decision. It seems that the mobile device communication market all decided to move 
toward open source in the hope that this investment would prove its real capabilities, 
and would also lead to a brighter future.

OPNFV
The Open Platform for the NFV Project tries to offer an open source reference 
platform that is carrier-graded and tightly integrated in order to facilitate industry 
peers to help improve and move the NFV concept forward. Its purpose is to offer 
consistency, interoperability, and performance among numerous blocks and projects 
that already exist. This platform will also try to work closely with a variety of open 
source projects and continuously help with integration, and at the same time, fill 
development gaps left by any of them.

This project is expected to lead to an increase in performance, reliability, 
serviceability, availability, and power efficiency, but at the same time, also deliver an 
extensive platform for instrumentation. It will start with the development of an NFV 
infrastructure and a virtualized infrastructure management system where it will 
combine a number of already available projects. Its reference system architecture is 
represented by the x86 architecture.
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The project's initial focus point and proposed implementation can be consulted in 
the following image. From this image, it can be easily seen that the project, although 
very young since it was started in November 2014, has had an accelerated start 
and already has a few implementation propositions. There are already a number 
of large companies and organizations that have started working on their specific 
demos. OPNFV has not waited for them to finish and is already discussing a number 
of proposed project and initiatives. These are intended both to meet the needs of 
their members as well as assure them of the reliability various components, such as 
continuous integration, fault management, test-bed infrastructure, and others. The 
following figure describes the structure of OPNFV:
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The project has been leveraging as many open source projects as possible. All the 
adaptations made to these project can be done in two places. Firstly, they can be 
made inside the project, if it does not require substantial functionality changes 
that could cause divergence from its purpose and roadmap. The second option 
complements the first and is necessary for changes that do not fall in the first 
category; they should be included somewhere in the OPNFV project's codebase. 
None of the changes that have been made should be up streamed without proper 
testing within the development cycle of OPNFV.



Chapter 12

[ 265 ]

Another important element that needs to be mentioned is that OPNFV does not 
use any specific or additional hardware. It only uses available hardware resources 
as long the VI-Ha reference point is supported. In the preceding image, it can be 
seen that this is already done by having providers, such as Intel for the computing 
hardware, NetApp for storage hardware, and Mellanox for network hardware 
components.

The OPNFV board and technical steering committee have a quite large palette 
of open source projects. They vary from Infrastructure as a Service (IaaS) and 
hypervisor to the SDN controller and the list continues. This only offers the 
possibility for a large number of contributors to try some of the skills that maybe did 
not have the time to work on, or wanted to learn but did not have the opportunity to. 
Also, a more diversified community offers a broader view of the same subject.

There are a large variety of appliances for the OPNFV project. The virtual network 
functions are diverse for mobile deployments where mobile gateways (such as 
Serving Gateway (SGW), Packet Data Network Gateway (PGW), and so on) and 
related functions (Mobility Management Entity (MME) and gateways), firewalls 
or application-level gateways and filters (web and e-mail traffic filters) are used 
to test diagnostic equipment (Service-Level Agreement (SLA) monitoring). These 
VNF deployments need to be easy to operate, scale, and evolve independently from 
the type of VNF that is deployed. OPNFV sets out to create a platform that has to 
support a set of qualities and use-cases as follows:

• A common mechanism is needed for the life-cycle management of VNFs, 
which include deployment, instantiation, configuration, start and stop, 
upgrade/downgrade, and final decommissioning

• A consistent mechanism is used to specify and interconnect VNFs, VNFCs, 
and PNFs; these are independant of the physical network infrastructure, 
network overlays, and so on, that is, a virtual link

• A common mechanism is used to dynamically instantiate new VNF instances 
or decommission sufficient ones to meet the current performance, scale, and 
network bandwidth needs

• A mechanism is used to detect faults and failure in the NFVI, VIM, and other 
components of an infrastructure as well as recover from these failures

• A mechanism is used to source/sink traffic from/to a physical network 
function to/from a virtual network function

• NFVI as a Service is used to host different VNF instances from different 
vendors on the same infrastructure
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There are some notable and easy-to-grasp use case examples that should be 
mentioned here. They are organized into four categories. Let's start with the first 
category: the Residential/Access category. It can be used to virtualize the home 
environment but it also provides fixed access to NFV. The next one is data center: it 
has the virtualization of CDN and provides use cases that deal with it. The mobile 
category consists of the virtualization of mobile core networks and IMS as well as the 
virtualization of mobile base stations. Lastly, there are cloud categories that include 
NFVIaaS, VNFaaS, the VNF forwarding graph (Service Chains), and the use cases of 
VNPaaS.

More information about this project and various implementation 
components is available at https://www.opnfv.
org/. For the definitions of missing terminologies, please 
consult http://www.etsi.org/deliver/etsi_gs/
NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf.

Virtualization support for the Yocto 
Project
The meta-virtualization layer tries to create a long and medium term production-
ready layer specifically for an embedded virtualization. This roles that this has are:

• Simplifying the way collaborative benchmarking and researching is done 
with tools, such as KVM/LxC virtualization, combined with advance core 
isolation and other techniques

• Integrating and contributing with projects, such as OpenFlow, OpenvSwitch, 
LxC, dmtcp, CRIU and others, which can be used with other components, 
such as OpenStack or Carrier Graded Linux.

To summarize this in one sentence, this layer tries to provide support while 
constructing OpenEmbedded and Yocto Project-based virtualized solutions.

The packages that are available in this layer, which I will briefly talk about are as 
follows:

• CRIU

• Docker

• LXC

• Irqbalance

https://www.opnfv.org/
https://www.opnfv.org/
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf
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• Libvirt

• Xen

• Open vSwitch

This layer can be used in conjunction with the meta-cloud-services layer that offer 
cloud agents and API support for various cloud-based solutions. In this section, I am 
referring to both these layers because I think it is fit to present these two components 
together. Inside the meta-cloud-services layer, there are also a couple of packages 
that will be discussed and briefly presented, as follows:

• openLDAP

• SPICE

• Qpid

• RabbitMQ

• Tempest

• Cyrus-SASL

• Puppet

• oVirt

• OpenStack

Having mentioned these components, I will now move on with the explanation 
of each of these tools. Let's start with the content of the meta-virtualization layer, 
more exactly with CRIU package, a project that implements Checkpoint/Restore In 
Userspace for Linux. It can be used to freeze an already running application and 
checkpoint it to a hard drive as a collection of files. These checkpoints can be used 
to restore and execute the application from that point. It can be used as part of a 
number of use cases, as follows:

• Live migration of containers: It is the primary use case for a project. The 
container is check pointed and the resulting image is moved into another  
box and restored there, making the whole experience almost unnoticeable  
by the user.

• Upgrading seamless kernels: The kernel replacement activity can be done 
without stopping activities. It can be check pointed, replaced by calling 
kexec, and all the services can be restored afterwards.

• Speeding up slow boot services: It is a service that has a slow boot 
procedure, can be check pointed after the first start up is finished,  
and for consecutive starts, can be restored from that point.
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• Load balancing of networks: It is a part of the TCP_REPAIR socket option 
and switches the socket in a special state. The socket is actually put into the 
state expected from it at the end of the operation. For example, if connect() 
is called, the socket will be put in an ESTABLISHED state as requested without 
checking for acknowledgment of communication from the other end, so 
offloading could be at the application level.

• Desktop environment suspend/resume: It is based on the fact that the 
suspend/restore action for a screen session or an X application is by far faster 
than the close/open operation.

• High performance and computing issues: It can be used for both load 
balancing of tasks over a cluster and the saving of cluster node states in case 
a crash occurs. Having a number of snapshots for application doesn't hurt 
anybody.

• Duplication of processes: It is similar to the remote fork() operation.
• Snapshots for applications: A series of application states can be saved and 

reversed back if necessary. It can be used both as a redo for the desired state 
of an application as well as for debugging purposes.

• Save ability in applications that do not have this option: An example of 
such an application could be games in which after reaching a certain level, 
the establishment of a checkpoint is the thing you need.

• Migrate a forgotten application onto the screen: If you have forgotten to 
include an application onto the screen and you are already there, CRIU can 
help with the migration process.

• Debugging of applications that have hung: For services that are stuck 
because of git and need a quick restart, a copy of the services can be used to 
restore. A dump process can also be used and through debugging, the cause 
of the problem can be found.

• Application behavior analysis on a different machine: For those 
applications that could behave differently from one machine to another, a 
snapshot of the application in question can be used and transferred into the 
other. Here, the debugging process can also be an option.

• Dry running updates: Before a system or kernel update on a system is 
done, its services and critical applications could be duplicated onto a virtual 
machine and after the system update and all the test cases pass, the real 
update can be done.

• Fault-tolerant systems: It can be used successfully for process duplication on 
other machines.
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The next element is irqbalance, a distributed hardware interrupt system that is 
available across multiple processors and multiprocessor systems. It is, in fact, a 
daemon used to balance interrupts across multiple CPUs, and its purpose is to offer 
better performances as well as better IO operation balance on SMP systems. It has 
alternatives, such as smp_affinity, which could achieve maximum performance in 
theory, but lacks the same flexibility that irqbalance provides.

The libvirt toolkit can be used to connect with the virtualization capabilities 
available in the recent Linux kernel versions that have been licensed under the GNU 
Lesser General Public License. It offers support for a large number of packages, as 
follows:

• KVM/QEMU Linux supervisor
• Xen supervisor
• LXC Linux container system
• OpenVZ Linux container system
• Open Mode Linux a paravirtualized kernel
• Hypervisors that include VirtualBox, VMware ESX, GSX, Workstation and 

player, IBM PowerVM, Microsoft Hyper-V, Parallels, and Bhyve

Besides these packages, it also offers support for storage on a large variety of 
filesystems, such as IDE, SCSI or USB disks, FiberChannel, LVM, and iSCSI or NFS, 
as well as support for virtual networks. It is the building block for other higher-level 
applications and tools that focus on the virtualization of a node and it does this in a 
secure way. It also offers the possibility of a remote connection.

For more information about libvirt, take a look at its project goals 
and terminologies at http://libvirt.org/goals.html.

The next is Open vSwitch, a production-quality implementation of a multilayer 
virtual switch. This software component is licensed under Apache 2.0 and is 
designed to enable massive network automations through various programmatic 
extensions. The Open vSwitch package, also abbreviated as OVS, provides a two 
stack layer for hardware virtualizations and also supports a large number of the 
standards and protocols available in a computer network, such as sFlow, NetFlow, 
SPAN, CLI, RSPAN, 802.1ag, LACP, and so on.

http://libvirt.org/goals.html
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Xen is a hypervisor with a microkernel design that provides services offering 
multiple computer operating systems to be executed on the same architecture. It was 
first developed at the Cambridge University in 2003, and was developed under GNU 
General Public License version 2. This piece of software runs on a more privileged 
state and is available for ARM, IA-32, and x86-64 instruction sets.

A hypervisor is a piece of software that is concerned with the CPU scheduling and 
memory management of various domains. It does this from the domain 0 (dom0), 
which controls all the other unprivileged domains called domU; Xen boots from a 
bootloader and usually loads into the dom0 host domain, a paravirtualized operating 
system. A brief look at the Xen project architecture is available here:

Linux Containers (LXC) is the next element available in the meta-virtualization 
layer. It is a well-known set of tools and libraries that offer virtualization at the 
operating system level by offering isolated containers on a Linux control host 
machine. It combines the functionalities of kernel control groups (cgroups) with the 
support for isolated namespaces to provide an isolated environment. It has received 
a fair amount of attention mostly due to Docker, which will be briefly mentioned a 
bit later. Also, it is considered a lightweight alternative to full machine virtualization.

Both of these options, containers and machine virtualization, have a fair amount of 
advantages and disadvantages. If the first option, containers offer low overheads 
by sharing certain components, and it may turn out that it does not have a good 
isolation. Machine virtualization is exactly the opposite of this and offers a great 
solution to isolation at the cost of a bigger overhead. These two solutions could also 
be seen as complementary, but this is only my personal view of the two. In reality, 
each of them has its particular set of advantages and disadvantages that could 
sometimes be uncomplementary as well.
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More information about Linux containers is available at 
https://linuxcontainers.org/.

The last component of the meta-virtualization layer that will be discussed is 
Docker, an open source piece of software that tries to automate the method of 
deploying applications inside Linux containers. It does this by offering an abstraction 
layer over LXC. Its architecture is better described in this image:

Docker
libcontainer

libvirt LXC
systemd-
nspawn

Linux kernel
namespaces Netlink

Netfilter
AppArmorcapabilities

SELinux

cgroups

As you can see in the preceding diagram, this software package is able to use the 
resources of the operating system. Here, I am referring to the functionalities of the 
Linux kernel and have isolated other applications from the operating system. It can 
do this either through LXC or other alternatives, such as libvirt and systemd-
nspawn, which are seen as indirect implementations. It can also do this directly 
through the libcontainer library, which has been around since the 0.9 version of 
Docker.

Docker is a great component if you want to obtain automation for distributed 
systems, such as large-scale web deployments, service-oriented architectures, 
continuous deployment systems, database clusters, private PaaS, and so on. 
More information about its use cases is available at https://www.docker.com/
resources/usecases/. Make sure you take a look at this website; interesting 
information is often here.

https://linuxcontainers.org/
https://www.docker.com/resources/usecases/
https://www.docker.com/resources/usecases/
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More information about the Docker project is available on their 
website. Check out the What is Docker? section at https://www.
docker.com/whatisdocker/.

After finishing with the meta-virtualization layer, I will move next to the meta-
cloud-services layer that contains various elements. I will start with Simple 
Protocol for Independent Computing Environments (Spice). This can be translated 
into a remote-display system for virtualized desktop devices.

It initially started as a closed source software, and in two years it was decided to 
make it open source. It then became an open standard to interaction with devices, 
regardless of whether they are virtualized one not. It is built on a client-server 
architecture, making it able to deal with both physical and virtualized devices. The 
interaction between backend and frontend is realized through VD-Interfaces (VDI), 
and as shown in the following diagram, its current focus is the remote access to 
QEMU/KVM virtual machines:

VDI Front-EndVDI Back-End

QXL Device VDI Port

Guess OS

QEMU VM Spice Client

Spice Server

Network

QXL Driver VDI Agent

Next on the list is oVirt, a virtualization platform that offers a web interface. It is 
easy to use and helps in the management of virtual machines, virtualized networks, 
and storages. Its architecture consists of an oVirt Engine and multiple nodes. The 
engine is the component that comes equipped with a user-friendly interface to 
manage logical and physical resources. It also runs the virtual machines that could be 
either oVirt nodes, Fedora, or CentOS hosts. The only downfall of using oVirt is that 
it only offers support for a limited number of hosts, as follows:

• Fedora 20
• CentOS 6.6, 7.0
• Red Hat Enterprise Linux 6.6, 7.0
• Scientific Linux 6.6, 7.0

https://www.docker.com/whatisdocker/
https://www.docker.com/whatisdocker/
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As a tool, it is really powerful. It offers integration with libvirt for Virtual 
Desktops and Servers Manager (VDSM) communications with virtual machines 
and also support for SPICE communication protocols that enable remote desktop 
sharing. It is a solution that was started and is mainly maintained by Red Hat. It 
is the base element of their Red Hat Enterprise Virtualization (RHEV), but one 
thing is interesting and should be watched out for is that Red Hat now is not only 
a supporter of projects, such as oVirt and Aeolus, but has also been a platinum 
member of the OpenStack foundation since 2012.

For more information on projects, such as oVirt, Aeolus, and RHEV, 
the following links can be useful to you: http://www.redhat.
com/promo/rhev3/?sc_cid=70160000000Ty5wAAC&offer_
id=70160000000Ty5NAAS http://www.aeolusproject.org/, 
and http://www.ovirt.org/Home.

I will move on to a different component now. Here, I am referring to the open 
source implementation of the Lightweight Directory Access Protocol, simply called 
OpenLDAP. Although it has a somewhat controverted license called OpenLDAP 
Public License, which is similar in essence to the BSD license, it is not recorded at 
opensource.org, making it uncertified by Open Source Initiative (OSI).

This software component comes as a suite of elements, as follows:

• A standalone LDAP daemon that plays the role of a server called slapd
• A number of libraries that implement the LDAP protocol
• Last but not the least, a series of tools and utilities that also have a couple of 

clients samples between them

There are also a number of additions that should be mentioned, such as ldapc++ and 
libraries written in C++, JLDAP and the libraries written in Java; LMDB, a memory 
mapped database library; Fortress, a role-based identity management; SDK, also 
written in Java; and a JDBC-LDAP Bridge driver that is written in Java and called 
JDBC-LDAP.

Cyrus SASL is a generic client-server library implementation for Simple 
Authentication and Security Layer (SASL) authentication. It is a method used for 
adding authentication support for connection-based protocols. A connection-based 
protocol adds a command that identifies and authenticates a user to the requested 
server and if negotiation is required, an additional security layer is added between 
the protocol and the connection for security purposes. More information about SASL 
is available in the RFC 2222, available at http://www.ietf.org/rfc/rfc2222.txt.

http://www.redhat.com/promo/rhev3/?sc_cid=70160000000Ty5wAAC&offer_id=70160000000Ty5NAAS http://www.aeolusproject.org/
http://www.redhat.com/promo/rhev3/?sc_cid=70160000000Ty5wAAC&offer_id=70160000000Ty5NAAS http://www.aeolusproject.org/
http://www.redhat.com/promo/rhev3/?sc_cid=70160000000Ty5wAAC&offer_id=70160000000Ty5NAAS http://www.aeolusproject.org/
http://www.ovirt.org/Home


Virtualization

[ 274 ]

For a more detailed description of Cyrus SASL, refer to http://
www.sendmail.org/~ca/email/cyrus/sysadmin.html.

Qpid is a messaging tool developed by Apache, which understands Advanced 
Message Queueing Protocol (AMQP) and has support for various languages 
and platforms. AMQP is an open source protocol designed for high-performance 
messaging over a network in a reliable fashion. More information about AMQP is 
available at http://www.amqp.org/specification/1.0/amqp-org-download. 
Here, you can find more information about the protocol specifications as well as 
about the project in general.

Qpid projects push the development of AMQP ecosystems and this is done by 
offering message brokers and APIs that can be used in any developer application 
that intends to use AMQP messaging part of their product. To do this, the following 
can be done:

• Letting the source code open source.
• Making AMQP available for a large variety of computing environments and 

programming languages.
• Offering the necessary tools to simplify the development process of an 

application.
• Creating a messaging infrastructure to make sure that other services can 

integrate well with the AMQP network.
• Creating a messaging product that makes integration with AMQP trivial for 

any programming language or computing environment. Make sure that you 
take a look at Qpid Proton at http://qpid.apache.org/proton/overview.
html for this.

More information about the the preceding functionalities can be 
found at http://qpid.apache.org/components/index.
html#messaging-apis.

RabbitMQ is another message broker software component that implements AMQP, 
which is also available as open source. It has a number of components, as follows:

• The RabbitMQ exchange server
• Gateways for HTTP, Streaming Text Oriented Message Protocol (STOMP) 

and Message Queue Telemetry Transport (MQTT)

http://www.sendmail.org/~ca/email/cyrus/sysadmin.html
http://www.sendmail.org/~ca/email/cyrus/sysadmin.html
http://www.amqp.org/specification/1.0/amqp-org-download
http://qpid.apache.org/proton/overview.html
http://qpid.apache.org/proton/overview.html
http://qpid.apache.org/components/index.html#messaging-apis
http://qpid.apache.org/components/index.html#messaging-apis


Chapter 12

[ 275 ]

• AMQP client libraries for a variety of programming languages, most notably 
Java, Erlang, and .Net Framework

• A plugin platform for a number of custom components that also offer a 
collection of predefined one:

 ° Shovel: It is a plugin that executes the copy/move operation for 
messages between brokers

 ° Management: It enables the control and monitoring of brokers and 
clusters of brokers

 ° Federation: It enables sharing at the exchange level of messages 
between brokers

You can find out more information regarding RabbitMQ 
by referring to the RabbitMQ documentation section at 
http://www.rabbitmq.com/documentation.html.

Comparing the two, Qpid and RabbitMQ, it can be concluded that RabbitMQ is 
better and also that it has a fantastic documentation. This makes it the first choice 
for the OpenStack Foundation as well as for readers interested in benchmarking 
information for more than these frameworks. It is also available at http://
blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-
rabbitmq-hornetq-qpid-apollo/. One such result is also available in this image 
for comparison purposes:

http://www.rabbitmq.com/documentation.html
http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
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The next element is puppet, an open source configuration management system that 
allows IT infrastructure to have certain states defined and also enforce these states. 
By doing this, it offers a great automation system for system administrators. This 
project is developed by the Puppet Labs and was released under GNU General 
Public License until version 2.7.0. After this, it moved to the Apache License 2.0 and 
is now available in two flavors:

• The open source puppet version: It is mostly similar to the preceding 
tool and is capable of configuration management solutions that permit for 
definition and automation of states. It is available for both Linux and UNIX 
as well as Max OS X and Windows.

• The puppet enterprise edition: It is a commercial version that goes beyond 
the capabilities of the open source puppet and permits the automation of the 
configuration and management process.

It is a tool that defines a declarative language for later use for system configuration. It 
can be applied directly on the system or even compiled as a catalogue and deployed 
on a target using a client-server paradigm, which is usually the REST API. Another 
component is an agent that enforces the resources available in the manifest. The 
resource abstraction is, of course, done through an abstraction layer that defines the 
configuration through higher lever terms that are very different from the operating 
system-specific commands.

If you visit http://docs.puppetlabs.com/, you will find more 
documentation related to Puppet and other Puppet Lab tools.

With all this in place, I believe it is time to present the main component of the meta-
cloud-services layer, called OpenStack. It is a cloud operating system that is based 
on controlling a large number of components and together it offers pools of compute, 
storage, and networking resources. All of them are managed through a dashboard 
that is, of course, offered by another component and offers administrators control. It 
offers users the possibility of providing resources from the same web interface. Here 
is an image depicting the Open Source Cloud operating System, which is actually 
OpenStack:

http://docs.puppetlabs.com/
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It is primarily used as an IaaS solution, its components are maintained by the 
OpenStack Foundation, and is available under Apache License version 2. In the 
Foundation, today, there are more than 200 companies that contribute to the source 
code and general development and maintenance of the software. At the heart of it, 
all are staying its components Also, each component has a Python module used for 
simple interaction and automation possibilities:

• Compute (Nova): It is used for the hosting and management of cloud 
computing systems. It manages the life cycles of the compute instances 
of an environment. It is responsible for the spawning, decommissioning, 
and scheduling of various virtual machines on demand. With regard to 
hypervisors, KVM is the preferred option but other options such as Xen and 
VMware are also viable.

• Object Storage (Swift): It is used for storage and data structure retrieval via 
RESTful and the HTTP API. It is a scalable and fault-tolerant system that 
permits data replication with objects and files available on multiple disk 
drives. It is developed mainly by an object storage software company called 
SwiftStack.
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• Block Storage (Cinder): It provides persistent block storage for OpenStack 
instances. It manages the creation and attach and detach actions for block 
devices. In a cloud, a user manages its own devices, so a vast majority of 
storage platforms and scenarios should be supported. For this purpose, it 
offers a pluggable architecture that facilitates the process.

• Networking (Neutron): It is the component responsible for network-related 
services, also known as Network Connectivity as a Service. It provides an 
API for network management and also makes sure that certain limitations 
are prevented. It also has an architecture based on pluggable modules to 
ensure that as many networking vendors and technologies as possible are 
supported.

• Dashboard (Horizon): It provides web-based administrators and user 
graphical interfaces for interaction with the other resources made available 
by all the other components. It is also designed keeping extensibility in 
mind because it is able to interact with other components responsible for 
monitoring and billing as well as with additional management tools. It also 
offers the possibility of rebranding according to the needs of commercial 
vendors.

• Identity Service (Keystone): It is an authentication and authorization service 
It offers support for multiple forms of authentication and also existing 
backend directory services such as LDAP. It provides a catalogue for users 
and the resources they can access.

• Image Service (Glance): It is used for the discovery, storage, registration, and 
retrieval of images of virtual machines. A number of already stored images 
can be used as templates. OpenStack also provides an operating system 
image for testing purposes. Glance is the only module capable of adding, 
deleting, duplicating, and sharing OpenStack images between various 
servers and virtual machines. All the other modules interact with the images 
using the available APIs of Glance.

• Telemetry (Ceilometer): It is a module that provides billing, benchmarking, 
and statistical results across all current and future components of OpenStack 
with the help of numerous counters that permit extensibility. This makes it a 
very scalable module.
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• Orchestrator (Heat): It is a service that manages multiple composite 
cloud applications with the help of various template formats, such as 
Heat Orchestration Templates (HOT) or AWS CloudFormation. The 
communication is done both on a CloudFormation compatible Query API 
and an Open Stack REST API.

• Database (Trove): It provides Cloud Database as service functionalities that 
are both reliable and scalable. It uses relational and nonrelational database 
engines.

• Bare Metal Provisioning (Ironic): It is a components that provides virtual 
machine support instead of bare metal machines support. It started as a 
fork of the Nova Baremetal driver and grew to become the best solution for 
a bare-metal hypervisor. It also offers a set of plugins for interaction with 
various bare-metal hypervisors. It is used by default with PXE and IPMI, but 
of course, with the help of the available plugins it can offer extended support 
for various vendor-specific functionalities.

• Multiple Tenant Cloud Messaging (Zaqar): It is, as the name suggests, 
a multitenant cloud messaging service for the web developers who are 
interested in Software as a Service (SaaS). It can be used by them to send 
messages between various components by using a number of communication 
patterns. However, it can also be used with other components for surfacing 
events to end users as well as communication in the over-cloud layer. Its 
former name was Marconi and it also provides the possibility of scalable and 
secure messaging.

• Elastic Map Reduce (Sahara): It is a module that tries to automate the 
method of providing the functionalities of Hadoop clusters. It only requires 
the defines for various fields, such as Hadoop versions, various topology 
nodes, hardware details, and so on. After this, in a few minutes, a Hadoop 
cluster is deployed and ready for interaction. It also offers the possibility of 
various configurations after deployment.
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Having mentioned all this, maybe you would not mind if a conceptual architecture 
is presented in the following image to present to you with ways in which the above 
preceding components are interacted with. To automate the deployment of such an 
environment in a production environment, automation tools, such as the previously 
mentioned Puppet tool, can be used. Take a look at this diagram:

Horizon

Heat

Neutron

Clinder Nova

Celiometer

Keystone

Glance Swift
Stores
images

in

Provides images

Provides
UI

Orchestrates
cloud

Provides network
connectivity for

Provides
volumes for

Provisions

VM

Provides
Auth for

Monitors

Backups volume in

Now, let's move on and see how such a system can be deployed using the 
functionalities of the Yocto Project. For this activity to start, all the required metadata 
layers should be put together. Besides the already available Poky repository, other 
ones are also required and they are defined in the layer index on OpenEmbedded's 
website because this time, the README file is incomplete:

git clone –b dizzy git://git.openembedded.org/meta-openembedded
git clone –b dizzy git://git.yoctoproject.org/meta-virtualization
git clone –b icehouse git://git.yoctoproject.org/meta-cloud- 
services
source oe-init-build-env ../build-controller
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After the appropriate controller build is created, it needs to be configured. Inside 
the conf/layer.conf file, add the corresponding machine configuration, such as 
qemux86-64, and inside the conf/bblayers.conf file, the BBLAYERS variable should 
be defined accordingly. There are extra metadata layers, besides the ones that are 
already available. The ones that should be defined in this variable are:

• meta-cloud-services

• meta-cloud-services/meta-openstack-controller-deploy

• meta-cloud-services/meta-openstack

• meta-cloud-services/meta-openstack-qemu

• meta-openembedded/meta-oe

• meta-openembedded/meta-networking

• meta-openembedded/meta-python

• meta-openembedded/meta-filesystem

• meta-openembedded/meta-webserver

• meta-openembedded/meta-ruby

After the configuration is done using the bitbake openstack-image-controller 
command, the controller image is built. The controller can be started using 
the runqemu qemux86-64 openstack-image-controller kvm nographic 
qemuparams="-m 4096" command. After finishing this activity, the deployment of 
the compute can be started in this way:

source oe-init-build-env ../build-compute

With the new build directory created and also since most of the work of the 
build process has already been done with the controller, build directories such 
as downloads and sstate-cache, can be shared between them. This information 
should be indicated through DL_DIR and SSTATE_DIR. The difference between the 
two conf/bblayers.conf files is that the second one for the build-compute build 
directory replaces meta-cloud-services/meta-openstack-controller-deploy 
with meta-cloud-services/meta-openstack-compute-deploy.

This time the build is done with bitbake openstack-image-compute and should 
be finished faster. Having completed the build, the compute node can also be booted 
using the runqemu qemux86-64 openstack-image-compute kvm nographic 
qemuparams="-m 4096 –smp 4" command. This step implies the image loading for 
OpenStack Cirros as follows:

wget download.cirros-cloud.net/0.3.2/cirros-0.3.2-x86_64-disk.img 

scp cirros-0.3.2-x86_64-disk.img  root@<compute_ip_address>:~
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ssh root@<compute_ip_address>

./etc/nova/openrc

glance image-create –name "TestImage" –is=public true –container- 
format bare –disk-format qcow2 –file /home/root/cirros-0.3.2-x86_64- 
disk.img

Having done all of this, the user is free to access the Horizon web browser using 
http://<compute_ip_address>:8080/ The login information is admin and the 
password is password. Here, you can play and create new instances, interact with 
them, and, in general, do whatever crosses your mind. Do not worry if you've done 
something wrong to an instance; you can delete it and start again.

The last element from the meta-cloud-services layer is the Tempest integration 
test suite for OpenStack. It is represented through a set of tests that are executed 
on the OpenStack trunk to make sure everything is working as it should. It is very 
useful for any OpenStack deployments.

More information about Tempest is available at 
https://github.com/openstack/tempest.

Summary
In this chapter, you were not only presented with information about a number of 
virtualization concepts, such as NFV, SDN, VNF, and so on, but also a number 
of open source components that contribute to everyday virtualization solutions. I 
offered you examples and even a small exercise to make sure that the information 
remains with you even after reading this book. I hope I made some of you curious 
about certain things. I also hope that some of you documented on projects that were 
not presented here, such as the OpenDaylight (ODL) initiative, that has only been 
mentioned in an image as an implementation suggestion. If this is the case, I can say  
I fulfilled my goal. If not, maybe this summary will make you go through the 
previous pages again.

In the next chapter, we will visit a new and real carrier graded one. It will be the last 
chapter of this book and I will conclude it with a topic that is very important to me 
personally. I will discuss the Yocto shy initiative called meta-cgl and its purpose. 
I will present the various specifications and changes for the Carrier Graded Linux 
(CGL), and the requirements of Linux Standard Base (LSB). I hope you enjoy 
reading it as much as I have enjoyed writing it.

https://github.com/openstack/tempest
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CGL and LSB
In this chapter, you will be presented with information about the last topic of the 
book, the Carrier Grade Linux (CGL) and Linux Standard Base (LSB) initiative and 
of course, a parallel with what there is integrated and supported related to those 
two standards into the Yocto Project. This will also be mentioned here and you will 
not only be able to find a little bit about these standards and their specifications, but 
also about the level of support that Yocto offers for them. I will also present some of 
the initiatives adjacent to CGL, such as Automotive Grade Linux and Carrier Grade 
Virtualization. They also constitute viable solutions that are available in a wide 
palette of applications.

In any Linux environment today, there is necessity for a common language for 
available Linux distributions. This common language would have not been 
achieved without defining actual specifications. A part of these specifications is also 
represented by the carrier grade alternative. It coexists with other specifications that 
are already presented in this book or in other similar books. Taking a look at the 
available specifications and standardizations only shows us how much the Linux 
ecosystem has evolved over time.

The latest report published by the guys working at the Linux Foundation shows 
how the development of the Linux kernel is actually done nowadays, what it's like 
to work on it, who is sponsoring it, what changes are being made to it, and how fast 
things are moving. The report is available at https://www.linuxfoundation.org/
publications/linux-foundation/who-writes-linux-2015.

As depicted in the report, less than 20 percent of development on the kernel is done 
by individual developers. Most of the development is realized by companies, such as 
Intel, Red Hat, Linaro, Samsung, and others. This means that over 80 percent of the 
developers working at Linux kernel development are paid for their job. The fact that 
Linaro and Samsung are some of the companies with the most number of commits, 
only presents a favorable perception of the ARM processors in general, and Android 
in particular.

https://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2015
https://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2015
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Another interesting piece of information is that more than half of the Linux kernel 
developers are at their first commit. This means that a really small number of 
developers are doing the vast majority of work. This dysfunction in the development 
of the Linux kernel process is being tried to be reduced by the Linux Foundation 
by offering various programs for students to make them more involved in the 
development process. Whether this is a success, only time will tell, but it is my 
opinion that they are doing the right thing and are moving in the right direction.

All of this information has been explained with regard to the Linux kernel, but 
parts of it are applicable for other open source components. The thing that I want 
to emphasize here is that the ARM support in Linux is much more mature than in 
architectures such as PowerPC or MIPS. This has started to not only be obvious,  
but is also an indication of the approach that the Intel x86 stage has taken. Until now, 
this approach was simply not disturbed by anyone.

Linux Standard Base
LSB appeared to lower the costs of support offered by Linux platforms by reducing 
the differences between various available Linux distributions. It also helps with costs 
for porting applications. Every time a developer writes an application, they need to 
make sure that the source code produced on one Linux distribution will also be able 
to be executed on other distributions as well. They would also like to make sure that 
this remains possible over the years.

The LSB workgroup is a Linux Foundation project that tries to address these exact 
problems. For this purpose, LSB workgroup started working on a standard that 
could describe a set of APIs that a Linux distribution should support. With the 
standards defined, the workgroup also moved a few steps further and developed a 
set of tools and tests to measure the support levels. With this done, they were able 
to define certain sets of compliance and also detect the certain differences between 
various distributions.

The LSB was the first effort to be made in this direction by the Linux Foundation 
and became an umbrella for all the workgroups that have tried to provide 
standardization to various areas of the Linux platform. All these workgroups 
have the same roadmap and they deliver their corresponding set of specifications, 
software components, such as conformance tests, developments tools, and other 
available samples and implementations.
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Every software component developed by one of the workgroups that is available 
inside the Linux Standard Base is defined as a lsb module. All of these modules 
have a common format to facilitate easier integration between them. There are 
modules that are required and optional. The required ones are the ones that meet the 
acceptance criteria for LSB. The optional ones are still a work in progress and are, at 
the moment of specifications defining, not written in the acceptance criteria, but will 
be included in future versions of the LSB standard.

There are, of course, workgroups that do not produce lsb modules. They have not 
worked on the standard either but instead, they have integrated various patches  
in projects, such as the Linux kernel or other packages and even documentation. 
These are not the workgroups that this section is referring to. This section only  
takes LSB-related workgroups into account.

From time to time, whenever a new specification document is released, a testing kit 
is also made available to vendors to test the kit's compliance to a particular version. 
The vendors could test their product compliance, which can be in the form of an 
application or a Linux distribution. The result of the testing kit is a certification that 
indicates that their product is LSB certified. For an application we, of course, have an 
LSB Application Testkit. There is also a similar one for a Linux distribution as well 
as others that are available for a variety of distributions.

For vendors who are interested in optional modules, these are not only available to 
help vendors prepare their future LSB compliance certification, but also to expose 
them to optional modules in order to get more vocal reviews and contributions from 
them. Also, the vendor's vote is related to the existence of these modules in future 
LSB specification documentations whose release is also important. The vendors 
could establish whether one optional module is eligible for future inclusions or not.

The LSB workgroup is governed by the Steering Committee and is led by a 
Chairperson who is elected. These two entities represent the interests of the 
workgroup. The workgroup operates on a rough consensus model. This indicates 
the solution of the group regarding a particular problem, that is, a solution that is 
determined by the elected Chairperson. If the contributor does not consider their 
decision and does not meet the criteria required to reach a rough consensus, then the 
Steering committee is appealed.

All business that is specific to the LSB workgroup is carried out inside an open 
forum. It can include a mailing list, conference, wiki page, or even a face-to-face 
meeting; the activities are not closed for members of workgroups. Also, membership 
is not restricted and decisions are clearly documented because there is always a 
possibility of having a further discussion on a particular subject at a later time.
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There are clearly defined roles in workgroups:

• Contributor: This refers to actively involved individuals. They always have 
list with them available for the Chairperson, but any individual may request 
inclusion to the Contributors list.

• Chairperson: This refers to the representative Project leader. A person 
is elected to this position by Contributors and approved by the Steering 
Committee and the Linux Foundation board. Once elected, they are able 
to hold this position for two years. There is no limit to the number of times 
someone can be elected. Removal from this position can occur in case 
of a lack of confidence on behalf of the Steering Committee or the Linux 
Foundation board. After the position is vacant, a new election is carried out. 
During the vacancy period, the Steering Committee will assign an acting 
Chairperson.

• Election Committee: This refers to a committee of Contributors that are 
established by the Steering Committee for Chairperson election. It is 
responsible for selecting candidates for the position of Chairperson within 
at least 30 days before the Chairperson's term expires or 10 days after the 
Chairperson's position is vacant. It is responsible for conducting elections, 
which is done through electronic ballots. There is only one vote accepted 
from an individual; the votes are secret and only done by eligible members. 
The voting period is one week, and then the results are presented to the 
Steering Committee, which approves the votes and declares the winner.

• Steering Committee: It consists of representative workgroup stakeholders. 
They may be distribution vendors, OEMs, ISVs, upstream developers, and 
the Chairpersons of the LSB sub workgroups that come under the LSB 
charter. The committee is appointed by the Chairperson and depending 
on their involvement in workgroup activities, they can keep the position 
indefinitely. One member can be removed from the Steering Committee by 
three entities: the Chairperson, the other Steering Committee members, or by 
the Linux Foundation board.



Chapter 13

[ 287 ]

Here is an image depicting a more detailed structure of the LSB workgroup:
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The LSB is a fairly complex structure, as depicted in the preceding image, so more 
roles can be defined in a workgroup if necessary. The main focus of the workgroup 
remains its mission; for this to be achievable, new workgroups need to be promoted 
and nurtured. They require a certain level of independence, but also be accountable 
for the activities done in the LSB Chairperson. This mainly involves making sure that 
certain deadlines are met and that the project sticks to its roadmap.

The first step in the interaction process with the LSB deliverables should be 
establishing the exact LSB requirements that need to be met by a target system. 
The specifications are available as two components: architecture-dependent 
and architecture-independent, or as it is also called, a generic component. The 
architecture-dependent components contain three modules:

• Core
• C++
• Desktop
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Architecture independent components contain five modules:

• Core
• C++
• Desktop
• Printing
• Languages

There is, of course, another structure used to order them. Here, I am referring to the 
fact that some of these are mandatory and others are in a state of trial and testing. 
The first category is in order to have a distribution that is compliant with LSB 
standards, while the second category is not a strict requirement for having a compliant 
distribution that could represent future candidates for the next few versions of LSB.

The following image represents the key deliverable components of LSB. I hope it 
guides you through the components of this project as well as gathers the information 
that you need for future interaction with the various components of the LSB 
workgroup.
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Depending on the interest of users, they can chose to either interact with the 
distribution development or the development of the components of an application. 
As clearly depicted in the preceding image, each of the two roads has its tools for the 
job. Before starting a job, make sure that you take a look at the website of the LSB 
Navigator and gather the required information. For users who are interested in a 
demonstration of LSB navigator, there is one available in the following link that also 
involves the interaction of Yocto. Make sure that you check it out and interact with it 
to get an idea of how it works.

The LSB Navigator can be accessed at http://www.linuxbase.org/
navigator/commons/welcome.php.

Let's assume that the interaction is already done and you are now interested in 
collaborating with this project. Of course, there are multiple methods to do this. 
Whether you are a developer or a software vendor, your feedback is always helpful 
for any project. Also, for developers who would like to contribute with code, there 
are multiple components and tools that could benefit from your help. That is not all. 
There are a lot of testing frameworks and testing infrastructures that always require 
improvements, so someone can contribute not only with code but also bug fixing and 
development or the testing of tools. Also, remember that your feedback is always 
appreciated.

Before moving to the next section, I want to introduce one more thing. As depicted 
in the previous diagram, any activity that is executed by a developer, with regard to 
the components of the LSB workgroup, should be done after the LSB specifications 
are inspected and the appropriate version is selected. For example, in the CGL 
Specifications, there is an explicit requirement of at least LSB 3.0, as well as the 
required modules, that are indicated in the same requirement description. For 
developers who want more information about the required specification and its 
components, refer to http://refspecs.linuxfoundation.org/lsb.shtml. 
Make sure that you also inspect the progress made on the newly available LSB 5 
specifications, which passed the beta stage and, at the moment, is in its RC1 state. 
More information about this is available at https://www.linuxfoundation.org/
collaborate/workgroups/lsb/lsb-50-rc1.

http://www.linuxbase.org/navigator/commons/welcome.php.
http://www.linuxbase.org/navigator/commons/welcome.php.
http://refspecs.linuxfoundation.org/lsb.shtml
https://www.linuxfoundation.org/collaborate/workgroups/lsb/lsb-50-rc1
https://www.linuxfoundation.org/collaborate/workgroups/lsb/lsb-50-rc1
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More information about the LSB is available at http://www.
linuxfoundation.org/collaborate/workgroups/lsb.

Carrier grade options
Multiple options will be discussed in this section, and we'll start by defining the 
term carrier grade. This seems like the perfect start. So, what does this term mean in a 
telecommunications environment? It refers to a system, software, and even hardware 
components that are really reliable. Here, I am not referring only to the five-nines 
or six-nines that CGL provides because not all industries and scenarios require this 
kind of reliability. We are only going to refer to something that can be defined as 
reliable in the scope of a project. For a system, software, or hardware component to 
be defined as carrier grade, it should also prove itself as well tested along with all 
sorts of functionalities, such as high availability, fault tolerance, and so on.

These five-nines and six-nines refer to the fact that a product is available 99.999 
or 99.9999 percent of the time. This translates per year in a downtime of around 5 
minutes for five-nines and 30 seconds for six-nines requirements. Having explained 
this, I will move on and present the available options of carrier grade.

Carrier Grade Linux
It is the first and oldest option available. It appeared as a necessity for the 
telecommunication industry in order to define a set of specifications, which in turn 
defined a set of standards for Linux-based operating systems. After implementations, 
this would make the system carrier grade capable.

The motivation behind the CGL is to present an open architecture as a possible 
solution or an alternative to the already available proprietary and closed source 
available solutions that were already available in telecommunication systems. The 
open architecture alternative is the best not only because it avoids a monolithically 
form, is not hard to maintain, scale, and develop, but also it offers the advantage 
of speed. It is faster and cheaper to have a system that is decoupled and makes its 
components accessible to a larger number of software or hardware engineers. All of 
these components would be able to serve the same purpose in the end.

The workgroup was initially started by the Open Source Development Lab (OSDL), 
which after its merger with Free Standards Group formed The Linux Foundation. 
Now all the work moved there together with the workgroup. The latest available 
release for CGL is 5.0 and it includes registered Linux distributions, such as Wind 
River, MontaVista, and Red Flag.

http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/collaborate/workgroups/lsb
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The OSDL CGL workgroup has three categories of applications that CGL could fit 
into:

• Signalling server applications: This includes products that provide control 
services for calls and services, such as routing, session control, and status. 
These products usually handle a large number of connections, around 
10000 or 100000 simultaneous ones, and also because that they have real-
time requirements that require obtaining results from processes under a 
millisecond.

• Gateway applications: These provide the bridging of technology and 
administrative domains. Besides the characteristics that have been 
mentioned already, these handle a large number of connections in a real-
time environment over a not very large number of interfaces. These are also 
required to not lose frames or packages in the communication process.

• Management applications: These usually provide billing operations, 
network management, and other traditional services. They does not have the 
same strong requirements for real-time operations, but instead, concentrate 
on fast database operations and other communication-oriented requests.

To make sure that it is able to satisfy the preceding categories, the CGL workgroup 
focuses on two main activities. The first one involves communicating with all 
the preceding categories, the identification of their requirements, and the writing 
specifications that should be implemented by distribution vendors. The second 
one involves gathering and helping projects that meet the requirements defined 
in the specifications. As a conclusion to what I mentioned previously, CGL tries 
to represent not only the telecommunication industry representatives and Linux 
distributions, but also end users and service providers; it also provides carrier grade 
options for each one of these categories.

Each distribution vendor who wants to get the CGL certification offers its 
implementation as a template. It is filled with versions of packages, names, and other 
extra information. However, it does this without disclosing too much information 
about the implementation process; these packages have the possibility of being 
proprietary software. Also, the disclosed information is owned and maintained by 
the vendor. The CGL workgroup only displays the link offered by the vendor.
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The specification document is now at version 5.0 and contains both requirements 
that are, in fact, mandatory for applications or optional and are related to the 
implementations made in the Linux distribution for a carrier grade certification. 
The mandatory ones are described by the P1 priority level and the optional ones 
are marked as P2. The other elements are related to the gap aspect that represents 
a functionality, which is not implemented since an open source implementation is 
not available for it. The requirements are presented in the specification document to 
motivate distribution developers contribute to them.

As depicted in the following image and as emphasized in the information contained 
in the specification document, the CGL system should provide a large number of 
functionalities:
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Since the requirement for number of functionalities is big, the workgroup decided to 
group them into various categories as follows:

• Availability: It is relevant for single node availability and recovery.
• Clustering: It describes components that are useful in building a cluster 

from individual systems. The key target behind this is the high availability 
of the system and load balancing that could also bring some performance 
improvements.
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• Serviceability: It covers the maintenance and servicing features of the 
system.

• Performance: It describes features, such as real-time requirements and 
others, that could help the system attain better performance.

• Standards: These are provided as references to various APIs, standards, and 
specifications.

• Hardware: It presents various hardware-specific support that is necessary for 
a carrier grade operating system. Much of it comes from hardware vendors 
who are themselves involved in this process and the requirements from this 
section has been highly diminished in the latest CGL specification release.

• Security: It represents the relevant features needed to build a secure system.

For more information on CGL requirements, refer to https://
www.linuxfoundation.org/sites/main/files/CGL_5.0_
Specification.pdf. You can also refer to the CGL workgroup 
at https://www.linuxfoundation.org/collaborate/
workgroups/cgl.

Automotive Grade Linux
Automotive Grade Linux is also a Linux Foundation workgroup. It is newly 
formed and tries to offer an open source solution that has automotive applications. 
Its primary focus is the In-Vehicle-Infotainment sector, but it includes telematics 
systems and instrument clusters. It efforts are based on open source components that 
are already available. These are suitable for its purposes and try to also enable rapid 
development, which is much needed in this industry.

The goals of the workgroup are:

• A transparent, collaborative, and open environment for involved elements.
• A Linux operating system stack that is focused on automotives and uses 

the open source community represented by exponents, such as developers, 
academic components, and companies as back support.

• A collective voice for interaction in the open source community released this 
time in the reverse form, from the AGL to the community.

• An embedded Linux distribution used for fast prototyping.

https://www.linuxfoundation.org/sites/main/files/CGL_5.0_Specification.pdf
https://www.linuxfoundation.org/sites/main/files/CGL_5.0_Specification.pdf
https://www.linuxfoundation.org/sites/main/files/CGL_5.0_Specification.pdf
https://www.linuxfoundation.org/collaborate/workgroups/cgl
https://www.linuxfoundation.org/collaborate/workgroups/cgl
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By using projects, such as Tizen, as the reference distribution and having projects, 
such as Jaguar, Nissan, Land Rover, or Toyoto, this project is interesting enough to 
be followed closely. It has just been developed but has potential for improvements. 
For those of you interested in it, refer to https://www.linuxfoundation.org/
collaborate/workgroups/automotive-grade-linux. The project's wiki page is 
an interesting resource and can be consulted at https://wiki.automotivelinux.
org/.

Carrier Grade Virtualization
The recent development of CGL made virtualization an interesting option for the 
carrier grade field because it involved a reduction in costs as well as transparency 
in leveraging multicore equipment that runs single-core designed applications. 
Virtualization options also needed to meet the same expectations as the other carrier 
grade systems.

Carrier Grade Virtualization has tried to become a vital component to be integrated 
in carrier grade platforms that are already available. This is done to preserve the 
attributes and performance of the system. It also tries to extend the appliance target 
and permits Original Equipment Manufacturer (OEM) to derive the benefits from 
the same support as the CGL. These benefits are in the form of well established 
targets.

Virtualization's application is more widespread, which can be seen ranging from the 
x86 architecture to ARM and DSP-based processors as well as a variety of domains. 
The examination of virtualization from a carrier grade point of view is the focus of 
this solution because, in this way, you can get a clearer perspective of the areas that 
require improvements. In this way, these can be identified and enhancements can 
also be applied as required. Unfortunately, this initiative has not been as exposed 
as some other ones, but is still a very good source of documentation and is available 
from virtualLogix at http://www.linuxpundit.com/documents/CGV_WP_Final_
FN.pdf. I hope you enjoy its content.

https://www.linuxfoundation.org/collaborate/workgroups/automotive-grade-linux
https://www.linuxfoundation.org/collaborate/workgroups/automotive-grade-linux
https://wiki.automotivelinux.org/
https://wiki.automotivelinux.org/
http://www.linuxpundit.com/documents/CGV_WP_Final_FN.pdf
http://www.linuxpundit.com/documents/CGV_WP_Final_FN.pdf
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Specific support for the Yocto Project
In the Poky reference system, support is provided for the development of LSB 
and LSB compatible applications. Inside Poky, there is a special poky-lsb.conf 
distribution policy configuration that is defined in case a distribution is interested 
in developing applications that are LSB-compliant. This holds true when generating 
a Linux distribution that is LSB-compliant or at least prepares to take the LSB 
certification. The build steps required for a Linux distribution that prepares for an 
LSB certification will be presented here. In case you are interested in developing LSB-
compliant applications, the process is simpler and will also be briefly presented here; 
however, it is in contrast to the former.

The first step is simple: it only requires cloning the poky repository and the meta-
qt3 dependency layer because of the requirements of the LSB modules:

git clone git://git.yoctoproject.org/poky.git

git clone git://git.yoctoproject.org/meta-qt3

Next, the build directory needs to be created:

source oe-init-build-env -b ../build_lsb

Inside the conf/bblayers.conf file, only the meta-qt3 layer needs to be added. 
Inside the conf/local.conf file, the corresponding machine should be selected. 
I would suggest a capable platform, but using an emulated architecture, such as 
qemuppc, ought to be enough for such a demo if enough CPU power and memory 
is offered to it. Also, make sure that you change the DISTRO variable to poky-lsb. 
Having all these in place, the build process can start. The command necessary for 
this is is:

bitbake core-image-lsb

After the resulting binaries are generated and booted on the selected machine, the 
user is able to either run all the tests using the LSB_Test.sh script, which also sets 
the LSB test framework environment, or run specific test suites:

/usr/bin/LSB_Test.sh
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You can also use the following command:

cd /opt/lsb/test/manager/utils

./dist-checker.pl –update

./dist-checker.pl –D –s 'LSB 4.1' <test_suite>

If various tests are not passing, the system needs to be reconfigured to ensure the 
required compatibility level. Inside meta/recipes-extended/images, besides the 
core-image-lsb.bb recipes, there are also two similar recipes:

• core-image-lsb-sdk.bb: It includes a meta-toolchain and the necessary 
libraries and development headers that are needed to generate an SDK for 
application development

• core-image-lsb-dev.bb: It is suitable for development work on targets 
since it includes dev-pkgs, which exposes the necessary headers and libraries 
for image-specific packages

Inside the Yocto Project, is a layer defined as meta-cgl, which intends to be the 
stepping stone for the CGL initiative. It aggregates all the available and required 
packages defined by the CGL workgroup. This layer's format tries to set the stage for 
the next implementations that will be made to support CGL on various machines. 
Inside the meta-cgl layer, there are two subdirectories:

• meta-cgl-common: It is the focus place of the activity and the subdirectory 
that offers support for machines available inside poky, such as qemuarm, 
qemuppc, and so on.

• meta-cgl-fsl-ppc: It is a subdirectory that defines BSP-specific support. 
Such layers should be made available if the support for other machines is 
required.

As I've already mentioned, the meta-cgl layer is responsible for the CGL support. 
As mentioned previously, one of the requirements of CGL is to have LSB support 
and this support is available inside Poky. It is integrated inside this layer as a specific 
requirement. Another recommendation for the meta-cgl layer is to group all the 
available packages into package groups that define various categories. The available 
package groups are very generic, but all the available ones are integrated in a core 
one called packagegroup-cgl.bb.
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The layer also exposes a CGL-compliant operating system image. This image tries 
to include various CGL-specific requirements for starters, and intends to grow by 
including all the requirements defined in the CGL specification document. Besides the 
resultant Linux operating system that will be compliant with the CGL requirements 
and is ready for the CGL certification, the layer also tries to define a CGL-specific 
testing framework. The task may seem similar to the one required for the LSB 
checking compliance, but I assure you it is not. It not only requires a CGL-specific 
language definition that has to be made according to the defined specifications, but 
also a number of tests definitions that should be in sync with what the language 
defines. Also, there are requirements that could be met with one package or the 
functionality of a package and these things should be gathered together and 
combined. There are various other scenarios that can be interpreted and answered 
correctly; this is a condition that makes the testing of CGL a hard task to accomplish.

Inside the meta-cgl layer, there are recipes for the following packages:

• cluster-glue

• cluster-resource-agents

• corosync

• heartbeat

• lksctp-tools

• monit

• ocfs2-tools

• openais

• pacemaker

• openipmi

Besides these recipes, there are also other ones that are necessary for various CGL 
requirements. The fact that the meta-cgl initiative is shown in the support it offers 
as described in the previous sections. It is not complete but it will be in time. It will 
also contain these packages:

• evlog

• mipv6-daemon-umip

• makedumpfile
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All of these are necessary to offer a Linux-based operating system that has LSB 
support and CGL compliance. This will be carried out in time, and maybe by the  
time this book reaches your hands, the layer will be in its final format and be  
the standard for CGL compliance.

I will now start to explain a couple of packages that you might come across in the 
CGL environment. I will first start with the Heartbeat daemon, which provides 
communication and membership for cluster services. Having it in place will enable 
clients to determine the present state of the processes available on other machines 
and establish communication with them.

To make sure that the Heartbeat daemon is useful, it needs to be put together with a 
Cluster Resource Manager (CRM), which is the component responsible for starting 
and stopping various services to obtain a highly available Linux system. This CRM 
was called Pacemaker and it was unable to detect resource-level fails and was only 
able to interact with two nodes. In time, it evolved, and it now has better support 
and additional user interfaces available. Some of these services are as follows:

• crm shell: It is a command-line interface realized by Dejan Muhamedagic to 
hide the XML configuration and help with interactions.

• The high availability web console: It is an AJAX frontend
• Heartbeat GUI: It is an advanced XML editor that offers a lot of relevant 

information
• Linux Cluster Management Console (LCMC): It started as DRBD-

Management Console (DRBD-MC) and is a Java platform that is used for 
the management purposes of Pacemaker.

Pacemaker accepts three types of resource agents (a resource agent represents a 
standard interface between the cluster resources). The Resource Agents is a project 
that is also managed by Linux-HA. It is available and maintained by the guys at 
ClusterLabs. Depending on the type that is selected, it is able to perform operation, 
such as start/stop for a given resource, monitor, validation, and so on. The Resource 
Agents that are supported are:

• LSB Resource Agents
• OCF Resource Agents
• The legacy Heartbeat Resource Agent
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Cluster Glue is a set of libraries, utilities, and tools used in conjuncture with 
Pacemaker/Heartbeat. It is the glue that basically puts everything together between 
the cluster resource manager (I am referring to Pacemaker) and the messaging 
layer (which could be Heartbeat). It is now managed as a separate component by 
the Linux-HA subproject, although it started as a component of Heartbeat. It has a 
number of interesting components:

• Local Resource Manager (LRM): It acts as an interface between Pacemaker 
and the Resource Agent and is not cluster-aware. Its tasks include the 
processing of commands received from the CRM, passing them to the 
resource agent, and reporting these activities.

• Shoot The Other Node In The Head (STONITH): It is a mechanism used for 
the purpose of node fencing by making a node that is considered dead by a 
cluster so that it can be removed from it and prevent any interaction risks.

• hb_report: It is an error reporting utility often used for bug fixing and 
isolation problems.

• Cluster Plumbing Library: It is a low-level intercluster communication 
library.

For more information related to Linux-HA the following link could be 
of help: http://www.linux-ha.org/doc/users-guide/users-
guide.html

The next element is the Corosync cluster engine. It is a project derived from 
OpenAIS, which will be presented shortly. It is a Group Communication System 
with a set of features and implementations that try to offer high-availability support 
and is licensed under BSD. Its features include the following:

• An availability manager for the restarting of an application in case of failure.
• A quorum system that notifies about the state of a quorum and whether it's 

been achieved or not.
• A closed process group communication model with support for 

synchronization to replicate state machines.
• A configuration and statistics database that resides in the memory. It 

provides the ability to receive, retrieve, set, and change various notifications.

http://www.linux-ha.org/doc/users-guide/users-guide.html
http://www.linux-ha.org/doc/users-guide/users-guide.html
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Next, we'll take a look at OpenAIS. It is the open implementation for Application 
Interface Specification (AIS) provided by Service Availability Forum (SA or SA 
Forum as it is also called). It represents an interface that provides high-availability 
support. The source code available in OpenAIS was refactored over time in OpenAIS 
and only remained SA Forum-specific APIs and in Corosync. It was also placed in 
all the core infrastructure components. OpenAIS is very similar to Heartbeat; it is, in 
fact, an alternative to it, which is industry standard-specific. It is also supported by 
Pacemaker.

More information about AIS can be found by referring to its 
Wikipedia page and the SA Forum web site at http://www.
saforum.org/page/16627~217404/Service-Availability-
Forum-Application-Interface-Specification.

Next is the ocfs2-tools package. It is a collection of utilities that enable the work 
to be done with the OCFS2 filesystem in the form of creating, debugging, repairing, 
or managing it. It includes tools that are very similar to the ones a Linux user is 
accustomed to, such as mkfs.ocfs2, mount.ocfs2 fsck.ocfs2, tunefs.ocfs2, and 
debugfs.ocfs2.

Oracle Cluster File System (OCFS) was the first shared disk filesystem developed 
by Oracle and was released under GNU General Public License. It was not a POSIX 
compliant filesystem, but this changed when OCFS2 appeared and was integrated 
into the Linux kernel. In time, it became a distributed lock manager capable of 
providing both high availability and high performance. It is now used in a variety 
of places, such as virtualization, database clusters, and middleware, and appliances. 
These are some of its most notable features:

• Optimized allocations
• REFLINKs
• Metadata checksums
• Indexed directories
• Extended attributes per inode
• User and group quotas
• Advanced security, such as SELinux and POSIX ACLs support
• Cluster-aware tools such as the ones mentioned previously and include mkfs, 

tunefs, fsck, mount, and debugfs
• In-built Clusterstack with a Distributed Lock Manager
• Journaling

http://www.saforum.org/page/16627~217404/Service-Availability-Forum-Application-Interface-Specification
http://www.saforum.org/page/16627~217404/Service-Availability-Forum-Application-Interface-Specification
http://www.saforum.org/page/16627~217404/Service-Availability-Forum-Application-Interface-Specification
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• Variable block and cluster size
• Buffered, memory mapped, splice, direct, asynchronous I/Os
• Architecture and endian neutral

The lksctp-tools package is a Linux user space utility that includes a library 
and appropriate C language headers for the purpose of interaction with the SCTP 
interface. The Linux kernel has had support for SCTP since the 2.6 release, so the 
existence of the user space compatibility tools is no surprise for anyone. Lksctp offers 
access to the SCTP socket-based API. The implementation is made according to the 
IETF Internet draft available at http://tools.ietf.org/html/draft-ietf-tsvwg-
sctpsocket-15. It provides a flexible and consistent method of developing socket-
based applications that takes advantage of Stream Control Transmission Protocol 
(SCTP).

SCTP is a message-oriented transport protocol. As a transport layer protocol, it runs 
over IPv4 or Ipv6 implementations and besides the functionality of TCP, it also 
provides support for these features:

• Multistreaming
• Message framing
• Multihoming
• Ordered and unordered message delivery
• Security and authentication

These special features are necessary for industry carrier graded systems and are used 
in fields such as telephony signaling.

More information about SCTP is available at http://www.ietf.org/
rfc/rfc2960.txt and http://www.ietf.org/rfc/rfc3286.txt

Now, I will change the pace a bit and explain monit, a very small yet powerful utility 
to monitor and manage the system. It is very useful in automatic maintenance and 
repairing Unix systems, such as BSD distribution, various Linux distributions, and 
other platforms that can include OS X. It can be used for a large variety of tasks 
ranging from file monitoring, changes in filesystems, and interaction with event 
processes if various thresholds were passed.

http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-15
http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-15
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc3286.txt
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It is easy to configure and control monit since all the configurations are based on 
a token-oriented syntax that is easy to grasp. Also, it offers a variety of logs and 
notifications about its activities. It also provides a web browser interface for easier 
access. So, having a general system resource manager, which is also easy to interact 
with, makes monit an option for a carrier graded Linux system. If you are interested 
in finding more about it, access the project's website at http://mmonit.com/monit/.

OpenIPMI is an implementation of Intelligent Platform Management Interface 
(IPMI) that tries to offers access to all the functionalities of IPMI and also offers 
abstractions for easier usage. It is comprised of two components:

• A kernel driver insertable in the Linux kernel
• A library that offers the abstraction functionality of IPMI and also provides 

access to various services used by an operating system

IPMI represents a set of computer interface specifications that try to reduce the total 
cost of ownership by offering an intelligent and autonomous system that is able 
to monitor and manage the capabilities of the host system. Here, we are referring 
to only about an operating system but also the firmware and CPU itself. The 
development of this intelligent interface was led by Intel and is now supported by  
an impressive number of companies.

More information about IPMI, OpenIMPI, and other supported 
IPMI drivers and functionality are available at http://openipmi.
sourceforge.net/ and http://www.intel.com/content/
www/us/en/servers/ipmi/ipmi-home.html.

There are some of packages that also should be present in the meta-cgl layer, but at 
the time of writing this chapter, they were still not available there. I will start with 
mipv6-daemon-umip, which tries to provide data distribution for Mobile Internet 
Protocol version 6 (MIPv6) daemons. UMIP is an open source Mobile IPv6 stack for 
Linux based on MIPL2 and maintains the latest kernel versions. The packages is a 
set of patches for MIPL2 by the UniverSAl playGround for Ipv6 (USAGI) Project, 
which tries to offers industry ready quality for IPsec (for both IPv6 and IPv4 options) 
and IPv6 protocol stack implementations for the Linux system.

More information about UMIP is available at http://umip.
linux-ipv6.org/index.php?n=Main.Documentation.

http://mmonit.com/monit/
http://openipmi.sourceforge.net/
http://openipmi.sourceforge.net/
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://umip.linux-ipv6.org/index.php?n=Main.Documentation
http://umip.linux-ipv6.org/index.php?n=Main.Documentation
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Makedumfile is a tool that offers the possibility of compressing the size of dump 
files and can also exclude memory pages that are not required for analysis. For some 
of the Linux distributions, it comes along with a package called kexec-tools that 
can be installed in your distribution using RPM, the package manager supported 
by the carrier graded specifications. It is quite similar to commands, such as gzip or 
split. The fact that it receives input only from files an ELF format, makes it the first 
choice for kdumps.

Another interesting project is evlog, a Linux Event Logging system for Enterprise-
class systems. It also is compliant with POSIX standards and provides logging for a 
variety of forms that range from printk to syslog as well as other kernel and user 
space functions. The output events are available in a POSIX-compliant format. It also 
offers support while selecting logs that match certain defined filters or even register 
a special event format. These can only be notified about when the registered event 
filter is met. Its features certainly make this package interesting and are available at 
http://evlog.sourceforge.net/.

There are a number of other packages that could be included into the meta-cgl 
layer. Taking a look at the registered CGL distribution could help you understand 
the complexity of such a project. For easier access to this list, refer to http://
www.linuxfoundation.org/collaborate/workgroups/cgl/registered-
distributions in order to simplify the search procedure.

To interact with the meta-cgl layer, the first necessary step would be to make sure 
that all the interdependent layers are available. The latest information about how to 
build a carrier graded compatible Linux image is always available in the attached 
README file. I've also given you an example here for purpose of demonstrating it:

git clone git://git.yoctoproject.org/poky.git

cd ./poky

git clone git://git.yoctoproject.org /meta-openembedded.git

git clone git://git.enea.com/linux/meta-cgl.git

git clone git://git.yoctoproject.org/meta-qt3

git clone git://git.yoctoproject.org/meta-virtualization

git clone git://git.yoctoproject.org/meta-selinux

git clone git://git.yoctoproject.org/meta-cloud-services

git clone git://git.yoctoproject.org/meta-security

git clone https://github.com/joaohf/meta-openclovis.git

Next, the build directory needs to be created and configured:

source oe-init-build-env -b ../build_cgl

http://evlog.sourceforge.net/
http://www.linuxfoundation.org/collaborate/workgroups/cgl/registered-distributions
http://www.linuxfoundation.org/collaborate/workgroups/cgl/registered-distributions
http://www.linuxfoundation.org/collaborate/workgroups/cgl/registered-distributions
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Inside the conf/bblayers.conf file, these are the layers that need to be added:

meta-cgl/meta-cgl-common
meta-qt3
meta-openembedded/meta-networking
meta-openembedded/meta-filesystems
meta-openembedded/meta-oe
meta-openembedded/meta-perl
meta-virtualization
meta-openclovis
meta-selinux
meta-security
meta-cloud-services/meta-openstack

Inside the conf/local.conf file, the corresponding machine should be selected. I 
would suggest qemuppc, as well as the DISTRO variable that can be changed to poky-
cgl. BBMASK should be made available due to duplication of recipes:

BBMASK = "meta-openembedded/meta-oe/recipes-support/multipath- 
tools"

Having all these place, the build process can start. The necessary command for this 
is:

bitbake core-image-cgl

Make sure that you have time to spend on this because the build could take a while, 
depending on the configuration of your host system.

Summary
In this chapter, you were presented with information about the specifications 
required for the Carrier Grade Linux and Linux Standard Base. Other options, such 
as Automotive Grade and Carrier Grade Virtualization, were also explained and in 
the end, support for the Yocto Project and a couple of demonstrations were shown to 
you to complete this learning process.

This is the last chapter of this book and I hope you've enjoyed the journey. Also, I 
hope I was able to pass on some of the information I have acquired on to you. Since 
we're at the end of this book, I must admit that I have also learned and gathered new 
information in the process of writing the book. I hope that you catch the Yocto bug 
as well and are also able to add your contributions to the Yocto Project and the open 
source community in general. I am confident that from now on, the embedded world 
holds fewer secrets for you. Make sure you shed some light about this topic on others 
too!
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The Build System

In this chapter, we will cover the following recipes:

 f Setting up the host system

 f Installing Poky

 f Creating a build directory

 f Building your first image

 f Explaining the Freescale Yocto ecosystem

 f Installing support for Freescale hardware

 f Building Wandboard images

 f Troubleshooting your Wandboard's first boot

 f Configuring network booting for a development setup

 f Sharing downloads

 f Sharing the shared state cache

 f Setting up a package feed

 f Using build history

 f Working with build statistics

 f Debugging the build system

1
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Introduction
The Yocto project (http://www.yoctoproject.org/) is an embedded Linux distribution 
builder that makes use of several other open source projects.

The Yocto project provides a reference build system for embedded Linux, called Poky, which 
has the BitBake and OpenEmbedded-Core (OE-Core) projects at its base. The purpose of 
Poky is to build the components needed for an embedded Linux product, namely:

 f A bootloader image

 f A Linux kernel image

 f A root filesystem image

 f Toolchains and software development kits (SDKs) for application development

With these, the Yocto project covers the needs of both system and application developers. 
When the Yocto project is used as an integration environment for bootloaders, the Linux 
kernel, and user space applications, we refer to it as system development.

For application development, the Yocto project builds SDKs that enable the development of 
applications independently of the Yocto build system.

The Yocto project makes a new release every six months. The latest release at the time of this 
writing is Yocto 1.7.1 Dizzy, and all the examples in this book refer to the 1.7.1 release.

A Yocto release comprises the following components:

 f Poky, the reference build system

 f A build appliance; that is, a VMware image of a host system ready to use Yocto

 f An Application Development Toolkit (ADT) installer for your host system

 f And for the different supported platforms:

 � Prebuilt toolchains

 � Prebuilt packaged binaries

 � Prebuilt images

The Yocto 1.7.1 release is available to download from http://downloads.yoctoproject.
org/releases/yocto/yocto-1.7.1/.

http://www.yoctoproject.org/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/


Chapter 1

309

Setting up the host system
This recipe will explain how to set up a host Linux system to use the Yocto project.

Getting ready
The recommended way to develop an embedded Linux system is using a native Linux 
workstation. Development work using virtual machines is discouraged, although they may  
be used for demo and test purposes.

Yocto builds all the components mentioned before from scratch, including the cross-compilation 
toolchain and the native tools it needs, so the Yocto build process is demanding in terms of 
processing power and both hard drive space and I/O.

Although Yocto will work fine on machines with lower specifications, for professional 
developer's workstations, it is recommended to use symmetric multiprocessing (SMP) 
systems with 8 GB or more system memory and a high capacity, fast hard drive. Build servers 
can employ distributed compilation, but this is out of the scope of this book. Due to different 
bottlenecks in the build process, there does not seem to be much improvement above 8 CPUs 
or around 16 GB RAM.

The first build will also download all the sources from the Internet, so a fast Internet 
connection is also recommended.

How to do it...
Yocto supports several distributions, and each Yocto release will document a list of the 
supported ones. Although the use of a supported Linux distribution is strongly advised, Yocto 
is able to run on any Linux system if it has the following dependencies:

 f Git 1.7.8 or greater

 f Tar 1.24 or greater

 f Python 2.7.3 or greater (but not Python 3)

Yocto also provides a way to install the correct version of these tools by either downloading 
a buildtools-tarball or building one on a supported machine. This allows virtually any Linux 
distribution to be able to run Yocto, and also makes sure that it will be possible to replicate 
your Yocto build system in the future. This is important for embedded products with long-term 
availability requirements.

This book will use the Ubuntu 14.04 Long-Term Stable (LTS) Linux distribution for all 
examples. Instructions to install on other Linux distributions can be found on the Supported 
Linux Distributions section of the Yocto Project Development Manual, but the examples will 
only be tested with Ubuntu 14.04 LTS.
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To make sure you have the required package dependencies installed for Yocto and to follow 
the examples in the book, run the following command from your shell:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-  
  multilib build-essential chrpath socat libsdl1.2-dev xterm make  
  xsltproc docbook-utils fop dblatex xmlto autoconf automake libtool  
  libglib2.0-dev python-gtk2 bsdmainutils screen

How it works...
The preceding command will use apt-get, the Advanced Packaging Tool (APT),  
command-line tool. It is a frontend of the dpkg package manager that is included in the 
Ubuntu distribution. It will install all the required packages and their dependencies to support 
all the features of the Yocto project.

There's more...
If build times are an important factor for you, there are certain steps you can take when 
preparing your disks to optimize them even further:

 f Place the build directories on their own disk partition or a fast external drive.

 f Use the ext4 filesystem but configure it not to use journalism on your Yocto-dedicated 
partitions. Be aware that power losses may corrupt your build data.

 f Mount the filesystem in such a way that read times are not written/recorded on 
file reads, disable write barriers, and delay committing filesystem changes with the 
following mount options:
noatime,barrier=0,commit=6000.

 f Do not build on network-mounted drives.

These changes reduce the data integrity safeguards, but with the separation of the build 
directories to their own disk, failures would only affect temporary build data, which can be 
erased and regenerated.

See also
 f The complete Yocto project installation instructions for Ubuntu and other supported 

distributions can be found on the Yocto Project Reference Manual at http://www.
yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html

http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
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Installing Poky
This recipe will explain how to set up your host Linux system with Poky, the Yocto project 
reference system.

Getting ready
Poky uses the OpenEmbedded build system, and as such, uses the BitBake tool, a task 
scheduler written in Python which forked from Gentoo's Portage tool. You can think of BitBake 
as the make utility in Yocto. It will parse the configuration and recipe metadata, schedule a 
task list, and run through it.

BitBake is also the command-line interface to Yocto.

Poky and BitBake are two of the open source projects used by Yocto. The Poky project 
is maintained by the Yocto community. You can download Poky from its Git repository at 
http://git.yoctoproject.org/cgit/cgit.cgi/poky/.

Development discussions can be followed and contributed to by visiting the development 
mailing list at https://lists.yoctoproject.org/listinfo/poky.

BitBake, on the other hand, is maintained by both the Yocto and OpenEmbedded 
communities, as the tool is used by both. BitBake can be downloaded from its Git repository at 
http://git.openembedded.org/bitbake/.

Development discussions can be followed and contributed to by visiting the development 
mailing list at http://lists.openembedded.org/mailman/listinfo/bitbake-devel.

The Poky build system only supports virtualized QEMU machines for the following 
architectures:

 f ARM (qemuarm)

 f x86 (qemux86)

 f x86-64 (qemux86-64)

 f PowerPC (qemuppc)

 f MIPS (qemumips, qemumips64)

http://git.yoctoproject.org/cgit/cgit.cgi/poky/
https://lists.yoctoproject.org/listinfo/poky
http://git.openembedded.org/bitbake/
http://lists.openembedded.org/mailman/listinfo/bitbake-devel
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Apart from these, it also supports some reference hardware Board Support Packages 
(BSPs), representative of the architectures just listed. These are those BSPs:

 f Texas Instruments Beaglebone (beaglebone)

 f Freescale MPC8315E-RDB (mpc8315e-rdb)

 f Intel x86 based PCs and devices (genericx86 and genericx86-64)

 f Ubiquiti Networks EdgeRouter Lite (edgerouter)

To develop on different hardware, you will need to complement Poky with hardware-specific 
Yocto layers. This will be covered later on.

How to do it...
The Poky project incorporates a stable BitBake release, so to get started with Yocto, we only 
need to install Poky in our Linux host system.

Note that you can also install BitBake independently 
through your distribution's package management system. 
This is not recommended and can be a source of problems, 
as BitBake needs to be compatible with the metadata used 
in Yocto. If you have installed BitBake from your distribution, 
please remove it.

The current Yocto release is 1.7.1, or Dizzy, so we will install that into our host system. We will 
use the /opt/yocto folder as the installation path:

$ sudo install -o $(id -u) -g $(id -g) -d /opt/yocto

$ cd /opt/yocto

$ git clone --branch dizzy git://git.yoctoproject.org/poky

How it works...
The previous instructions will use Git (the source code management system command-line 
tool) to clone the Poky repository, which includes BitBake, into a new poky directory on our 
current path, and point it to the Dizzy stable branch.



Chapter 1

313

There's more...
Poky contains three metadata directories, meta, meta-yocto, and meta-yocto-bsp, as 
well as a template metadata layer, meta-skeleton, that can be used as a base for new 
layers. Poky's three metadata directories are explained here:

 f meta: This directory contains the OpenEmbedded-Core metadata, which supports 
the ARM, x86, x86-64, PowerPC, MIPS, and MIPS64 architectures and the QEMU 
emulated hardware. You can download it from its Git repository at http://git.
openembedded.org/openembedded-core/.

Development discussions can be followed and contributed to by visiting the 
development mailing list at http://lists.openembedded.org/mailman/
listinfo/openembedded-core.

 f meta-yocto: This contains Poky's distribution-specific metadata.

 f meta-yocto-bsp: This contains metadata for the reference hardware boards.

See also
 f There is documentation about Git, the distributed version control system, at  

http://git-scm.com/doc

Creating a build directory
Before building your first Yocto image, we need to create a build directory for it.

The build process, on a host system as outlined before, can take up to one hour and need 
around 20 GB of hard drive space for a console-only image. A graphical image, like core-
image-sato, can take up to 4 hours for the build process and occupy around 50 GB of space.

How to do it...
The first thing we need to do is create a build directory for our project, where the build 
output will be generated. Sometimes, the build directory may be referred to as the project 
directory, but build directory is the appropriate Yocto term.

There is no right way to structure the build directories when you have multiple projects, but 
a good practice is to have one build directory per architecture or machine type. They can 
all share a common downloads folders, and even a shared state cache (this will be covered 
later on), so keeping them separate won't affect the build performance, but it will allow you to 
develop on multiple projects simultaneously.

http://git.openembedded.org/openembedded-core/
http://git.openembedded.org/openembedded-core/
http://lists.openembedded.org/mailman/listinfo/openembedded-core
http://lists.openembedded.org/mailman/listinfo/openembedded-core
http://git-scm.com/doc
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To create a build directory, we use the oe-init-build-env script provided by Poky. The 
script needs to be sourced into your current shell, and it will set up your environment to use 
the OpenEmbedded/Yocto build system, including adding the BitBake utility to your path.  
You can specify a build directory to use or it will use build by default. We will use qemuarm  
for this example.

$ cd /opt/yocto/poky

$ source oe-init-build-env qemuarm

The script will change to the specified directory.

As oe-init-build-env only configures the current 
shell, you will need to source it on every new shell. But, if 
you point the script to an existing build directory, it will set 
up your environment but won't change any of your existing 
configurations.

BitBake is designed with a client/server abstraction, so we can 
also start a memory resident server and connect a client to it. 
With this setup, loading cache and configuration information each 
time is avoided, which saves some overhead. To run a memory 
resident BitBake that will always be available, you can use the 
oe-init-build-env-memres script as follows:
$ source oe-init-build-env-memres 12345 qemuarm

Here 12345 is the local port to be used.
Do not use both BitBake flavors simultaneously, as this can be a 
source of problems.
You can then kill the memory resident BitBake by executing the 
following command:
$ bitbake -m

How it works...
Both scripts call the scripts/oe-setup-builddir script inside the poky directory to 
create the build directory.

On creation, the build directory contains a conf directory with the following three files:

 f bblayers.conf: This file lists the metadata layers to be considered for this project.

 f local.conf: This file contains the project-specific configuration variables. You can 
set common configuration variables to different projects with a site.conf file, but 
this is not created by default.
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 f templateconf.cfg: This file contains the directory that includes the template 
configuration files used to create the project. By default it uses the one pointed to by 
the templateconf file in your Poky installation directory, which is meta-yocto/
conf by default.

To start a build from scratch, that's all the build directory needs.
Erasing everything apart from these files will recreate your build from 
scratch.
$ cd /opt/yocto/poky/qemuarm
$ rm -Rf tmp sstate-cache

There's more...
You can specify a different template configuration file to use when you create your build 
directory using the TEMPLATECONF variable; for example:

$ TEMPLATECONF=meta-custom/config source oe-init-build-env <build-  
  dir>

The TEMPLATECONF variable needs to refer to a directory containing templates for both 
local.conf and bblayer.conf, but named local.conf.sample and bblayers.
conf.sample.

For our purposes, we can use the unmodified default project configuration files.

Building your first image
Before building our first image, we need to decide what type of image we want to build.  
This recipe will introduce some of the available Yocto images and provide instructions to  
build a simple image.

Getting ready
Poky contains a set of default target images. You can list them by executing the following 
commands:

$ cd /opt/yocto/poky

$ ls meta*/recipes*/images/*.bb
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A full description of the different images can be found on the Yocto Project Reference Manual. 
Typically, these default images are used as a base and customized for your own project needs. 
The most frequently used base default images are:

 f core-image-minimal: This is the smallest BusyBox-, sysvinit-, and udev-based 
console-only image

 f core-image-full-cmdline: This is the BusyBox-based console-only image with 
full hardware support and a more complete Linux system, including bash

 f core-image-lsb: This is a console-only image that is based on Linux Standard 
Base compliance

 f core-image-x11: This is the basic X11 Windows-system-based image with a 
graphical terminal

 f core-image-sato: This is the X11 Window-system-based image with a SATO theme 
and a GNOME Mobile desktop environment

 f core-image-weston: This is a Wayland protocol and Weston reference compositor-
based image

You will also find images with the following suffixes:

 f dev: These images are suitable for development work, as they contain headers and 
libraries.

 f sdk: These images include a complete SDK that can be used for development on  
the target.

 f initramfs: This is an image that can be used for a RAM-based root filesystem, 
which can optionally be embedded with the Linux kernel.

How to do it...
To build an image, we need to configure the MACHINE we are building it for and pass its name 
to BitBake. For example, for the qemuarm machine, we would run the following:

$ cd /opt/yocto/poky/qemuarm

$ MACHINE=qemuarm bitbake core-image-minimal

Or we could export the MACHINE variable to the current shell environment with the following:

$ export MACHINE=qemuarm

But the preferred and persistent way to do it is to edit the conf/local.conf configuration 
file to change the default machine to qemuarm:

- #MACHINE ?= "qemuarm"
+ MACHINE ?= "qemuarm"
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Then you can just execute the following:

$ bitbake core-image-minimal

How it works...
When you pass a target recipe to BitBake, it first parses the following configuration files:

 f conf/bblayers.conf: This file is used to find all the configured layers

 f conf/layer.conf: This file is used on each configured layer

 f meta/conf/bitbake.conf: This file is used for its own configuration

 f conf/local.conf: This file is used for any other configuration the user may have 
for the current build

 f conf/machine/<machine>.conf: This file is the machine configuration; in our 
case, this is qemuarm.conf

 f conf/distro/<distro>.conf: This file is the distribution policy; by default, this is 
the poky.conf file

And then BitBake parses the target recipe that has been provided and its dependencies.  
The outcome is a set of interdependent tasks that BitBake will then execute in order.

There's more...
Most developers won't be interested in keeping the whole build output for every package, so it 
is recommended to configure your project to remove it with the following configuration in your 
conf/local.conf file:

INHERIT += "rm_work"

But at the same time, configuring it for all packages means that you won't be able to develop 
or debug them.

You can add a list of packages to exclude from cleaning by adding them to the RM_WORK_
EXCLUDE variable. For example, if you are going to do BSP work, a good setting might be:

RM_WORK_EXCLUDE += "linux-yocto u-boot"

Remember that you can use a custom template local.conf.sample configuration file in 
your own layer to keep these configurations and apply them for all projects so that they can be 
shared across all developers.

Once the build finishes, you can find the output images on the tmp/deploy/images/
qemuarm directory inside your build directory.
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By default, images are not erased from the deploy directory, but you can configure your 
project to remove the previously built version of the same image by adding the following to 
your conf/local.conf file:

RM_OLD_IMAGE = "1"

You can test run your images on the QEMU emulator by executing this:

$ runqemu qemuarm core-image-minimal

The runqemu script included in Poky's scripts directory is a launch wrapper around the 
QEMU machine emulator to simplify its usage.

Explaining the Freescale Yocto ecosystem
As we saw, Poky metadata starts with the meta, meta-yocto, and meta-yocto-bsp layers, 
and it can be expanded by using more layers.

An index of the available OpenEmbedded layers that are compatible with the Yocto project is 
maintained at http://layers.openembedded.org/.

An embedded product's development usually starts with hardware evaluation using a 
manufacturer's reference board design. Unless you are working with one of the reference 
boards already supported by Poky, you will need to extend Poky to support your hardware.

Getting ready
The first thing to do is to select which base hardware your design is going to be based on. We 
will use a board that is based on a Freescale i.MX6 System on Chip (SoC) as a starting point 
for our embedded product design.

This recipe gives an overview of the support for Freescale hardware in the Yocto project.

How to do it...
The SoC manufacturer (in this case, Freescale) has a range of reference design boards for 
purchase, as well as official Yocto-based software releases. Similarly, other manufacturers that 
use Freescale's SoCs offer reference design boards and their own Yocto-based software releases.

Selecting the appropriate hardware to base your design on is one of the most important design 
decisions for an embedded product. Depending on your product needs, you will decide to either:

 f Use a production-ready board, like a single-board computer (SBC)

 f Use a module and build your custom carrier board around it

 f Use Freescale's SoC directly and design your own board

http://layers.openembedded.org/
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Most of the times, a production-ready board will not match the specific requirements of an 
professional embedded system, and the process of designing a complete carrier board using 
Freescale's SoC would be too time consuming. So, using an appropriate module that already 
solves the most technically challenging design aspects is a common choice.

Some of the characteristics that are important to consider are:

 f Industrial temperature ranges

 f Power management

 f Long-term availability

 f Precertified wireless and Bluetooth (if applicable)

The Yocto community layers that support Freescale-based boards are called meta-fsl-arm 
and meta-fsl-arm-extras. The selection of boards that are supported on meta-fsl-
arm is limited to Freescale reference designs, which would be the starting point if you are 
considering designing your own carrier board around Freescale's SoC. Boards from other 
vendors are maintained on the meta-fsl-arm-extras layer.

There are other embedded manufacturers that use meta-fsl-arm, but they have 
not integrated their boards in the meta-fsl-arm-extras community layer. These 
manufacturers will keep their own BSP layers, which depend on meta-fsl-arm, with specific 
support for their hardware. An example of this is Digi International and its ConnectCore 6 
module, which is based on the i.MX6 SoC.

How it works...
To understand Freescale Yocto ecosystem, we need to start with the Freescale community 
BSP, comprising the meta-fsl-arm layer with support for Freescale reference boards,  
and its companion, meta-fsl-arm-extra, with support for boards from other vendors, 
and its differences with the official Freescale Yocto releases that Freescale offers for their 
reference designs.

There are some key differences between the community and Freescale Yocto releases:

 f Freescale releases are developed internally by Freescale without community 
involvement and are used for BSP validation on Freescale reference boards.

 f Freescale releases go through an internal QA and validation test process, and they 
are maintained by Freescale support.

 f Freescale releases for a specific platform reach a maturity point, after which they  
are no longer worked on. At this point, all the development work has been integrated 
into the community layer and the platforms are further maintained by the Freescale 
BSP community.

 f Freescale Yocto releases are not Yocto compatible, while the community release is.
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Freescale's engineering works very closely with the Freescale BSP community to make sure 
that all development in their official releases is integrated in the community layer in a reliable 
and quick manner.

Usually, the best option is to use the Freescale BSP community release but stay with the 
U-Boot and Linux kernel versions that were released as part of the manufacturer's stable  
BSP release.

This effectively means that you get the latest updates to the Linux kernel and U-Boot from the 
manufacturer while simultaneously getting the latest updates to the root filesystem from the 
community, extending the lifetime of your product, and making sure you are up to date with 
applications, bug fixes, and security updates.

This takes advantage of the manufacturer's QA process for the system components that 
are closer to the hardware, and makes it possible to use the manufacturer's support 
while simultaneously getting user space updates from the community. The Freescale BSP 
community is also very responsive and active, so problems can usually be worked on with 
them to benefit all parts.

There's more...
The Freescale BSP community extends Poky with the following layers:

 f meta-fsl-arm: This is the community layer that supports Freescale reference 
designs. It has a dependency on OpenEmbedded-Core. Machines in this layer will 
be maintained even after Freescale stops active development on them. You can 
download meta-fsl-arm from its Git repository at http://git.yoctoproject.
org/cgit/cgit.cgi/meta-fsl-arm/.

Development discussions can be followed and contributed to by visiting the 
development mailing list at https://lists.yoctoproject.org/listinfo/
meta-freescale.

The meta-fsl-arm layer pulls both the Linux kernel and the U-Boot source from 
Freescale's repositories using the following links:

 � Freescale Linux kernel Git repository: http://git.freescale.com/
git/cgit.cgi/imx/linux-2.6-imx.git/

 � Freescale U-Boot Git repository: http://git.freescale.com/git/
cgit.cgi/imx/uboot-imx.git/

Other Linux kernel and U-Boot versions are available, but keeping the manufacturer's 
supported version is recommended.

http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/
https://lists.yoctoproject.org/listinfo/meta-freescale
https://lists.yoctoproject.org/listinfo/meta-freescale
http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/
http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/
http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/
http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/
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The meta-fsl-arm layer includes Freescale's proprietary binaries to enable some 
hardware features – most notably its hardware graphics, multimedia, and encryption 
capabilities. To make use of these capabilities, the end user needs to accept 
Freescale's End-User License Agreement (EULA), which is included in the meta-
fsl-arm layer. To accept the license, the following line needs to be added to the 
project's conf/local.conf configuration file:
ACCEPT_FSL_EULA = "1"

 f meta-fsl-arm-extra: This layer adds support for other community-maintained 
boards; for example, the Wandboard. To download the layer's content, you may visit 
https://github.com/Freescale/meta-fsl-arm-extra/.

 f meta-fsl-demos: This layer adds a metadata layer for demonstration target 
images. To download the layer's content, you may visit https://github.com/
Freescale/meta-fsl-demos.

Freescale uses another layer on top of the layers above for their official software releases: 
meta-fsl-bsp-release.

 f meta-fsl-bsp-release: This is a Freescale-maintained layer that is used in the 
official Freescale software releases. It contains modifications to both meta-fsl-arm 
and meta-fsl-demos. It is not part of the community release.

See also
 f For more information, refer to the FSL community BSP release notes available at 

http://freescale.github.io/doc/release-notes/1.7/

Installing support for Freescale hardware
In this recipe, we will install the community Freescale BSP Yocto release that adds support for 
Freescale hardware to our Yocto installation.

Getting ready
With so many layers, manually cloning each of them and adding them to your project's  
conf/bblayers.conf file is cumbersome. The community is using the repo tool developed 
by Google for their community Android to ease the installation of Yocto.

To install repo in your host system, type in the following commands:

$ sudo curl http://commondatastorage.googleapis.com/git-repo-  
  downloads/repo > /usr/local/sbin/repo

$ sudo chmod a+x /usr/local/sbin/repo

The repo tool is a Python utility that parses an XML file, called manifest, with a list of Git 
repositories. The repo tool is then used to manage those repositories as a whole.

https://github.com/Freescale/meta-fsl-arm-extra/
https://github.com/Freescale/meta-fsl-demos
https://github.com/Freescale/meta-fsl-demos
http://freescale.github.io/doc/release-notes/1.7/
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How to do it...
For example, we will use repo to download all the repositories listed in the previous recipe to 
our host system. For that, we will point it to the Freescale community BSP manifest for the 
Dizzy release:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>
  <default sync-j="4" revision="master"/>
  <remote fetch="git://git.yoctoproject.org" name="yocto"/>
  <remote fetch="git://github.com/Freescale" name="freescale"/>
  <remote fetch="git://git.openembedded.org" name="oe"/>
  <project remote="yocto" revision="dizzy" name="poky"  
  path="sources/poky"/>
  <project remote="yocto" revision="dizzy" name="meta-fsl-arm"  
  path="sources/meta-fsl-arm"/>
  <project remote="oe" revision="dizzy" name="meta-openembedded"  
  path="sources/meta-openembedded"/>
  <project remote="freescale" revision="dizzy" name="fsl-  
  community-bsp-base" path="sources/base">
        <copyfile dest="README" src="README"/>
        <copyfile dest="setup-environment" src="setup-  
  environment"/>
  </project>
  <project remote="freescale" revision="dizzy" name="meta-fsl-arm-  
  extra" path="sources/meta-fsl-arm-extra"/>
  <project remote="freescale" revision="dizzy" name="meta-fsl-  
  demos" path="sources/meta-fsl-demos"/>
  <project remote="freescale" revision="dizzy"  
  name="Documentation" path="sources/Documentation"/>
</manifest>>

The manifest file shows all the installation paths and repository sources for the different 
components that are going to be installed.

How it works...
The manifest file is a list of the different layers that are needed for the Freescale community 
BSP release. We can now use repo to install it. Run the following:

$ mkdir /opt/yocto/fsl-community-bsp

$ cd /opt/yocto/fsl-community-bsp

$ repo init -u https://github.com/Freescale/fsl-community-bsp-  
  platform -b dizzy

$ repo sync
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You can optionally pass a -jN argument to sync if you have a multicore machine for 
multithreaded operations; for example, you could pass repo sync -j8 in an 8-core  
host system.

There's more...
To list the hardware boards supported by the different layers, we may run:

$ ls sources/meta-fsl*/conf/machine/*.conf

And to list the newly introduced target images, use the following:

$ ls sources/meta-fsl*/recipes*/images/*.bb

The community Freescale BSP release introduces the following new target images:

 f fsl-image-mfgtool-initramfs: This is a small, RAM-based initramfs image 
used with the Freescale manufacturing tool

 f fsl-image-multimedia: This is a console-only image that includes the 
gstreamer multimedia framework over the framebuffer, if applicable

 f fsl-image-multimedia-full: This is an extension of fsl-image-multimedia, 
but extends the gstreamer multimedia framework to include all available plugins

 f fsl-image-machine-test: This is an extension on fsl-image-multimedia-
full for testing and benchmarking

 f qte-in-use-image: This is a graphical image that includes support for Qt4 over 
the framebuffer

 f qt-in-use-image: This is a graphical image that includes support for Qt4 over the 
X11 Windows system

See also
 f Instructions to use the repo tool, including using repo with proxy servers, can be 

found in the Android documentation at https://source.android.com/source/
downloading.html

Building Wandboard images
Building images for one of the supported boards (for example, Wandboard Quad) follows the 
same process we described earlier for the QEMU machines, with the exception of using the 
setup-environment script, which is a wrapper around oe-init-build-env.

https://source.android.com/source/downloading.html
https://source.android.com/source/downloading.html
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How to do it...
To build an image for the wandboard-quad machine, use the following commands:

$ cd /opt/yocto/fsl-community-bsp

$ mkdir -p wandboard-quad

$ MACHINE=wandboard-quad source setup-environment wandboard-quad

$ bitbake core-image-minimal

The current version of the setup-environment script only 
works if the build directory is under the installation folder; in 
our case, /opt/yocto/fsl-community-bsp.

How it works...
The setup-environment script will create a build directory, set up the MACHINE variable, 
and prompt you to accept the Freescale EULA as described earlier. Your conf/local.conf 
configuration file will be updated both with the specified machine and the EULA acceptance 
variable.

Remember that if you close your terminal session, you will 
need to set up the environment again before being able to 
use BitBake. You can safely rerun the setup-environment 
script as seen previously, as it will not touch an existing conf/
local.conf file. Run the following:
$ cd /opt/yocto/fsl-community-bsp/
$ source setup-environment wandboard-quad

The resulting image, core-image-minimal.sdcard, which is created inside the build 
directory, can be programmed into a microSD card, inserted into the primary slot in the 
Wandboard CPU board, and booted using the following commands:

$ cd /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/images/wandboard-quad/

$ sudo dd if=core-image-minimal.sdcard of=/dev/sdN bs=1M && sync

Here, /dev/sdN corresponds to the device node assigned to the microSD card in your  
host system.

Be careful when running the dd command, as it could harm 
your machine. You need to be absolutely sure that the sdN 
device corresponds to your microSD card and not a drive on 
your development machine.
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See also
 f You can find more information regarding the repo tool on Android's documentation at 

https://source.android.com/source/using-repo.html

Troubleshooting your Wandboard's first boot
If you have problems booting your image, follow this recipe to troubleshoot.

Getting ready
1. Without the microSD card inserted, plug in a microUSB-to-USB cable to the USB 

OTG interface of your Wandboard. Check the lsusb utility on your Linux host to see 
whether the Wandboard appears as follows:
Bus 002 Device 006: ID 15a2:0054 Freescale Semiconductor, Inc.  
  i.MX6Q SystemOnChip in RecoveryMode

If you don't see this, try a different power supply. It should be 5V, 10W.

2. Make sure you connect a NULL modem serial cable between the RS232 connector 
in your Wandboard target and a serial port on your Linux host. Then open a terminal 
program like minicom with the following:
$ minicom -D /dev/ttyS0 -b 115200

You will need to add your user to the dialout group, or try to run 
the command as sudo. This should open a 115200 8N1 serial 
connection. The serial device may vary in your Linux host. For 
example, a USB-to-serial adapter may be detected as /dev/
ttyUSB0. Also, make sure both hardware and software flow 
control are disabled.

How to do it...
1. Insert the microSD card image to the module slot, not the base board, as the latter 

is only used for storage and not for booting, and power it. You should see the U-Boot 
banner in the minicom session output.

2. If not, you may have a problem with the serial communication. By default, the 
Ethernet interface in the FSL community BSP image is configured to request an 
address by DHCP, so you can use that to connect to the target.

Make sure you have a DHCP server running on the test network where the target is.

https://source.android.com/source/using-repo.html
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You can use a packet sniffer like Wireshark to capture a network trace on your Linux 
host and filter packages like the bootp protocol. At the least, you should see some 
broadcasts from your target, and if you use an Ethernet hub, you should also see the 
DHCP replies.
Optionally, you can log in to your DHCP server and check the logs to see if a new IP 
address has been assigned. If you see an IP address being assigned, you might want 
to consider adding an SSH server, like Dropbear, to your core-image-minimal image 
so that you can establish a network connection with the target. You can do this by 
adding the following line to the conf/local.conf configuration file:
IMAGE_INSTALL_append = " dropbear"

Note the space after the initial quote.
After building and reprogramming, you can then start an SSH session to the 
Wandboard from your Linux host with:
$ ssh root@<ip_address>

The connection should automatically log in without a password prompt.

3. Try to program the default microSD card images from http://www.wandboard.
org/index.php/downloads to make sure the hardware and your setup is valid.

4. Try to reprogram your microSD card. Make sure you are using the correct images for 
your board (for example, do not mix dual and quad images). Also, try different cards 
and card readers.

These steps will have your Wandboard start booting, and you should have some output in your 
serial connection.

There's more...
If everything else fails, you can verify the position of the bootloader on your microSD card. You 
can dump the contents of the first blocks of your microSD card with:

$ sudo dd if=/dev/sdN of=/tmp/sdcard.img count=10

You should see a U-Boot header at offset 0x400. That's the offset where the i.MX6 boot ROM 
will be looking for the bootloader when bootstrapped to boot from the microSD interface. Use 
the following commands:

$ head /tmp/sdcard.img | hexdump

0000400 00d1 4020 0000 1780 0000 0000 f42c 177f

You can recognize the U-Boot header by dumping the U-Boot image from your build. Run the 
following commands:

$ head u-boot-wandboard-quad.imx | hexdump

0000000 00d1 4020 0000 1780 0000 0000 f42c 177f

http://www.wandboard.org/index.php/downloads
http://www.wandboard.org/index.php/downloads
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Configuring network booting for a 
development setup

Most professional i.MX6 boards will have an internal embedded MMC (eMMC) flash memory, 
and that would be the recommended way to boot firmware. The Wandboard is not really 
a product meant for professional use, so it does not have one. But neither the eMMC nor 
the microSD card are ideal for development work, as any system change would involve a 
reprogramming of the firmware image.

Getting ready
The ideal setup for development work is to use both TFTP and NFS servers in your host system 
and to only store the U-Boot bootloader in either the eMMC or a microSD card. With this setup, 
the bootloader will fetch the Linux kernel from the TFTP server and the kernel will mount the 
root filesystem from the NFS server. Changes to either the kernel or the root filesystem are 
available without the need to reprogram. Only bootloader development work would need you 
to reprogram the physical media.

Installing a TFTP server
If you are not already running a TFTP server, follow the next steps to install and configure a 
TFTP server on your Ubuntu 14.04 host:

$ sudo apt-get install tftpd-hpa

The tftpd-hpa configuration file is installed in /etc/default/tftpd-hpa. By default, it 
uses /var/lib/tftpboot as the root TFTP folder. Change the folder permissions to make 
it accessible to all users using the following command:

$ sudo chmod 1777 /var/lib/tftpboot

Now copy the Linux kernel and device tree from your build directory as follows:

$ cd /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/images/wandboard-quad/

$ cp zImage-wandboard-quad.bin zImage-imx6q-wandboard.dtb  
  /var/lib/tftpboot

Installing an NFS server
If you are not already running an NFS server, follow the next steps to install and configure one 
on your Ubuntu 14.04 host:

$ sudo apt-get install nfs-kernel-server
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We will use the /nfsroot directory as the root for the NFS server, so we will "untar" the 
target's root filesystem from our Yocto build directory in there:

$ sudo mkdir /nfsroot

$ cd /nfsroot

$ sudo tar xvf /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/images/wandboard-quad/core-image-minimal-wandboard-  
  quad.tar.bz2

Next, we will configure the NFS server to export the /nfsroot folder:

/etc/exports:

/nfsroot/ *(rw,no_root_squash,async,no_subtree_check)

We will then restart the NFS server for the configuration changes to take effect:

$ sudo service nfs-kernel-server restart

How to do it...
Boot the Wandboard and stop at the U-Boot prompt by pressing any key on the serial console. 
Then run through the following steps:

1. Get an IP address by DHCP:
> dhcp

Alternatively, you can configure a static IP address with:

> setenv ipaddr <static_ip>

2. Configure the IP address of your host system, where the TFTP and NFS servers have 
been set up:
> setenv serverip <host_ip>

3. Configure the root filesystem mount:
> setenv nfsroot /nfsroot

4. Configure the Linux kernel and device tree filenames:
> setenv image zImage-wandboard-quad.bin

> setenv fdt_file zImage-imx6q-wandboard.dtb

5. If you have configured a static IP address, you need to disable DHCP on boot  
by running:
> setenv ip_dyn no
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6. Save the U-Boot environment to the microSD card:
> saveenv

7. Perform a network boot:
> run netboot

The Linux kernel and device tree will be fetched from the TFTP server, and the root filesystem 
will be mounted by the kernel from the NFS share after getting a DHCP address from your 
network (unless using static IP addresses).

You should be able to log in with the root user without a password prompt.

Sharing downloads
You will usually work on several projects simultaneously, probably for different hardware 
platforms or different target images. In such cases, it is important to optimize the build times 
by sharing downloads.

Getting ready
The build system runs a search for downloaded sources in a number of places:

 f It tries the local downloads folder.

 f It looks into the configured premirrors, which are usually local to your organization.

 f It then tries to fetch from the upstream source as configured in the package recipe.

 f Finally, it checks the configured mirrors. Mirrors are public alternate locations for  
the source.

If a package source is not found in any of the these four, the package build will fail with an 
error. Build warnings are also issued when upstream fetching fails and mirrors are tried, so 
that the upstream problem can be looked at.

The Yocto project maintains a set of mirrors to isolate the build system from problems with 
the upstream servers. However, when adding external layers, you could be adding support for 
packages that are not in the Yocto project's mirror servers, or other configured mirrors, so it is 
recommended that you keep a local premirror to avoid problems with source availability.

The default Poky setting for a new project is to store the downloaded package sources on the 
current build directory. This is the first place the build system will run a search for source 
downloads. This setting can be configured in your project's conf/local.conf file with the 
DL_DIR configuration variable.
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How to do it...
To optimize the build time, it is recommended to keep a shared downloads directory 
between all your projects. The setup-environment script of the meta-fsl-arm layer 
changes the default DL_DIR to the fsl-community-bsp directory created by the repo tool. 
With this setup, the downloads folder will already be shared between all the projects in your 
host system. It is configured as:

DL_DIR ?= "${BSPDIR}/downloads/"

A more scalable setup (for instance, for teams that are remotely distributed) is to configure  
a premirror. For example, adding the following to your conf/local.conf file:

INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my-source-mirror"

A usual setup is to have a build server serve its downloads directory. The build server can be 
configured to prepare tarballs of the Git directories to avoid having to perform Git operations 
from upstream servers. This setting in your conf/local.conf file will affect the build 
performance, but this is usually acceptable in a build server. Add the following:

BB_GENERATE_MIRROR_TARBALLS = "1"

An advantage of this setup is that the build server's downloads folder can also be backed up 
to guarantee source availability for your products in the future. This is especially important in 
embedded products with long-term availability requirements.

In order to test this setup, you may check to see whether a build is possible just by using the 
premirrors with the following:

BB_FETCH_PREMIRRORONLY = "1"

This setting in your conf/local.conf file can also be distributed across the team with the 
TEMPLATECONF variable during the project's creation.

Sharing the shared state cache
The Yocto project builds everything from source. When you create a new project, only the 
configuration files are created. The build process then compiles everything from scratch, 
including the cross-compilation toolchain and some native tools important for the build.

This process can take a long time, and the Yocto project implements a shared state cache 
mechanism that is used for incremental builds with the aim to build only the strictly necessary 
components for a given change.
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For this to work, the build system calculates a checksum of the given input data to a task. If 
the input data changes, the task needs to be rebuilt. In simplistic terms, the build process 
generates a run script for each task that can be checksummed and compared. It also keeps 
track of a task's output, so that it can be reused.

A package recipe can modify the shared state caching to a task; for example, to always 
force a rebuild by marking it as nostamp. A more in-depth explanation of the shared state 
cache mechanism can be found in the Yocto Project Reference Manual at http://www.
yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html.

How to do it...
By default, the build system will use a shared state cache directory called sstate-cache on 
your build directory to store the cached data. This can be changed with the SSTATE_DIR 
configuration variable in your conf/local.conf file. The cached data is stored in directories 
named with the first two characters of the hash. Inside, the filenames contain the whole task 
checksum, so the cache validity can be ascertained just by looking at the filename. The build 
process set scene tasks will evaluate the cached data and use it to accelerate the build if valid.

When you want to start a build from a clean state, you need to remove both the sstate-
cache directory and the tmp directory.

You can also instruct BitBake to ignore the shared state cache by using the --no-setscene 
argument when running it.

It's a good practice to keep backups of clean shared state caches (for example, from a build 
server), which can be used in case of shared state cache corruption.

There's more...
Sharing a shared state cache is possible; however, it needs to be approached with care. Not 
all changes are detected by the shared state cache implementation, and when this happens, 
some or all of the cache needs to be invalidated. This can cause problems when the state 
cache is being shared.

The recommendation in this case depends on the use case. Developers working on Yocto 
metadata should keep the shared state cache as default, separated per project.

However, validation and testing engineers, kernel and bootloader developers, and application 
developers would probably benefit from a well-maintained shared state cache.

To configure an NFS share drive to be shared among the development team to speed up the 
builds, you can add the following to your conf/local.conf configuration file:

SSTATE_MIRRORS ?= "\
     file://.* file:///nfs/local/mount/sstate/PATH"

http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/1.7.1/ref-manual/ref-manual.html
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The expression PATH in this example will get substituted by the build system with a directory 
named with the hash's first two characters.

Setting up a package feed
An embedded system project seldom has the need to introduce changes to the Yocto build 
system. Most of the time and effort is spent in application development, followed by a lesser 
amount in maybe kernel and bootloader development.

As such, a whole system rebuild is probably done very few times. A new project is usually built 
from a prebuilt shared state cache, and application development work only needs to be done 
to perform full or incremental builds of a handful of packages.

Once the packages are built, they need to be installed on the target system for testing. 
Emulated machines are fine for application development, but most hardware-related work 
needs to be done on embedded hardware.

Getting ready
An option is to manually copy the build binaries to the target's root filesystem, either copying 
it to the NFS share on the host system the target is mounting its root filesystem from (as 
explained in the Configuring network booting for a development setup recipe earlier) or using 
any other method like SCP, FTP, or even a microSD card.

This method is also used by IDEs like Eclipse when debugging an application you are working 
on. However, this method does not scale well when you need to install several packages and 
dependencies.

The next option would be to copy the packaged binaries (that is, the RPM, deb, or ipk 
packages) to the target's filesystem and then use the target's package management system 
to install them. For this to work, your target's filesystem needs to be built with package 
management tools. Doing this is as easy as adding the package-management feature  
to your root filesystem; for example, you may add the following line to your project's  
conf/local.conf file:

EXTRA_IMAGE_FEATURES += "package-management"

So for an RPM package, you will copy it to the target and use the rpm or smart utilities to 
install it. The smart package management tool is GPL licensed and can work with a variety  
of package formats.
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However, the most optimized way to do this is to convert your host system package's output 
directory into a package feed. For example, if you are using the default RPM package format, 
you may convert tmp/deploy/rpm in your build directory into a package feed that your 
target can use to update.

For this to work, you need to configure an HTTP server on your computer that serves  
the packages.

Versioning packages
You also need to make sure that the generated packages are correctly versioned, and that 
means updating the recipe revision, PR, with every change. It is possible to do this manually, but 
the recommended—and compulsory way if you want to use package feeds—is to use a PR server.

However, the PR server is not enabled by default. The packages generated without a PR  
server are consistent with each other but offer no update guarantees for a system that is 
already running.

The simplest PR server configuration is to run it locally on your host system. To do this, you 
add the following to your conf/local.conf file:

PRSERV_HOST = "localhost:0"

With this setup, update coherency is guaranteed for your feed.

If you want to share your feed with other developers, or you are configuring a build server  
or package server, you would run a single instance of the PR server by running the following 
command:

$ bitbake-prserv --host <server_ip> --port <port> --start

And you will update the project's build configuration to use the centralized PR server, editing 
conf/local.conf as follows:

PRSERV_HOST = "<server_ip>:<port>"

Also, if you are using a shared state cache as described before, all of the contributors to the 
shared state cache need to use the same PR server.

Once the feed's integrity is guaranteed, we need to configure an HTTP server to serve the feed.

How to do it...
We will use lighttpd for this example, as it is lightweight and easy to configure. Follow  
these steps:

1. Install the web server:
$ sudo apt-get install lighttpd
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2. By default, the document root specified in the /etc/lighttpd/lighttpd.conf 
configuration file is /var/www/, so we only need a symlink to our package feed:
$ sudo mkdir /var/www/wandboard-quad

$ sudo ln -s /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/deploy/rpm /var/www/wandboard-quad/rpm

Next, reload the configuration as follows:

$ sudo service lighttpd reload

3. Refresh the package index. This needs to be done manually to update the package 
feed after every build:
$ bitbake package-index

4. Then we need to configure our target filesystem with the new package feeds:
# smart channel --add all type=rpm-md \  
  baseurl=http://<server_ip>/wandboard-quad/rpm/all

# smart channel --add wandboard_quad type=rpm-md \  
  baseurl=http://<server_ip>/wandboard-quad/rpm/wandboard_quad

# smart channel --add cortexa9hf_vfp_neon type=rpm-md \  
  baseurl=http://<server_ip>/wandboard-  
  quad/rpm/cortexa9hf_vfp_neon

5. Once the setup is ready, we will be able to query and update packages from the 
target's root filesystem with the following:
# smart update

# smart query <package_name>

# smart install <package_name>

To make this change persistent in the target's root filesystem, we can configure the package 
feeds at compilation time by using the PACKAGE_FEED_URIS variable in conf/local.conf 
as follows:

PACKAGE_FEED_URIS = "http://<server_ip>/wandboard-quad"

See also
 f More information and a user manual for the smart utility can be found at  

https://labix.org/smart/

https://labix.org/smart/
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Using build history
When maintaining software for an embedded product, you need a way to know what has 
changed and how it is going to affect your product.

On a Yocto system, you may need to update a package revision (for instance, to fix a security 
vulnerability), and you need to make sure what the implications of this change are; for 
example, in terms of package dependencies and changes to the root filesystem.

Build history enables you to do just that, and we will explore it in this recipe.

How to do it...
To enable build history, add the following to your conf/local.conf file:

INHERIT += "buildhistory"

The following enables information gathering, including dependency graphs:

BUILDHISTORY_COMMIT = "1"

The preceding line of code enables the storage of build history in a local Git repository.

The Git repository location can be set by the BUILDHISTORY_DIR variable, which by default 
is set to a buildhistory directory on your build directory.

By default, buildhistory tracks changes to packages, images, and SDKs. This is 
configurable using the BUILDHISTORY_FEATURES variable. For example, to track only image 
changes, add the following to your conf/local.conf:

BUILDHISTORY_FEATURES = "image"

It can also track specific files and copy them to the buildhistory directory. By default, this 
includes only /etc/passwd and /etc/groups, but it can be used to track any important 
files like security certificates. The files need to be added with the BUILDHISTORY_IMAGE_
FILES variable in your conf/local.conf file as follows:

BUILDHISTORY_IMAGE_FILES += "/path/to/file"

Build history will slow down the build, increase the build size, and may also grow the Git 
directory to an unmanageable size. The recommendation is to enable it on a build server for 
software releases, or in specific cases, such as when updating production software.
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How it works...
When enabled, it will keep a record of the changes to each package and image in the form of 
a Git repository in a way that can be explored and analyzed.

For a package, it records the following information:

 f Package and recipe revision

 f Dependencies

 f Package size

 f Files

For an image, it records the following information:

 f Build configuration

 f Dependency graphs

 f A list of files that includes ownership and permissions

 f List of installed packages

And for an SDK, it records the following information:

 f SDK configuration

 f List of both host and target files, including ownership and permissions

 f Dependency graphs

 f A list of installed packages

Looking at the build history
Inspecting the Git directory with the build history can be done in several ways:

 f Using Git tools like gitk or git log.

 f Using the buildhistory-diff command-line tool, which displays the differences in a 
human-readable format.

 f Using a Django-1.4-based web interface. You will need to import the build history data 
to the application's database after every build. The details are available at http://
git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/tree/README.

http://git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/tree/README
http://git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/tree/README
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There's more...
To maintain the build history, it's important to optimize it and avoid it from growing over time. 
Periodic backups of the build history and clean-ups of older data are important to keep the 
build history repository at a manageable size.

Once the buildhistory directory has been backed up, the following process will trim it and 
keep only the most recent history:

1. Copy your repository to a temporary RAM filesystem (tmpfs) to speed things up. 
Check the output of the df -h command to see which directories are tmpfs 
filesystems and how much space they have available, and use one. For example, in 
Ubuntu, the /run/shm directory is available.

2. Add a graft point for a commit one month ago with no parents:
$ git rev-parse "HEAD@{1 month ago}" > .git/info/grafts

3. Make the graft point permanent:
$ git filter-branch

4. Clone a new repository to clean up the remaining Git objects:
$ git clone file://${tmpfs}/buildhistory buildhistory.new

5. Replace the old buildhistory directory with the new cleaned one:
$ rm -rf buildhistory

$ mv buildhistory.new buildhistory

Working with build statistics
The build system can collect build information per task and image. The data may be used to 
identify areas of optimization of build times and bottlenecks, especially when new recipes are 
added to the system. This recipe will explain how the build statistics work.

How to do it...
To enable the collection of statistics, your project needs to inherit the buildstats class 
by adding it to USER_CLASSES in your conf/local.conf file. By default, the fsl-
community-bsp build project is configured to enable them.

USER_CLASSES ?= "buildstats"

You can configure the location of these statistics with the BUILDSTATS_BASE variable, and 
by default it is set to the buildstats folder in the tmp directory under the build directory 
(tmp/buildstats).



The Build System

338

The buildstats folder contains a folder per image with the build stats under a timestamp 
folder. Under it will be a subdirectory per package in your built image, and a build_stats 
file that contains:

 f Host system information
 f Root filesystem location and size
 f Build time
 f Average CPU usage
 f Disk statistics

How it works...
The accuracy of the data depends on the download directory, DL_DIR, and the shared state 
cache directory, SSTATE_DIR, existing on the same partition or volume, so you may need to 
configure them accordingly if you are planning to use the build data.

An example build-stats file looks like the following:

Host Info: Linux agonzal 3.13.0-35-generic #62-Ubuntu SMP Fri Aug  
  15 01:58:42 UTC 2014 x86_64 x86_64
Build Started: 1411486841.52
Uncompressed Rootfs size: 6.2M  /opt/yocto/fsl-community-  
  bsp/wandboard-quad/tmp/work/wandboard_quad-poky-linux-  
  gnueabi/core-image-minimal/1.0-r0/rootfs
Elapsed time: 2878.26 seconds
CPU usage: 51.5%
EndIOinProgress: 0
EndReadsComp: 0
EndReadsMerged: 55289561
EndSectRead: 65147300
EndSectWrite: 250044353
EndTimeIO: 14415452
EndTimeReads: 10338443
EndTimeWrite: 750935284
EndWTimeIO: 816314180
EndWritesComp: 0
StartIOinProgress: 0
StartReadsComp: 0
StartReadsMerged: 52319544
StartSectRead: 59228240
StartSectWrite: 207536552
StartTimeIO: 13116200
StartTimeReads: 8831854
StartTimeWrite: 3861639688
StartWTimeIO: 3921064032
StartWritesComp: 0
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These disk statistics come from the Linux kernel disk I/O stats (https://www.kernel.org/
doc/Documentation/iostats.txt). The different elements are explained here:

 f ReadsComp: This is the total number of reads completed

 f ReadsMerged: This is the total number of adjacent reads merged

 f SectRead: This is the total number of sectors read

 f TimeReads: This is the total number of milliseconds spent reading

 f WritesComp: This is the total number of writes completed

 f SectWrite: This is the total number of sectors written

 f TimeWrite: This is the total number of milliseconds spent writing

IOinProgress: This is the total number of I/Os in progress when reading /proc/diskstats

 f TimeIO: This is the total number of milliseconds spent performing I/O

 f WTimeIO: This is the total number of weighted time while performing I/O

And inside each package, we have a list of tasks; for example, for ncurses-5.9-r15.1,  
we have the following tasks:

 f do_compile

 f do_fetch

 f do_package

 f do_package_write_rpm

 f do_populate_lic

 f do_rm_work

 f do_configure

 f do_install

 f do_packagedata

 f do_patch

 f do_populate_sysroot

 f do_unpack

Each one of them contain, in the same format as earlier, the following:

 f Build time

 f CPU usage

 f Disk stats

https://www.kernel.org/doc/Documentation/iostats.txt
https://www.kernel.org/doc/Documentation/iostats.txt
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There's more...
You can also obtain a graphical representation of the data using the pybootchartgui.
py tool included in the Poky source. From your project's build folder, you can execute the 
following command to obtain a bootchart.png graphic in /tmp:

$ ../sources/poky/scripts/pybootchartgui/pybootchartgui.py  
  tmp/buildstats/core-image-minimal-wandboard-quad/ -o /tmp

Debugging the build system
In the last recipe of this chapter, we will explore the different methods available to debug 
problems with the build system and its metadata.

Getting ready
Let's first introduce some of the usual use cases on a debugging session.

Finding recipes
A good way to check whether a specific package is supported in your current layers is to 
search for it as follows:

$ find -name "*busybox*"

This will recursively search all layers for the BusyBox pattern. You can limit the search to 
recipes and append files by executing:

$ find -name "*busybox*.bb*"

Dumping BitBake's environment
When developing or debugging package or image recipes, it is very common to ask BitBake to 
list its environment both globally and for a specific target, be it a package or image.

To dump the global environment and grep for a variable of interest (for example, DISTRO_
FEATURES), use the following command:

$ bitbake -e | grep -w DISTRO_FEATURES

Optionally, to locate the source directory for a specific package recipe like BusyBox, use the 
following command:

$ bitbake -e busybox | grep ^S=

You could also execute the following command to locate the working directory for a package or 
image recipe:

$ bitbake -e <target> | grep ^WORKDIR=
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Using the development shell
BitBake offers the devshell task to help developers. It is executed with the following 
command:

$ bitbake -c devshell <target>

It will unpack and patch the source, and open a new terminal (it will autodetect your terminal 
type or it can be set with OE_TERMINAL) in the target source directory, which has the 
environment correctly setup.

While in a graphical environment, devshell opens a new terminal 
or console window, but if we are working on a non-graphical 
environment, like telnet or SSH, you may need to specify screen 
as your terminal in your conf/local.conf configuration file 
as follows:

OE_TERMINAL = "screen"

Inside the devshell, you can run development commands like configure and make or invoke 
the cross-compiler directly (use the $CC environment variable, which has been set up already).

How to do it...
The starting point for debugging a package build error is the BitBake error message printed on 
the build process. This will usually point us to the task that failed to build.

To list all the tasks available for a given recipe, with descriptions, we execute the following:

$ bitbake -c listtasks <target>

If you need to recreate the error, you can force a build with the following:

$ bitbake -f <target>

Or you can ask BitBake to force-run only a specific task using the following command:

$ bitbake -c compile -f <target>

Task log and run files
To debug the build errors, BitBake creates two types of useful files per shell task and stores 
them in a temp folder in the working directory. Taking BusyBox as an example, we would  
look into:

 /opt/yocto/fsl-community-bsp/wandboard-quad/tmp/work/cortexa9hf-  
  vfp-neon-poky-linux-gnueabi/busybox/1.22.1-r32/temp
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And find a list of log and run files. The filename format is

log.do_<task>.<pid>

and run.do_<task>.<pid>.

But luckily, we also have symbolic links, without the pid part, that link to the latest version.

The log files will contain the output of the task, and that is usually the only information we 
need to debug the problem. The run file contains the actual code executed by BitBake to 
generate the log mentioned before. This is only needed when debugging complex build issues.

Python tasks, on the other hand, do not currently write files as described previously, although 
it is planned to do so in the future. Python tasks execute internally and log information to  
the terminal.

Adding logging to recipes
BitBake recipes accept either bash or Python code. Python logging is done through the bb 
class and uses the standard logging Python library module. It has the following components:

 f bb.plain: This uses logger.plain. It can be used for debugging, but should not 
be committed to the source.

 f bb.note: This uses logger.info.

 f bb.warn: This uses logger.warn.

 f bb.error: This uses logger.error.

 f bb.fatal: This uses logger.critical and exits BitBake.

 f bb.debug: This should be passed log level as the first argument and uses logger.
debug.

To print debug output from bash in our recipes, we need to use the logging class  
by executing:

inherit logging

The logging class is inherited by default by all recipes containing base.bbclass, so 
we don't usually have to inherit it explicitly. We will then have access to the following bash 
functions, which will output to the log files (not to the console) in the temp directory inside the 
working directory as described previously:

 f bbplain: This function outputs literally what's passed in. It can be used in debugging 
but should not be committed to a recipe source.

 f bbnote: This function prints with the NOTE prefix.

 f bbwarn: This prints a non-fatal warning with the WARNING prefix.

 f bberror: This prints a non-fatal error with the ERROR prefix.
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 f bbfatal: This function halts the build and prints an error message as with bberror.

 f bbdebug: This function prints debug messages with log level passed as the first 
argument. It is used with the following format:
bbdebug [123] "message"

The bash functions mentioned here do not log to the console 
but only to the log files.

Looking at dependencies
You can ask BitBake to print the current and provided versions of packages with the  
following command:

$ bitbake --show-versions

Another common debugging task is the removal of unwanted dependencies.

To see an overview of pulled-in dependencies, you can use BitBake's verbose output by 
running this:

$ bitbake -v <target>

To analyze what dependencies are pulled in by a package, we can ask BitBake to create DOT 
files that describe these dependencies by running the following:

$ bitbake -g <target>

The DOT format is a text description language for graphics that is understood by the GraphViz 
open source package and all the utilities that use it. DOT files can be visualized or further 
processed.

You can omit dependencies from the graph to produce more readable output. For example, to 
omit dependencies from glibc, you would run the following command:

$ bitbake -g <target> -I glibc

Once the preceding commands have been run, we get three files in the current directory:

 f package-depends.dot: This file shows the dependencies between runtime targets

 f pn-depends.dot: This file shows the dependencies between recipes

 f task-depends.dot: This file shows the dependencies between tasks

There is also a pn-buildlist file with a list of packages that would be built by the  
given target.
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To convert the .dot files to postscript files (.ps), you may execute:

$ dot -Tps filename.dot -o outfile.ps

However, the most useful way to display dependency data is to ask BitBake to display it 
graphically with the dependency explorer, as follows:

$ bitbake -g -u depexp <target>

The result may be seen in the following screenshot:

Debugging BitBake
It is not common to have to debug BitBake itself, but you may find a bug in BitBake and want 
to explore it by yourself before reporting it to the BitBake community. For such cases, you 
can ask BitBake to output the debug information at three different levels with the -D flag. To 
display all the debug information, run the following command:

$ bitbake -DDD <target>
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Error reporting tool
Sometimes, you will find a build error on a Yocto recipe that you have not modified. The first 
place to check for errors is the community itself, but before launching your mail client, head  
to http://errors.yoctoproject.org.

This is a central database of user-reported errors. Here, you may check whether someone else 
is experiencing the same problem.

You can submit your own build failure to the database to help the community debug the 
problem. To do so, you may use the report-error class. Add the following to your  
conf/local.conf file:

INHERIT += "report-error"

By default, the error information is stored under tmp/log/error-report under the build 
directory, but you can set a specific location with the ERR_REPORT_DIR variable.

When the error reporting tool is activated, a build error will be captured in a file in the error-
report folder. The build output will also print a command to send the error log to the server:

$ send-error-report ${LOG_DIR}/error-report/error-report_${TSTAMP}

When this command is executed, it will report back with a link to the upstream error.

You can set up a local error server, and use that instead by passing a server argument. The 
error server code and setting up details can be found at http://git.yoctoproject.org/
cgit/cgit.cgi/error-report-web/tree/README.

There's more...
Although you can use Linux utilities to parse Yocto's metadata and build output, BitBake lacks 
a command base UI for common tasks. One project that aims to provide it is bb, which is 
available at https://github.com/kergoth/bb.

To use it, you need to clone the repository locally by executing the following command:

$ cd /opt/yocto/fsl-community-bsp/sources

$ git clone https://github.com/kergoth/bb.git

Then run the bb/bin/bb init command, which prompts you to add a bash command to 
your ~/.bash_profile file.

You can either do that or execute it in your current shell as follows:

$ eval "$(/opt/yocto/fsl-community-bsp/sources/bb/bin/bb init -)"

http://errors.yoctoproject.org
http://git.yoctoproject.org/cgit/cgit.cgi/error-report-web/tree/README
http://git.yoctoproject.org/cgit/cgit.cgi/error-report-web/tree/README
https://github.com/kergoth/bb
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You will first need to set up your environment as usual:

$ cd /opt/yocto/fsl-community-bsp

$ source setup-environment wandboard-quad

Some of the commands only work with a populated work directory, 
so you may need to remove the rm_work class if you want to use 
bb.

Some of the tasks that are made easier by the bb utility are:

 f Exploring the contents of a package:
$ bb contents <target>

 f Searching for a pattern in the recipes:
$ bb search <pattern>

 f Displaying either the global BitBake environment or the environment for a specific 
package and grepping for a specific variable:
$ bb show -r <recipe> <variable>



347

The BSP Layer

In this chapter, we will cover the following recipes:

 f Creating a custom BSP layer

 f Introducing system development workflows

 f Adding a custom kernel and bootloader

 f Explaining Yocto's Linux kernel support

 f Describing Linux's build system

 f Configuring the Linux kernel

 f Building the Linux source

 f Building external kernel modules

 f Debugging the Linux kernel and modules

 f Debugging the Linux kernel booting process

 f Using the kernel tracing system

 f Managing the device tree

 f Debugging device tree issues

2
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Introduction
Once we have our build environment ready with the Yocto project, it's time to think about 
beginning development work on our embedded Linux project.

Most of the embedded Linux projects require both custom hardware and software. An early 
task in the development process is to test different hardware reference boards and the 
selection of one to base our design on. We have chosen the Wandboard, a Freescale i.MX6-
based platform, as it is an affordable and open board, which makes it perfect for our needs.

On an embedded project, it is usually a good idea to start working on the software as soon 
as possible, probably before the hardware prototypes are ready, so that it is possible to start 
working directly with the reference design.

But at some point, the hardware prototypes will be ready and changes will need to be 
introduced into Yocto to support the new hardware.

This chapter will explain how to create a BSP layer to contain those hardware-specific 
changes, as well as show how to work with the U-Boot bootloader and the Linux kernel, 
components which are likely to take most of the customization work.

Creating a custom BSP layer
These custom changes are kept on a separate Yocto layer, called a Board Support Package 
(BSP) layer. This separation is best for future updates and patches to the system. A BSP layer 
can support any number of new machines and any new software feature that is linked to the 
hardware itself.

How to do it...
By convention, Yocto layer names start with meta, short for metadata. A BSP layer may then 
add a bsp keyword, and finally a unique name. We will call our layer meta-bsp-custom.

There are several ways to create a new layer:

 f Manually, once you know what is required

 f By copying the meta-skeleton layer included in Poky

 f By using the yocto-layer command-line tool
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You can have a look at the meta-skeleton layer in Poky and see that it includes the 
following elements:

 f A layer.conf file, where the layer configuration variables are set

 f A COPYING.MIT license file

 f Several directories named with the recipes prefix with example recipes for BusyBox, 
the Linux kernel and an example module, an example service recipe, an example 
user management recipe, and a multilib example.

How it works...
We will cover some of the use cases that appear in the available examples in the next few 
recipes, so for our needs, we will use the yocto-layer tool, which allows us to create a 
minimal layer.

Open a new terminal and change to the fsl-community-bsp directory. Then set up the 
environment as follows:

$ source setup-environment wandboard-quad

Note that once the build directory has been created, the MACHINE 
variable has already been configured in the conf/local.conf file and 
can be omitted from the command line.

Change to the sources directory and run:

$ yocto-layer create bsp-custom

Note that the yocto-layer tool will add the meta prefix to your layer, so you don't need to. It 
will prompt a few questions:

 f The layer priority which is used to decide the layer precedence in cases where the 
same recipe (with the same name) exists in several layers simultaneously. It is also 
used to decide in what order bbappends are applied if several layers append the 
same recipe. Leave the default value of 6. This will be stored in the layer's conf/
layer.conf file as BBFILE_PRIORITY.

 f Whether to create example recipes and append files. Let's leave the default no for the 
time being.
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Our new layer has the following structure:

meta-bsp-custom/

    conf/layer.conf

    COPYING.MIT

    README

There's more...
The first thing to do is to add this new layer to your project's conf/bblayer.conf file. It is 
a good idea to add it to your template conf directory's bblayers.conf.sample file too, so 
that it is correctly appended when creating new projects. The highlighted line in the following 
code shows the addition of the layer to the conf/bblayers.conf file:

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE',  
  True)) + '/../..')}"

BBFILES ?= ""
BBLAYERS = " \
  ${BSPDIR}/sources/poky/meta \
  ${BSPDIR}/sources/poky/meta-yocto \
  \
  ${BSPDIR}/sources/meta-openembedded/meta-oe \
  ${BSPDIR}/sources/meta-openembedded/meta-multimedia \
  \
  ${BSPDIR}/sources/meta-fsl-arm \
  ${BSPDIR}/sources/meta-fsl-arm-extra \
  ${BSPDIR}/sources/meta-fsl-demos \
  ${BSPDIR}/sources/meta-bsp-custom \
"

Now, BitBake will parse the bblayers.conf file and find the conf/layers.conf file from 
your layer. In it, we find the following line:

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
        ${LAYERDIR}/recipes-*/*/*.bbappend"
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It tells BitBake which directories to parse for recipes and append files. You need to make sure 
your directory and file hierarchy in this new layer matches the given pattern, or you will need to 
modify it.

BitBake will also find the following:

BBPATH .= ":${LAYERDIR}"

The BBPATH variable is used to locate the bbclass files and the configuration and files 
included with the include and require directives. The search finishes with the first match, 
so it is best to keep filenames unique.

Some other variables we might consider defining in our conf/layer.conf file are:

LAYERDEPENDS_bsp-custom = "fsl-arm"
LAYERVERSION_bsp-custom = "1"

The LAYERDEPENDS literal is a space-separated list of other layers your layer depends on, and 
the LAYERVERSION literal specifies the version of your layer in case other layers want to add 
a dependency to a specific version.

The COPYING.MIT file specifies the license for the metadata contained in the layer. The Yocto 
project is licensed under the MIT license, which is also compatible with the General Public 
License (GPL). This license applies only to the metadata, as every package included in your 
build will have its own license.

The README file will need to be modified for your specific layer. It is usual to describe the layer 
and provide any other layer dependencies and usage instructions.

Adding a new machine
When customizing your BSP, it is usually a good idea to introduce a new machine for your 
hardware. These are kept under the conf/machine directory in your BSP layer. The usual 
thing to do is to base it on the reference design. For example, wandboard-quad has the 
following machine configuration file:

include include/wandboard.inc

SOC_FAMILY = "mx6:mx6q:wandboard"

UBOOT_MACHINE = "wandboard_quad_config"

KERNEL_DEVICETREE = "imx6q-wandboard.dtb"

MACHINE_FEATURES += "bluetooth wifi"

MACHINE_EXTRA_RRECOMMENDS += " \
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  bcm4329-nvram-config \
  bcm4330-nvram-config \
"

A machine based on the Wandboard design could define its own machine configuration file, 
wandboard-quad-custom.conf, as follows:

include conf/machine/include/wandboard.inc

SOC_FAMILY = "mx6:mx6q:wandboard"

UBOOT_MACHINE = "wandboard_quad_custom_config"

KERNEL_DEVICETREE = "imx6q-wandboard-custom.dtb"

MACHINE_FEATURES += "wifi"

The wandboard.inc file now resides on a different layer, so in order for BitBake to find it, 
we need to specify the full path from the BBPATH variable in the corresponding layer. This 
machine defines its own U-Boot configuration file and Linux kernel device tree in addition to 
defining its own set of machine features.

Adding a custom device tree to the Linux kernel
To add this device tree file to the Linux kernel, we need to add the device tree file to the 
arch/arm/boot/dts directory under the Linux kernel source and also modify the Linux 
build system's arch/arm/boot/dts/Makefile file to build it as follows:

dtb-$(CONFIG_ARCH_MXC) += \
+imx6q-wandboard-custom.dtb \

This code uses diff formatting, where the lines with a minus prefix are removed, the ones with 
a plus sign are added, and the ones without a prefix are left as reference.

Once the patch is prepared, it can be added to the meta-bsp-custom/recipes-kernel/
linux/linux-wandboard-3.10.17/ directory and the Linux kernel recipe appended 
adding a meta-bsp-custom/recipes-kernel/linux/linux-wandboard_3.10.17.
bbappend file with the following content:

SRC_URI_append = " file://0001-ARM-dts-Add-wandboard-custom-dts-  
  file.patch"

An example patch that adds a custom device tree to the Linux kernel can be found in the 
source code that accompanies the book.
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Adding a custom U-Boot machine
In the same way, the U-Boot source may be patched to add a new custom machine. 
Bootloader modifications are not as likely to be needed as kernel modifications though, and 
most custom platforms will leave the bootloader unchanged. The patch would be added to 
the meta-bsp-custom/recipes-bsp/u-boot/u-boot-fslc-v2014.10/ directory and 
the U-Boot recipe appended with a meta-bsp-custom/recipes-bsp/u-boot/u-boot-
fslc_2014.10.bbappend file with the following content:

SRC_URI_append = " file://0001-boards-Add-wandboard-custom.patch"

An example patch that adds a custom machine to U-Boot can be found in the source code that 
accompanies the book.

Adding a custom formfactor file
Custom platforms can also define their own formfactor file with information that the build 
system cannot obtain from other sources, such as defining whether a touchscreen is available 
or defining the screen orientation. These are defined in the recipes-bsp/formfactor/ 
directory in our meta-bsp-custom layer. For our new machine, we could define a meta-
bsp-custom/recipes-bsp/formfactor/formfactor_0.0.bbappend file to include a 
formfactor file as follows:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

And the machine-specific meta-bsp-custom/recipes-bsp/formfactor/formfactor/
wandboard-quadcustom/machconfig file would be as follows:

HAVE_TOUCHSCREEN=1

Introducing system development workflows
When customizing the software, there are some system development workflows that are 
commonly used, and we will introduce them in this recipe.

How to do it...
We will see an overview of the following development workflows:

 f External development

 f Working directory development

 f External source development

They are all used under different scenarios.
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How it works...
Let's understand what the use of each of these development workflows is individually.

External development
In this workflow, we don't use the Yocto build system to build our packages, just a Yocto 
toolchain and the package's own build system.

The resulting source can be integrated into Yocto in the following ways:

 f With a recipe that fetches a released tarball.

 f With a recipe that fetches directly from a source-controlled repository.

External development is usually the preferred method for U-Boot and Linux kernel 
development, as they can be easily cross-compiled. Third-party packages in Yocto are also 
developed in this way.

However, third-party packages can be tricky to cross-compile, and that is just what the Yocto 
build system makes easy. So, if we are not the main developers of the package and we only 
want to introduce some fixes or modifications, we can use Yocto to help us. The two workflows 
explained in the following sections use the Yocto build system.

Working directory development
In this workflow, we use the working directory inside the build directory, tmp/work. As we 
know, when Yocto builds a package, it uses the working directory to extract, patch, configure, 
build, and package the source. We can directly modify the source in this directory and use the 
Yocto system to build it.

This methodology is commonly used when sporadically debugging third-party packages.

The workflow is as follows:

1. Remove the package's build directory to start from scratch:
$ bitbake -c cleanall <target>

2. Tell BitBake to fetch, unpack, and patch the package, but stop there:
$ bitbake -c patch <target>

3. Enter the package's source directory and modify the source. Usually, we would create 
a temporary local Git directory to help us with our development and to extract the 
patches easily.
$ bitbake -c devshell <target>

4. Build it without losing our changes:
$ bitbake -C compile <target>
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Note the capital C. This instructs BitBake to run the compile task and all the tasks 
that follow it. This is the same as running:

$ bitbake -c compile <target>

$ bitbake <target>

5. Test it by copying the package to a running system and installing it with the target's 
package management system. When you run your system from an NFS root 
filesystem, it's as easy as to copy it there and run the following command (assuming 
the default RPM package format):
$ rpm -i <package>

Optionally, you can also use a package feed as we saw in the Setting up a package 
feed recipe in Chapter 1, The Build System, in which case you would rebuild the index 
with the following:
$ bitbake package-index

And then use the smart package management utility on the target to install the 
package as previously shown.

6. Extract the patches and add them to the recipe's bbappend file.

External source development
In this workflow, we will use the Yocto build system to build an external directory containing 
the source. This external directory is usually source controlled to help us in our development.

This is the usual methodology to follow for extensive package development once the source 
has already been integrated with the Yocto build system.

The workflow is as follows:

1. We perform our development on this external-version-controlled directory and commit 
our changes locally.

2. We configure the Yocto build system to use a directory in our host system to fetch the 
source from, and optionally also to build in. This guarantees that our changes cannot 
be lost by any action of the Yocto build system. We will see some examples of this 
later on.

3. Build it using Yocto:
$ bitbake <target>

4. Test it by copying the package to a running system and installing it with the target's 
package management system.

5. Extract the patches and add them to the recipe's bbappend file.
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Adding a custom kernel and bootloader
Development in U-Boot and the Linux kernel is usually done externally to Yocto, as they are 
easy to build using a toolchain, like the one provided by Yocto.

The development work is then integrated into Yocto in one of two ways:

 f With patches added to the kernel and U-Boot bbappend files. This method will build 
the same source as the reference design board we are using as base, and apply our 
changes over it.

 f Using a different Git repository, forked from the Linux kernel and U-Boot Git 
repositories being used by the reference design, and using a bbappend file to point 
the recipe to it. This way, we can directly commit the changes to the repository and 
the Yocto build system will build them.

Usually a forked Git repository is only needed when the hardware changes are substantial and 
the work in the Linux kernel and bootloader is going to be extensive. The recommendation is 
to start with patches, and only use a forked repository when they become difficult  
to manage.

Getting Ready
The first question when starting work on the Linux kernel and U-Boot modifications is how do 
you find which of the several available recipes are being used for your build.

Finding the Linux kernel source
To find the Linux kernel source, we might use several methods. As we are aware we  
are building for a wandboard-quad machine, the first thing to do is find a machine 
configuration file:

$ cd /opt/yocto/fsl-community-bsp/sources

$ find -name wandboard-quad.conf

./meta-fsl-arm-extra/conf/machine/wandboard-quad.conf

The machine configuration file above in turn includes a wandboard.inc file:

include conf/machine/include/imx-base.inc
include conf/machine/include/tune-cortexa9.inc

PREFERRED_PROVIDER_virtual/kernel ?= "linux-wandboard"
PREFERRED_VERSION_linux-wandboard ?= "3.10.17"
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Here we find a Linux kernel recipe being specified as the preferred provider for virtual/kernel. 
Virtual packages like this are used when a feature or element is provided by more than one 
recipe. It allows us to choose which of all those recipes will finally be used. Virtual packages 
will be further explained in the Selecting a specific package versions and providers recipe in 
Chapter 3, The Software Layer.

We could check the actual output from our previous core-image-minimal build:

$ find tmp/work -name "*linux-wandboard*"

tmp/work/wandboard_quad-poky-linux-gnueabi/linux-wandboard

As the linux-wanboard directory exists in our work folder, we can be sure the recipe  
has been used.

We can check what the available Linux recipes are with:

$ find -name "*linux*.bb"

We have lots of options, but we can use some of our acquired knowledge to filter them out. 
Let's exclude the poky and meta-openembedded directories, as we know the BSP support is 
included in the Freescale community BSP layers:

$ find -path ./poky -prune -o -path ./meta-openembedded -prune -o -name 
"*linux*.bb"

Finally, we can also use the bitbake-layers script included in Poky:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake-layers show-recipes 'linux*'

Not all those kernels support the Wandboard machine completely, but they all support 
Freescale ARM machines, so they are useful for comparisons.

Finding the U-Boot source
If we continue to pull the include chain, we have imx-base.inc, which itself includes fsl-
default-providers.inc, where we find:

PREFERRED_PROVIDER_u-boot ??= "u-boot-fslc"
PREFERRED_PROVIDER_virtual/bootloader ??= "u-boot-fslc"

So u-boot-fslc is the U-Boot recipe we are looking for.
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Developing using a Git repository fork
We will show how to append a recipe to use a forked repository to work from it. We will use 
the Linux kernel as an example, but the concept works just as well for U-Boot or any other 
package, although the specifics will change.

We will fork or branch the repository used in the reference design and use it to specify  
SRC_URI for the recipe.

How to do it...
For this example, I have forked the repository to https://github.com/yoctocookbook/
linux, so my recipes-kernel/linux/linux-wandboard_3.10.17.bbappend file 
would have the following changes:

# Copyright Packt Publishing 2015
WANDBOARD_GITHUB_MIRROR = "git://github.com/yoctocookbook/linux.git"
SRCBRANCH = "wandboard_imx_3.10.17_1.0.2_ga-dev"
SRCREV = "${AUTOREV}"

Note how the URL needs to start with git://. This is so that 
BitBake can recognize it as a Git source. Now we can clean and 
build the Linux kernel and the source will be fetched from the forked 
repository.

How it works...
Let's have a look at the linux-wandboard_3.10.17.bb recipe:

include linux-wandboard.inc
require recipes-kernel/linux/linux-dtb.inc

DEPENDS += "lzop-native bc-native"

# Wandboard branch - based on 3.10.17_1.0.2_ga from Freescale git
SRCBRANCH = "wandboard_imx_3.10.17_1.0.2_ga"
SRCREV = "be8d6872b5eb4c94c15dac36b028ce7f60472409"
LOCALVERSION = "-1.0.2-wandboard"

COMPATIBLE_MACHINE = "(wandboard)"

https://github.com/yoctocookbook/linux
https://github.com/yoctocookbook/linux
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The first interesting thing is the inclusion of both linux-wandboard.inc and linux-dtb.
inc. We will look at the first later on, and the other is a class that allows us to compile Linux 
kernel device trees. We will discuss device trees in the Managing the device tree recipe later 
in this chapter.

Then it declares two package dependencies, lzop-native and bc-native. The native 
part tells us that these are used in the host system, so they are used during the Linux kernel 
build process. The lzop tool is used to create the cpio compressed files needed in the 
initramfs system, which is a system that boots from a memory-based root filesystem, and 
bc was introduced to avoid a Perl kernel dependency when generating certain kernel files.

Then it sets the branch and revision, and finally it sets COMPATIBLE_MACHINE to 
wandboard. We will speak about machine compatibility in the Adding new packages recipe of 
Chapter 3, The Software Layer.

Let's now have a look at the linux-wandboard.inc include file:

SUMMARY = "Linux kernel for Wandboard"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM =  
  "file://COPYING;md5=d7810fab7487fb0aad327b76f1be7cd7"

require recipes-kernel/linux/linux-imx.inc

# Put a local version until we have a true SRCREV to point to
SCMVERSION ?= "y"

SRCBRANCH ??= "master"
LOCALVERSION ?= "-${SRCBRANCH}"

# Allow override of WANDBOARD_GITHUB_MIRROR to make use of
# local repository easier
WANDBOARD_GITHUB_MIRROR ?= "git://github.com/wandboard-  
  org/linux.git"

# SRC_URI for wandboard kernel
SRC_URI = "${WANDBOARD_GITHUB_MIRROR};branch=${SRCBRANCH} \
           file://defconfig \
" 

This is actually the file we were looking for. Initially, it specifies the license for the kernel 
source and points to it, sets a default branch and local version kernel string, and sets up the 
SCR_URI variable, which is the place where the source code is fetched from.
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It then offers the WANDBOARD_GITHUB_MIRROR variable, which we can modify in our 
bbappend file.

So the logical setup would be to create a GitHub account and fork the provided wandboard-
org Linux repository.

Once the fork is in place, we need to modify the WANDBOARD_GITHUB_MIRROR variable. But 
as we saw before, the recipe configures a specific revision and branch. We want to develop 
here, so we want to change this to a new development branch we have created. Let's call it 
wandboard_imx_3.10.17_1.0.2_ga-dev and set the revision to automatically fetch the 
newest point in the branch.

Explaining Yocto's Linux kernel support
The Yocto project offers a kernel framework that allows us to work with the Linux kernel in 
different ways:

 f Fetching the source from a Git repository and applying patches to it. This is the path 
taken by the Freescale community BSP-supported kernels, as we saw previously.

 f The linux-yocto style kernels that generate the kernel source from a set of Git 
branches and leafs. Specific features are developed in branches, and a leaf is 
followed for a complete set of features.

In this recipe, we will show how to work with a linux-yocto style kernel.

How to do it...
To use a linux-yocto style kernel, the kernel recipe inherits the linux-yocto.inc file. A 
Git repository for a linux-yocto style kernel contains metadata either in the recipe or inside 
the kernel Git tree, in branches named with the meta prefix.

The linux-yocto style kernel recipes are all named linux-yocto and follow the upstream 
kernel development, rooted in the kernel.org repository. Once a new Yocto release cycle 
starts, a recent upstream kernel version is chosen, and the kernel version from the previous 
Yocto release is maintained. Older versions are updated inline with the Long Term Support 
Initiative (LTSI) releases. There is also a linux-yocto-dev package, which always follows 
the latest upstream kernel development.

Yocto kernels are maintained separately from the upstream kernel sources, and add features 
and BSPs to cater to embedded system developers.

Although the Freescale community BSP does not include linux-yocto style kernels, some 
other BSP layers do.
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Metadata variables that are used to define the build include:

 f KMACHINE: This is usually the same as the MACHINE variable, but not always. It 
defines the kernel's machine type.

 f KBRANCH: This explicitly sets the kernel branch to build. It is optional.

 f KBRANCH_DEFAULT: This is the default value for KBRANCH, initially master.

 f KERNEL_FEATURES: This adds additional metadata that is used to specify 
configuration and patches. It appears above the defined KMACHINE and KBRANCH. It 
is defined in Series Configuration Control (SCC) files as described soon.

 f LINUX_KERNEL_TYPE: This defaults to standard, but may also be tiny or 
preempt-rt. It is defined in its own SCC description files, or explicitly defined using 
the KTYPE variable in the SCC files.

How it works...
The metadata included in the Linux kernel manages the configuration and source selection to 
support multiple BSPs and kernel types. The tools that manage this metadata are built in the 
kern-tools package.

The metadata can be set either in recipes, for small changes or if you are using a kernel 
repository you do not have access to, or most usually inside the kernel Git repository in meta 
branches. The meta branch that is to be used defaults to a meta directory in the same 
repository branch as the sources, but can be specified using the KMETA variable in your  
kernel recipe. If it does not reside in the same branch as the kernel source, it is kept in an 
orphan branch; that is, a branch with its own history. To create an orphan branch, use the 
following commands:

$ git checkout --orphan meta

$ git rm -rf .

$ git commit --allow-empty -m "Meta branch"

Your recipe must then include SRCREV_meta to point to the revision of the meta branch  
to use.

The metadata is described in SCC files, which can include a series of commands:

 f kconf: This command applies a configuration fragment to the kernel configuration.

 f patch: This command applies the specified patch.

 f define: This introduces the variable definitions.

 f include: This includes another SCC file.

 f git merge: This merges the specified branch into the current branch.
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 f branch: This creates a new branch relative to the current branch, usually KTYPE or 
as specified.

SCC files are broadly divided into the following logical groupings:

 f configuration (cfg): This contains one or more kernel configuration fragments and 
an SCC file to describe them. For example:
cfg/spidev.scc:
        define KFEATURE_DESCRIPTION "Enable SPI device  
  support"
        kconf hardware spidev.cfg

cfg/spidev.cfg:
        CONFIG_SPI_SPIDEV=y

 f patches: This contains one or more kernel patches and an SCC file to describe them. 
For example:
patches/fix.scc:
        patch fix.patch

patches/fix.patch

 f features: This contains mix configurations and patches to define complex features. It 
can also include other description files. For example:
features/feature.scc
        define KFEATURE_DESCRIPTION "Enable feature"

        patch 0001-feature.patch
    
        include cfg/feature_dependency.scc
        kconf non-hardware feature.cfg

 f kernel types: This contains features that define a high-level kernel policy. By default, 
three kernel types are defined in SCC files:

 � standard: This is a generic kernel definition policy

 � tiny: This is a bare minimum kernel definition policy and is independent of 
the standard type

 � preempt-rt: This inherits from the standard type to define a real-time kernel 
where the PREEMTP-RT patches are applied

Other kernel types can be defined by using the KTYPE variable on an SCC file.
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 f Board Support Packages (BSP): A combination of kernel types and hardware 
features. BSP types should include KMACHINE for the kernel machine and KARCH for 
the kernel architecture.

See also
 f Detailed information regarding linux-yocto style kernels can be found in the Yocto 

Project Linux Kernel Development Manual at http://www.yoctoproject.org/
docs/1.7.1/kernel-dev/kernel-dev.html

Describing Linux's build system
The Linux kernel is a monolithic kernel and as such shares the same address space. Although 
it has the ability to load modules at runtime, the kernel must contain all the symbols the 
module uses at compilation time. Once the module is loaded, it will share the kernel's address 
space.

The kernel build system, or kbuild, uses conditional compilation to decide which parts of the 
kernel are compiled. The kernel build system is independent of the Yocto build system.

In this recipe, we will explain how the kernel's build system works.

How to do it...
The kernel configuration is stored in a .config text file in the kernel root directory. The kbuild 
system reads this configuration to build the kernel. The .config file is referred to as the 
kernel configuration file. There are multiple ways to define a kernel configuration file:

 f Manually editing the .config file, although this is not recommended.

 f Using one of the user interfaces the kernel offers (type the make help command for 
other options):

 � menuconfig: An ncurses menu-based interface (make menuconfig)

 � xconfig: A Qt-based interface (make xconfig)

 � gconfig: A GTK-based interface (make gconfig)

Note that to build and use these interfaces, your Linux host needs 
to have the appropriate dependencies.

 f Automatically via a build system such as Yocto.

http://www.yoctoproject.org/docs/1.7.1/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.7.1/kernel-dev/kernel-dev.html
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Each machine also defines a default configuration in the kernel tree. For ARM platforms, 
these are stored in the arch/arm/configs directory. To configure an ARM kernel, that is, to 
produce a .config file from a default configuration, you run:

$ make ARCH=arm <platform>_defconfig

For example we can build a default configuration for Freescale i.MX6 processors by running:

$ make ARCH=arm imx_v6_v7_defconfig

How it works...
Kbuild uses Makefile and Kconfig files to build the kernel source. Kconfig files define 
configuration symbols and attributes, and Makefile file match configuration symbols to  
source files.

The kbuild system options and targets can be seen by running:

$ make ARCH=arm help

There's more...
In recent kernels, a default configuration contains all the information needed to expand to 
a full configuration file. It is a minimal kernel configuration file where all dependencies are 
removed. To create a default configuration file from a current .config file, you run:

$ make ARCH=arm savedefconfig

This creates a defconfig file in the current kernel directory. This make target can be 
seen as the opposite of the <platform>_defconfig target explained before. The former 
creates a configuration file from a minimal configuration, and the other expands the minimal 
configuration into a full configuration file.

Configuring the Linux kernel
In this recipe, we will explain how to configure a Linux kernel using the Yocto build system.

Getting ready
Before configuring the kernel, we need to provide a default configuration for our machine, 
which is the one the Yocto project uses to configure a kernel. When defining a new machine in 
your BSP layer, you need to provide a defconfig file.
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The Wandboard's defconfig file is stored under sources/meta-fsl-arm-extra/
recipes-kernel/linux/linux-wandboard-3.10.17/defconfig.

This would be the base defconfig file for our custom hardware, so we copy it to our  
BSP layer:

$ cd /opt/yocto/fsl-community-bsp/sources
$ mkdir -p meta-bsp-custom/recipes-kernel/linux/linux-wandboard-  
  3.10.17/
$ cp meta-fsl-arm-extra/recipes-kernel/linux/linux-wandboard-  
  3.10.17/defconfig meta-bsp-custom/recipes-kernel/linux/linux-  
  wandboard-3.10.17/

We then add it to our kernel using meta-bsp-custom/recipes-kernel/linux/linux-
wandboard_3.10.17.bbappend as follows:

# Copyright Packt Publishing 2015
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:"
SRC_URI_append = " file://defconfig"

Kernel configuration changes to your platform can be made directly in this defconfig file.

How to do it...
To create a .config file from the machine defconfig file, execute the following command:

$ bitbake -c configure virtual/kernel

This will also run the oldconfig kernel make target to validate the configuration against the 
Linux source.

We can then configure the Linux kernel from the BitBake command line using the following:

$ bitbake -c menuconfig virtual/kernel
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The menuconfig user interface, as well as other kernel configuration user interfaces, has a 
search functionality that allows you to locate configuration variables by name. Have a look at 
the following screenshot:

In the following chapters, we will mention specific kernel configuration 
variables, like CONFIG_PRINTK, without specifying the whole path to 
the configuration variable. The search interface of the different UIs can 
be used to locate the configuration variable path.

When you save your changes, a new .config file is created on the kernel's build directory, 
which you can find using the following command:

$ bitbake -e virtual/kernel | grep ^B=

You can also modify the configuration using a graphical UI, but not from the BitBake  
command line. This is because graphical UIs need host dependencies, which are not  
natively built by Yocto.

To make sure your Ubuntu system has the needed dependencies, execute the following 
command:

$ sudo apt-get install git-core libncurses5 libncurses5-dev libelf-  
  dev asciidoc binutils-dev qt3-dev-tools libqt3-mt-dev libncurses5  
  libncurses5-dev fakeroot build-essential crash kexec-tools  
  makedumpfile libgtk2.0-dev libglib2.0-dev libglade2-dev
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Then change to the kernel build directory, which you found before, with:

$ cd /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/work/wandboard_quad-poky-linux-gnueabi/linux-  
  wandboard/3.10.17-r0/git

Next, run the following:

$ make ARCH=arm xconfig

If you encounter compilation errors, attempt to run from a new 
terminal that has not had the environment configured with the 
setup-environment script.

A new window will open with the graphical configuration user interface shown in the  
next screenshot:
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When you save your changes, the .config file will be updated.

To use an updated configuration, you need to take care that BitBake does not revert your 
changes when building. Refer to the Building the Linux kernel recipe in this chapter for 
additional details.

There's more...
You can make your kernel changes permanent with the following steps:

1. Create a default configuration from your .config file from the kernel source  
directory and a clean environment (not configured with the setup-environment 
script) by running:
$ make ARCH=arm savedefconfig

2. Copy the defconfig file from your kernel build folder to your kernel recipe's 
defconfig file as follows:
$ cp defconfig /opt/yocto/fsl-community-bsp/sources/meta-bsp-  
  custom/recipes-kernel/linux/linux-wandboard-3.10.17

Alternatively, you may use BitBake from the build directory as follows:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c savedefconfig virtual/kernel

This also creates a defconfig file in the Linux kernel's source directory, which needs to be 
copied to your recipe.

Using configuration fragments
The linux-yocto style kernels can also apply isolated kernel configuration changes defined 
in the kernel configuration fragments; for example:

spidev.cfg:
  CONFIG_SPI_SPIDEV=y

Kernel configuration fragments are appended to SRC_URI in the same way, and are applied 
over the defconfig file.

The linux-yocto style kernels (not the one for the Wandboard though) also provide a set of 
tools to manage kernel configuration:

 f To configure the kernel from the defconfig file and the supplied configuration 
fragments, execute:
$ bitbake -f -c kernel_configme linux-yocto
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 f To create a configuration fragment with your changes, execute:
$ bitbake -c diffconfig linux-yocto

 f To validate the kernel configuration, you may run:

$ bitbake -f -c kernel_configcheck linux-yocto

Building the Linux kernel
In this recipe, we will go through the development workflows described earlier using the Linux 
kernel as an example.

How to do it...
We will see how the following development workflows are applied to the Linux kernel:

 f External development

 f Working directory development

 f External source development

How it works...
Let's explain the three methodologies listed previously in detail.

External development
When compiling outside of the Yocto build environment, we can still use the Yocto-provided 
toolchain to build. The process is as follows:

1. We will use the Yocto project cross-compilation toolchain already installed in  
your host.

2. Clone the wandboard-org linux-wandboard repository locally:
$ cd /opt/yocto

$ git clone https://github.com/wandboard-org/linux.git linux-
wandboard

$ cd linux-wandboard

3. Go to the branch specified in the linux-wandboard_3.10.17.bb recipe:
$ git checkout -b wandboard_imx_3.10.17_1.0.2_ga  
  origin/wandboard_imx_3.10.17_1.0.2_ga
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4. Compile the kernel source as follows:

 � Prepare the environment as follows:
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon-  
  poky-linux-gnueabi

 � Configure the kernel with the default machine configuration:
$ cp /opt/yocto/fsl-community-bsp/sources/meta-bsp-custom/
recipes-kernel/linux/linux-wandboard-3.10.17/defconfig arch/
arm/configs/wandboard-quad_defconfig

$ make wandboard-quad_defconfig

 � Compile the kernel image, modules, and the device tree file with:
$ make

You can optionally pass a -jN argument to make to build multithreaded.

This will build the kernel's zImage, modules, and device tree files.

Older Yocto environment setup scripts set the LD variable to use gcc, 
but the Linux kernel uses ld instead. If your compilation is failing, try 
the following before running make:
$ unset LDFLAGS

To build only modules, you may run:
$ make modules

And to build only device tree files, you may run:

$ make dtbs

 � Copy the kernel image and device tree file to the TFTP root to test using 
network booting:

$ cp arch/arm/boot/zImage arch/arm/boot/dts/imx6q-  
  wandboard.dtb /var/lib/tftpboot

Some other embedded Linux targets might need to compile a uImage if the U-Boot 
bootloader is not compiled with zImage booting support:
$ make LOADADDR=0x10800000 uImage
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The mkimage tool is part of the Yocto toolchain when built with the 
FSL community BSP. We will see how to build and install an SDK in the 
Preparing and using an SDK recipe in Chapter 4, Application Development.
If it is not included in your toolchain, you can install the tool in your host 
using the following command:
$ sudo apt-get install u-boot-tools

LOADADDR is the U-Boot entry point; that is, the address where U-Boot will place the 
kernel in memory. It is defined in the meta-fsl-arm imx-base.inc file:

UBOOT_ENTRYPOINT_mx6  = "0x10008000"

External source development
As we did with U-Boot before, we will use the Yocto build system, pointing it to a local directory 
with a clone of the Linux source repository. We will use the local Git repository cloned in the 
earlier section.

We configure for external development in our conf/local.conf file using the  
following code:

INHERIT += "externalsrc"
EXTERNALSRC_pn-linux-wandboard = "/opt/yocto/linux-wandboard"
EXTERNALSRC_BUILD_pn-linux-wandboard = "/opt/yocto/linux-  
  wandboard"

Remember to remove this configuration when using the working directory 
development methodology explained next in this recipe.

But, just as before, the compilation fails with U-Boot. In this case, the linux-wandboard recipe, 
not being a linux-yocto style recipe, is not prepared for external source compilation and it 
fails in the configuration task.

Kernel developers prefer to compile the kernel externally as we saw earlier, so this scenario is 
not likely to be fixed soon.

Working directory development
Typically we work with patches and use this development workflow when we have a small 
amount of changes or we don't own the source repository.
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A typical workflow when working on a modification would be:

1. Start the kernel package compilation from scratch:
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c cleanall virtual/kernel

This will erase the build folder, shared state cache, and downloaded package 
source.

2. Configure the kernel as follows:
$ bitbake -c configure virtual/kernel

This will convert the machine defconfig file into a .config file and call 
oldconfig to validate the configuration with the kernel source.

You can optionally add your own configuration changes with:

$ bitbake -c menuconfig virtual/kernel

3. Start a development shell on the kernel:
$ bitbake -c devshell virtual/kernel

This will fetch, unpack, and patch the kernel sources and spawn a new shell with the 
environment ready for kernel compilation. The new shell will change to the kernel 
build directory which contains a local Git repository.

4. Perform our modifications, including kernel configuration changes.

5. Leave the devshell open and go back to the terminal with the sourced Yocto 
environment to compile the source without erasing our modifications as follows:
$ bitbake -C compile virtual/kernel

Note the capital C. This invokes the compile task but also all the tasks that follow it.

The newly compiled kernel image is available under tmp/deploy/images/
wandboard-quad.

6. Test your changes. Typically, we would work from a network-booted system, so we 
would copy the kernel image and the device tree file to the TFTP server root and boot 
the target with them using the following command:
$ cd tmp/deploy/images/wandboard-quad/

$ cp zImage-wandboard-quad.bin zImage-imx6q-wandboard.dtb  
  /var/lib/tftpboot
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Refer to the Configuring network booting for a development setup recipe in Chapter 
1, The Build System for details.

Alternatively, the U-Boot bootloader can boot a Linux zImage kernel from memory with 
its corresponding device tree using the following syntax:
> bootz <kernel_addr> - <dtb_addr>

For example, we can fetch images from TFTP and boot the Wandboard images as 
follows:
> tftp ${loadaddr} ${image}

> tftp ${fdt_addr} ${fdt_file}

> bootz ${loadaddr} - ${fdt_addr}

If we were using an initramdisk, we would pass it as the second argument. Since we 
aren't, we use a dash instead.

The command to boot a uImage Linux kernel image from memory would use bootm 
instead, as in:

> bootm <kernel_addr> - <dtb_addr>

7. Go back to the devshell and commit your change to the local Git repository:
$ git add --all .

$ git commit -s -m "Well thought commit message"

8. Generate a patch into the kernel recipe patch directory:
$ git format-patch -1 -o /opt/yocto/fsl-community-  
  bsp/sources/meta-bsp-custom/recipes-kernel/linux/linux-  
  wandboard-3.10.17

9. Finally, add the patch to the kernel recipe as previously described.

Building external kernel modules
The Linux kernel has the ability to load modules at runtime that extend the kernel 
functionality. Kernel modules share the kernel's address space and have to be linked against 
the kernel they are going to be loaded onto. Most device drivers in the Linux kernel can either 
be compiled into the kernel itself (built-in) or as loadable kernel modules that need to be 
placed in the root filesystem under the /lib/modules directory.

The recommended approach to develop and distribute a kernel module is to do it with the 
kernel source. A module in the kernel tree uses the kernel's kbuild system to build itself, so as 
long as it is selected as module in the kernel configuration and the kernel has module support 
enabled, Yocto will build it.
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However, it is not always possible to develop a module in the kernel. Common examples are 
hardware manufacturers who provide Linux drivers for a wide variety of kernel versions and 
have an internal development process separated from the kernel community. The internal 
development work is usually released first as an external out-of-tree module, although it is 
common for some or all of these internal developments to finish up in the mainstream kernel 
eventually. However, upstreaming is a slow process and hardware companies will therefore 
prefer to develop internally first.

It's worth remembering that the Linux kernel is covered under a GPLv2 license, so Linux 
kernel modules should be released with a compatible license. We will cover licenses in more 
detail in the following chapters.

Getting ready
To compile an external kernel module with Yocto, we first need to know how we would link  
the module source with the kernel itself. An external kernel module is also built using the 
kbuild system of the Linux kernel it is going to be linked against, so the first thing we  
need is a Makefile:

obj-m:= hello_world.o

SRC := $(shell pwd)
all:
        $(MAKE) -C $(KERNEL_SRC) M=$(SRC)

modules_install:
        $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

clean:
        rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
        rm -f Module.markers Module.symvers modules.order
        rm -rf .tmp_versions Modules.symvers

The Makefile file just wraps the make command used to compile a module on a  
Linux system:

make -C $(KERNEL_SRC) M=$(SRC)

Here, make is instructed to build in the location of the kernel source, and the M argument tells 
kbuild it is building a module at the specified location.

And then we code the source of the module itself (hello_world.c):

/ *
 * This program is free software; you can redistribute it and/or  
  modify
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 * it under the terms of the GNU General Public License as  
  published by
 * the Free Software Foundation; either version 2 of the License,  
  or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public  
  License
 * along with this program. If not, see  
  <http://www.gnu.org/licenses/>.
 */

#include <linux/module.h>

static int hello_world_init(void)
{
        printk("Hello world\n");
        return 0;
}

static void hello_world_exit(void)
{
        printk("Bye world\n");
}
module_init(hello_world_init);
module_exit(hello_world_exit);

MODULE_LICENSE("GPL v2");

It's worth remembering that we need to compile against a kernel source that has already been 
built. Use the following steps for compilation:

1. We prepare the environment using the Yocto toolchain environment setup script:
$ source /opt/poky/1.7.1/environment-setup-armv7a-vfp-neon-  
  poky-linux-gnueabi

2. Next we build the module. We execute the following from the module  
source directory:

$ KERNEL_SRC=/opt/yocto/linux-wandboard make
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How to do it...
Once we know how to compile the module externally, we are ready to prepare a Linux kernel 
module Yocto recipe for it.

We place the module source file and Makefile in recipes-kernel/hello-world/
files/ inside our meta-bsp-custom layer. We then create a recipes-kernel/hello-
world/hello-world.bb file with the following content:

# Copyright (C) 2015 Packt Publishing.

SUMMARY = "Simplest hello world kernel module."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-  
  2.0;md5=801f80980d171dd6425610833a22dbe6"

inherit module

SRC_URI = " \
    file://hello_world.c \
    file://Makefile \
"

S = "${WORKDIR}"

COMPATIBLE_MACHINE = "(wandboard)"

The recipe defines the source directory and the two module files after inheriting the module 
class, which takes care of everything. The KERNEL_SRC argument in our Makefile is set by 
the module class to STAGING_KERNEL_DIR, the location where the kernel class places the 
Linux kernel headers needed for external module compilation.

We build it with the following command:

$ bitbake hello-world

The resulting module is called hello_world.ko, with the kernel-module prefix being 
added to the package name by the module bbclass automatically.



Chapter 2

377

There's more...
The previous instructions will build the module but will not install it in the root filesystem. For 
that, we need to add a dependency to the root filesystem. This is usually done in machine 
configuration files using MACHINE_ESSENTIAL (for modules that are needed to boot) or 
MACHINE_EXTRA (if they are not essential for boot but needed otherwise), variables.

 f The dependencies that are essential to boot are:

 � MACHINE_ESSENTIAL_EXTRA_RDEPENDS: The build will fail if they can't  
be found

 � MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS: The build will not fail if  
they can't be found

 f The dependencies that are not essential to boot are:

 � MACHINE_EXTRA_RDEPENDS: The build will fail if they can't be found

 � MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS: The build will not fail if they 
can't be found

Debugging the Linux kernel and modules
We will highlight some of the most common methods employed by kernel developers to debug 
kernel issues.

How to do it...
Above all, debugging the Linux kernel remains a manual process, and the most important 
developer tool is the ability to print debug messages.

The kernel uses the printk function, which is very similar syntactically to the printf function 
call from standard C libraries, with the addition of an optional log level. The allowed formats are 
documented in the kernel source under Documentation/printk-formats.txt.

The printk functionality needs to be compiled into the kernel with the CONFIG_PRINTK 
configuration variable. You can also configure the Linux kernel to prepend a precise 
timestamp to every message with the CONFIG_PRINTK_TIME configuration variable, or 
even better, with the printk.time kernel command-line argument or through sysfs under /
sys/module/printk/parameters. Usually all kernels contain printk support, and the 
Wandboard kernel does too, although it is commonly removed on production kernels for small 
embedded systems.
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The printk function can be used in any context, interrupt, non-maskable interrupt (NMI), or 
scheduler. Note that using it inside interrupt context is not recommended.

A useful debug statement to be used during development could be:

printk(KERN_INFO "[%s:%d] %pf -> var1: %d var2: %d\n",  
  __FUNCTION__, __LINE__, __builtin_return_address(0), var1,  
  var2);

The first thing to note is that there is no comma between the log level macro and the print 
format. We then print the function and line where the debug statement is placed and then the 
parent function. Finally, we print the variables we are actually interested in.

How it works...
The available log levels in printk are presented in the following table:

Type Symbol Description
Emergency KERN_EMERG System is unstable and about to crash
Alert KERN_ALERT Immediate action is needed
Critical KERN_CRIT Critical software or hardware failure
Error KERN_ERR Error condition
Warning KERN_WARNING Nothing serious, but might indicate a problem
Notice KERN_NOTICE Nothing serious, but user should take note
Information KERN_INFO System information
Debug KERN_DEBUG Debug messages

If no log level is specified, the default log message as configured in the kernel configuration is 
used. By default, this is KERN_WARNING.

All printk statements go to the kernel log buffer, which may wrap around, except debug 
statements, which only appear if the DEBUG symbol is defined. We will see how to enable 
kernel debug messages soon. The printk log buffer must be a power of two, and its size 
should be set in the CONFIG_LOG_BUF_SHIFT kernel configuration variable. You may modify 
it with the log_buf_len kernel command-line parameter.

We print the kernel log buffer with the dmesg command. Also, a Yocto user space will 
have a kernel log daemon running that will log kernel messages to disk under /var/log/
messages.
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Messages above the current console log level will also appear on the console immediately. 
The ignore_loglevel kernel command-line argument, also available under /sys/
module/printk/parameters, may be used to print all kernel messages to the console 
independently of the log level.

You can also change the log level at runtime via the proc filesystem. The /proc/sys/
kernel/printk file contains the current, default, minimum, and boot time default log levels. 
To change the current log level to the maximum, execute:

$ echo 8 > /proc/sys/kernel/printk

You can also set the console log level with the dmesg tool as follows:

$ dmesg -n 8

To make the change persistent, you can pass a log level command-line parameter to the 
kernel, or on some Yocto root filesystem images, you could also use a /etc/sysctl.conf 
file (those that install the procps package).

There's more...
Linux drivers do not use the printk function directly. They use, in order of preference, 
subsystem-specific messages (such as netdev or v4l) or the dev_* and pr_* family of 
functions. The latter are described in the following table:

Device message Generic message Printk symbol
dev_emerg pr_emerg KERN_EMERG

dev_alert pr_alert KERN_ALERT

dev_crit pr_crit KERN_CRIT

dev_err pr_err KERN_ERR

dev_warn pr_warn KERN_WARNING

dev_notice pr_notice KERN_NOTICE

dev_info pr_info KERN_INFO

dev_dbg pr_debug KERN_DEBUG

To enable the debug messages within a driver, you may do either of these:

 f Define DEBUG in a macro before any other header file in your driver source, as follows:
#define DEBUG

 f Use the dynamic debug kernel feature. You can then enable/disable all dev_dbg and 
pr_debug debug messages with granularity through debugfs.
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Using dynamic debug
To use the dynamic debug functionality in the Linux kernel, follow these steps:

1. Make sure your kernel is compiled with dynamic debugging (CONFIG_DYNAMIC_
DEBUG).

2. Mount the debug filesystem if it hasn't already been mounted:
$ mount -t debugfs nodev /sys/kernel/debug

3. Configure the debug though the dynamic_debug/control folder. It accepts a 
whitespace-separated sequence of words:

 � func <function name>

 � file <filename>

 � module <module name>

 � format <pattern>

 � line <line or line range>

 � + <flag>: This adds the specified flag

 � - <flag>: This one removes the specified flag

 � = <flag>: This sets the specified flag

The flags are defined as follows:

 � f: This flag includes the function name in the message

 � l: This flag includes the line number in the message

 � m: This flag includes the module name in the message

 � p: This flag enables the debug message

 � t: This flag includes the thread ID in non-interrupt context messages

4. By default all debug messages are disabled. The control file contains all the available 
debug points, and by default they have no flags enabled (marked as =_).

5. Now we will enable the debug as follows:

 � Enable all debug statements in a file:
echo -n 'file <filename> +p' >  
  /sys/kernel/debug/dynamic_debug/control

 � Optionally, you could run a specific debug statement:

$ echo -n 'file <filename> line nnnn +p' >  
  /sys/kernel/debug/dynamic_debug/control
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6. To list all enabled debug statements, we use the following command:

$ awk '$3 != "=_"' /sys/kernel/debug/dynamic_debug/control

To make the debug changes persistent, we can pass dyndbg="<query>" or module.
dyndbg="<query>" to the kernel in the command-line arguments.

Note that the query string needs to be passed surrounded by quotes so that it is correctly 
parsed. You can concatenate more than one query in the command-line argument by using a 
semicolon to separate them; for example, dyndbg="file mxc_v4l2_capture.c +pfl; 
file ipu_bg_overlay_sdc.c +pfl" 

Rate-limiting debug messages
There are rate-limiting and one-shot extensions to the dev_*, pr_*, and printk family  
of functions:

 f printk_ratelimited(), pr_*_ratelimited(), and dev_*_ratelimited() 
print no more than 10 times in a 5 * HZ interval

 f printk_once(), pr_*_once(), and dev_*_once() will print only once.

And you also have utility functions to dump a buffer in hexadecimal; for example, print_
hex_dump_bytes().

See also
 f The dynamic debug is documented in the Linux kernel source under 

Documentation/dynamic-debug-howto.txt

Debugging the Linux kernel booting process
We have seen the most general techniques for debugging the Linux kernel. However, some 
special scenarios require the use of different methods. One of the most common scenarios in 
embedded Linux development is the debugging of the booting process. This recipe will explain 
some of the techniques used to debug the kernel's booting process.

How to do it...
A kernel crashing on boot usually provides no output whatsoever on the console. As daunting 
as that may seem, there are techniques we can use to extract debug information. Early 
crashes usually happen before the serial console has been initialized, so even if there were 
log messages, we would not see them. The first thing we will show is how to enable early log 
messages that do not need the serial driver.

In case that is not enough, we will also show techniques to access the log buffer in memory.



The BSP Layer

382

How it works...
Debugging booting problems have two distinctive phases, before and after the serial console 
is initialized. After the serial is initialized and we can see serial output from the kernel, 
debugging can use the techniques described earlier.

Before the serial is initialized, however, there is a basic UART support in ARM kernels that 
allows you to use the serial from early boot. This support is compiled in with the CONFIG_
DEBUG_LL configuration variable.

This adds supports for a debug-only series of assembly functions that allow you to output 
data to a UART. The low-level support is platform specific, and for the i.MX6, it can be found 
under arch/arm/include/debug/imx.S. The code allows for this low-level UART to be 
configured through the CONFIG_DEBUG_IMX_UART_PORT configuration variable.

We can use this support directly by using the printascii function as follows:

extern void printascii(const char *);
printascii("Literal string\n");

However, much more preferred would be to use the early_print function, which makes use 
of the function explained previously and accepts formatted input in printf style; for example:

early_print("%08x\t%s\n", p->nr, p->name);

Dumping the kernel's printk buffer from the bootloader
Another useful technique to debug Linux kernel crashes at boot is to analyze the kernel log 
after the crash. This is only possible if the RAM memory is persistent across reboots and does 
not get initialized by the bootloader.

As U-Boot keeps the memory intact, we can use this method to peek at the kernel login 
memory in search of clues.

Looking at the kernel source, we can see how the log ring buffer is set up in kernel/
printk/printk.c and also note that it is stored in __log_buf.

To find the location of the kernel buffer, we will use the System.map file created by the Linux 
build process, which maps symbols with virtual addresses using the following command:

$grep __log_buf System.map

80f450c0 b __log_buf

To convert the virtual address to physical address, we look at how __virt_to_phys() is 
defined for ARM:

x - PAGE_OFFSET + PHYS_OFFSET
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The PAGE_OFFSET variable is defined in the kernel configuration as:

config PAGE_OFFSET
        hex
        default 0x40000000 if VMSPLIT_1G
        default 0x80000000 if VMSPLIT_2G
        default 0xC0000000

Some of the ARM platforms, like the i.MX6, will dynamically patch the __virt_to_phys() 
translation at runtime, so PHYS_OFFSET will depend on where the kernel is loaded into 
memory. As this can vary, the calculation we just saw is platform specific.

For the Wandboard, the physical address for 0x80f450c0 is 0x10f450c0.

We can then force a reboot using a magic SysRq key, which needs to be enabled in the kernel 
configuration with CONFIG_MAGIC_SYSRQ, but is enabled in the Wandboard by default:

$ echo b > /proc/sysrq-trigger

We then dump that memory address from U-Boot as follows:

> md.l 0x10f450c0

10f450c0: 00000000 00000000 00210038 c6000000    ........8.!.....

10f450d0: 746f6f42 20676e69 756e694c 6e6f2078    Booting Linux on

10f450e0: 79687020 61636973 5043206c 78302055     physical CPU 0x

10f450f0: 00000030 00000000 00000000 00000000    0...............

10f45100: 009600a8 a6000000 756e694c 65762078    ........Linux ve

10f45110: 6f697372 2e33206e 312e3031 2e312d37    rsion 3.10.17-1.

10f45120: 2d322e30 646e6177 72616f62 62672b64    0.2-wandboard+gb

10f45130: 36643865 62323738 20626535 656c6128    e8d6872b5eb (ale

10f45140: 6f6c4078 696c2d67 2d78756e 612d7068    x@log-linux-hp-a

10f45150: 7a6e6f67 20296c61 63636728 72657620    gonzal) (gcc ver

10f45160: 6e6f6973 392e3420 2820312e 29434347    sion 4.9.1 (GCC)

10f45170: 23202920 4d532031 52502050 504d4545     ) #1 SMP PREEMP

10f45180: 75532054 6546206e 35312062 3a323120    T Sun Feb 15 12:

10f45190: 333a3733 45432037 30322054 00003531    37:37 CET 2015..

10f451a0: 00000000 00000000 00400050 82000000    ........P.@.....

10f451b0: 3a555043 4d524120 50203776 65636f72    CPU: ARMv7 Proce
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There's more...
Another method is to store the kernel log messages and kernel panics or oops into persistent 
storage. The Linux kernel's persistent store support (CONFIG_PSTORE) allows you to log in to 
the persistent memory kept across reboots.

To log panic and oops messages into persistent memory, we need to configure the kernel with 
the CONFIG_PSTORE_RAM configuration variable, and to log kernel messages, we need to 
configure the kernel with CONFIG_PSTORE_CONSOLE.

We then need to configure the location of the persistent storage on an unused memory 
location, but keep the last 1 MB of memory free. For example, we could pass the following 
kernel command-line arguments to reserve a 128 KB region starting at 0x30000000:

ramoops.mem_address=0x30000000 ramoops.mem_size=0x200000

We would then mount the persistent storage by adding it to /etc/fstab so that it is 
available on the next boot as well:

/etc/fstab:
pstore  /pstore  pstore  defaults  0  0

We then mount it as follows:

# mkdir /pstore
# mount /pstore

Next, we force a reboot with the magic SysRq key:

# echo b > /proc/sysrq-trigger

On reboot, we will see a file inside /pstore:

-r--r--r--  1 root root 4084 Sep 16 16:24 console-ramoops

This will have contents such as the following:

SysRq : Resetting

CPU3: stopping

CPU: 3 PID: 0 Comm: swapper/3 Not tainted 3.14.0-rc4-1.0.0-wandboard-
37774-g1eae

[<80014a30>] (unwind_backtrace) from [<800116cc>] (show_stack+0x10/0x14)

[<800116cc>] (show_stack) from [<806091f4>] (dump_stack+0x7c/0xbc)

[<806091f4>] (dump_stack) from [<80013990>] (handle_IPI+0x144/0x158)
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[<80013990>] (handle_IPI) from [<800085c4>] (gic_handle_irq+0x58/0x5c)

[<800085c4>] (gic_handle_irq) from [<80012200>] (__irq_svc+0x40/0x70)

Exception stack(0xee4c1f50 to 0xee4c1f98)

We should move it out of /pstore or remove it completely so that it doesn't occupy memory.

Using the kernel function tracing system
Recent versions of the Linux kernel contain a set of tracers that, by instrumenting the kernel, 
allow you to analyze different areas like:

 f Interrupt latency

 f Preemption latency

 f Scheduling latency

 f Process context switches

 f Event tracing

 f Syscalls

 f Maximum stack

 f Block layer

 f Functions

The tracers have no performance overhead when not enabled.

Getting ready...
The tracing system can be used in a wide variety of debugging scenarios, but one of the most 
common tracers used is the function tracer. It instruments every kernel function with a NOP 
call that is replaced and used to trace the kernel functions when a trace point is enabled.

To enable the function tracer in the kernel, use the CONFIG_FUNCTION_TRACER and 
CONFIG_FUNCTION_GRAPH_TRACER configuration variables.

The kernel tracing system is controlled via a tracing file in the debug filesystem, which is 
mounted by default on Yocto's default images. If not, you can mount it with:

$ mount -t debugfs nodev /sys/kernel/debug

We can list the available tracers in our kernel by executing:

$ cat /sys/kernel/debug/tracing/available_tracers

function_graph function nop
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How to do it...
You can enable a tracer by echoing its name to the current_tracer file. No tracers are 
enabled by default:

$ cat /sys/kernel/debug/tracing/current_tracer

nop

You can disable all tracers by executing the following command:

$ echo -n nop > /sys/kernel/debug/tracing/current_tracer

We use echo -n to avoid the trailing newline when echoing to files in sysfs.

To enable the function tracer, you would execute:

$ echo -n function > /sys/kernel/debug/tracing/current_tracer

A prettier graph can be obtained by using the function graph tracer as follows:

$ echo -n function_graph  > /sys/kernel/debug/tracing/current_tracer

How it works...
You can look at the captured trace in human-readable format via the trace and trace_
pipe files, with the latter blocking on read and consuming the data.

The function tracer provides the following output:

$ cat  /sys/kernel/debug/tracing/trace_pipe

root@wandboard-quad:~# cat /sys/kernel/debug/tracing/trace_pipe

              sh-394   [003] ...1    46.205203: mutex_unlock <-  
  tracing_set_tracer

              sh-394   [003] ...1    46.205215: __fsnotify_parent <- 

  vfs_write

              sh-394   [003] ...1    46.205218: fsnotify <-vfs_write

              sh-394   [003] ...1    46.205220: __srcu_read_lock <-  
  fsnotify

              sh-394   [003] ...1    46.205223: preempt_count_add <-  
  __srcu_read_lock

              sh-394   [003] ...2    46.205226: preempt_count_sub <-  
  __srcu_read_lock

              sh-394   [003] ...1    46.205229: __srcu_read_unlock <-  
  fsnotify



Chapter 2

387

              sh-394   [003] ...1    46.205232: __sb_end_write <-  
  vfs_write

              sh-394   [003] ...1    46.205235: preempt_count_add <-  
  __percpu_counter_add

              sh-394   [003] ...2    46.205238: preempt_count_sub <-  
  __percpu_counter_add

              sh-394   [003] d..1    46.205247: gic_handle_irq <-  
  __irq_usr

          <idle>-0     [002] d..2    46.205247: ktime_get <-  
  cpuidle_enter_state

The format for the function tracer output is:

task-PID [cpu-nr] irqs-off need-resched hard/softirq preempt-depth  
  delay-timestamp function

The graphical function tracer output is as follows:

$ cat /sys/kernel/debug/tracing/trace_pipe

 3)   ==========> |

 3)               |  gic_handle_irq() {

 2)   ==========> |

 2)               |  gic_handle_irq() {

 3)   0.637 us    |    irq_find_mapping();

 2)   0.712 us    |    irq_find_mapping();

 3)               |    handle_IRQ() {

 2)               |    handle_IRQ() {

 3)               |      irq_enter() {

 2)               |      irq_enter() {

 3)   0.652 us    |        rcu_irq_enter();

 2)   0.666 us    |        rcu_irq_enter();

 3)   0.591 us    |        preempt_count_add();

 2)   0.606 us    |        preempt_count_add();

The format for the grapical function tracer output is:

cpu-nr) timestamp | functions
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There's more...
The kernel tracing system allows us to insert traces in the code by using the trace_printk 
function call. It has the same syntax as printk and can be used in the same scenarios, 
interrupts, NMI, or scheduler contexts.

Its advantage is that as it prints to the tracing buffer in memory and not to the console, it has 
much lower delays than printk, so it is useful to debug scenarios where printk is affecting 
the system's behavior; for example, when masking a timing bug.

Tracing is enabled once a tracer is configured, but whether the trace writes to the ring buffer 
or not can be controlled. To disable the writing to the buffer, use the following command:

$ echo 0 > /sys/kernel/debug/tracing/tracing_on

And to re-enable it, use the following command:

$ echo 1 > /sys/kernel/debug/tracing/tracing_on

You can also enable and disable the tracing from kernel space by using the tracing_on and 
tracing_off functions.

Inserted traces will appear in any tracer, including the function tracer, in which case it will 
appear as a comment.

Filtering function traces
You can get finer granularity in the functions being traced by using the dynamic tracer, which 
can be enabled with the CONFIG_DYNAMIC_FTRACE configuration variable. This is enabled 
with the tracing functionality by default. This adds two more files, set_ftrace_filter and 
set_ftrace_notrace. Adding functions to set_ftrace_filter will trace only those 
functions, and adding them to set_ftrace_notrace will not trace them, even if they are 
also added to set_ftrace_filter.

The set of available function names that can be filtered may be obtained by executing the 
following command:

$ cat /sys/kernel/debug/tracing/available_filter_functions

Functions can be added with:

$ echo -n <function_name> >>   
  /sys/kernel/debug/tracing/set_ftrace_filter

Note that we use the concatenation operator (>>) so that the new function is appended to  
the existing ones.
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And functions can also be removed with:

$ echo -n '!<function>' >>  /sys/kernel/debug/tracing/set_ftrace_filter

To remove all functions, just echo a blank line into the file:

$ echo >  /sys/kernel/debug/tracing/set_ftrace_filter

There is a special syntax that adds extra flexibility to the filtering: <function>:<command>:
[<parameter>]

Let's explain each of the components individually:

 f function: This specifies the function name. Wildcards are allowed.

 f command: This has the following attributes:

 � mod: This enables the given function name only in the module specified in 
the parameter

 � traceon/traceoff: This enables or disables tracing when the specified 
function is hit the numbers of times given in the parameter, or always if no 
parameter is given.

 � dump: Dump the contents of the tracing buffer when the given function is hit.

Here are some examples:

$ echo -n 'ipu_*:mod:ipu' >  
  /sys/kernel/debug/tracing/set_ftrace_filter

$ echo -n 'suspend_enter:dump' >  
  /sys/kernel/debug/tracing/set_ftrace_filter

$ echo -n 'suspend_enter:traceon' >  
  /sys/kernel/debug/tracing/set_ftrace_filter

Enabling trace options
Traces have a set of options that can be individually enabled in the /sys/kernel/debug/
tracing/options directory. Some of the most useful options include:

 f print-parent: This option displays the caller function too

 f trace_printk: This option disables trace_printk writing

Using the function tracer on oops
Another alternative to log the kernel messages on oops or panic is to configure the function 
tracer to dump its buffer contents to the console so that the events leading up to the crash 
can be analyzed. Use the following command:

$ echo 1 > /proc/sys/kernel/ftrace_dump_on_oops
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The sysrq-z combination will also dump the contents of the tracing buffer to the console, as 
does calling ftrace_dump() from the kernel code.

Getting a stack trace for a given function
The tracing code can create a backtrace for every function called. However, this is a 
dangerous feature and should only be used with a filtered selection of functions. Have a look 
at the following commands:

$ echo -n <function_name> > /sys/kernel/debug/tracing/set_ftrace_filter

$ echo -n function > /sys/kernel/debug/tracing/current_tracer

$ echo 1 > /sys/kernel/debug/tracing/options/func_stack_trace

$ cat /sys/kernel/debug/tracing/trace

$ echo 0 > /sys/kernel/debug/tracing/options/func_stack_trace

$ echo > /sys/kernel/debug/tracing/set_ftrace_filter

Configuring the function tracer at boot
The function tracer can be configured in the kernel command-line arguments and started as 
early as possible in the boot process. For example, to configure the graphic function tracer 
and filter some functions, we would pass the following arguments from the U-Boot bootloader 
to the kernel:

ftrace=function_graph ftrace_filter=mxc_hdmi*,fb_show*

See also
 f More details can be found in the kernel source documentation folder at 

Documentation/trace/ftrace.txt

Managing the device tree
The device tree is a data structure that is passed to the Linux kernel to describe the physical 
devices in a system.

In this recipe, we will explain how to work with device trees.

Getting ready
Devices that cannot be discovered by the CPU are handled by the platform devices API 
on the Linux kernel. The device tree replaces the legacy platform data where hardware 
characteristics were hardcoded in the kernel source so that platform devices can be 
instantiated. Before device trees came into use, the bootloader (for example, U-Boot) had to 
tell the kernel what machine type it was booting. Moreover, it had to pass other information 
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such as memory size and location, kernel command line, and more.

The device tree should not be confused with the Linux kernel configuration. The device  
tree specifies what devices are available and how they are accessed, not whether the 
hardware is used.

The device tree was first used by the PowerPC architecture and was adopted later on by ARM 
and all others, except x86. It was defined by the Open Firmware specification, which defined 
the flattened device tree format in Power.org Standard for Embedded Power Architecture 
Platform Requirements (ePAPR), which describes an interface between a boot program and 
a client.

Platform customization changes will usually happen in the device tree without the need to 
modify the kernel source.

How to do it...
A device tree is defined in a human-readable device tree syntax (.dts) text file. Every board 
has one or several DTS files that correspond to different hardware configurations.

These DTS files are compiled into Device Tree Binary (DTB) blobs, which have the  
following properties:

 f They are relocatable, so pointers are never used internally

 f They allow for dynamic node insertion and removal

 f They are small in size

Device tree blobs can either be attached to the kernel binary (for legacy compatibility) or, as is 
more commonly done, passed to the kernel by a bootloader like U-Boot.

To compile them, we use a Device Tree Compiler (DTC), which is included in the kernel source 
inside scripts/dtc and is compiled along with the kernel itself, or we could alternatively 
install it as part of your distribution. It is recommended to use the DTC compiler included in 
the kernel tree.

The device trees can be compiled independently or with the Linux kernel kbuild system, as we 
saw previously. However, when compiling independently, modern device trees will need to be 
preprocessed by the C preprocessor first.

It's important to note that the DTC currently performs syntax checking but no binding 
checking, so invalid DTS files may be compiled, and the resulting DTB file may result in a non-
booting kernel. Invalid DTB files usually hang the Linux kernel very early on so there will be no 
serial output.

The bootloader might also modify the device tree before passing it to the kernel.
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How it works...
The DTS file for the wandboard-quad variant is under arch/arm/boot/dts/imx6q-
wandboard.dts and looks as follows:

#include "imx6q.dtsi"
#include "imx6qdl-wandboard.dtsi"

/ {
    model = "Wandboard i.MX6 Quad Board";
    compatible = "wand,imx6q-wandboard", "fsl,imx6q";

    memory {
        reg = <0x10000000 0x80000000>;
    };
};

What we see here is the device tree root node that has no parents. The rest of the nodes will 
have a parent. The structure of a node can be represented as follows:

node@0{
  an-empty-property;
  a-string-property = "a string";
  a-string-list-property = "first string", "second string";
  a-cell-property = <1>;
  a-cell-property = <0x1 0x2>;
  a-byte-data-property = [0x1 0x2 0x3 0x4];
  a-phandle-property = <&node1>;
}

The node properties can be:

 f Empty

 f Contain one or more strings

 f Contain one or more unsigned 32-bit numbers, called cells

 f Contain a binary byte stream

 f Be a reference to another node, called a phandle

The device tree is initially parsed by the C preprocessor and it can include other DTS files. 
These include files have the same syntax and are usually appended with the dtsi suffix. File 
inclusion can also be performed with the device tree /include/ operator, although #include 
is recommended, and they should not be mixed. In this case, both imx6q.dtsi and imx6qdl-
wandboard.dtsi are overlaid with the contents of imx6q-wandboard.dts.
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Device tree nodes are documented in bindings contained in the Documentation/
devicetree/bindings/ directory of the kernel source. New nodes must include the 
corresponding bindings, and these must be reviewed and accepted by the device tree 
maintainers. Theoretically, all bindings need to be maintained, although it is likely this will be 
relaxed in the future.

The compatible property
The most important property in a device tree node is the compatible property. In the root 
node, it defines the machine types the device tree is compatible with. The DTS file we just saw 
is compatible in order of precedence with the wand,imx6q-wandboard and fsl,imx6q 
machine types.

On a non-root node, it will define the driver match for the device tree node, binding a device 
with the driver. For example, a platform driver that binds with a node that defines a property 
that is compatible with fsl,imx6q-tempmon would contain the following excerpt:

static const struct of_device_id of_imx_thermal_match[] = {
    { .compatible = "fsl,imx6q-tempmon", },
    { /* end */ }
};
MODULE_DEVICE_TABLE(of, of_imx_thermal_match);

static struct platform_driver imx_thermal = {
    .driver = {
        .name   = "imx_thermal",
        .owner  = THIS_MODULE,
        .of_match_table = of_imx_thermal_match,
    },
    .probe      = imx_thermal_probe,
    .remove   = imx_thermal_remove,
};
module_platform_driver(imx_thermal);

The Wandboard device tree file
Usually, the first DTSI file to be included is skeleton.dtsi, which is the minimum device 
tree needed to boot, once a compatible property is added.

/ {
    #address-cells = <1>;
    #size-cells = <1>;
    chosen { };
    aliases { };
    memory { device_type = "memory"; reg = <0 0>; };
};
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Here are the other common top nodes:

 f chosen: This node defines fixed parameters set at boot, such as the Linux kernel 
command line or the initramfs memory location. It replaces the information 
traditionally passed in ARM tags (ATAGS).

 f memory: This node is used to define the location and size of RAM. This is usually 
filled in by the bootloader.

 f aliases: This defines shortcuts to other nodes.

 f address-cells and size-cells: These are used for memory addressability and will be 
discussed later on.

A summary representation of the imx6q-wandboard.dts file showing only the selected 
buses and devices follows:

#include "skeleton.dtsi"

/ {
    model = "Wandboard i.MX6 Quad Board";
    compatible = "wand,imx6q-wandboard", "fsl,imx6q";

    memory {};

    aliases {};

    intc: interrupt-controller@00a01000 {};

    soc {
        compatible = "simple-bus";

        dma_apbh: dma-apbh@00110000 {};

        timer@00a00600 {};

        L2: l2-cache@00a02000 {};

        pcie: pcie@0x01000000 {};

        aips-bus@02000000 { /* AIPS1 */
            compatible = "fsl,aips-bus", "simple-bus";

            spba-bus@02000000 {
                compatible = "fsl,spba-bus", "simple-bus";
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            };

            aipstz@0207c000 {};

            clks: ccm@020c4000 {};

            iomuxc: iomuxc@020e0000 {};
        };

        aips-bus@02100000 {
            compatible = "fsl,aips-bus", "simple-bus";
        };
    };
};

On this DTS, we can find several nodes defining system on chip (SoC) buses and several other 
nodes defining on-board devices.

Defining buses and memory-addressable devices
Buses are typically defined by the compatible property or the simple-bus property (to 
define a memory-mapped bus with no specific driver binding) or both. The simple-bus 
property is needed so that children nodes to the bus are registered as platform devices.

For example, the soc node is defined as follows:

soc {
    compatible = "simple-bus";
    #address-cells = <1>;
    #size-cells = <1>;
    ranges;

    aips-bus@02000000 { /* AIPS1 */
        compatible = "fsl,aips-bus", "simple-bus";
        reg = <0x02000000 0x100000>;
    }
}

The properties on the soc node are used to specify the memory addressability of the  
children nodes.

 f address-cells: This property indicates how many base address cells are needed 
in the reg property.

 f size-cells: This property indicates how many size cells are needed in the reg 
property.

 f ranges: This one describes an address translation between parent and child buses. 
In here, there is no translation and parent and child addressing is identical.
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In this case, any child of soc needs to define its memory addressing with a reg property that 
contains one cell for the address and one cell for the size. The aips-bus node does that with 
the following property:

reg = <0x02000000 0x100000>;

There's more...
When the device tree binary blob is loaded in memory by the Linux kernel, it is expanded into 
a flattened device tree that is accessed by offset. The fdt_* kernel functions are used to 
access the flattened device tree. This fdt is then parsed and transformed into a tree memory 
structure that can be efficiently accessed with the of_* family of functions (the prefix comes 
from Open Firmware).

Modifying and compiling the device tree in Yocto
To modify the device tree in the Yocto build system, we execute the following set of commands:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c devshell virtual/kernel

We then edit arch/arm/boot/dts/imx6q-wandboard.dts and compile the changes with:

$ make dtbs

If we want to create a device tree with extra space, let's say 1024 bytes (for example, to add 
nodes dynamically as explained in the next recipe), we need to specify it with a DTC flag  
as follows:

DTC_FLAGS="-p 1024" make dtbs

To deploy it, we exit the devshell and build the kernel from the project's build directory:

$ bitbake -c deploy -f virtual/kernel

See also
 f More information regarding device trees can be found at http://www.

devicetree.org

http://www.devicetree.org
http://www.devicetree.org
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Debugging device tree issues
This recipe will show some techniques to debug common problems with the device tree.

How to do it...
As mentioned before, problems with the syntax of device tree files usually result in the kernel 
crashing early in the boot process. Other type of problems are more subtle and usually appear 
once a driver is making use of the information provided by the device tree. For both types of 
problems, it is helpful to be able to look not only at the device tree syntax file, but also at the 
device tree blob, as it is read by both U-Boot and the Linux kernel. It may also be helpful to 
modify the device tree on the fly using the tools that U-Boot offers.

How it works...

Looking at the device tree from U-Boot
The U-Boot bootloader offers the fdt command to interact with a device tree blob. On the 
Wandboard's default environment, there are two variables related to the device tree:

 f fdt_file: This variable contains the name of the device tree file used

 f fdt_addr: This variable contains the location in memory to load the device tree

To fetch the Wandboard's device tree from the TFTP server location and place it in memory, 
we use the following command:

> tftp ${fdt_addr} ${fdt_file}

Once we have the device tree blob in memory, we tell U-Boot where it is located:

> fdt addr ${fdt_addr}

And then we can inspect nodes from the device tree using the full path to them from the 
root node. To inspect the selected levels, we use the list command, and to print complete 
subtrees, we use the print command:

> fdt list /cpus

cpus {

        #address-cells = <0x00000001>;

        #size-cells = <0x00000000>;

        cpu@0 {

        };

};
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> fdt print /cpus

cpus {

        #address-cells = <0x00000001>;

        #size-cells = <0x00000000>;

        cpu@0 {

                compatible = "arm,cortex-a9";

                device_type = "cpu";

                reg = <0x00000000>;

                next-level-cache = <0x0000001d>;

                [omitted]

        };

};

U-Boot can also attach new nodes to the tree assuming there is extra space in the device tree:

> fdt mknode / new-node

> fdt list /new-node 

new-node {

};

It can also create or remove properties:

> fdt set /new-node testprop testvalue

> fdt print /new-node                 

new-node {

        testprop = "testvalue";

};

> fdt rm /new-node testprop           

> fdt print /new-node      

new-node {

};

For example, it can be useful to modify the kernel command line through the chosen node.
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Looking at the device tree from the Linux kernel
Once the Linux kernel is booted, it can be useful to expose the device tree to user space  
so that it can be explored. You can do this by configuring the Linux kernel with the  
CONFIG_PROC_DEVICETREE configuration variable. The Wandboard Linux kernel comes 
preconfigured to expose the device tree in /proc/device-tree as follows:

# ls /proc/device-tree/cpus/

#address-cells  cpu@0           cpu@2           name

#size-cells     cpu@1           cpu@3
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3
The Software Layer

In this chapter, we will cover the following recipes:

 f Exploring an image's contents

 f Adding a new software layer

 f Selecting a specific package versions and providers

 f Adding supported packages

 f Adding new packages

 f Adding data, scripts, or configuration files

 f Managing users and groups

 f Using the sysvinit initialization system

 f Using the systemd initialization system

 f Installing package-installation scripts

 f Reducing the Linux kernel image size

 f Reducing the root filesystem image size

 f Releasing software

 f Analyzing your system for compliance

 f Working with open source and proprietary code

Introduction
With hardware-specific changes on their way, the next step is customizing the target root 
filesystem; that is, the software that runs under the Linux kernel, also called the Linux  
user space.
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The usual approach to this is to start with one of the available core images and both optimize 
and customize it as per the needs of your embedded project. Usually, the images chosen  
as a starting point are either core-image-minimal or core-image-sato, but any of  
them will do.

This chapter will show you how to add a software layer to contain those changes, and will 
explain some of the common customizations made, such as size optimization. It will also show 
you how to add new packages to your root filesystem, including licensing considerations.

Exploring an image's contents
We have already seen how to use the build history feature to obtain a list of packages and 
files included in our image. In this recipe, we will explain how the root filesystem is built so 
that we are able to track its components.

Getting ready
When packages are built, they are classified inside the working directory of your project (tmp/
work) according to their architecture. For example, on a wandboard-quad build, we find the 
following directories:

 f all-poky-linux: This is used for architecture-independent packages

 f cortexa9hf-vfp-neon-poky-linux-gnueabi: This is used for cortexa9, hard 
floating point packages

 f wandboard_quad-poky-linux-gnueabi: This is used for machine-specific 
packages; in this case, wandboard-quad

 f x86_64-linux: This is used for the packages that form the host sysroot

BitBake will build all the packages included in its dependency list inside its own directory.

How to do it...
To find the build directory for a given package, we can execute the following command:

$ bitbake -e <package> | grep ^WORKDIR=

Inside the build directory, we find some subdirectories (assuming rm_work is not used) that 
the build system uses in the packaging task. These subdirectories include the following:

 f deploy-rpms: This is the directory where the final packages are stored. We look 
here for individual packages that can be locally copied to a target and installed. 
These packages are copied to the tmp/deploy directory and are also used when 
Yocto builds the root filesystem image.
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 f image: This is the default destination directory where the do_install task installs 
components. It can be modified by the recipe with the D configuration variable.

 f package: This one contains the actual package contents.

 f package-split: This is where the contents are categorized in subdirectories 
named after their final packages. Recipes can split the package contents into several 
final packages, as specified by the PACKAGES variable. The default packages besides 
the default package name are:

 � dbg: This installs components used in debugging

 � dev: This installs components used in development, such as headers and 
libraries

 � staticdev: This installs libraries and headers used in static compilation

 � doc: This is where the documentation is placed

 � locale: This installs localization components

The components to be installed in each package are selected using the FILES variable. For 
example, to add to the default package, you could execute the following command:

FILES_${PN} += "${bindir}/file.bin"

And to add to the development package, you could use the following:

FILES_${PN}-dev += "${libdir}/lib.so"

How it works...
Once the Yocto build system has built all the individual packages in its dependency list, it runs 
the do_rootfs task, which populates the sysroot and builds the root filesystem before 
creating the final package images. You can find the location of the root filesystem by executing:

$ bitbake -e core-image-minimal | grep ^IMAGE_ROOTFS=

Note that the IMAGE_ROOTFS variable is not configurable and should not be changed.

The contents of this directory will later be prepared into an image according to what image 
types are configured in the IMAGE_FSTYPES configuration variable. If something has been 
installed in this directory, it will then be installed in the final image.

Adding a new software layer
Root filesystem customization involves adding or modifying content to the base image. 
Metadata for this content goes into one or more software layers, depending on the amount of 
customization needed.
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A typical embedded project will have just one software layer containing all non-hardware-specific 
customizations. But it is also possible to have extra layers for graphical frameworks or system-
wide elements.

Getting ready
Before starting work on a new layer, it is good practice to check whether someone else 
provides a similar layer. Also, if you are trying to integrate an open source project, check 
whether a layer for it already exists. There is an index of available layers at http://layers.
openembedded.org/.

How to do it...
We can then create a new meta-custom layer using the yocto-layer command as we 
learned in the Creating a custom BSP layer recipe in Chapter 2, The BSP Layer. From the 
sources directory, execute the following command:

$ yocto-layer create custom

Don't forget to add the layer to your project's conf/bblayers.conf file and to your 
template's conf directory to make it available for all new projects.

The default conf/layer.conf configuration file is as follows:

# We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

# We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
        ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "custom"
BBFILE_PATTERN_custom = "^${LAYERDIR}/"
BBFILE_PRIORITY_custom = "6"

We have discussed all the relevant variables in this snippet in the Creating a custom BSP layer 
recipe in Chapter 2, The BSP Layer.

How it works...
When adding content to a new software layer, we need to keep in mind that our layer needs to 
play well with other layers in the Yocto project. To this end, when customizing recipes, we will 
always use append files, and will only override existing recipes if we are completely sure there 
is no way to add the customization required through an append file.

http://layers.openembedded.org/
http://layers.openembedded.org/
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To help us manage the content across several layers, we can use the following bitbake-
layers command-line utilities:

 f $ bitbake-layers show-layers: This will display the configured layers as 
BitBake sees them. It is helpful to detect errors on your conf/bblayer.conf file.

 f $ bitbake-layers show-recipes: This command will display all the available 
recipes and the layers that provide them. It can be used to verify that BitBake is 
seeing your newly created recipe. If it does not appear, verify that the filesystem 
hierarchy corresponds to the one defined in your layer's BBFILES variable in conf/
layer.conf.

 f $ bitbake-layers show-overlayed: This command will show all the recipes 
that are overlayed by another recipe with the same name but in a higher priority layer. 
It helps detect recipe clashes.

 f $ bitbake-layers show-appends: This command will list all available append 
files and the recipe files they apply to. It can be used to verify that BitBake is seeing 
your append files. Also, as before with recipes, if they don't appear, you will need to 
check the filesystem hierarchy and your layer's BBFILES variable.

 f $ bitbake-layers flatten <output_dir>: This command will create a 
directory with the contents of all configured layers without overlayed recipes and with 
all the append files applied. This is how BitBake will see the metadata. This flattened 
directory is useful to discover conflicts with your layer's metadata.

There's more...
We will sometimes add customizations that are specific to one board or machine. These are 
not always hardware-related, so they could be found both in a BSP or software layer.

When doing so, we will try to keep our customizations as specific as possible. One typical 
example is customizing for a specific machine or machine family. If you need to add a patch 
for the wandboard-quad machine, you would use the following line of code:

SRC_URI_append_wandboard-quad = " file://mypatch.patch"

And, if the patch is applicable to all i.MX6-based boards, you can use the following:

SRC_URI_append_mx6 = " file://mypatch.patch"

To be able to use machine families overrides, the machine configuration files need to include 
a SOC_FAMILY variable, such as the one for the wandboard-quad in meta-fsl-arm-
extra. Refer to the following line of code:

conf/machine/wandboard-quad.conf:SOC_FAMILY = "mx6:mx6q:wandboard"

file://mypatch.patch


The Software Layer

406

And for it to appear in the MACHINEOVERRIDES variable, the soc-family.inc file needs 
to be included, as it is in meta-fsl-arm. Here is the relevant code excerpt from the conf/
machine/include/imx-base.inc file:

include conf/machine/include/soc-family.inc
MACHINEOVERRIDES =. "${@['', '${SOC_FAMILY}:']['${SOC_FAMILY}' !=  
  '']}"

BitBake will search a predefined path, looking for files inside the package's working directory, 
defined in the FILESPATH variable as a colon-separated list. Specifically:

${PN}-${PV}/${DISTRO}
${PN}/${DISTRO}
files/${DISTRO}

${PN}-${PV}/${MACHINE}
${PN}/${MACHINE}
files/${MACHINE}

${PN}-${PV}/${SOC_FAMILY}
${PN}/${SOC_FAMILY}
files/${SOC_FAMILY}

${PN}-${PV}/${TARGET_ARCH}
${PN}/${TARGET_ARCH}
files/${TARGET_ARCH}

${PN}-${PV}/
${PN}/
files/

In the specific case of the wandboard-quad, this translates to the following:

${PN}-${PV}/poky
${PN}/poky
files/poky
${PN}-${PV}/wandboard-quad
${PN}/wandboard-quad
files/wandboard-quad
${PN}-${PV}/wandboard
${PN}/wandboard
files/wandboard
${PN}-${PV}/mx6q
${PN}/mx6q
files/mx6q
${PN}-${PV}/mx6
${PN}/mx6
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files/mx6
${PN}-${PV}/armv7a
${PN}/armv7a
files/armv7a
${PN}-${PV}/arm
${PN}/arm
files/arm
${PN}-${PV}/
${PN}/
files/

Here, PN is the package name and PV is the package version.

It is best to place patches in the most specific of these, so wandboard-quad, followed by 
wandboard, mx6q, mx6, armv7a, arm, and finally the generic PN-PV, PN, and files.

Note that the search path refers to the location of the BitBake recipe, so append files need 
to always add the path when adding content. Our append files can add extra folders to this 
search path if needed by appending or prepending to the FILESEXTRAPATHS variable  
as follows:

FILESEXTRAPATHS_prepend := "${THISDIR}/folder:"

Note the immediate operator (:=) that expands THISDIR 
immediately, and the prepend that places your added path before any 
other path so that your patches and files are found first in the search.
Also, we have seen the += and =+ style of operators in configuration 
files, but they should be avoided in recipe files and the append and 
prepend operators should be given preference, as seen in the example 
code explained previously to avoid ordering issues.

Selecting a specific package version and 
providers

Our layers can provide recipes for different versions of the same package. For example, the 
meta-fsl-arm layer contains several different types of Linux sources:

 f linux-imx: This corresponds to the Freescale BSP kernel image fetched from 
http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/

 f linux-fslc: This is the mainline Linux kernel and fetched from https://github.
com/Freescale/linux-fslc

 f linux-timesys: This is a kernel with Vybrid platform support fetched from 
https://github.com/Timesys/linux-timesys

http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/
https://github.com/Freescale/linux-fslc
https://github.com/Freescale/linux-fslc
https://github.com/Timesys/linux-timesys 
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As we mentioned before, all recipes provide the package name (for example, linux-imx 
or linux-fslc) by default, but all Linux recipes must also provide the virtual/kernel 
virtual package. The build system will resolve virtual/kernel to the most appropriate 
Linux recipe name, taking into account the requirements of the build, such as the machine it 
is building for.

And within those recipes, linux-imx, for example, has both 2.6.35.3 and 3.10.17  
recipe versions.

In this recipe, we will show how to tell the Yocto build system which specific package and 
version to build.

How to do it...
To specify the exact package we want to build, the build system allows us to specify what 
provider and version to use.

How do we select which provider to use?
We can tell BitBake which recipe to use by using the PREFERRED_PROVIDER variable. To set 
a preferred provider for the virtual/kernel virtual package on our Wandboard machine, 
we would add the following to its machine configuration file:

PREFERRED_PROVIDER_virtual/kernel = "linux-imx"

How do we select which version to use?
Within a specific provider, we can also tell BitBake which version to use with the PREFERRED_
VERSION variable. For example, to set a specific linux-imx version for all i.MX6-based 
machines, we would add the following to our conf/local.conf file:

PREFERRED_VERSION_linux-imx_mx6 = "3.10.17"

The % wildcard is accepted to match any character, as we see here:

PREFERRED_VERSION_linux-imx_mx6 = "3.10%"

It is, however, more common to see this type of configuration done in machine configuration 
files, in which case we would not use the _mx6 append.

How do we select which version not to use?
We can use the DEFAULT_PREFERENCE variable set to -1 to specify that a version is not to 
be used unless explicitly set by a PREFERRED_VERSION variable. This is commonly used in 
development versions of packages.

DEFAULT_PREFERENCE = "-1"
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Adding supported packages
It is common to want to add new packages to an image that already has an available recipe in 
one of the included Yocto layers.

When the target image desired is very different from the supplied core images, it is 
recommended to define a new image rather than to customize an existing one.

This recipe will show how to customize an existing image by adding supported packages to it, 
but also to create a completely new image recipe if needed.

Getting ready
To discover whether a package we require is included in our configured layers, and what 
specific versions are supported, we can use bitbake-layers from our build directory as  
we saw previously:

$ bitbake-layers show-recipes | grep -A 1 htop

htop:

  meta-oe              1.0.3

Alternatively, we can also use BitBake as follows:

$ bitbake -s | grep htop

htop                                                :1.0.3-r0

Or we can use the find Linux command in our sources directory:

$ find . -type f -name "htop*.bb"

./meta-openembedded/meta-oe/recipes-support/htop/htop_1.0.3.bb

Once we know what packages we want to include in our final images, let's see how we can 
add them to the image.

How to do it...
While developing, we will use our project's conf/local.conf file to add customizations.  
To add packages to all images, we can use the following line of code:

IMAGE_INSTALL_append = " htop"

Note that there is a space after the first quote to separate the new 
package from the existing ones, as the append operator does not 
add a space.
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We could also limit the addition to a specific image with:

IMAGE_INSTALL_append_pn-core-image-minimal = " htop"

Another way to easily customize is by making use of features. A feature is a logical grouping  
of packages. For example, we could create a new feature called debug-utils, which will add 
a whole set of debugging utilities. We could define our feature in a configuration file or class 
as follows:

FEATURE_PACKAGES_debug-utils = "strace perf"

We could then add this feature to our image by adding an EXTRA_IMAGE_FEATURES variable 
to our conf/local.conf file as follows:

EXTRA_IMAGE_FEATURES += "debug-utils"

If you were to add it to an image recipe, you would use the IMAGE_FEATURES variable 
instead.

Usually, features get added as a packagegroup recipe instead of being listed as packages 
individually. Let's show how to define a packagegroup recipe in the recipes-core/
packagegroups/packagegroup-debug-utils.bb file:

SUMMARY = "Debug applications packagegroup"
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=3f40d7994397109285e
c7b81fdeb3b58"

inherit packagegroup

RDEPENDS_${PN} = "\
    strace \
    perf \
"

And you would then add it to the FEATURE_PACKAGES variable as follows:

FEATURE_PACKAGES_debug-utils = "packagegroup-debug-utils"

We can use packagegroups to create more complex examples. Refer to the Yocto Project 
Development Manual at http://www.yoctoproject.org/docs/1.7.1/dev-manual/
dev-manual.html for details.

http://www.yoctoproject.org/docs/1.7.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.7.1/dev-manual/dev-manual.html
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How it works...
The best approach to customize images is to create our own images using an existing image 
as template. We could use core-image-minimal.bb, which contains the following code:

SUMMARY = "A small image just capable of allowing a device to  
  boot."

IMAGE_INSTALL = "packagegroup-core-boot  
  ${ROOTFS_PKGMANAGE_BOOTSTRAP} ${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

And extend it to your own version that allows for the customization of IMAGE_FEATURES,  
by adding the following meta-custom/recipes-core/images/custom-image.bb  
image file:

require recipes-core/images/core-image-minimal.bb
IMAGE_FEATURES += "ssh-server-dropbear package-management"

Of course, we can also define a new image from scratch using one of the available images  
as a template.

There's more...
A final way to customize images is by adding shell functions that get executed once the image 
has been created. You do this by adding the following to your image recipe or conf/local.
conf file:

ROOTFS_POSTPROCESS_COMMAND += "function1;...;functionN"

You can use the path to the root filesystem in your command with the IMAGE_ROOTFS variable.

Classes would use the IMAGE_POSTPROCESS_COMMAND variable instead of ROOTFS_
POSTPROCESS_COMMAND.

One example of usage can be found in the debug-tweaks feature in image.bbclass, when 
images are tweaked to allow passwordless root logins. This method is also commonly used to 
customize the root password of a target image.
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Configuring packages
As we saw in the Configuring the Linux kernel recipe in Chapter 2, The BSP Layer, some 
packages, like the Linux kernel, provide a configuration menu and can be configured with the 
menuconfig BitBake command.

Another package worth mentioning with a configuration interface is BusyBox. We will show 
how to configure BusyBox, for example to add pgrep, a tool that looks up process's IDs by 
name. To do so follow the next steps:

1. Configure BusyBox:
$ bitbake -c menuconfig busybox

2. In Process utilities choose pgrep.

3. Compile BusyBox:
$ bitbake -C compile busybox

4. Copy the RPM package into the target:
$ bitbake -e busybox | grep ^WORKDIR=

$ scp ${WORKDIR}/deploy-rpms/cortexa9hf_vfp_neon/busybox-  
  1.22.1-r32.cortexa9hf_vfp_neon.rpm root@<target_ip>:/tmp

5. Install the RPM package on the target:
# rpm --force -U /tmp/busybox-1.22.1-  
  r32.cortexa9hf_vfp_neon.rpm

Note that we are forcing the update as the package version has not increased with 
the configuration change.

Adding new packages
We have seen how to customize our image so that we can add supported packages to it. 
When we can't find an existing recipe or we need to integrate some new software we have 
developed, we will need to create a new Yocto recipe.

Getting ready
There are some questions we need to ask ourselves before starting to write a new recipe:

 f Where is the source code stored?

 f Is it source-controlled or released as a tarball?

 f What is the source code license?

 f What build system is it using?
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 f Does it need configuration?

 f Can we cross-compile it as is or does it need to be patched?

 f What are the files that need to be deployed to the root filesystem, and where  
do they go?

 f Are there any system changes that need to happen, such as new users or  
init scripts?

 f Are there any dependencies that need to be installed into sysroot beforehand?

Once we know the answers to these questions, we are ready to start writing our recipe.

How to do it...
It is best to start from a blank template like the one that follows than to start from a  
similar recipe and modify it, as the result will be cleaner and contain only the strictly  
needed instructions.

A good starting base for a minimal recipe addition is:

SUMMARY = "The package description for the package management  
  system"

LICENSE = "The package's licenses typically from  
  meta/files/common-licenses/"
LIC_FILES_CHKSUM = "License checksum used to track open license  
  changes"
DEPENDS = "Package list of build time dependencies"

SRC_URI = "Local or remote file or repository to fetch"
SRC_URI[md5sum] = "md5 checksums for all remote fetched files (not  
  for repositories)"
SRC_URI[sha256sum] = "sha256 checksum for all remote fetched files  
  (not for repositories)"

S = "Location of the source in the working directory, by default  
  ${WORKDIR}/${PN}-${PV}."

inherit <class needed for some functionality>

# Task overrides, like do_configure, do_compile and do_install, or  
  nothing.

# Package splitting (if needed).

# Machine selection variables (if needed).



The Software Layer

414

How it works...
We will explain each one of the recipe sections in more detail in the following sections.

Package licensing
Every recipe needs to contain a LICENSE variable. The LICENSE variable allows you to specify 
multiple, alternative, and per-package type licenses, as seen in the following examples:

 f For MIT or GPLv2 alternative licenses, we will use:
LICENSE = "GPL-2.0 | MIT"

 f For both ISC and MIT licenses, we will use:
LICENSE = "ISC & MIT"

 f For split packages, all of them GPLv2 except the documentation that is covered under 
the Creative Commons, we will use:
LICENSE_${PN} = "GPLv2"
LICENSE_${PN}-dev = "GPLv2"
LICENSE_${PN}-dbg = "GPLv2"
LICENSE_${PN}-doc = "CC-BY-2.0"

Open source packages usually have the license included with the source code in README, 
COPYING, or LICENSE files, and even the source code header files.

For open source licenses, we also need to specify LIC_FILES_CHECKSUM for all licenses so 
that the build system can notify us when the licenses change. To add it, we locate the file or 
file portion that contains the license and provide its relative path from the directory containing 
the source and a MD5 checksum for it. For example:

LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-  
  licenses/GPL-2.0;md5=801f80980d171dd6425610833a22dbe6"
LIC_FILES_CHKSUM =  
  "file://COPYING;md5=f7bdc0c63080175d1667091b864cb12c"
LIC_FILES_CHKSUM =  
  "file://usr/include/head.h;endline=7;md5=861ebad4adc7236f8d1905338  
  abd7eb2"
LIC_FILES_CHKSUM =  
  "file://src/file.c;beginline=5;endline=13;md5=6c7486b21a8524b1879f  
  a159578da31e"

Proprietary code should have the license set as CLOSED, and no LIC_FILES_CHECKSUM is 
needed for it.
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Fetching package contents
The SRC_URI variable lists the files to fetch. The build system will use different fetchers 
depending on the file prefix. These can be:

 f Local files included with the metadata (file://). If the local file is a patch, the  
SRC_URI variable can be extended with patch-specific arguments such as:

 � striplevel: The default patch strip level is 1 but it can be modified with 
this argument

 � patchdir: This specifies the directory location to apply the patch to, with 
the default being the source directory

 � apply: This argument controls whether to apply the patch or not, with the 
default being to apply it

 f Files stored in remote servers (typically, http(s)://, ftp://, or ssh://).

 f Files stored in remote repositories (typically, git://, svn://, hg://, or bzr://). 
These also need a SRCREV variable to specify the revision.

Files stored in remote servers (not local files or remote repositories) need to specify two 
checksums. If there are several files, they can be distinguished with a name argument;  
for example:

SRCREV = "04024dea2674861fcf13582a77b58130c67fccd8"
SRC_URI = "git://repo.com/git/ \
           file://fix.patch;name=patch \
           http://example.org/archive.data;name=archive"
SRC_URI[archive.md5sum] = "aaf32bde135cf3815aa3221726bad71e"
SRC_URI[archive.sha256sum] =  
  "65be91591546ef6fdfec93a71979b2b108eee25edbc20c53190caafc9a92d4e7"

The source directory folder, S, specifies the location of the source files. The repository will be 
checked out here, or the tarball decompressed in this location. If the tarball decompresses in 
the standard ${PN}-${PV} location, it can be omitted as it is the default. For repositories, it 
needs to always be specified; for example:

S = "${WORKDIR}/git"

Specifying task overrides
All recipes inherit the base.bbclass class, which defines the following tasks:

 f do_fetch: This method fetches the source code, selecting the fetcher using the 
SRC_URI variable.

 f do_unpack: This method unpacks the code in the working directory to a location 
specified by the S variable.

 f do_configure: This method configures the source code if needed. It does nothing  
by default.
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 f do_compile: This method compiles the source and runs the GNU make target  
by default.

 f do_install: This method copies the results of the build from the build directory  
B to the destination directory D. It does nothing by default.

 f do_package: This method splits the deliverables into several packages. It does 
nothing by default.

Usually, only the configuration, compilation, and installation tasks are overridden, and this is 
mostly done implicitly by inheriting a class like autotools.

For a custom recipe that does not use a build system, you need to provide the required 
instructions for configuration (if any), compilation, and installation in their corresponding  
do_configure, do_compile, and do_install overrides. As an example of this type of 
recipe, meta-custom/recipes-example/helloworld/helloworld_1.0.bb, may be 
seen here:

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4 
  f302"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
             ${CC} helloworld.c -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}

With the meta-custom/recipes-example/helloworld/helloworld-1.0/
helloworld.c source file being the following:

#include <stdio.h>

int main(void)
{
    return printf("Hello World");
}

We will see example recipes that use the most common build systems in the next chapter.
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Configuring packages
The Yocto build system provides the PACKAGECONFIG variable to help in the configuration of 
packages by defining a number of features. Your recipe defines the individual features as follows:

PACKAGECONFIG ??= "feature"
PACKAGECONFIG[feature] = "--with-feature,--without-feature,build-  
  deps-feature,rt-deps-feature"

The PACKAGECONFIG variable contains a space-separated list of feature names, and it can 
be extended or overridden in bbappend files; have a look at the following example:

PACKAGECONFIG_append = " feature1 feature2"

To extend or override it from a distribution or local configuration file, you would use the 
following syntax:

PACKAGECONFIG_pn-<package_name> = "feature1 feature2"
PACKAGECONFIG_append_pn-<package_name> = " feature1 feature2"

Following that, we characterize each feature with four ordered arguments:

 f Extra configuration arguments (for EXTRA_OECONF) when the feature is enabled
 f Extra configuration arguments (for EXTRA_OECONF) when the feature is disabled
 f Extra build dependencies (for DEPENDS) when the feature is enabled
 f Extra runtime dependencies (for RDEPENDS) when the feature is enabled

The four arguments are optional, but the ordering needs to be maintained by leaving the 
surrounding commas.

For example, the wpa-supplicant recipe defines two features, gnutls and openssl, but 
only enables gnutls by default, as seen here:

PACKAGECONFIG ??= "gnutls"
PACKAGECONFIG[gnutls] = ",,gnutls"
PACKAGECONFIG[openssl] = ",,openssl"

Splitting into several packages
It is common to separate the recipe contents into different packages that serve different 
needs. Typical examples are to include documentation in a doc package, and header and/or 
libraries in a dev package. We can do this using the FILES variable as follows:

FILES_${PN} += "List of files to include in the main package"
FILES_${PN}-dbg += "Optional list of files to include in the debug  
  package"
FILES_${PN}-dev += "Optional list of files to include in the  
  development package"
FILES_${PN}-doc += "Optional list of files to include in the  
  documentation package"



The Software Layer

418

Setting machine-specific variables
Each recipe has a PACKAGE_ARCH variable that categorizes the recipe into a package feed, as 
we saw in the Exploring an image's contents recipe. Most of the times, they are automatically 
sorted out by the Yocto build system. For example, if the recipe is a kernel, a kernel module 
recipe, or an image recipe, or even if it is cross-compiling or building native applications, the 
Yocto build system will set the package architecture accordingly.

BitBake will also look at the SRC_URI machine overrides and adjust the package architecture, 
and if your recipe is using the allarch class, it will set the package architecture to all.

So when working on a recipe that only applies to a machine or machine family, or that 
contains changes that are specific to a machine or machine family, we need to check whether 
the package is categorized in the appropriate package feed, and if not, specify the package 
architecture explicitly in the recipe itself by using the following line of code:

PACKAGE_ARCH = "${MACHINE_ARCH}"

Also, when a recipe is only to be parsed for specific machine types, we specify it with the 
COMPATIBLE_MACHINE variable. For example, to make it compatible only with the mxs, mx5 
and mx6 SoC families, we would use the following:

COMPATIBLE_MACHINE = "(mxs|mx5|mx6)"

Adding data, scripts, or configuration files
All recipes inherit the base class with the default set of tasks to run. After inheriting the base 
class, a recipe knows how to do things like fetching and compiling.

As most recipes are meant to install some sort of executable, the base class knows how  
to build it. But sometimes all we want is to install data, scripts, or configuration files into  
the filesystem.

If the data or configuration is related to an application, the most logical thing to do is to 
package it together with the application's recipe itself, and if we think it is better to be 
installed separately, we could even split it into its own package.

But some other times, the data or configuration is unrelated to an application, maybe it 
applies to the whole system or we just want to provide a separate recipe for it. Optionally,  
we could even want to install some Perl or Python scripts that don't need to be compiled.

How to do it...
In those cases, our recipe should inherit the allarch class that is inherited by recipes that 
do not produce architecture-specific output.
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An example of this type of recipe, meta-custom/recipes-example/example-data/
example-data_1.0.bb, may be seen here:

DESCRIPTION = "Example of data or configuration recipe"
SECTION = "examples"

LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-licenses/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

SRCREV = "${AUTOREV}"
SRC_URI = "git://github.com/yoctocookbook/examples.git \
           file://example.data"

S = "${WORKDIR}/git"

inherit allarch

do_compile() {
}

do_install() {
        install -d ${D}${sysconfdir}
        install -d ${D}${sbindir}
        install -m 0755 ${WORKDIR}/example.data ${D}/${sysconfdir}/
        install -m 0755 ${S}/python-scripts/* ${D}/${sbindir}
}

It assumes that the fictitious examples.git repository contains a python-scripts folder, 
which we want to include in our root filesystem.

A working recipe example can be found in the source that accompanies the book.

Managing users and groups
It is also common to need to add or modify users and groups to our filesystem. This recipe 
explains how it is done.

Getting ready
The user information is stored in the /etc/passwd file, a text file that is used as a database 
for the system user's information. The passwd file is human-readable.
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Each line on it corresponds to one user in the system, and it has the following format:

<username>:<password>:<uid>:<gid>:<comment>:<home  
  directory>:<login shell>

Let's see each of the parameters of this format:

 f username: A unique string that identifies the user at login

 f uid: User ID, a number that Linux uses to identify the user

 f gid: Group ID, a number that Linux uses to identify the user's primary group

 f comment: Comma-separated values that describe the account, typically the user's 
contact details

 f home directory: Path to the user's home directory

 f login shell: Shell that is started for interactive logins

The default passwd file is stored with the base-passwd package and looks as follows:

root::0:0:root:/root:/bin/sh
daemon:*:1:1:daemon:/usr/sbin:/bin/sh
bin:*:2:2:bin:/bin:/bin/sh
sys:*:3:3:sys:/dev:/bin/sh
sync:*:4:65534:sync:/bin:/bin/sync
games:*:5:60:games:/usr/games:/bin/sh
man:*:6:12:man:/var/cache/man:/bin/sh
lp:*:7:7:lp:/var/spool/lpd:/bin/sh
mail:*:8:8:mail:/var/mail:/bin/sh
news:*:9:9:news:/var/spool/news:/bin/sh
uucp:*:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:*:13:13:proxy:/bin:/bin/sh
www-data:*:33:33:www-data:/var/www:/bin/sh
backup:*:34:34:backup:/var/backups:/bin/sh
list:*:38:38:Mailing List Manager:/var/list:/bin/sh
irc:*:39:39:ircd:/var/run/ircd:/bin/sh
gnats:*:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/
sh
nobody:*:65534:65534:nobody:/nonexistent:/bin/sh

All accounts have disabled direct logins, indicated by an asterisk on the password field, 
except for root, which has no password. This is because, by default, the image is built with 
the debug-tweaks feature that enables passwordless login for the root user, among other 
things. If the root password was enabled, we would see the encrypted root password.

Do not forget to remove the debug-tweaks feature from 
production images.
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There is a corresponding /etc/group file that is installed at the same time with the 
information for the system groups.

The core-image-minimal image does not include shadow password protection, but other 
images, such as core-image-full-cmdline, do. When enabled, all password fields 
contain an x, and the encrypted passwords are kept on a /etc/shadow file, which is only 
accessible to the super user.

Any user that is needed by the system but not included in the list we saw earlier needs to  
be created.

How to do it...
The standard way for a recipe to add or modify system users or groups is to use the useradd 
class, which uses the following variables:

 f USERADD_PACKAGES: This variable specifies the individual packages in the recipe 
that require users or groups to be added. For the main package, you would use  
the following:
USERADD_PACKAGES = "${PN}"

 f USERADD_PARAM: This variable corresponds to the arguments passed to the Linux 
useradd command, to add new users to the system.

 f GROUPADD_PARAM: This variable corresponds to the arguments passed to the Linux 
groupadd command, to add new groups to the system.

 f GROUPMEMS_PARAM: This variable corresponds to the arguments passed to the Linux 
groupmems command, which administers members of the user's primary group.

An example snippet of a recipe using the useradd class follows:

inherit useradd

PASSWORD ?= "miDBHFo2hJSAA"
USERADD_PACKAGES = "${PN}"
USERADD_PARAM_${PN} = "--system --create-home \
                       --groups tty \
                       --password ${PASSWORD} \
                       --user-group ${PN}"

The password can be generated on your host using the mkpasswd Linux command-line utility, 
installed with the whois Ubuntu package.
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There's more...
When generating users and groups using the useradd class, the uid and gid values are 
assigned dynamically during package installation. If this is not desired, there is a way to 
assign system-wide static uid and gid values by providing your own passwd and group files.

To do this, you need to define the USERADDEXTENSION variable in your conf/local.conf 
file as follows:

USERADDEXTENSION = "useradd-staticids"

The build system will then search the BBPATH variable for files/passwd and files/
group files to obtain the uid and gid values. The files have the standard passwd layout as 
defined previously, with the password field ignored.

The default filenames can be overridden by using the USERADD_UID_TABLES and USERADD_
GID_TABLES variables.

You also need to define the following:

USERADD_ERROR_DYNAMIC = "1"

This is done so that the build system produces an error if the required uid and gid values 
are not found in the provided files.

Note that if you use the useradd class in a project that is already 
built, you will need to remove the tmp directory and rebuild from 
the sstate-cache directory or you will get build errors.

There is also a way to add user and group information that is not tied to a specific recipe but 
to an image – by using the extrausers class. It is configured by the EXTRA_USERS_PARAMS 
variable in an image recipe and used as follows:

inherit extrausers

EXTRA_USERS_PARAMS = "\
  useradd -P password root; \
  "

This sets the root password to password.
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Using the sysvinit initialization manager
The initialization manager is an important part of the root filesystem. It is the first thing the 
kernel executes, and it has the responsibility to start the rest of the system.

This recipe will introduce the sysvinit initialization manager.

Getting ready
This is the default initialization manager in Yocto and it has been used in Linux since the 
operating system's origin. The kernel is passed an init command-line argument, typically  
/sbin/init, which is then launched. This init process has PID 1 and is the parent of all 
processes. The init process can either be implemented by BusyBox or be an independent 
program installed with the sysvinit package. Both of them work in the same way, based on 
the concept of runlevel, a machine state that defines which processes to run.

The init process will read an inittab file and look for a default runlevel. The default 
inittab file is installed with the sysvinit-inittab package and is as follows:

# /etc/inittab: init(8) configuration.
# $Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

# The default runlevel.
id:5:initdefault:

# Boot-time system configuration/initialization script.
# This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.
~~:S:wait:/sbin/sulogin

# /etc/init.d executes the S and K scripts upon change
# of runlevel.
#
# Runlevel 0 is halt.
# Runlevel 1 is single-user.
# Runlevels 2-5 are multi-user.
# Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
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l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
# Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin

Then, init runs all scripts starting with S in the /etc/rcS.d directory, followed by all the 
scripts starting with S in the /etc/rcN.d directory, where N is the runlevel value.

So the init process just performs the initialization and forgets about the processes. If 
something goes wrong and the processes are killed, no one will care. The system watchdog 
will reboot the system if it becomes unresponsive, but applications built with more than one 
process usually need some type of process monitor that can react to the health of the system, 
but sysvinit does not offer these types of mechanisms.

However, sysvinit is a well-understood and reliable initialization manager and the 
recommendation is to keep it unless you need some extra feature.

How to do it...
When using sysvinit as the initialization manager, Yocto offers the update-rc.d class as 
a helper to install initialization scripts so that they are started and stopped when needed.

When using this class, you need to specify the INITSCRIPT_NAME variable with the name 
of the script to install and INITSCRIPT_PARAMS with the options to pass to the update-
rc.d utility. You can optionally use the INITSCRIPT_PACKAGES variable to list the packages 
to contain the initialization scripts. By default, this contains the main package only, and if 
multiple packages are provided, the INITSCRIPT_NAME and INITSCRIPT_PARAMS need to 
be specified for each using overrides. An example snippet follows:

INITSCRIPT_PACKAGES = "${PN}-httpd ${PN}-ftpd"
INITSCRIPT_NAME_${PN}-httpd = "httpd.sh"
INITSCRIPT_NAME_${PN}-ftpd = "ftpd.sh"
INITSCRIPT_PARAMS_${PN}-httpd = "defaults"
INITSCRIPT_PARAMS_${PN}-ftpd = "start 99 5 2 . stop 20 0 1 6 ."

When an initialization script is not tied to a particular recipe, we can add a specific recipe for 
it. For example, the following recipe will run a mount.sh script in the recipes-example/
sysvinit-mount/sysvinit-mount_1.0.bb file.

DESCRIPTION = "Initscripts for mounting filesystems"
LICENSE = "MIT"

LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"
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SRC_URI = "file://mount.sh"

INITSCRIPT_NAME = "mount.sh"
INITSCRIPT_PARAMS = "start 09 S ."

inherit update-rc.d

S = "${WORKDIR}"

do_install () {
    install -d ${D}${sysconfdir}/init.d/
    install -c -m 755 ${WORKDIR}/${INITSCRIPT_NAME}  
  ${D}${sysconfdir}/init.d/${INITSCRIPT_NAME}
}

Using the systemd initialization manager
As an alternative to sysvinit, you can configure your project to use systemd as an 
initialization manager, although systemd packs many more features.

Getting ready
The systemd initialization manager is replacing sysvinit and other initialization managers 
in most Linux distributions. It is based on the concepts of units, an abstraction of all elements 
that are relevant for system startup and maintenance, and targets, which group units and can 
be viewed as a runlevel equivalent. Some of the units systemd defines are:

 f Services
 f Sockets
 f Devices
 f Mount points
 f Snapshots
 f Timers
 f Paths

The default targets and their runlevel equivalents are defined in the following table:

Sysvinit Runlevel Systemd target Notes
0 runlevel0.

target
poweroff.target Halt the system.

1, s, single runlevel1.
target

rescue.target Single user mode.
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Sysvinit Runlevel Systemd target Notes
2, 4 runlevel2.

target, 
runlevel4.
target

multi-user.
target

User-defined/site-specific runlevels. 
By default, identical to 3.

3 runlevel3.
target

multi-user.
target

Multiuser, non-graphical. Users can 
usually log in via multiple consoles or 
via the network.

5 runlevel5.
target

graphical.
target

Multiuser, graphical. Usually has 
all the services of runlevel 3 plus a 
graphical login.

6 runlevel6.
target

reboot.target Reboot the system.

The systemd initialization manager is designed to be compatible with sysvinit, including 
using sysvinit init scripts.

Some of the features of systemd are:

 f Parallelization capabilities that allow for faster boot times

 f Service initialization via sockets and D-Bus so that services are only started  
when needed

 f Process monitoring that allows for process failure recovery

 f System state snapshots and restoration

 f Mount point management

 f Transactional-dependency-based unit control, where units establish dependencies 
between them

How to do it...
To configure your system to use systemd, you need to add the systemd distribution feature 
to your project by adding the following to your distribution's configuration file, under sources/
poky/meta-yocto/conf/distro/poky.conf for the default poky distribution, or locally 
on your project's conf/local.conf file:

DISTRO_FEATURES_append = " systemd"

Note the space required after the starting quote.

VIRTUAL-RUNTIME_init_manager = "systemd"
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This configuration example allows you to define a main image with systemd and a rescue 
image with sysvinit, providing it does not use the VIRTUAL-RUNTIME_init_manager 
variable. Hence, the rescue image cannot use the packagegroup-core-boot or 
packagegroup-core-full-cmdline recipes. As an example, the recipe where the image 
size has been reduced, which we will introduce in the Reducing the root filesystem image size 
recipe in this chapter, could be used as the basis for a rescue image.

To remove sysvinit completely from your system, you would do the following:

DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME_initscripts = ""

Feature backfilling is the automatic extension of machine and distribution features to keep 
backwards compatibility. The sysvinit distribution feature is automatically filled in, so 
to remove it, we need to blacklist it by adding it to the DISTRO_FEATURES_BACKFILL_
CONSIDERED variable as shown earlier.

Note that if you are using an existing project and you change the 
DISTRO_FEATURES variable as explained earlier, you will need 
to remove the tmp directory and build with sstate-cache or 
the build will fail.

There's more...
Not only does the root filesystem needs to be configured, but the Linux kernel also needs to be 
specifically configured with all the features required by systemd. There is an extensive list of 
kernel configuration variables in the systemd source README file. As an example, to extend 
the minimal kernel configuration that we will introduce in the Reducing the Linux kernel image 
size recipe later on this chapter, for the Wandboard to support systemd, we would need to 
add the following configuration changes in the arch/arm/configs/wandboard-quad_
minimal_defconfig file:

+CONFIG_FHANDLE=y
+CONFIG_CGROUPS=y
+CONFIG_SECCOMP=y
+CONFIG_NET=y
+CONFIG_UNIX=y
+CONFIG_INET=y
+CONFIG_AUTOFS4_FS=y
+CONFIG_TMPFS=y
+CONFIG_TMPFS_POSIX_ACL=y
+CONFIG_SCHEDSTATS=y

The default kernel configuration provided for the Wandboard will launch a core-image-
minimal image of systemd just fine.
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Installing systemd unit files
Yocto offers the systemd class as a helper to install unit files. By default, unit files are 
installed on the ${systemd_unitdir}/system path on the destination directory.

When using this class, you need to specify the SYSTEMD_SERVICE_${PN} variable with the 
name of the unit file to install. You can optionally use the SYSTEMD_PACKAGES variable to list 
the packages to contain the unit files. By default, this is the main package only, and if multiple 
packages are provided, the SYSTEMD_SERVICE variable needs to be specified using overrides.

Services are configured to launch at boot by default, but this can be changed with the 
SYSTEMD_AUTO_ENABLE variable.

An example snippet follows:

SYSTEMD_PACKAGES = "${PN}-syslog"
SYSTEMD_SERVICE_${PN}-syslog = "busybox-syslog.service"
SYSTEMD_AUTO_ENABLE = "disabled"

Installing package-installation scripts
The supported package formats, RPM, ipk, and deb, support the addition of installation 
scripts that can be run at different times during a package installation process. In this recipe, 
we will see how to install them.

Getting ready
There are different types of installation scripts:

 f Preinstallation scripts (pkg_preinst): These are called before the package  
is unpacked

 f Postinstallation scripts (pkg_postinst): These are called after the package is 
unpacked, and dependencies will be configured

 f Preremoval scripts (pkg_prerm): These are called with installed or at least partially 
installed packages

 f Postremoval scripts (pkg_postrm): These are called after the package's files have 
been removed or replaced

How to do it...
An example snippet of the installation of a preinstallation script in a recipe is as follows:

     pkg_preinst_${PN} () {
         # Shell commands
     }
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All installation scripts work in the same way, with the exception that the postinstallation 
scripts may be run either on the host at root filesystem image creation time, on the target (for 
those actions that cannot be performed on the host), or when a package is directly installed 
on the target. Have a look at the following code:

 pkg_postinst_${PN} () {
     if [ x"$D" = "x" ]; then
          # Commands to execute on device
     else
          # Commands to execute on host
     fi
 }

If the postinstallation script succeeds, the package is marked as installed. If the script fails, 
the package is marked as unpacked and the script is executed when the image boots again.

How it works...
Once the recipe defines an installation script, the class for the specific package type will 
install it while following the packaging rules of the specific format.

For postinstallation scripts, when running on the host, D is set to the destination directory, so 
the comparison test will fail. But D will be empty when running on the target.

It is recommended to perform postinstallation scripts on the 
host if possible, as we need to take into account that some root 
filesystems will be read only and hence it would not be possible 
to perform some operations on the target.

Reducing the Linux kernel image size
Before or in parallel with the root filesystem customization, embedded projects usually require 
an image size optimization that will reduce the boot time and memory usage.

Smaller images mean less storage space, less transmission time, and less programming time, 
which saves money both in manufacturing and field updates.

By default, the compressed Linux kernel image (zImage) for the wandboard-quad is around 
5.2 MB. This recipe will show how we can reduce that.
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How to do it...
An example of a minimal kernel configuration for a Wandboard that is able to boot from a 
microSD card root filesystem is the arch/arm/configs/wandboard-quad_minimal_
defconfig file that follows:

CONFIG_KERNEL_XZ=y
CONFIG_NO_HZ=y
CONFIG_HIGH_RES_TIMERS=y
CONFIG_BLK_DEV_INITRD=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_EMBEDDED=y
CONFIG_SLOB=y
CONFIG_ARCH_MXC=y
CONFIG_SOC_IMX6Q=y
CONFIG_SOC_IMX6SL=y
CONFIG_SMP=y
CONFIG_VMSPLIT_2G=y
CONFIG_AEABI=y
CONFIG_CPU_FREQ=y
CONFIG_ARM_IMX6_CPUFREQ=y
CONFIG_CPU_IDLE=y
CONFIG_VFP=y
CONFIG_NEON=y
CONFIG_DEVTMPFS=y
CONFIG_DEVTMPFS_MOUNT=y
CONFIG_PROC_DEVICETREE=y
CONFIG_SERIAL_IMX=y
CONFIG_SERIAL_IMX_CONSOLE=y
CONFIG_REGULATOR=y
CONFIG_REGULATOR_ANATOP=y
CONFIG_MMC=y
CONFIG_MMC_SDHCI=y
CONFIG_MMC_SDHCI_PLTFM=y
CONFIG_MMC_SDHCI_ESDHC_IMX=y
CONFIG_DMADEVICES=y
CONFIG_IMX_SDMA=y
CONFIG_EXT3_FS=y

This configuration builds an 886 K compressed Linux kernel image (zImage).
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How it works...
Apart from hardware design considerations (such as running the Linux kernel from a NOR flash 
and execute in place (XIP) to avoid loading the image to memory), the first step in kernel size 
optimization is to review the kernel configuration and remove all superfluous features.

To analyze the sizes of kernel blocks, we may use:

$ size vmlinux */built-in.o

text    data     bss     dec     hex filename

8746205  356560  394484 9497249  90eaa1 vmlinux

117253    2418    1224  120895   1d83f block/built-in.o

243859   11158      20  255037   3e43d crypto/built-in.o

2541356  163465   34404 2739225  29cc19 drivers/built-in.o

1956       0       0    1956     7a4 firmware/built-in.o

1728762   18672   10544 1757978  1ad31a fs/built-in.o

20361   14701     100   35162    895a init/built-in.o

29628     760       8   30396    76bc ipc/built-in.o

576593   20644  285052  882289   d7671 kernel/built-in.o

106256   24847    2344  133447   20947 lib/built-in.o

291768   14901    3736  310405   4bc85 mm/built-in.o

1722683   39947   50928 1813558  1bac36 net/built-in.o

34638     848     316   35802    8bda security/built-in.o

276979   19748    1332  298059   48c4b sound/built-in.o

138       0       0     138      8a usr/built-in.o

Here, vmlinux is the Linux kernel ELF image, which can be found in the Linux build 
directory.

Some of the usual things to exclude are:

 f Remove IPv6 (CONFIG_IPV6) and other superfluous networking features

 f Remove block devices (CONFIG_BLOCK) if not needed

 f Remove cryptographic features (CONFIG_CRYPTO) if unused

 f Review the supported filesystem types and remove the unneeded ones, such as flash 
filesystems on flashless devices

 f Avoid modules and remove the module support (CONFIG_MODULES) from the kernel 
if possible
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A good strategy is to start with a minimal kernel and add the essential stuff until you get a 
working system. Start with the allnoconfig GNU make target and review the configuration 
items under CONFIG_EXPERT and CONFIG_EMBEDDED as they are not included in the 
allnoconfig setting.

Some configuration changes that might not be obvious but reduce the image size 
considerably without feature removal are listed here:

 f Change the default compression method from Lempel–Ziv–Oberhumer (LZO) to XZ 
(CONFIG_KERNEL_XZ). The decompression speed will be a bit lower though.

 f Change the allocator from SLUB to Simple List Of Blocks (SLOB) (CONFIG_SLOB) for 
small embedded systems with little memory.

 f Use no high memory (CONFIG_HIGHMEM) unless you have 4 GB or more memory.

You may also want to have a different configuration for production and development systems, 
so you may remove the following from your production images:

 f printk support (CONFIG_PRINTK)

 f tracing support (CONFIG_FTRACE)

In the compilation side of things, optimize for size using CONFIG_CC_OPTIMIZE_FOR_SIZE.

Once the basics are covered, we would need to analyze the kernel functions to identify further 
reduction areas. You can print a sorted list of kernel symbols with the following:

$ nm --size-sort --print-size -r vmlinux | head

          808bde04 00040000 B __log_buf

          8060f1c0 00004f15 r kernel_config_data

          80454190 000041f0 T hidinput_connect

          80642510 00003d40 r drm_dmt_modes

          8065cbbc 00003414 R v4l2_dv_timings_presets

          800fbe44 000032c0 T __blockdev_direct_IO

          80646290 00003100 r edid_cea_modes

          80835970 00003058 t imx6q_clocks_init

          8016458c 00002e74 t ext4_fill_super

          8056a814 00002aa4 T hci_event_packet

You would then need to look into the kernel source to find optimizations.
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The actual space used by the uncompressed kernel in memory can be obtained from a 
running Wandboard kernel log as follows:

$ dmesg | grep -A 3 "text"

      .text : 0x80008000 - 0x80a20538   (10338 kB)

      .init : 0x80a21000 - 0x80aae240   ( 565 kB)

      .data : 0x80ab0000 - 0x80b13644   ( 398 kB)

      .bss  : 0x80b13644 - 0x80b973fc   ( 528 kB)

From here, the .text section contains code and constant data, the .data section contains 
the initialization data for variables, and the .bss sections contains all uninitialized data. The 
.init section contains global variables used during Linux initialization only, which are freed 
afterwards as can be seen from the following Linux kernel boot message:

Freeing unused kernel memory: 564K (80a21000 - 80aae000)

There are ongoing efforts to reduce the size of the Linux kernel, so it is expected that newer 
kernel versions will be smaller and will allow for better customization for use in embedded 
systems.

Reducing the root filesystem image size
By default, the core-image-minimal size for the wandboard-quad unpacked tarball is 
around 45 MB, and core-image-sato is around 150 MB. This recipe will explore methods 
to reduce their size.

How to do it...
An example of a small image, core-image-small, that does not include the packagegroup-
core-boot recipe and can be used as the base for a root filesystem image with reduced size, 
recipes-core/images/core-image-small.bb, is shown next:

DESCRIPTION = "Minimal console image."

IMAGE_INSTALL= "\
        base-files \
        base-passwd \
        busybox \
        sysvinit \
        initscripts \
        ${ROOTFS_PKGMANAGE_BOOTSTRAP} \
        ${CORE_IMAGE_EXTRA_INSTALL} \
"
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IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

This recipe produces an image of about 6.4 MB. You can go even smaller if you use the  
poky-tiny distribution by adding the following to your conf/local.conf file:

DISTRO = "poky-tiny"

The poky-tiny distribution makes a series of size optimizations that may restrict the set of 
packages you can include in your image. To successfully build this image, you have to skip one 
of the sanity checks that the Yocto build system performs, by adding the following:

INSANE_SKIP_glibc-locale = "installed-vs-shipped"

With poky-tiny, the size of the image is further reduced to around 4 MB.

There are further reductions that can be done to the image; for example, we could replace 
sysvinit with tiny-init, but that is left as an exercise for the reader.

Images with reduced sizes are also used alongside production images for tasks such 
as rescue systems and manufacturing test processes. They are also ideal to be built as 
initramfs images; that is, images that the Linux kernel mounts from memory, and can  
even be bundled into a single Linux kernel image binary.

How it works...
Start with an appropriate image like core-image-minimal and analyze the dependencies 
as shown in the Debugging the build system recipe in Chapter 1, The Build System, and 
decide which of them are not needed. You could also use the file sizes listed in the image's 
build history, as seen in the Using build history recipe, also in Chapter 1, The Build System, to 
detect the biggest files in the filesystem and review them. To sort the file sizes, which appear 
in the fourth column of the files-in-image.txt file, in reverse order, we could execute:

$ sort -r -g  -k 4,4 files-in-image.txt -o sorted-files-in-image.txt

sorted-files-in-image.txt:

-rwxr-xr-x root       root          1238640 ./lib/libc-2.19.so

-rwxr-xr-x root       root           613804 ./sbin/ldconfig

-rwxr-xr-x root       root           539860 ./bin/busybox.nosuid

-rwxr-xr-x root       root           427556 ./lib/libm-2.19.so



Chapter 3

435

-rwxr-xr-x root       root           130304 ./lib/ld-2.19.so

-rwxr-xr-x root       root            88548 ./lib/libpthread-2.19.so

-rwxr-xr-x root       root            71572 ./lib/libnsl-2.19.so

-rwxr-xr-x root       root            71488 ./lib/libresolv-2.19.so

-rwsr-xr-x root       root            51944 ./bin/busybox.suid

-rwxr-xr-x root       root            42668 ./lib/libnss_files-  
  2.19.so

-rwxr-xr-x root       root            30536 ./lib/libnss_compat-  
  2.19.so

-rwxr-xr-x root       root            30244 ./lib/libcrypt-2.19.so

-rwxr-xr-x root       root            28664 ./sbin/init.sysvinit

-rwxr-xr-x root       root            26624 ./lib/librt-2.19.so

From this, we observe that glic is the biggest contributor to the filesystem size. Some other 
places where some space on a console-only system can be saved are:

 f Use the IPK package manager, as it is the lightest, or better yet, remove the 
package-management feature from your production root filesystem altogether.

 f Use BusyBox's mdev device manager instead of udev by specifying it in your conf/
local.conf file as follows:
VIRTUAL-RUNTIME_dev_manager = "mdev"

Note that this will only work with core images that include packagegroup-core-
boot.

 f If we are running the root filesystem on a block device, use ext2 instead of ext3 or 
ext4 without the journal.

 f Configure BusyBox with only the essential applets by providing your own configuration 
file in bbappend.

 f Review the glibc configuration, which can be changed via the DISTRO_FEATURES_
LIBC distribution configuration variable. An example of its usage can be found in 
the poky-tiny distribution, which is included in the poky source. The poky-tiny 
distribution can be used as a template for the distribution customization of  
small systems.

 f Consider switching to a lighter C library than the default glibc. For a while, uclibc 
was being used as an alternative, but the library seems to be unmaintained for the 
last couple of years, and the core-image-minimal image for the Wandboard does 
not currently build using it.
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Recently, there has been some activity with musl (http://
www.musl-libc.org/), a new MIT-licensed C library. To 
enable it, you would add the following to your conf/local.
conf file:
TCLIBC = "musl"
And you would need to add the meta-musl layer 
(https://github.com/kraj/meta-musl) to your 
conf/bblayers.conf file.
It currently builds core-image-minimal for QEMU 
targets, but there is still work to be done to use it on real 
hardware like the Wandboard.

 f Compile your applications with -Os to optimize for size.

Releasing software
When releasing a product based on the Yocto project, we have to consider that we are 
building on top of a multitude of different open source projects, each with different licensing 
requirements.

At the minimum, your embedded product will contain a bootloader (probably U-Boot), the Linux 
kernel, and a root filesystem with one or more applications. Both U-Boot and the Linux kernel 
are licensed under the General Public License version 2 (GPLv2). And the root filesystem 
could contain a variety of programs with different licenses.

All open source licenses allow you to sell a commercial product with a mixture of proprietary 
and open licenses as long as they are independent and the product complies with all the open 
source licenses. We will discuss open source and proprietary cohabiting in the Working with 
open source and proprietary code recipe later on.

It is important to understand all the licensing implications before releasing your product to the 
public. The Yocto project provides tools to make handling licensing requirements an easier job.

Getting ready
We first need to specify what requirements we need to comply with to distribute a product 
built with the Yocto project. For the most restrictive open source licenses, this usually means:

 f Source code distribution, including modifications

 f License texts distributions

 f Distribution of the tools used to build and run the software

http://www.musl-libc.org/
http://www.musl-libc.org/
https://github.com/kraj/meta-musl
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How to do it...
We can use the archiver class to provide the deliverables that need to be distributed to 
comply with the licenses. We can configure it to:

 f Provide the original unpatched source as tarballs

 f Provide the patches to apply to the original source

 f Provide the recipes used to build the source

 f Provide the license text that must sometimes accompany the binary (according to 
some licenses)

To use the archiver class as specified earlier, we add the following to our  
conf/local.conf file:

INHERIT += "archiver"
ARCHIVER_MODE[src] = "original"
ARCHIVER_MODE[diff] = "1"
ARCHIVER_MODE[recipe] = "1"
COPY_LIC_MANIFEST = "1"
COPY_LIC_DIRS = "1"

The sources will be provided in the tmp/deploy/sources directory under a license 
subdirectory hierarchy.

For the wandboard-quad, we find the following directories under tmp/deploy/sources:

 f allarch-poky-linux

 f arm-poky-linux-gnueabi

And looking for what's distributed for the Linux kernel source, a GPLv2 package, we find under 
tmp/deploy/sources/arm-poky-linux-gnueabi/linux-wandboard-3.10.17-r0:

 f defconfig

 f github.com.wandboard-org.linux.git.tar.gz

 f linux-wandboard-3.10.17-r0-recipe.tar.gz

So we have the kernel configuration, the source tarball, and the recipes used to build it,  
which include:

 f linux-wandboard_3.10.17.bb

 f linux-dtb.inc

 f linux-wandboard.inc
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And the license text for the root filesystem packages will also be included in the root filesystem 
under /usr/share/common-licenses, in a package directory hierarchy.

This configuration will provide deliverables for all build packages, but what we really want to 
do is provide them only for those whose licenses require us to.

For sure, we don't want to blindly distribute all the contents of the sources directory as is, as 
it will also contain our proprietary source, which we most likely don't want to distribute.

We can configure the archiver class only to provide the source for GPL and LGPL packages 
with the following:

COPYLEFT_LICENSE_INCLUDE = "GPL* LGPL*"
COPYLEFT_LICENSE_EXCLUDE = "CLOSED Proprietary"

And also, for an embedded product, we are usually only concerned with the software that 
ships in the product itself, so we can limit the recipe type to be archived to target images with 
the following:

COPYLEFT_RECIPE_TYPES = "target"

We should obtain legal advice to decide which packages have licenses that make source 
distribution a requirement.

Other configuration options exist, such as providing the patched or configured source instead 
of the separated original source and patches, or source rpms instead of source tarballs. See 
the archiver class for more details.

There's more…
We can also choose to distribute the whole of our build environment. The best way to do this 
is usually to publish our BSP and software layers on a public Git repository. Our software layer 
can then provide bblayers.conf.sample and local.conf.sample, which can be used 
to set up ready-to-use build directories.

See also
 f There are other requirements that haven't been discussed here, such as the 

mechanism chosen for distribution. It is recommended to get legal advice before 
releasing a product to ensure all the license obligations have been met.
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Analyzing your system for compliance
The Yocto build system makes it easy to provide auditing information to our legal advisers. 
This recipe will explain how.

How to do it...
Under tmp/deploy/licenses, we find a directory list of packages (including their 
corresponding licenses) and an image folder with a package and license manifest.

For the example image provided before, core-image-small, we have the following:

tmp/deploy/licenses/core-image-small-wandboard-quad-<timestamp>/
package.manifest
base-files
base-passwd
busybox
busybox-syslog
busybox-udhcpc
initscripts
initscripts-functions
libc6
run-postinsts
sysvinit
sysvinit-inittab
sysvinit-pidof
update-alternatives-opkg
update-rc.d

And the corresponding tmp/deploy/licenses/core-image-small-wandboard-quad-
<timestamp>/license.manifest file excerpt is as follows:

PACKAGE NAME: base-files
PACKAGE VERSION: 3.0.14
RECIPE NAME: base-files
LICENSE: GPLv2

PACKAGE NAME: base-passwd
PACKAGE VERSION: 3.5.29
RECIPE NAME: base-passwd
LICENSE: GPLv2+
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These files can be used to analyze all the different packages that form our root filesystem. We 
can also audit them to make sure we comply with the licenses when releasing our product to 
the public.

There's more
You can instruct the Yocto build system to specifically avoid certain licenses by using the 
INCOMPATIBLE_LICENSE configuration variable. The usual way to use it is to avoid GPLv3-
type licenses by adding the following to your conf/local.conf file:

INCOMPATIBLE_LICENSE = "GPL-3.0 LGPL-3.0 AGPL-3.0"

This will build core-image-minimal and core-image-base images as long as no extra 
image features are included.

Working with open source and proprietary 
code

It is common for an embedded product to be built upon an open source system like the one 
built by Yocto, and to include proprietary software that adds value and specializes the product. 
This proprietary part usually is intellectual property and needs to be protected, and it's 
important to understand how it can coexist with open source.

This recipe will discuss some examples of open source packages commonly found on 
embedded products and will briefly explain how to use proprietary software with them.

How to do it...
Open source licenses can be broadly divided into two categories based on whether they are:

 f Permissive: These are similar to Internet Software Consortium (ISC), MIT, and 
BSD licenses. They have few requirements attached to them and just require us to 
preserve copyright notices.

 f Restrictive: These are similar to the GPL, which bind us to not only distribute the 
source code and modifications, either with the binary itself or at a later date, but also 
to distribute tools to build, install, and run the source.

However, some licenses might "pollute" modifications and derivative work with their own 
conditions, commonly referred to as viral licenses, while others will not. For example, if you 
link your application to GPL-licensed code, your application will be bound by the GPL too.



Chapter 3

441

The virulent nature of the GPL has made some people wary of using GPL-licensed software, 
but it's important to note that proprietary software can run alongside GPL software as long as 
the license terms are understood and respected.

For example, violating the GPLv2 license would mean losing the right to distribute the GPLv2 
code in the future, even if further distribution is GPLv2 compliant. In this case, the only way to 
be able to distribute the code again would be to ask the copyright holder for permission.

How it works...
Next, we will provide guidance regarding licensing requirements for some open source 
packages commonly used in embedded products. It does not constitute legal advice, and as 
stated before, proper legal auditing of your product should be done before public release.

The U-Boot bootloader
U-Boot is licensed under the GPLv2, but any program launched by it does not inherit its 
license. So you are free to use U-Boot to launch a proprietary operating system, for example. 
However, your final product must comply with the GPLv2 with regards to U-Boot, so U-Boot 
source code and modifications must be provided.

The Linux kernel
The Linux kernel is also licensed under the GPLv2. Any application that runs in the Linux 
kernel user space does not inherit its license, so you can run your proprietary software in 
Linux freely. However, Linux kernel modules are part of the Linux kernel and as such must 
comply with the GPLv2. Also, your final product must release the Linux kernel source and 
modifications, including external modules that run in your product.

Glibc
The GNU C library is licensed under the Lesser General Public License (LGPL), which allows 
dynamic linking without license inheritance. So your proprietary code can dynamically link 
with glibc, but of course you still have to comply with the LGPL with regards to glibc. Note, 
however, that statically linking your application would pollute it with the LGPL.

BusyBox
BusyBox is also licensed under the GPLv2. The license allows for non-related software to run 
alongside it, so your proprietary software can run alongside BusyBox freely. As before, you have 
to comply with the GPLv2 with regards to BusyBox and distribute its source and modifications.
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The Qt framework
Qt is licensed under three different licenses, which is common for open source projects. 
You can choose whether you want a commercial license (in which case, your proprietary 
application is protected), a LGPL license (which, as discussed before, would also protect 
your proprietary software by allowing the dynamic linking of your application as long as you 
complied with the LGPL for the Qt framework itself), or the GPLv3 (which would be inherited by 
your application).

The X Windows system
The X.Org source is licensed under permissive MIT-style licenses. As such, your proprietary 
software is free to make any use of it as long as its use is stated and copyright notices  
are preserved.

There's more...
Let's see how to integrate our proprietary-licensed code into the Yocto build system. When 
preparing the recipe for our application, we can take several approaches to licensing:

 f Mark LICENSE as closed. This is the usual case for a proprietary application. We use 
the following:
LICENSE = "CLOSED"

 f Mark LICENSE as proprietary and include some type of license agreement. This is 
commonly done when releasing binaries with some sort of end user agreement that 
is referenced in the recipe. For example, meta-fsl-arm uses this type of license to 
comply with Freescale's End User License Agreement. An example follows:
LICENSE = "Proprietary"

LIC_FILES_CHKSUM = "file://EULA.txt;md5=93b784b1c11b3fffb1638498
a8dde3f6"

 f Provide multiple licensing options, such as an open source license and a commercial 
license. In this case, the LICENSE variable is used to specify the open licenses, and 
the LICENSE_FLAGS variable is used for the commercial licenses. A typical example 
is the gst-plugins-ugly package in Poky:
LICENSE = "GPLv2+ & LGPLv2.1+ & LGPLv2+"
LICENSE_FLAGS = "commercial"
LIC_FILES_CHKSUM =  
  "file://COPYING;md5=a6f89e2100d9b6cdffcea4f398e37343 \  
  file://gst/synaesthesia/synaescope.h;beginline=1;endline=20  
  ;md5=99f301df7b80490c6ff8305fcc712838 \   
  file://tests/check/elements/xingmux.c;beginline=1;endline=2  
  1;md5=4c771b8af188724855cb99cadd390068 \   
  file://gst/mpegstream/gstmpegparse.h;beginline=1;endline=18  
  ;md5=ff65467b0c53cdfa98d0684c1bc240a9"

file://EULA.txt;md5=93b784b1c11b3fffb1638498a8dde3f6
file://EULA.txt;md5=93b784b1c11b3fffb1638498a8dde3f6
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When the LICENSE_FLAGS variable is set on a recipe, the package will not be built unless 
the license appears on the LICENSE_FLAGS_WHITELIST variable too, typically defined in 
your conf/local.conf file. For the earlier example, we would add:

LICENSE_FLAGS_WHITELIST = "commercial"

The LICENSE and LICENSE_FLAGS_WHITELIST variables can match exactly for a very 
narrow match or broadly, as in the preceding example, which matches all licenses that begin 
with the word commercial. For narrow matches, the package name must be appended 
to the license name; for instance, if we only wanted to whitelist the gst-plugins-ugly 
package from the earlier example but nothing else, we could use the following:

LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"

See also
 f You should refer to the specific licenses for a complete understanding of the 

requirements imposed by them. You can find a complete list of open source licenses 
and their documentation at http://spdx.org/licenses/.

http://spdx.org/licenses/
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4
Application 

Development

In this chapter, we will cover the following recipes:

 f Preparing and using an SDK
 f Using the Application Development Toolkit
 f Using the Eclipse IDE
 f Developing GTK+ applications
 f Using the Qt Creator IDE
 f Developing Qt applications
 f Describing workflows for application development
 f Working with GNU make
 f Working with the GNU build system
 f Working with the CMake build system
 f Working with the SCons builder
 f Developing with libraries
 f Working with the Linux framebuffer
 f Using the X Windows system
 f Using Wayland
 f Adding Python applications
 f Integrating the Oracle Java Runtime Environment
 f Integrating the Open Java Development Kit
 f Integrating Java applications
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Introduction
Dedicated applications are what define an embedded product, and Yocto offers helpful 
application development tools as well as the functionality to integrate with popular Integrated 
Development Environments (IDE) like Eclipse and Qt Creator. It also provides a wide range of 
utility classes to help in the integration of finished applications into the build system and the 
target images.

This chapter will introduce the IDEs and show us how they are used to build and debug  
C and C++ applications on real hardware, and will explore application development, including 
graphical frameworks and Yocto integration, not only for C and C++ but also Python and  
Java applications.

Preparing and using an SDK
The Yocto build system can be used to generate a cross-compilation toolchain and matching 
sysroot for a target system.

Getting ready
We will use the previously used wandboard-quad build directory and source the setup-
environment script as follows:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

How to do it...
There are several ways to build an SDK with the Yocto build system:

 f The meta-toolchain target.

This method will build a toolchain that matches your target platform, and a basic 
sysroot that will not match your target root filesystem. However, this toolchain can 
be used to build bare metal software like the U-Boot bootloader or the Linux kernel, 
which do not need a sysroot. The Yocto project offers downloadable sysroot for 
the supported hardware platforms. You can also build this toolchain yourself with:
$ bitbake meta-toolchain
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Once built, it can be installed with:

$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon-  
  toolchain-1.7.1.sh

 f The populate_sdk task.

This is the recommended way to build a toolchain matching your target platform with 
a sysroot matching your target root filesystem. You build it with:
$ bitbake core-image-sato -c populate_sdk

You should replace core-image-sato for the target root filesystem image you want 
the sysroot to match. The resulting toolchain can be installed with:
$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-core-image-sato-cortexa9hf-vfp-neon-  
  toolchain-1.7.1.sh

Also, if you want your toolchain to be able to build static applications, you need to add 
static libraries to it. You can do this by adding specific static libraries to your target 
image, which could also be used for native compilation. For example, to add the static 
glibc libraries, add the following to your conf/local.conf file:
IMAGE_INSTALL_append =  " glibc-staticdev"

And then build the toolchain to match your root filesystem as explained previously.

You usually won't want the static libraries added to your image, but do you want to be 
able to cross-compile static applications, so you can also add all the static libraries to 
the toolchain by adding:

SDKIMAGE_FEATURES_append = " staticdev-pkgs"

 f The meta-toolchain-qt target.

This method will extend meta-toolchain to build Qt applications. We will see 
how to build Qt applications later on. To build this toolchain, execute the following 
command:
$ bitbake meta-toolchain-qt

Once built, it can be installed with:
$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-meta-toolchain-qt-cortexa9hf-vfp-neon-  
  toolchain-qt-1.7.1.sh

The resulting toolchain installers will be located under tmp/deploy/sdk for all the 
cases mentioned here.
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 f The meta-ide-support target.

This method does not generate a toolchain installer, but it prepares the current build 
project to use its own toolchain. It will generate an environment-setup script 
inside the tmp directory.
$ bitbake meta-ide-support

To use the bundled toolchain, you can now source that script as follows:
$ source tmp/environment-setup-cortexa9hf-vfp-neon-poky-linux-  
  gnueabi

Using the Application Development  
Toolkit

The ADT is an SDK installation script that installs the following for Poky-supported  
hardware platforms:

 f A prebuilt cross-compilation toolchain, as explained previously

 f A sysroot that matches the core-image-sato target image

 f The QEMU emulator

 f Other development user space tools used for system profiling (these will be discussed 
in the following chapters)

Getting ready
To install the ADT, you can choose either of the following options:

 f Download a precompiled tarball from the Yocto project downloads site with the 
following command:
$ wget http://downloads.yoctoproject.org/releases/yocto/yocto-  
  1.7.1/adt-installer/adt_installer.tar.bz2

 f Build one using your Yocto build directory.

The ADT installer is an automated script to install precompiled Yocto SDK components, so it 
will be the same whether you download the prebuilt version or you build one yourself.

You can then configure it before running it to customize the installation.

Note that it only makes sense to use the ADT for the Poky-supported platforms. For instance,  
it is not that useful for external hardware like wandboard-quad unless you provide your own 
components.
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How to do it...
To build the ADT from your Yocto build directory, open a new shell and execute the following:

$ cd /opt/yocto/poky

$ source oe-init-build-env qemuarm

$ bitbake adt-installer

The ADT tarball will be located in the tmp/deploy/sdk directory.

How it works...
To install it, follow these steps:

1. Extract the tarball on a location of your choice:
$ cd /opt/yocto

$ cp  
  /opt/yocto/poky/qemuarm/tmp/deploy/sdk/adt_installer.tar.bz2  
  /opt/yocto

$ tar xvf adt_installer.tar.bz2

$ cd /opt/yocto/adt-installer

2. Configure the installation by editing the adt_installer.conf file. Some of  
the options are:

 � YOCTOADT_REPO: This is a repository with the packages and root filesystem 
to be used. By default, it uses the one on the Yocto project web site, 
http://adtrepo.yoctoproject.org/1.7.1/, but you could set one 
up yourself with your customized packages and root filesystem.

 � YOCTOADT_TARGETS: This defines the machine targets the SDK is for. By 
default, this is ARM and x86.

 � YOCTOADT_QEMU: This option controls whether to install the QEMU emulator. 
The default is to install it.

 � YOCTOADT_NFS_UTIL: This option controls whether to install user mode 
NFS. It is recommended if you are going to use the Eclipse IDE with QEMU-
based machines. The default is to install it.

And then for the specific target architectures (only shown for ARM):

 � YOCTOADT_ROOTFS_arm: This defines the specific root filesystem images 
to download from the ADT repository. By default it installs the minimal and 
sato-sdk images.

http://adtrepo.yoctoproject.org/1.7.1/
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 � YOCTOADT_TARGET_SYSROOT_IMAGE_arm: This is the root filesystem 
used to create the sysroot. This must also be included in the YOCTOADT_
ROOTFS_arm selection that was explained earlier. By default this is the 
sato-sdk image.

 � YOCTOADT_TARGET_MACHINE_arm: This is the machine that the images 
are downloaded for. By default this is qemuarm.

 � YOCTOADT_TARGET_SYSROOT_LOC_arm: This is the path on the host to 
install the target's sysroot. By default this is $HOME/test-yocto/.

3. Run the ADT installer as follows:
$ ./adt_installer

It will ask for an installation location (by default /opt/poky/1.7.1) and whether 
you want to run it in interactive or silent mode.

Using the Eclipse IDE
Eclipse is an open source IDE that is written mostly in Java and released under the Eclipse 
Public License (EPL). It can be extended using plugins, and the Yocto project releases a Yocto 
plugin that allows us to use Eclipse for application development.

Getting ready
Yocto 1.7 provides Eclipse Yocto plugins for two different Eclipse versions, Juno and Kepler. 
They can be downloaded at http://downloads.yoctoproject.org/releases/
yocto/yocto-1.7.1/eclipse-plugin/. We will use Kepler 4.3, as it is the newest. We 
will start with the Eclipse Kepler standard edition and install all the required plugins we need.

It is recommended to run Eclipse under Oracle Java 1.7, although other Java providers 
are supported. You can install Oracle Java 1.7 from Oracle's web site, https://
www.java.com/en/, or using a Ubuntu Java Installer PPA, https://launchpad.
net/~webupd8team/+archive/ubuntu/java. The latter will integrate Java with your 
package management system, so it's preferred. To install it, follow these steps:

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java7-set-default

To download and install Eclipse Kepler standard edition for an x86_64 host, follow  
these steps:

1. Fetch the tarball from the Eclipse download site, http://eclipse.org/
downloads/packages/release/Kepler/SR2. For example:
 $ wget http://download.eclipse.org/technology/epp/downloads/

http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/eclipse-plugin/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.7.1/eclipse-plugin/
https://www.java.com/en/
https://www.java.com/en/
https://launchpad.net/~webupd8team/+archive/ubuntu/java
https://launchpad.net/~webupd8team/+archive/ubuntu/java
http://eclipse.org/downloads/packages/release/Kepler/SR2
http://eclipse.org/downloads/packages/release/Kepler/SR2
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release/kepler/SR2/eclipse-standard-kepler-SR2-linux-gtk-x86_64.
tar.gz

2. Unpack it on a location of your choice as follows:
$ tar xvf eclipse-standard-kepler-SR2-linux-gtk-x86_64.tar.gz

3. Start the Eclipse IDE with the following:
$ nohup eclipse/eclipse &

4. Select Install New Software from the Help pull-down menu. Then select the Kepler - 
http://download.eclipse.org/releases/kepler source.

5. Install the following Eclipse components:

 � Linux tools:

LTTng - Linux Tracing Toolkit

 � Mobile and device development:

C/C++ Remote Launch

Remote System Explorer End-user Runtime

Remote System Explorer User Actions

Target Management Terminal

TCF Remote System Explorer add-in

TCF Target Explorer

 � Programming languages:

C/C++ Autotools Support

C/C++ Development Tools
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6. Install the Eclipse Yocto plugin by adding this repository source: http://
downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/
kepler, as shown in the following screenshot:

7. Choose Yocto Project ADT plug-in and ignore the unsigned content warning. We 
won't be covering other plugin extensions.

How to do it...
To configure Eclipse to use a Yocto toolchain, go to Window | Preferences | Yocto  
Project ADT.

The ADT configuration offers two cross-compiler options:

1. Standalone pre-built toolchain: Choose this when you have installed a toolchain 
either from a toolchain installer or the ADT installer.

2. Build system derived toolchain: Choose this when using a Yocto build directory 
prepared with meta-ide-support as explained previously.

It also offers two target options:

1. The QEMU emulator: Choose this if you are using Poky with a virtualized machine 
and you have used the ADT installer to install a qemuarm Linux kernel and root 
filesystem.

2. External hardware: Choose this if you are using real hardware like the wandboard-
quad hardware. This option is the most useful for embedded development.

An example configuration when using the ADT installer with its default configuration would be 
to choose the standalone prebuilt toolchain option along with the QEMU emulator as follows:

 f Cross-compiler options:

 � Standalone pre-built toolchain:

Toolchain root location: /opt/poky/1.7.1

Sysroot location: ${HOME}/test-yocto/qemuarm

Target architecture: armv5te-poky-linux-gnueabi

http://downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/kepler
http://downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/kepler
http://downloads.yoctoproject.org/releases/eclipse-plugin/1.7.1/kepler
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 � Target options:

QEMU kernel: /tmp/adt-installer/download_image/zImage-
qemuarm.bin

And for a build system derived toolchain using the wandboard-quad reference board, this is 
what you will need:

 f Cross-compiler options:

 � Build system derived toolchain:

Toolchain root location: /opt/yocto/fsl-community-bsp/
wandboard-quad
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Sysroot location: /opt/yocto/fsl-community-bsp/wandboard-
quad/tmp/sysroots/wandboard-quad

There's more...
In order to perform debugging on a remote target, it needs to be running the tcf-agent 
daemon. It is included by default on the SDK images, but you can also include it in any other 
image by adding the following to your conf/local.conf file:

EXTRA_IMAGE_FEATURES += "eclipse-debug"

See also
 f For more information, refer to the Yocto Project Application Developer's Guide at 

http://www.yoctoproject.org/docs/1.7.1/adt-manual/adt-manual.
html

http://www.yoctoproject.org/docs/1.7.1/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.7.1/adt-manual/adt-manual.html
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Developing GTK+ applications
This recipe will show how to build, run, and debug a graphical GTK+ application using the 
Eclipse IDE.

Getting ready
1. Add the eclipse-debug feature to your project's conf/local.conf file as follows:

EXTRA_IMAGE_FEATURES += "eclipse-debug"

2. Build a core-image-sato target image as follows:
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

3. Build a core-image-sato toolchain as follows:
$ bitbake -c populate_sdk core-image-sato

4. Install the toolchain as follows:

$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-core-image-sato-cortexa9hf-vfp-neon-  
  toolchain-1.7.1.sh

Before launching the Eclipse IDE, we can check whether we are able to build and launch a 
GTK application manually. We will build the following GTK+ hello world application:

The following is a code for gtk_hello_world.c:

#include <gtk/gtk.h>

int main(int argc, char *argv[])
{
  GtkWidget *window;
  gtk_init (&argc, &argv);
  window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
  gtk_widget_show (window);
  gtk_main ();
  return 0;
}
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To build it, we use the core-image-sato toolchain installed as described previously:

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --libs  
  gtk+-2.0`

This command uses the pkg-config helper tool to read the .pc files that are installed 
with the GTK libraries in the sysroot to determine which compiler switches (--cflags 
for include directories and --libs for the libraries to link with) are needed to compile 
programs that use GTK.

We can manually copy the resulting binary to our Wandboard while booting core-image-
sato over NFS and run it from the target's console with:

# DISPLAY=:0 helloworld

This will open a GTK+ window over the SATO desktop.

How to do it...
We can now configure the Eclipse ADT plugin using the standalone toolchain as described 
before, or we could decide to use the build system derived toolchain instead.
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Follow the next steps to build and run an example hello world application:

1. Create a new hello world GTK autotools project. Accept all the defaults in the project 
creation wizard. Browse to File | New | Project | C/C++ | C Project | Yocto Project 
ADT Autotools Project | Hello World GTK C Autotools Project.

When choosing a name for your project, avoid using special 
characters like dashes, as they could cause problems with 
the build tools.

2. Build the project by going to Project | Build Project.

3. Even though the project builds successfully, you may see errors both marked in the 
source and in the Problems tab. This is because the Eclipse's code analysis feature 
cannot resolve all the project's symbols. To resolve it, add the needed include 
header files to your project's properties by going to Project | Properties | C/C++ 
General | Paths and Symbols | Includes.
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4. Under Run | Run Configurations, you should have C/C++ Remote Application with 
a TCF target called <project_name>_gdb_arm-poky-linux-gnueabi. If you 
don't, create one.
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5. Create a new TCF connection to the target's IP address using the New... button in  
the Main tab.

6. Fill in the Remote Absolute File Path for C/C++ Application field with the path to 
the binary and include the binary name; for example, /gtk_hello_world.

7. In the Commands to execute before application field, enter export DISPLAY=:0.
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8. Run the application and log in as root with an empty password. You should see the 
GTK application on your SATO desktop, and the following output in the Console tab:

If you have problems connecting to the target, verify that it is running 
tcf-agent by typing in the following on the target's console:
# ps w | grep tcf

735 root     11428 S    /usr/sbin/tcf-agent -d -L- 
-l0

If you have login problems, you can use Eclipse's Remote System 
Explorer (RSE) perspective to clear passwords and debug the 
connection to the target. Once the connection can be established 
and you are able to browse the target's filesystem through RSE, you 
can come back to the run configuration.
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There's more...
To debug the application, follow these steps:

1. Go to Run | Debug Configuration.

2. Under the Debugger tab, verify the GDB debugger path is the correct toolchain 
debugger location.
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-  
  poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

If it isn't, point it to the correct location.

3. Double-click on the main function in the source file to add a breakpoint. A blue dot 
will appear on the side bar.
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4. Click on the Debug button. The debug perspective appears with the application 
executing on the remote Wandboard hardware.

If you get Text file busy error, remember to close the 
application we ran on the previous point.

Using the Qt Creator IDE
Qt Creator is a multiplatform IDE part of the Qt Application Development Framework SDK. It 
is the IDE of choice for Qt application development and is available with multiple licenses, 
including GPLv3, LGPLv2, and commercial licenses as well.
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Getting ready
1. Download and install the Qt Creator 3.3.0 for your host from the Qt project downloads 

website. For downloading and installing an x86_64 Linux host, you can use the 
following commands:
$ wget  
  http://download.qt.io/official_releases/qtcreator/3.3/3.3.0/qt  
  -creator-opensource-linux-x86_64-3.3.0.run

$ chmod u+x qt-creator-opensource-linux-x86_64-3.3.0.run

$ ./qt-creator-opensource-linux-x86_64-3.3.0.run

2. Build a toolchain that is ready to develop Qt applications with the following:
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake meta-toolchain-qt

3. Install it as follows:

$ cd tmp/deploy/sdk

$ ./poky-glibc-x86_64-meta-toolchain-qt-cortexa9hf-vfp-neon-  
  toolchain-qt-1.7.1.sh

How to do it...
Before launching Qt Creator, we need to set up the development environment. To make this 
happen automatically when we launch Qt Creator, we can patch its initialization script by 
adding the following line right at the beginning of the bin/qtcreator.sh file:

source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

#! /bin/sh

Note that the environment initialization script is placed before 
the hash bang.

Now we can run Qt Creator  as follows:

$ ./bin/qtcreator.sh &
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And configure it by going to Tools | Options and using the following steps:

1. First we configure a new device for our Wandboard. Under Devices | Add, we select 
Generic Linux Device.

Set the root password in the target by using the passwd command from the target's 
root console and type it in the password field.

2. Under Build & Run, we configure a new compiler pointing to the Yocto meta-
toolchain-qt compiler path we just installed. Here's the path as shown in the 
following screenshot:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-  
  poky-linux-gnueabi/arm-poky-linux-gnueabi-g++
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3. Similarly for a cross-debugger, the following is the path which is also mentioned in the 
following screenshot:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/arm-  
  poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

4. And then we configure Qt by selecting the qmake builder from the toolchain. Here's 
the path which is also mentioned in the following screenshot:
/opt/poky/1.7.1/sysroots/x86_64-pokysdk-linux/usr/bin/qmake
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5. Finally we configure a new kit as follows:

1. Select Generic Linux Device and configure its sysroot to:
/opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/

2. Select the compiler, debugger, and Qt version we just defined.

In Ubuntu, Qt Creator stores its configuration on the user's home 
directory under .config/QtProject/.

Developing Qt applications
This recipe will show how to build, run, and debug a graphical Qt application using Qt Creator.

Getting ready
Before launching Qt Creator, we check whether we are able to build and launch a Qt 
application manually. We will build a Qt hello world application.
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Here is the code for qt_hello_world.cpp:

#include <QApplication>
#include <QPushButton>

 int main(int argc, char *argv[])
 {
     QApplication app(argc, argv);

     QPushButton hello("Hello world!");

     hello.show();
     return app.exec();
 }

To build it, we use the meta-toolchain-qt installed as described previously:

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ qmake -project

$ qmake

$ make

This uses qmake to create a project file and a Makefile file with all the relevant code files in 
the folder.

To run it, we first need to build a filesystem with Qt support. We first prepare the environment 
as follows:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

And configure our project with the qt4-pkgs extra feature by adding the following to conf/
local.conf:

EXTRA_IMAGE_FEATURES += "qt4-pkgs"

And for Qt applications, we also need the International Component for Unicode (ICU) library, 
as the Qt libraries are compiled with support for it.

IMAGE_INSTALL_append = " icu"

And build it with:

$ bitbake core-image-sato
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Once finished, we can program the microSD card image and boot the Wandboard. Copy the 
qt_hello_world binary to the target and run:

# DISPLAY=:0 qt_hello_world

You should see the Qt hello world window on the X11 desktop.

How to do it...
Follow these steps to build and run an example hello world application:

1. Create a new empty project by going to File | New File or Project | Other project | 
Empty qmake project.

2. Select only the wandboard-quad kit we just created.

3. Add a new C++ file, qt_hello_world.cpp, by going to File | New File or Project | 
C++ | C++ Source File.
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4. Paste the contents of the qt_hello_world.cpp file into Qt Creator, as shown in the 
following screenshot:

5. Configure your project with the target installation details by adding the following to 
your hw.pro file:
SOURCES += \
   qt_hello_world.cpp

TARGET =  qt_hello_world
   target.files =  qt_hello_world
   target.path = /

INSTALLS += target

Replace qt_hello_world with the name of your project.

6. Build the project. If you have build errors, verify that the Yocto build environment has 
been correctly set up.
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You can try to manually run the toolchain environment-setup 
script before launching Qt Creator.

7. Go to Projects | Run and check your project settings.

8. As can be seen in this screenshot, Qt Creator will use the SFTP protocol to transfer 
the files to the target. By default, the dropbear SSH server running on core-image-
sato does not have SFTP support. We need to add it to our image to allow Qt Creator 
to work by adding the openssh-sftp-server package to the project's conf/
local.conf file.
IMAGE_INSTALL_append =  " openssh-sftp-server"

However, there are other tools we will need, like the gdbserver if we want to debug 
our application, so it's easier to add the eclipse-debug feature, which will add all 
of the needed applications to the target image.

EXTRA_IMAGE_FEATURES += "eclipse-debug"
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9. You can now run the project.

If the application fails to be deployed with a login error, verify that you have 
set a root password in the target as explained in the recipe previously, or that 
you are using SSH key authentication.

You should now see the example Qt hello world application running on your SATO desktop.
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There's more...
To debug the application, toggle a breakpoint on the source and click on the Debug button.

Describing workflows for application 
development

The workflows for application development are similar to the ones we already saw for U-Boot 
and the Linux kernel back in Chapter 2, The BSP Layer.

How to do it...
We will see how the following development workflows are applied to application development:

 f External development

 f Working directory development

 f External source development
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How it works...

External development
This is what we have been using on the recipes we saw before when building from the 
command line using a standalone toolchain, and also when using both the Eclipse and Qt 
Creator IDEs. This workflow produces binaries that have to be individually copied to the 
hardware to run and debug. It can be used in conjunction with the other workflows.

Working directory development
When the application is being built by the Yocto build system, we use this workflow to debug 
sporadic problems. However, it is not the recommended workflow for long developments. Note, 
though, that it is usually the first step when debugging third-party packages.

We will use the helloworld_1.0.bb custom recipe we saw back in the Adding new 
packages recipe in Chapter 3, The Software Layer, meta-custom/recipes-example/
helloworld/helloworld_1.0.bb, as an example.

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
             ${CC} helloworld.c -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}
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Here, the helloworld.c source file is the following:

#include <stdio.h>

int main(void)
{
   return printf("Hello World");
}

The workflow steps are:

1. Start the package compilation from scratch.
$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake -c cleanall helloworld

This will erase the package's build folder, shared state cache, and downloaded  
package source.

2. Start a development shell:
$ bitbake -c devshell helloworld

This will fetch, unpack, and patch the helloworld sources and spawn a new 
shell with the environment ready for compilation. The new shell will change to the 
package's build directory.

3. Depending on the SRC_URI variable, the package's build directory can be revision 
controlled already. If not, as is the case in this example, we will create a local Git 
repository as follows:
$ git init

$ git add helloworld.c

$ git commit -s -m "Original revision"

4. Perform the modifications we need; for example, change helloworld.c to print 
Howdy world as follows:
#include <stdio.h>

int main(void)
{
   return printf("Howdy World");
}
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5. Exit devshell and build the package without erasing our modifications.
$ bitbake -C compile helloworld

Note the capital C (which invokes the compile task) and also all 
the tasks that follow it.

6. Test your changes on the hardware by copying the generated package and installing 
it. Because you have only modified one package, the rest of the dependencies should 
be already installed in the running root filesystem. Run the following:
$ bitbake -e helloworld | grep ^WORKDIR=

WORKDIR="/opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/work/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/helloworld/1.0-r0"

$ scp ${WORKDIR_PATH}/deploy-rpms/deploy-  
  rpms/cortexa9hf_vfp_neon/helloworld-1.0-  
  r0.cortexa9hf_vfp_neon.rpm root@<target_ip_address>:/

$ rpm -i /helloworld-1.0-r0.cortexa9hf_vfp_neon.rpm

This assumes the target's root filesystem has been built with the package-
management feature and the helloworld package is added to the RM_WORK_
EXCLUDE variable when using the rm_work class.

7. Go back to devshell and commit your change to the local Git repository as follows:
$ bitbake -c devshell helloworld

$ git add  helloworld.c

$ git commit -s -m "Change greeting message"

8. Generate a patch into the recipe's patch directory:
$ git format-patch -1 -o /opt/yocto/fsl-community-  
  bsp/sources/meta-custom/recipes-  
  example/helloworld/helloworld-1.0

9. Finally, add the patch to the recipe's SRC_URI variable, as shown here:

SRC_URI  =  "file://helloworld.c \
           file://0001-Change-greeting-message.patch"
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External source development
This workflow is recommended for development work once the application has been 
integrated into the Yocto build system. It can be used in conjunction with external 
development using an IDE, for example.

In the example recipe we saw earlier, the source file was placed on the meta-custom layer 
along with the metadata.

It is more common to have the recipe fetch directly from a revision control system 
like Git, so we will change the meta-custom/recipes-example/helloworld/
helloworld_1.0.bb file to source from a Git directory as follows:

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "git://github.com/yoctocookbook/helloworld"

S = "${WORKDIR}/git"

do_compile() {
             ${CC} helloworld.c -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}

We can then clone it into a local directory as follows:

$ cd /opt/yocto/

$ git clone git://github.com/yoctocookbook/helloworld

An alternative to using a remote revision controlled repository it to use a local one. To do so, 
follow these steps:

1. Create a local Git repository that will hold the source:
$ mkdir -p /opt/yocto/helloworld

$ cd /opt/yocto/helloworld

$ git init



Chapter 4

477

2. Copy our helloworld.c file over here, and add it to the repository:
$ git add helloworld.c

3. Finally, commit it with a signature and a message:

$ git commit -s -m "Original revision"

In any case, we have the version-controlled source in a local directory. We will then configure 
our conf/local.conf file to work from it as follows:

INHERIT += "externalsrc"
EXTERNALSRC_pn-helloworld = "/opt/yocto/helloworld"
EXTERNALSRC_BUILD_pn-helloworld = "/opt/yocto/helloworld"

And build it with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake helloworld

We can then work directly in the local folder without the risk of accidentally having BitBake 
erase our code. Once development is complete, the modifications to conf/local.conf are 
removed and the recipe will fetch the source from its original SRC_URI location.

Working with GNU make
GNU make is a make implementation for Linux systems. It is used by a wide variety of open 
source projects, including the Linux kernel. The build is managed by a Makefile, which tells 
make how to build the source code.

How to do it...
Yocto recipes inherit base.bbclass and hence their default behavior is to look for a 
Makefile, makefile, or GNU Makefile and use GNU make to build the package.

If your package already contains a Makefile, then all you need to worry about are the 
arguments that need to be passed to make. Make arguments can be passed using the 
EXTRA_OEMAKE variable, and a do_install override that calls the oe_runmake install 
needs to be provided, otherwise an empty install is run.

For example, the logrotate recipe is based on a Makefile and looks as follows:

SUMMARY = "Rotates, compresses, removes and mails system log  
  files"
SECTION = "console/utils"
HOMEPAGE = "https://fedorahosted.org/logrotate/"



Application Development

478

LICENSE = "GPLv2"

DEPENDS="coreutils popt"

LIC_FILES_CHKSUM =  
  "file://COPYING;md5=18810669f13b87348459e611d31ab760"

SRC_URI =  
  "https://fedorahosted.org/releases/l/o/logrotate/logrotate-  
  ${PV}.tar.gz \"
SRC_URI[md5sum] = "99e08503ef24c3e2e3ff74cc5f3be213"
SRC_URI[sha256sum] =  
  "f6ba691f40e30e640efa2752c1f9499a3f9738257660994de70a45fe00d12b64"

EXTRA_OEMAKE = ""

do_install(){
    oe_runmake install DESTDIR=${D} PREFIX=${D} MANDIR=${mandir}
    mkdir -p ${D}${sysconfdir}/logrotate.d
    mkdir -p ${D}${sysconfdir}/cron.daily
    mkdir -p ${D}${localstatedir}/lib
    install -p -m 644 examples/logrotate-default  
  ${D}${sysconfdir}/logrotate.conf
    install -p -m 755 examples/logrotate.cron  
  ${D}${sysconfdir}/cron.daily/logrotate
    touch ${D}${localstatedir}/lib/logrotate.status
}

See also
 f For more information about GNU make, visit https://www.gnu.org/software/

make/manual/

Working with the GNU build system
A Makefile is a good solution when you are always going to build and run your software on 
the same system, and things like glibc and gcc versions and the available library versions 
are known. However, most software need to be built and run in a variety of systems.

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
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Getting ready
The GNU build system, or autotools, is a set of tools whose aim is to create a Makefile for 
your software in a variety of systems. It's made up of three main tools:

 f autoconf: This parses the contents of a configure.ac file that describes the 
source code to be built and creates a configure script. This script will then be used 
to generate the final Makefile.

 f automake: This parses the contents of a Makefile.am file and converts it into a 
Makefile.in file. This is then used by the configure script generated earlier to 
obtain a config.status script that gets automatically executed to obtain the final 
Makefile.

 f libtools: This manages the creation of both static and dynamic libraries.

How to do it...
The Yocto build system contains classes with the required knowledge to build autotools 
packages. All your recipe needs to do is to inherit the autotools class and configure the 
arguments to be passed to the configure script in the EXTRA_OECONF variable. Usually, 
the autotools system understands how to install the software, so you do not need a do_
install override.

There is a wide variety of open source projects that use autotools as the build system.

An example, meta-custom/recipes-example/hello/hello_2.9.bb, that does not 
need any extra configure options, follows:

DESCRIPTION = "GNU helloworld autotools recipe"
SECTION = "examples"

LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/files/common-  
  licenses/GPL-3.0;md5=c79ff39f19dfec6d293b95dea7b07891"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
SRC_URI[md5sum] = "67607d2616a0faaf5bc94c59dca7c3cb"
SRC_URI[sha256sum] = 
"ecbb7a2214196c57ff9340aa71458e1559abd38f6d8d169666846935df191ea7"

inherit autotools gettext
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See also
 f For more information about the GNU build system, visit http://www.gnu.org/

software/automake/manual/html_node/GNU-Build-System.html

Working with the CMake build system
The GNU make system is a great tool when you build exclusively for Linux systems. However, 
some packages are multiplatform and need a way to manage Makefile files on different 
operating systems. CMake is a cross-platform build system that can work not only with GNU 
make, but also Microsoft Visual Studio and Apple's Xcode.

Getting ready
The CMake tool parses the CMakeLists.txt files in every directory to control the build 
process. An example CMakeLists.txt file to compile the hello world example follows:

cmake_minimum_required(VERSION 2.8.10)
project(helloworld)
add_executable(helloworld helloworld.c)
install(TARGETS helloworld RUNTIME DESTINATION bin)

How to do it...
The Yocto build system also contains classes with the required knowledge to build CMake 
packages. All your recipe needs to do is to inherit the cmake class and configure the 
arguments to be passed to the configure script in the EXTRA_OECMAKE variable. Usually, 
the CMake system understands how to install the software, so you do not need a do_
install override.

A recipe to build the helloworld.C example application, meta-custom/recipes-
example/helloworld-cmake/helloworld-cmake_1.0.bb, follows:

DESCRIPTION = "Simple helloworld cmake application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://CMakeLists.txt \
           file://helloworld.c"

http://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html
http://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html
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S = "${WORKDIR}"

inherit cmake

EXTRA_OECMAKE = ""

See also
 f For more information about CMake, visit http://www.cmake.org/

documentation/

Working with the SCons builder
SCons is also a multiplatform build system written in Python, with its configuration files  
also written in the same language. It also includes support for Microsoft Visual Studio  
among other features.

Getting ready
SCons parses the SConstruct files, and by default it does not propagate the environment 
into the build system. This is to avoid build issues caused by environment differences.  
This is a complication for Yocto, as it configures the environment with the cross-compilation 
toolchain settings.

SCons does not define a standard way to support cross-compilation, so every project will 
implement it differently. For a simple example as the hello world program, we can just initialize 
the CC and PATH variables from the external environment as follows:

import os
env = Environment(CC = os.environ['CC'],
                  ENV = {'PATH': os.environ['PATH']})
env.Program("helloworld", "helloworld.c")

How to do it...
The Yocto build system also contains classes with the required knowledge to build SCons 
packages. All your recipe needs to do is to inherit the SCons class and configure the 
arguments to be passed to the configure script in the EXTRA_OESCONS variable. Although 
some packages using SCons might deal with installation through an install alias as required 
by the SCons class, your recipe will mostly need to provide a do_install task override.

http://www.cmake.org/documentation/
http://www.cmake.org/documentation/
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An example recipe to build the helloworld.c example application, meta-custom/
recipes-example/helloworld-scons/helloworld-scons_1.0.bb, follows:

DESCRIPTION = "Simple helloworld scons application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://SConstruct \
           file://helloworld.c"

S = "${WORKDIR}"

inherit scons

EXTRA_OESCONS = ""

do_install() {
    install -d ${D}/${bindir}
    install -m 0755 helloworld ${D}${bindir}
}

See also
 f For more information about SCons, visit http://www.scons.org/doc/HTML/

scons-user/

Developing with libraries
Most applications make use of shared libraries, which saves system memory and disk space, 
as they are shared between different applications. Modularizing code into libraries also allows 
for easier versioning and code management.

This recipe will explain how to work with both static and shared libraries in Linux and Yocto.

Getting ready
By convention, library files start with the lib prefix.

http://www.scons.org/doc/HTML/scons-user/
http://www.scons.org/doc/HTML/scons-user/
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There are basically two library types:

 f Static libraries (.a): When the object code is linked and becomes part of the 
application

 f Dynamic libraries (.so): Linked at compile time but not included in the application, 
so they need to be available at runtime. Multiple applications can share a dynamic 
library so they need less disk space.

Libraries are placed in the following standard root filesystem locations:

 f /lib: Libraries required for startup

 f /usr/lib: Most system libraries

 f /usr/local/lib: Non-system libraries

Dynamic libraries follow certain naming conventions on running systems so that multiple 
versions can co-exist, so a library can be referenced by different names. Some of them are 
explained as follows:

 f The linker name with the .so suffix; for example, libexample.so.

 f The fully qualified name or soname, a symbolic link to the library name. For example, 
libexample.so.x, where x is the version number. Increasing the version number 
means the library is not compatible with previous versions.

 f The real name. For example, libexample.so.x.y[.z], where x is the major 
version number, y is the minor version number, and the optional z is a release 
number. Increasing minor or release numbers retains compatibility.

In GNU glibc, starting an ELF binary calls a program loader, /lib/ld-linux-X. Here, X is 
the version number, which finds all the needed shared libraries. This process uses a couple of 
interesting files:

 f /etc/ld.so.conf: This stores the directories searched by the loader

 f /etc/ld.so.preload: This is used to override libraries

The ldconfig tool reads the ld.so.conf file and creates a cache file (/etc/ld.so.
cache) to increase access speed.

The following environment variables can also be helpful:

 f LD_LIBRARY_PATH: This is a colon-separated directory list to search libraries in. It is 
used when debugging or using non-standard library locations.

 f LD_PRELOAD: This is used to override shared libraries.
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Building a static library
We will build a static library, libhelloworld, from two source files, hello.c and world.c, 
and use it to build a hello world application. The source files for the library are presented here.

The following is the code for the hello.c file:

char * hello (void)
{
  return "Hello";
}

This is the code for world.c file:

char * world (void)
{
  return "World";
}

To build the library, follow these steps:

1. Configure the build environment:
$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-  
  neon-poky-linux-gnueabi

2. Compile and link the library:
${CC} -c hello.c world.c

${AR} -cvq libhelloworld.a hello.o world.o

3. Verify the contents of the library:
${AR} -t libhelloworld.a

The application source code is presented next.

 f For the helloworld.c file the following is the code:
#include <stdio.h>
int main (void)
{
  return printf("%s %s\n",hello(),world());
}

 f To build it we run:
${CC} -o helloworld helloworld.c libhelloworld.a
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 f We can check which libraries it links with using readelf:

$ readelf -d helloworld

Dynamic section at offset 0x534 contains 24 entries:

  Tag        Type                         Name/Value

 0x00000001 (NEEDED)                     Shared library:  
  [libc.so.6]

Building a shared dynamic library
To build a dynamic library from the same sources, we would run:

${CC} -fPIC -g -c hello.c world.c

${CC} -shared -Wl,-soname,libhelloworld.so.1 -o libhelloworld.so.1.0  
  hello.o world.o

We can then use it to build our helloworld C application, as follows:

${CC} helloworld.c libhelloworld.so.1.0 -o helloworld

And again, we can check the dynamic libraries using readelf, as follows:

$ readelf -d helloworld

Dynamic section at offset 0x6ec contains 25 entries:

  Tag        Type                         Name/Value

 0x00000001 (NEEDED)                     Shared library:  
  [libhelloworld.so.1]

 0x00000001 (NEEDED)                     Shared library: [libc.so.6]

How to do it...
An example recipe for the static library example we just saw follows, meta-custom/
recipes-example/libhelloworld-static/libhelloworldstatic_1.0.bb:

DESCRIPTION = "Simple helloworld example static library"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://hello.c \
           file://world.c \
           file://helloworld.pc"
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S = "${WORKDIR}"

do_compile() {
        ${CC} -c hello.c world.c
        ${AR} -cvq libhelloworld.a hello.o world.o
}

do_install() {
        install -d ${D}${libdir}
        install -m 0755 libhelloworld.a ${D}${libdir}
}

By default, the configuration in meta/conf/bitbake.conf places all static libraries in a 
-staticdev package. It is also placed in the sysroot so that it can be used.

For a dynamic library, we would use the following recipe, meta-custom/recipes-
example/libhelloworld-dyn/libhelloworlddyn_1.0.bb:

meta-custom/recipes-example/libhelloworld-dyn/libhelloworlddyn_1.0.bb
DESCRIPTION = "Simple helloworld example dynamic library"
SECTION = "libs"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://hello.c \
           file://world.c \
           file://helloworld.pc"

S = "${WORKDIR}"

do_compile() {
       ${CC} -fPIC -g -c hello.c world.c
       ${CC} -shared -Wl,-soname,libhelloworld.so.1 -o  
  libhelloworld.so.1.0 hello.o world.o
}

do_install() {
       install -d ${D}${libdir}
       install -m 0755 libhelloworld.so.1.0 ${D}${libdir}
       ln -s libhelloworld.so.1.0  
  ${D}/${libdir}/libhelloworld.so.1
       ln -s libhelloworld.so.1 ${D}/${libdir}/libhelloworld.so
}
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Usually we would list the library dependencies (if any) in the RDEPENDS variable, but this is 
not always needed as the build system performs some automatic dependency checking by 
inspecting both the library file and the pkg-config file and adding the dependencies it finds 
to RDEPENDS automatically.

Multiple versions of the same library can co-exist on the running system. For that, you need 
to provide different recipes with the same package name but different package revision. For 
example, we would have libhelloworld-1.0.bb and libhelloworld-1.1.bb.

And to build an application using the static library, we would create a recipe in meta-custom/
recipes-example/helloworld-static/helloworldstatic_1.0.bb, as follows:

DESCRIPTION = "Simple helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

DEPENDS = "libhelloworld-static"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
        ${CC} -o helloworld helloworld.c  
  ${STAGING_LIBDIR}/libhelloworld.a
}

do_install() {
        install -d ${D}${bindir}
        install -m 0755 helloworld ${D}${bindir}
}

To build using the dynamic library, we would just need to change the recipe in meta-custom/
recipes-example/helloworld-shared/helloworldshared_1.0.bb to meta-
custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb:

meta-custom/recipes-example/helloworld-shared/helloworldshared_1.0.bb
DESCRIPTION = "Simple helloworld example"
SECTION = "examples"
LICENSE = "MIT"
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LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

DEPENDS = "libhelloworld-dyn"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
        ${CC} -o helloworld helloworld.c -lhelloworld
}

do_install() {
        install -d ${D}${bindir}
        install -m 0755 helloworld ${D}${bindir}
}

How it works...
Libraries should provide the information required to use them, such as include headers  
and library dependencies. The Yocto Project provides two ways for libraries to provide  
build settings:

 f The binconfig class. This is a legacy class used for libraries that provide a 
-config script to provide build settings.

 f The pkgconfig class. This is the recommended method for libraries to provide build 
settings.

A pkg-config build settings file has the .pc suffix, is distributed with the library, and is 
installed in a common location known to the pkg-config tool.

The helloworld.pc file for the dynamic library looks as follows:

prefix=/usr/local
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib

Name: helloworld
Description: The helloworld library
Version: 1.0.0
Cflags: -I${includedir}/helloworld
Libs: -L${libdir} -lhelloworld
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However, for the static library, we would change the last line to:

Libs: -L${libdir} libhelloworld.a

A package wanting to use this .pc file would inherit the pkgconfig class.

There's more...
There's a provision for packages that build both a library and an executable but do not want 
both of them installed together. By inheriting the lib_package class, the package will create 
a separate -bin package with the executables.

See also
 f More details regarding pkg-config can be found at http://www.freedesktop.

org/wiki/Software/pkg-config/

Working with the Linux framebuffer
The Linux kernel provides an abstraction for the graphical hardware in the form of framebuffer 
devices. These allow applications to access the graphics hardware through a well-defined API. 
The framebuffer is also used to provide a graphical console to the Linux kernel, so that it can, 
for example, display colors and a logo.

In this recipe, we will explore how applications can use the Linux framebuffer to display 
graphics and video.

Getting ready
Some applications, especially in embedded devices, are able to access the framebuffer by 
mapping the memory and accessing it directly. For example, the gstreamer framework is 
able to work directly over the framebuffer, as is the Qt graphical framework.

Qt is a cross-platform application framework written in C++ and developed both by Digia, 
under the Qt company name, and the open source Qt project community.

For Qt applications, Poky provides a qt4e-demo-image and the FSL community BSP 
provides a qte-in-use-image, both of which include support for Qt4 Extended over the 
framebuffer. The provided framework also includes support for hardware acceleration – not 
only video but also 2D and 3D graphical acceleration provided through the OpenGL and 
OpenVG APIs.

http://www.freedesktop.org/wiki/Software/pkg-config/
http://www.freedesktop.org/wiki/Software/pkg-config/
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How to do it...
To compile the Qt hello world application we saw in the Developing Qt applications recipe 
earlier, we could use the following meta-custom/recipes-qt/qt-helloworld/qt-
helloworld_1.0.bb Yocto recipe:

DESCRIPTION = "Simple QT helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

RDEPENDS_${PN} += "icu"

SRC_URI = "file://qt_hello_world.cpp \
           file://qt_hello_world.pro"

S = "${WORKDIR}"

inherit qt4e

do_install() {
         install -d ${D}${bindir}
         install -m 0755 qt_hello_world ${D}${bindir}
}

Here the meta-custom/recipes-qt/qt-helloworld/qt-helloworld-1.0/qt_
hello_world.cpp source file is as follows:

#include <QApplication>
#include <QPushButton>

 int main(int argc, char *argv[])
 {
     QApplication app(argc, argv);

     QPushButton hello("Hello world!");

     hello.show();
     return app.exec();
 }
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And the meta-custom/recipes-qt/qt-helloworld/qt-helloworld-1.0/qt_
hello_world.pro project file is as follows:

SOURCES += \
   qt_hello_world.cpp

Then we add it to the image by using the following in your project's conf/local.conf file:

IMAGE_INSTALL_append = " qt-helloworld"

And we build the image with:

$ bitbake qt4e-demo-image

We can then program the SD card image, boot it, log in to the Wandboard, and launch the 
application by running:

# qt_hello_world -qws

The -qws command-line option is needed to run the server application.

How it works...
The framebuffer devices are located under /dev. The default framebuffer device is  
/dev/fb0, and if the graphics hardware provides more than one, they will be  
sequentially numbered.

By default, the Wandboard boots with two framebuffer devices, fb0 and fb1. The first is the 
default video display, and the second one is an overlay plane that can be used to combine 
content on the display.

However, the i.MX6 SoC supports up to four displays, so it could have up to four framebuffer 
devices in addition to two overlay framebuffers.

You can change the default framebuffer used by applications with the FRAMEBUFFER 
environment variable. For example, if your hardware supports several framebuffers, you could 
use the second one by running:

# export FRAMEBUFFER=/dev/fb1

The framebuffer devices are memory mapped and you can perform file operations on them. 
For example, you can clear the contents of the screen by running:

# cat /dev/zero > /dev/fb0
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Or copy it with:

# cat /dev/fb0 > fb.raw

You may even restore the contents with:

# cat fb.raw > /dev/fb0

User space programs can also interrogate the framebuffers or modify their configuration 
programmatically using ioctls, or from the console by using the fbset application, which is 
included in Yocto's core images as a BusyBox applet.

# fbset -fb /dev/fb0

mode "1920x1080-60"

        # D: 148.500 MHz, H: 67.500 kHz, V: 60.000 Hz

        geometry 1920 1080 1920 1080 24

        timings 6734 148 88 36 4 44 5

        accel false

        rgba 8/16,8/8,8/0,0/0

endmode

You can configure the framebuffer HDMI device with a specific resolution, bits per pixel, 
and refresh rate by passing the video command-line option from the U-Boot bootloader to 
the Linux kernel. The specific format depends on the device framebuffer driver, and for the 
Wandboard it is as follows:

video=mxcfbn:dev=hdmi,<xres>x<yres>M[@rate]

Where:

 f n is the framebuffer number

 f xres is the horizontal resolution

 f yres is the vertical resolution

 f M specifies that the timings are to be calculated using the VESA coordinated video 
timings instead of from a look-up table

 f rate is the refresh rate

For example, for the fb0 framebuffer, you could use:

video=mxcfb0:dev=hdmi,1920x1080M@60

Note that after some time of inactivity, the virtual console will blank out. 
To unblank the display, use:

# echo 0 > /sys/class/graphics/fb0/blank
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There's more...
The FSL community BSP layer also provides a fsl-image-multimedia target image 
that includes the gstreamer framework, including plugins that make use of the hardware 
acceleration features within the i.MX6 SoC. A fsl-image-multimedia-full image is also 
provided, which extends the supported gstreamer plugins.

To build the fsl-image-multimedia image with framebuffer support, you need to remove 
the graphical distribution features by adding the following to your conf/local.conf file:

DISTRO_FEATURES_remove = "x11 directfb wayland"

And build the image with:

$ bitbake fsl-image-multimedia

The resulting fsl-image-multimedia-wandboard-quad.sdcard image at tmp/
deploy/images can be programmed into a microSD card and booted.

The default Wandboard device tree defines an mxcfb1 node as follows:

       mxcfb1: fb@0 {
                compatible = "fsl,mxc_sdc_fb";
                disp_dev = "hdmi";
                interface_pix_fmt = "RGB24";
                mode_str ="1920x1080M@60";
                default_bpp = <24>;
                int_clk = <0>;
                late_init = <0>;
        };

So, connecting a 1920x1080 HDMI monitor should show a virtual terminal with the  
Poky login prompt.

We can then use the gstreamer command-line tool, gst-launch, to construct gstreamer 
pipelines. For example, to view a hardware-accelerated video over the framebuffer, you can 
download the Big Bunny teaser full HD video file and play it over the framebuffer using the 
gstreamer framework's gst-launch command-line tool as follows:

# cd /home/root

# wget  
  http://video.blendertestbuilds.de/download.blender.org/peach/trailer_  
  1080p.mov

# gst-launch playbin2 uri=file:///home/root/trailer_1080p.mov
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The video will use Freescale's h.264 video decoder plugin, vpudec, which makes use of the 
hardware video processing unit inside the i.MX6 SoC to decode the h.264 video.

You can see a list of the available i.MX6-specific plugins by running:

# gst-inspect | grep imx

h264.imx:  mfw_h264decoder: h264 video decoder

audiopeq.imx:  mfw_audio_pp: audio post equalizer

aiur.imx: webm: webm

aiur.imx:  aiurdemux: aiur universal demuxer

mpeg2dec.imx:  mfw_mpeg2decoder: mpeg2 video decoder

tvsrc.imx:  tvsrc: v4l2 based tv src

ipucsc.imx:  mfw_ipucsc: IPU-based video converter

mpeg4dec.imx:  mfw_mpeg4aspdecoder: mpeg4 video decoder

vpu.imx:  vpudec: VPU-based video decoder

vpu.imx:  vpuenc: VPU-based video encoder

mp3enc.imx:  mfw_mp3encoder: mp3 audio encoder

beep.imx: ac3: ac3

beep.imx: 3ca: ac3

beep.imx:  beepdec: beep audio decoder

beep.imx:  beepdec.vorbis: Vorbis decoder

beep.imx:  beepdec.mp3: MP3 decoder

beep.imx:  beepdec.aac: AAC LC decoder

isink.imx:  mfw_isink: IPU-based video sink

v4lsink.imx:  mfw_v4lsink: v4l2 video sink

v4lsrc.imx:  mfw_v4lsrc: v4l2 based camera src

amrdec.imx:  mfw_amrdecoder: amr audio decoder

See also
 f The framebuffer API is documented in the Linux kernel documentation at https://

www.kernel.org/doc/Documentation/fb/api.txt

 f For more information regarding Qt for Embedded Linux, refer to http://qt-
project.org/doc/qt-4.8/qt-embedded-linux.html

 f Documentation for the gstreamer 0.10 framework can be found at http://
www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/
gstreamer-0.10/

https://www.kernel.org/doc/Documentation/fb/api.txt
https://www.kernel.org/doc/Documentation/fb/api.txt
http://qt-project.org/doc/qt-4.8/qt-embedded-linux.html
http://qt-project.org/doc/qt-4.8/qt-embedded-linux.html
http://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gstreamer-0.10/ 
http://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gstreamer-0.10/ 
http://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gstreamer-0.10/ 
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Using the X Windows system
The X Windows system provides the framework for a GUI environment – things like drawing 
and moving windows on the display and interacting with input devices like the mouse, the 
keyboard, and touchscreens. The protocol version has been X11 for over two decades, so it 
also known as X11.

Getting ready
The reference implementation for the X Windows system is the X.Org server, which is 
released under permissive licenses such as MIT. It uses a client/server model, with the server 
communicating with several client programs, serving user input, and accepting graphical 
output. The X11 protocol is network transparent so that the clients and the server may run on 
different machines, with different architectures and operating systems. However, mostly, they 
both run on the same machine and communicate using local sockets.

User interface specifications, such as buttons or menu styles, are not defined in X11, which 
leaves it to other window manager applications that are usually part of desktop environments, 
such as Gnome or KDE.

X11 has input and video drivers to handle the hardware. For example, it has a framebuffer 
driver, fbdev, that can output to a non-accelerated Linux framebuffer, and evdev, a generic 
Linux input device driver with support for mice, keyboards, tablets, and touchscreens.

The design of the X11 Windows systems makes it heavy for embedded devices, and although 
a powerful device like the quad-core i.MX6 has no trouble using it, many embedded devices 
choose other graphical alternatives. However, there are many graphical applications, mostly 
from the desktop environment, that run over the X11 Windows system.

The FSL community BSP layer provides a hardware-accelerated X video driver for the i.MX6 
SoC, xf86-video-imxfb-vivante, which is included in the X11-based core-image-
sato target image and other graphical images.

The X server is configured by an /etc/X11/xorg.conf file that configures the accelerated 
device as follows:

Section "Device"
    Identifier  "i.MX Accelerated Framebuffer Device"
    Driver      "vivante"
    Option      "fbdev"     "/dev/fb0"
    Option      "vivante_fbdev" "/dev/fb0"
    Option      "HWcursor"  "false"
EndSection

The graphical acceleration is provided by the Vivante GPUs included in the i.MX6 SoC.
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Low-level X11 development is not recommended, and toolkits such as GTK+ and Qt are 
preferred. We will see how to integrate both types of graphical applications into our Yocto 
target image.

How to do it...
SATO is the default visual style for the Poky distribution based on Gnome Mobile and 
Embedded (GMAE). It is a desktop environment based on GTK+ that uses the matchbox-
window-manager. It has the peculiarity of showing one single fullscreen window at a time.

To build the GTK hello world application, meta-custom/recipes-graphics/gtk-
helloworld/gtk-helloworld-1.0/gtk_hello_world.c, that we introduced earlier,  
as follows:

#include <gtk/gtk.h>

int main(int argc, char *argv[])
{
    GtkWidget *window;
    gtk_init (&argc, &argv);
    window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
    gtk_widget_show (window);
    gtk_main ();
    return 0;
}

We can use the following meta-custom/recipes-graphics/gtk-helloworld/gtk-
helloworld_1.0.bb recipe:

DESCRIPTION = "Simple GTK helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://gtk_hello_world.c"

S = "${WORKDIR}"

DEPENDS = "gtk+"

inherit pkgconfig

do_compile() {
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    ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --  
  libs gtk+-2.0`
}

do_install() {
    install -d ${D}${bindir}
    install -m 0755 helloworld ${D}${bindir}
}

We can then add the package to the core-image-sato image by using:

IMAGE_INSTALL_append = " gtk-helloworld"

And we can build it, program it, and run the application from the serial terminal with:

# export DISPLAY=:0

# helloworld

There's more...
Accelerated graphical output is also supported on the Qt framework, either directly on the 
framebuffer (like in the qt4e-demo-image target we saw before) or using the X11 server 
available in core-image-sato.

To build the Qt hello world source we introduced in the previous recipe but over X11, we  
can use the meta-custom/recipes-qt/qtx11-helloworld/qtx11-
helloworld_1.0.bb Yocto recipe shown as follows::

DESCRIPTION = "Simple QT over X11 helloworld example"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

RDEPENDS_${PN} += "icu"

SRC_URI = "file://qt_hello_world.cpp \
           file://qt_hello_world.pro"

S = "${WORKDIR}"

inherit qt4x11

do_install() {
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         install -d ${D}${bindir}
         install -m 0755 qt_hello_world ${D}${bindir}
}

We then need to add the Qt4 framework to the target image as well as the application.

EXTRA_IMAGE_FEATURES += "qt4-pkgs"
IMAGE_INSTALL_append = " qtx11-helloworld"

We can then build core-image-sato using the following command:

$ bitbake core-image-sato

Program and boot our target. Then run the application with:

# export DISPLAY=:0

# qt_hello_world

See also
 f More information on the X.Org server can be found at http://www.x.org

 f The Qt application framework documentation can be found at https://qt-
project.org/

 f More information and documentation about GTK+ can be found at http://www.
gtk.org/

Using Wayland
Wayland is a display server protocol that is intended to replace the X Window system, and it is 
licensed under the MIT license.

This recipe will provide an overview of Wayland, including some key differences with the X 
Window system, and will show how to make use of it in Yocto.

Getting ready
The Wayland protocol follows a client/server model in which clients are the graphical 
applications requesting the display of pixel buffers on the screen, and the server, or 
compositor, is the service provider that controls the display of these buffers.

The Wayland compositor can be a Linux display server, an X application, or a special Wayland 
client. Weston is the reference Wayland compositor in the Wayland project. It is written in C 
and works with the Linux kernel APIs. It relies on evdev for the handling of input events.

http://www.x.org
https://qt-project.org/
https://qt-project.org/
http://www.gtk.org/
http://www.gtk.org/
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Wayland uses Direct Rendering Manager (DRM) in the Linux kernel and does not need 
something like an X server. The client renders the window contents to a buffer shared with the 
compositor by itself, using a rendering library, or an engine like Qt or GTK+.

Wayland lacks the network transparency features of X, but it is likely that similar functionality 
will be added in the future.

It also has better security features than X and is designed to provide confidentiality and 
integrity. Wayland does not allow applications to look at the input of other programs, capture 
other input events, or generate fake input events. It also makes a better job out of protecting 
the Window outputs. However, this also means that it currently offers no way to provide 
some of the features we are used to in desktop X systems like screen capturing, or features 
common in accessibility programs.

Being lighter than X.Org and more secure, Wayland is better suited to use with embedded 
systems. If needed, X.Org can run as a client of Wayland for backwards compatibility.

However, Wayland is not as established as X11, and the Wayland-based images in Poky do not 
receive as much community attention as the X11-based ones.

How to do it...
Poky offers a core-image-weston image that includes the Weston compositor.

Modifying our GTK hello world example from the Using the X Windows system recipe to use 
GTK3 and run it with Weston is straightforward.

DESCRIPTION = "Simple GTK3 helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

SRC_URI = "file://gtk_hello_world.c"

S = "${WORKDIR}"

DEPENDS = "gtk+3"

inherit pkgconfig

do_compile() {
    ${CC} gtk_hello_world.c -o helloworld `pkg-config --cflags --  
  libs gtk+-3.0`
}
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do_install() {
    install -d ${D}${bindir}
    install -m 0755 helloworld ${D}${bindir}
}

To build it, configure your conf/local.conf file by removing the x11 distribution feature  
as follows:

DISTRO_FEATURES_remove = "x11"

You will need to build from scratch by removing both the tmp 
and sstate-cache directories when changing the DISTRO_
FEATURES variable.

Add the application to the image with:

IMAGE_INSTALL_append = " gtk3-helloworld"

And build the image with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-weston

Once the build finishes, you will find the microSD card image ready to be programmed under 
tmp/deploy/images/wandboard-quad.

You can then launch the application by running:

# export XDG_RUNTIME_DIR=/var/run/user/root

# helloworld

There's more...
The FSL community BSP release supports hardware-accelerated graphics in Wayland using 
the Vivante GPU included in the i.MX6 SoC.

This means that applications like gstreamer will be able to offer hardware-accelerated 
output when running with the Weston compositor.

Wayland support can also be found in graphical toolkits like Clutter and GTK3+.
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See also
 f You can find more information about Wayland on the project's web page at http://

wayland.freedesktop.org/

Adding Python applications
In Yocto 1.7, Poky has support for building both Python 2 and Python 3 applications,  
and includes a small set of Python development tools in the meta/recipes-devtools/
python directory.

A wider variety of Python applications are available in the meta-python layer included as 
part of meta-openembedded, which you can add to your conf/bblayers.conf file if  
you want to.

Getting ready
The standard tool for packaging Python modules is distutils, which is included for both 
Python 2 and Python 3. Poky includes the distutils class (distutils3 in Python 3), 
which is used to build Python packages that use distutils. An example recipe in meta-
python that uses the distutils class is meta-python/recipes-devtools/python/
python-pyusb_1.0.0a2.bb. 

SUMMARY = "PyUSB provides USB access on the Python language"
HOMEPAGE = "http://pyusb.sourceforge.net/"
SECTION = "devel/python"
LICENSE = "BSD"
LIC_FILES_CHKSUM =  
  "file://LICENSE;md5=a53a9c39efcfb812e2464af14afab013"
DEPENDS = "libusb1"
PR = "r1"

SRC_URI = "\
    ${SOURCEFORGE_MIRROR}/pyusb/${SRCNAME}-${PV}.tar.gz \
"
SRC_URI[md5sum] = "9136b3dc019272c62a5b6d4eb624f89f"
SRC_URI[sha256sum] =  
  "dacbf7d568c0bb09a974d56da66d165351f1ba3c4d5169ab5b734266623e1736"

SRCNAME = "pyusb"
S = "${WORKDIR}/${SRCNAME}-${PV}"

inherit distutils

http://wayland.freedesktop.org/
http://wayland.freedesktop.org/


Application Development

502

However, distutils does not install package dependencies, allow package uninstallation, 
or allow us to install several versions of the same package, so it is only recommended 
for simple requirements. Hence, setuptools was developed to extend on distutils. 
It is not included in the standard Python libraries, but it is available in Poky. There is also 
a setuptools class in Poky (setuptools3 for Python 3) that is used to build Python 
packages distributed with setuptools.

How to do it...
To build a Python hello world example application with setuptools, we would use a Yocto 
meta-custom/recipes-python/python-helloworld/pythonhelloworld_1.0.bb 
recipe as follows:

DESCRIPTION = "Simple Python setuptools hello world application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "file://setup.py \
      file://python-helloworld.py \
      file://helloworld/__init__.py \
              file://helloworld/main.py"

S = "${WORKDIR}"

inherit setuptools

do_install_append () {
    install -d ${D}${bindir}
    install -m 0755 python-helloworld.py ${D}${bindir}
}
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To create an example hello world package, we create the directory structure shown in the 
following screenshot:

Here is the code for the same directory structure:

$ mkdir -p meta-custom/recipes-python/python-helloworld/python-  
  helloworld-1.0/helloworld/

$ touch meta-custom/recipes-python/python-helloworld/python-  
  helloworld-1.0/helloworld/__init__.py

And create the following meta-custom/recipes-python/python-helloworld/
python-helloworld-1.0/setup.py Python setup file:

import sys
from setuptools import setup

setup(
    name = "helloworld",
    version = "0.1",
    packages=["helloworld"],
    author="Alex Gonzalez",
    author_email = "alex@example.com",
    description = "Hello World packaging example",
    license = "MIT",
    keywords= "example",
    url = "",
)

As well as the meta-custom/recipes-python/python-helloworld/python-
helloworld-1.0/helloworld/main.py python file:

import sys

def main(argv=None):
    if argv is None:
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        argv = sys.argv
    print "Hello world!"
    return 0

And a meta-custom/recipes-python/python-helloworld/python-
helloworld-1.0/python-helloworld.py test script that makes use of the module:

#!/usr/bin/env python
import sys
import helloworld.main

if __name__ == '__main__':
       sys.exit(helloworld.main.main())

We can then add it to our image with:

IMAGE_INSTALL_append = " python-helloworld"

And build it using:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal

Once programmed and booted, we can test the module by running the example script:

# /usr/bin/python-helloworld.py

Hello world!

There's more...
In meta-python, you can also find the python-pip recipe that will add the pip utility to 
your target image. It can be used to install packages from the Python Package Index (PyPI).

You can add it to your image with:

IMAGE_INSTALL_append  = " python-pip python-distribute"

You will need to add the meta-openembedded/meta-python layer to your conf/
bblayers.conf file in order to build your image, and also the python-distribute 
dependency, which is needed by python-pip. Then you can build for the core-image-
minimal image with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal
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Once installed, you can use it from the target as follows:

# pip search <package_name>

# pip install <package_name>

Integrating the Oracle Java Runtime 
Environment

Oracle provides two specialized Java editions for embedded development:

 f Java SE embedded: This is a large subset of the desktop version of the standard 
Java SE. It contains optimizations with respect to the standard edition, like size and 
memory usage, to adapt it to the needs of mid-sized embedded devices.

 f Java Micro Edition (ME): This is targeted at headless low- and mid-range devices, 
and is a subset of Java SE complying with the Connected Limited Device 
Configuration (CLDC), and including some extra features and tools for the embedded 
market. Oracle offers a couple of reference implementations, but Java ME will have to 
be individually integrated from source into specific platforms.

We will focus on Java SE embedded, which can be downloaded in binary format from the 
Oracle download site.

Java SE embedded is commercially licensed and requires royalty payments for embedded 
deployments.

Getting ready
Yocto has a meta-oracle-java layer that is meant to help in the integration of the  
official Oracle Java Runtime Environment (JRE) Version 7. However, installation without  
user intervention is not possible, as the Oracle's web page requires login and the acceptance 
of its license.

In Java SE embedded Version 7, Oracle offered both soft and hard floating point versions of 
headless and headful JREs for ARMv6/v7, and a headless version JRE for soft floating point 
user spaces for ARMv5. Java SE embedded version 7 provides two different Java Virtual 
Machines (JVMs) for ARM Linux:

 f A client JVM optimized for responsiveness

 f A server JVM identical to the client JVM but optimized for long-running applications
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At the time of writing, the meta-oracle-java layer only has a recipe for the headless 
hard floating-point version with the client JVM. We will add recipes for the latest Java 7 SE 
embedded, which is update 75, for both headless and headful hard floating point JREs, which 
are appropriate to run on an i.MX6-based board like wandboard-quad.

How to do it...
To install the Java SE embedded runtime environment, first we need to clone the meta-
oracle-java layer into our sources directory and add it to our conf/bblayers.conf  
file as follows:

$ cd /opt/yocto/fsl-community-bsp/sources

$ git clone git://git.yoctoproject.org/meta-oracle-java

Then we need to explicitly accept the Oracle Java license by adding the following to our conf/
local.conf file:

LICENSE_FLAGS_WHITELIST += "oracle_java"

We want to build the newest update available, so we add the following meta-custom/
recipes-devtools/oracle-java/oracle-jse-ejre-arm-vfphflt-client-
headless_1.7.0.bb recipe to our meta-custom layer:

SUMMARY = "Oracle Java SE runtime environment binaries"

JDK_JRE = "ejre"
require recipes-devtools/oracle-java/oracle-jse.inc

PV_UPDATE = "75"
BUILD_NUMBER = "13"

LIC_FILES_CHKSUM = "\
       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
COPYRIGHT;md5=0b204  
  bd2921accd6ef4a02f9c0001823 \
       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
THIRDPARTYLICENSERE  
  ADME.txt;md5=f3a388961d24b8b72d412a079a878cdb \
       "

SRC_URI =  
  "http://download.oracle.com/otn/java/ejre/7u${PV_UPDATE}-  
  b${BUILD_NUMBER}/ejre-7u${PV_UPDATE}-fcs-b${BUILD_NUMBER}-linux-  
  arm-vfp-hflt-client_headless-18_dec_2014.tar.gz"
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SRC_URI[md5sum] = "759ca6735d77778a573465b1e84b16ec"
SRC_URI[sha256sum] = 
"ebb6499c62fc12e1471cff7431fec5407ace59477abd0f48347bf6e89c6bff3b"

RPROVIDES_${PN} += "java2-runtime"

Try to build the recipe with the following:

$ bitbake oracle-jse-ejre-arm-vfp-hflt-client-headless

You will see that we get a checksum mismatch. This is caused by the license acceptance step 
in Oracle's website. To get around this, we will need to manually download the file into the 
downloads directory as specified in our project's DL_DIR configuration variable.

Then we can add the JRE to our target image:

IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client-  
  headless"

And build it with:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal

We can now log in to the target and run it with:

# /usr/bin/java -version

java version "1.7.0_75"

Java(TM) SE Embedded Runtime Environment (build 1.7.0_75-b13,  
  headless)

Java HotSpot(TM) Embedded Client VM (build 24.75-b04, mixed mode)

We can also build the headful version using the following meta-custom/recipes-
devtools/oracle-java/oracle-jse-ejre-arm-vfphflt-client-
headful_1.7.0.bb recipe:

SUMMARY = "Oracle Java SE runtime environment binaries"

JDK_JRE = "ejre"
require recipes-devtools/oracle-java/oracle-jse.inc

PV_UPDATE = "75"
BUILD_NUMBER = "13"

LIC_FILES_CHKSUM = "\
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       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
COPYRIGHT;md5=0b204  
  bd2921accd6ef4a02f9c0001823 \
       file://${WORKDIR}/${JDK_JRE}${PV}_${PV_UPDATE}/
THIRDPARTYLICENSERE  
  ADME.txt;md5=f3a388961d24b8b72d412a079a878cdb \
       "

SRC_URI =  
  "http://download.oracle.com/otn/java/ejre/7u${PV_UPDATE}-  
  b${BUILD_NUMBER}/ejre-7u${PV_UPDATE}-fcs-b${BUILD_NUMBER}-linux-  
  arm-vfp-hflt-client_headful-18_dec_2014.tar.gz"

SRC_URI[md5sum] = "84dba4ffb47285b18e6382de2991edfc"
SRC_URI[sha256sum] = 
"5738ffb8ce2582b6d7b39a3cbe16137d205961224899f8380eebe3922bae5c61"

RPROVIDES_${PN} += "java2-runtime"

And add it to the target image with:

IMAGE_INSTALL_append =  " oracle-jse-ejre-arm-vfp-hflt-client-  
  headful"

And build core-image-sato with:

$ cd cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

In this case, the reported Java version is:

# /usr/bin/java -version

java version "1.7.0_75"

Java(TM) SE Embedded Runtime Environment (build 1.7.0_75-b13)

Java HotSpot(TM) Embedded Client VM (build 24.75-b04, mixed mode)

There's more...
The latest release at the time of this writing is Java SE embedded Version 8 update 33 (8u33).

Oracle offers the download of the JDK only, and a host tool, jrecreate, needs to be used to 
configure and create an appropriate JRE from the JDK. The tool allows us to choose between 
different JVMs (minimal, client, and server) as well as soft or hard floating point ABIs, 
extensions like JavaFX, locales, and several other tweakings to the JVM.
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Oracle Java SE embedded Version 8 provides support for headful X11 development using 
Swing, AWT, and JavaFX only for ARMv7 hard floating point user spaces, and includes  
support for JavaFX (the graphical framework aimed to replace Swing and AWT) on the 
Freescale i.MX6 processor.

There is no Yocto recipe to integrate Java Version 8 at the time of this writing.

Integrating the Open Java Development Kit
The open source alternative to the Oracle Java SE embedded is the Open Java Development 
Kit (OpenJDK), an open source implementation of Java SE licensed under the GPLv2, with the 
classpath exception, which means that applications are allowed to link without being bound 
by the GPL license.

This recipe will show how to build OpenJDK with Yocto and integrate the JRE into our  
target images.

Getting ready
The main components of OpenJDK are:

 f The HotSpot Java Virtual Machine

 f The Java Class Library (JCL)

 f The Java compiler, javac

Initially, OpenJDK needed to be built using a proprietary JDK. However, the IcedTea project 
allowed us to build OpenJDK using the GNU classpath, the GNU compiler for Java (GCJ), 
and bootstrap a JDK to build OpenJDK. It also complements OpenJDK with some missing 
components available on Java SE like a web browser plugin and web start implementations.

Yocto can build meta-java using the meta-java layer, which includes recipes for cross-
compiling OpenJDK using IcedTea.

You can download OpenJDK from its Git repository at http://git.yoctoproject.org/
cgit/cgit.cgi/meta-java/.

Development discussions can be followed and contributed to by visiting the development 
mailing list at http://lists.openembedded.org/mailman/listinfo/
openembedded-devel.

The meta-java layer also includes recipes for a wide variety of Java libraries and VMs, and 
tools for application development like ant and fastjar.

http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/
http://lists.openembedded.org/mailman/listinfo/openembedded-devel
http://lists.openembedded.org/mailman/listinfo/openembedded-devel
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How to do it...
To build OpenJDK 7, you need to clone the meta-java layer as follows:

$ cd /opt/yocto/fsl-community-bsp/sources/

$ git clone http://git.yoctoproject.org/cgit/cgit.cgi/meta-java/

At the time of this writing, there is no 1.7 Dizzy branch yet, so we will work directly from the 
master branch.

Add the layer to your conf/bblayers.conf file:

+ ${BSPDIR}/sources/meta-java \
 "

And configure the project by adding the following to your conf/local.conf file:

PREFERRED_PROVIDER_virtual/java-initial = "cacao-initial"
PREFERRED_PROVIDER_virtual/java-native = "jamvm-native"
PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native"
PREFERRED_VERSION_openjdk-7-jre = "25b30-2.3.12"
PREFERRED_VERSION_icedtea7-native = "2.1.3"

You can then add the OpenJDK package to your image with:

IMAGE_INSTALL_append = " openjdk-7-jre"

And build the image of your choice:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

When you run the target image, you will get the following Java version:

# java -version

java version "1.7.0_25"

OpenJDK Runtime Environment (IcedTea 2.3.12) (25b30-2.3.12)

OpenJDK Zero VM (build 23.7-b01, mixed mode)
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How it works...
To test the JVM, we can byte-compile a Java class on our host and copy it to the target to 
execute it. For instance, we can use the following simple HelloWorld.java example:

class HelloWorld {
  public static void main(String[] args) {
    System.out.println("Hello World!");
  }
}

To byte-compile it in the host, we need to have a Java SDK installed. To install a Java SDK in 
Ubuntu, just run:

$ sudo apt-get install openjdk-7-jdk

To byte-compile the example, we execute:

$ javac HelloWorld.java

To run it, we copy the HelloWorld.class to the target, and from the same folder we run:

# java HelloWorld

There's more...
When using OpenJDK on a production system, it is recommended to always use the latest 
available release, which contains bug and security fixes. At the time of this writing, the latest 
OpenJDK 7 release is update 71 (jdk7u71b14), buildable with IcedTea 2.5.3, so the meta-
java recipes should be updated.

See also
 f Up-to-date information regarding openJDK can be obtained at http://openjdk.

java.net/

Integrating Java applications
The meta-java layer also offers helper classes to ease the integration of Java libraries and 
applications into Yocto. In this recipe, we will see an example of building a Java library using 
the provided classes.

http://openjdk.java.net/
http://openjdk.java.net/
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Getting ready
The meta-java layer provides two main classes to help with the integration of Java 
applications and libraries:

 f The Java bbclass: This provides the default target directories and some auxiliary 
functions, namely:

 � oe_jarinstall: This installs and symlinks a JAR file

 � oe_makeclasspath: This generates a classpath string from JAR filenames

 � oe_java_simple_wrapper: This wraps your Java application in a shell 
script

 f The java-library bbclass: This inherits the Java bbclass and extends it to create and 
install JAR files.

How to do it...
We will use the following meta-custom/recipes-java/java-helloworld/java-
helloworld-1.0/HelloWorldSwing.java graphical Swing hello world as an example:

import javax.swing.JFrame;
import javax.swing.JLabel;

public class HelloWorldSwing {
    private static void createAndShowGUI() {
        JFrame frame = new JFrame("Hello World!");
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

        JLabel label = new JLabel("Hello World!");
        frame.getContentPane().add(label);

        frame.pack();
        frame.setVisible(true);
    }

    public static void main(String[] args) {
        javax.swing.SwingUtilities.invokeLater(new Runnable() {
            public void run() {
                createAndShowGUI();
            }
        });
    }
}
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To integrate this HelloWorldSwing application, we can use a Yocto meta-custom/
recipes-java/java-helloworld/java-helloworld_1.0.bb recipe as follows:

DESCRIPTION = "Simple Java Swing hello world application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4  
  f302"

RDEPENDS_${PN} = "java2-runtime"

SRC_URI = "file://HelloWorldSwing.java"

S = "${WORKDIR}"

inherit java-library

do_compile() {
        mkdir -p build
        javac -d build `find . -name "*.java"`
        fastjar cf ${JARFILENAME} -C build .
}

BBCLASSEXTEND = "native"

The recipe is also buildable for the host native architecture. We can do this either by providing 
a separate java-helloworld-native recipe that inherits the native class or by using 
the BBCLASSEXTEND variable as we did earlier. In both cases, we could then use the _
class-native and _class-target overrides to differentiate between native and target 
functionality.

Even though Java is byte-compiled and the compiled class will be the same for both, it still 
makes sense to add the native support explicitly.

How it works...
The java-library class will create a library package with the name lib<package>-java.

To add it to a target image, we would use:

IMAGE_INSTALL_append = " libjava-helloworld-java"
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We can then decide whether we want to run the application with the Oracle JRE or OpenJDK. 
For OpenJDK, we will add the following packages to our image:

IMAGE_INSTALL_append = " openjdk-7-jre openjdk-7-common"

And for the Oracle JRE, we will use the following:

IMAGE_INSTALL_append = " oracle-jse-ejre-arm-vfp-hflt-client-  
  headful"

The available JREs do not currently run over the framebuffer or Wayland, so we will use an 
X11-based graphical image like core-image-sato:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-sato

We can then boot it, log in to the target, and execute the example with OpenJDK by running:

# export DISPLAY=:0

# java -cp /usr/share/java/java-helloworld.jar HelloWorldSwing

There's more...
At the time of this writing, OpenJDK as built from the meta-java layer master branch is not 
able to run X11 applications and will fail with this exception:

Exception in thread "main" java.awt.AWTError: Toolkit not found:  
  sun.awt.X11.XToolkit
        at java.awt.Toolkit$2.run(Toolkit.java:875)
        at java.security.AccessController.doPrivileged(Native  
  Method)
        at java.awt.Toolkit.getDefaultToolkit(Toolkit.java:860)
        at java.awt.Toolkit.getEventQueue(Toolkit.java:1730)
        at java.awt.EventQueue.invokeLater(EventQueue.java:1217)
        at javax.swing.SwingUtilities.invokeLater(SwingUtilities.
java:1287)
        at HelloWorldSwing.main(HelloWorldSwing.java:17)
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However, the precompiled Oracle JRE runs the application without issues with:

# export DISPLAY=:0

# /usr/bin/java -cp /usr/share/java/java-helloworld.jar  
  HelloWorldSwing

If you see build errors when building packages with the Oracle JRE, try using 
a different package format, for example, IPK, by adding the following to your 
conf/local.conf configuration file:
PACKAGE_CLASSES = "package_ipk"

This is due to dependency problems in the meta-oracle-java layer with 
the RPM package manager, as explained in the layer's README file.
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5
Debugging, Tracing,  

and Profiling

In this chapter, we will cover the following recipes:

 f Analyzing core dumps

 f Native GDB debugging

 f Cross GDB debugging

 f Using strace for application debugging

 f Using the kernel's performance counters

 f Using static kernel tracing

 f Using dynamic kernel tracing

 f Using dynamic kernel events

 f Exploring Yocto's tracing and profiling tools

 f Tracing and profiling with perf

 f Using SystemTap

 f Using OProfile

 f Using LTTng

 f Using blktrace
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Introduction
Debugging an embedded Linux product is a common task not only during development, but 
also in deployed production systems.

Application debugging in embedded Linux is different from debugging in a traditional 
embedded device in that we don't have a flat memory model with an operating system and 
applications sharing the same address space. Instead, we have a virtual memory model with 
the Linux operating system, sharing the address space and assigning virtual memory areas to 
running processes.

With this model, the mechanisms used for kernel and user space debugging differ. For 
example, the traditional model of using a JTAG-based hardware debugger is useful for kernel 
debugging, but unless it knows about the user space processes memory mapping, it will not 
be able to debug user space applications.

Application debugging is approached with the use of a user space debugger service. We have 
seen an example of this methodology in action with the TCF agent used in the Eclipse GDB. 
The other commonly used agent is the gdbserver, which we will use in this chapter.

Finally we will explore the area of tracing and profiling. Tracing is a low-level logging of 
frequent system events, and the statistical analysis of these captured traces is called profiling.

We will use some of the tools embedded Linux and Yocto offer to trace and profile our systems 
so that they run to their maximum potential.

Analyzing core dumps
Even after extensive quality assurance testing, embedded systems in-field also fail and need 
to be debugged. Moreover, often the failure is not something that can be easily reproduced in 
a laboratory environment, so we are left with production, often hardened system, to debug.

Assuming we have designed our system with the aforementioned scenario in mind, our first 
debugging choice is usually to extract as much information about the failing system—for 
example, by obtaining and analyzing a core dump of the misbehaving processes.

Getting ready
In the process of debugging embedded Linux systems, we can use the same toolbox as 
standard Linux systems. One of the tools enables applications to generate into the disk a 
memory core dump upon crashing. This assumes that we have enough disk space to store the 
application's entire memory map, and that writing to disk is quick enough that it will not drag 
the system to a halt.
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Once the memory core dump is generated, we use the host's GDB to analyze the core dump. 
GDB needs to have debug information available. Debug information can be in the executable 
itself—for example, when we install the -dbg version of a package, or we configure our 
project to not strip binaries—or can be kept in a separate file. To install debug information 
separately from the executable, we use the dbg-pkgs feature. By default, this installs the 
debug information of a package in a .debug directory in the same location as the executable 
itself. To add debug information for all packages in a target image, we add the following to our 
conf/local.conf configuration file:

EXTRA_IMAGE_FEATURES += "dbg-pkgs"

We can then build an appropriate toolchain generated to match our filesystem, as we saw 
in the Preparing and using an SDK recipe in Chapter 4, Application Development. The core 
dump contains build IDs for the executables and libraries in use at the time of the crash, so 
it's important to match the toolchain and the target image.

How to do it...
We can display the limits of the system-wide resources with the ulimit tool. We are 
interested in the core file size, which by default is set to zero to avoid the creation of 
application core dumps. In our failing system, preferably in a test environment, make your 
application dump a memory core upon crashing with:

$ ulimit -c unlimited

You can then verify the change with:

$ ulimit -a

-f: file size (blocks)             unlimited

-t: cpu time (seconds)             unlimited

-d: data seg size (kb)             unlimited

-s: stack size (kb)                8192

-c: core file size (blocks)        unlimited

-m: resident set size (kb)         unlimited

-l: locked memory (kb)             64

-p: processes                      5489

-n: file descriptors               1024

-v: address space (kb)             unlimited

-w: locks                          unlimited

-e: scheduling priority            0

-r: real-time priority             0
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For this example, we will be using the wvdial application in a real segmentation fault 
scenario. The purpose is not to debug the application itself but to showcase the methodology 
used for core dump analysis; so, details regarding the application-specific configuration and 
system setup are not provided. However, being a real crash, the example is more illustrative.

To run wvdial on the target, use the following code:

# wvdial
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.
Segmentation fault (core dumped)

The application will create a core file in the same folder, which you can then copy to your host 
system to analyze.

You can also simulate a core dump by sending a SIGQUIT signal to a 
running process. For example, you could force the sleep command to 
core dump with a  SIGQUIT signal as follows:
 $ ulimit -c unlimited

 $ sleep 30 &

 $ kill -QUIT <sleep-pid>

How it works...
Once in possession of the core dump, use the cross GDB in the host to load it and get some 
useful information, such as the backtrace, using the following steps:

1. First set up the environment in the host:
$ cd /opt/poky/1.7.1/

$ source environment-setup-cortexa9hf-vfp-neon-poky-linux-  
  gnueabi
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2. You can then start the cross GDB debugger, passing it a debug version of the 
application. Debug versions are stored in the sysroot file in the same location as 
the unstripped binary, but under a .debug directory.

The whole GDB banner is showed below but will be omitted in future examples.

$ arm-poky-linux-gnueabi-gdb /opt/yocto/fsl-community-  
  bsp/wandboard-quad/tmp/work/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/wvdial/1.61-r0/packages-split/wvdial-  
  dbg/usr/bin/.debug/wvdial core
GNU gdb (GDB) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>
This is free software: you are free to change and redistribute  
  it.
There is NO WARRANTY, to the extent permitted by law.  Type  
  "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-pokysdk-linux --  
  target=arm-poky-linux-gnueabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online  
  at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to  
  "word"...
Reading symbols from /opt/yocto/fsl-community-bsp/wandboard-  
  quad/tmp/work/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/wvdial/1.61-r0/packages-split/wvdial-  
  dbg/usr/bin/.debug/wvdial...done.
[New LWP 1050]

warning: Could not load shared library symbols for 14  
  libraries, e.g. /usr/lib/libwvstreams.so.4.6.
Use the "info sharedlibrary" command to see the complete  
  listing.
Do you need "set solib-search-path" or "set sysroot"?
Core was generated by `wvdial'.
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Program terminated with signal SIGSEGV, Segmentation fault.
#0  0x76d524c4 in ?? ()

3. Now point GDB to the location of the toolchain's sysroot:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/lib/libwvstreams.so.4.6...Reading 
symbols from  
  /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/usr/lib/.debug/libwvstreams.so.4.6...done.
done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/lib/libwvstreams.so.4.6
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/lib/libwvutils.so.4.6...Reading  
  symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-  
  poky-linux-gnueabi/usr/lib/.debug/libwvutils.so.4.6...done.
done.
[...]
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/lib/libdl.so.2

4. You can now inquire GDB for the application's backtrace as follows:

(gdb) bt
#0  0x76d524c4 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:416
#1  0x00000000 in ?? ()

See also
 f The usage documentation for GDB found at http://www.gnu.org/software/

gdb/documentation/

Native GDB debugging
On devices as powerful as the Wandboard, native debugging is also an option to debug 
sporadic failures. This recipe will explore the native debugging method.

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/
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Getting ready
For native development and debugging, Yocto offers the -dev and -sdk target images. To 
add developing tools to the -dev images, we can use the tools-sdk feature. We also want 
to install debug information and debug tools, and we do this by adding the dbg-pkgs and 
tools-debug features to our image. For example, for core-image-minimal-dev, we 
would add the following to our conf/local.conf file:

EXTRA_IMAGE_FEATURES += "tools-sdk dbg-pkgs tools-debug"

To prepare a development-ready version of the core-image-minimal-dev target image, we 
would execute the following commands:

$ cd /opt/yocto/fsl-community-bsp/

$ source setup-environment wandboard-quad

$ bitbake core-image-minimal-dev

We will then program the development image to our target.

How to do it...
Once the target has booted, you can start the wvdial application through the native GDB 
using the following steps:

1. In the target command prompt, start the GDB debugger with the application as 
argument:
$ gdb wvdial

2. Now instruct GDB to run the application:
(gdb) run
Starting program: /usr/bin/wvdial
Cannot access memory at address 0x0
Cannot access memory at address 0x0

Program received signal SIGILL, Illegal instruction.
0x7698afe8 in ?? () from /lib/libcrypto.so.1.0.0
(gdb) sharedlibrary libcrypto
Symbols already loaded for /lib/libcrypto.so.1.0.0
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3. Then request to print a backtrace:
(gdb) bt
#0  0x7698afe8 in ?? () from /lib/libcrypto.so.1.0.0
#1  0x769878e8 in OPENSSL_cpuid_setup () from /lib/libcrypto.
so.1.0.0
#2  0x76fe715c in ?? () from /lib/ld-linux-armhf.so.3
Cannot access memory at address 0x48535540

This is not the same backtrace you got when analyzing the core dump. What is going 
on here? The clue is on libcrypto, part of the OpenSSL library. OpenSSL probes the 
capabilities of the system by trying each capability and trapping the illegal instruction 
errors. So the SIGILL signal you are seeing during startup is normal and you should 
instruct GDB to continue.

4. Instruct GDB to continue:

(gdb) c
Continuing.
--> WvDial: Internet dialer version 1.61
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Sending: AT+CGDCONT=1,"IP","internet"
AT+CGDCONT=1,"IP","internet"
OK
--> Modem initialized.
--> Idle Seconds = 3000, disabling automatic reconnect.

Program received signal SIGSEGV, Segmentation fault.
0x76db74c4 in WvTaskMan::_stackmaster() () from /usr/lib/
libwvbase.so.4.6

This result is now compatible with the core dump you saw in the previous recipe.
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There's more...
When debugging applications, it is sometimes useful to reduce the level of optimization used 
by the compiler. This will reduce the application's performance but will facilitate debugging 
by improving the accuracy of the debug information. You can configure the build system to 
reduce optimization and add debug information by adding the following line of code to your 
conf/local.conf file:

DEBUG_BUILD = "1"

By using this configuration, the optimization is reduced from FULL_OPTIMIZATION (-O2) 
to DEBUG_OPTIMIZATION (-O -fno-omit-frame-pointer). But sometimes this is not 
enough, and you may like to build with no optimization. You can achieve this by overriding the 
DEBUG_OPTIMIZATION variable either globally or for a specific recipe.

See also
 f The example on using a debug-optimized build in the upcoming recipe on  

Cross GDB debugging

Cross GDB debugging
When we run a cross compiled GDB in the host, which connects to a native gdbserver running 
on the target, it is referred to as cross debugging. This is the same scenario we saw in the 
Using the Eclipse IDE recipe earlier, except that Eclipse uses the Target Communications 
Framework (TCF). Cross debugging has the advantage of not needing debug information on 
target images, as they are already available in the host.

This recipe will show how to use a cross GDB and gdbserver.

Getting ready
To include gdbserver in your target image, you can use an -sdk image, or you can add the 
tools-debug feature to your image by adding the following to your conf/local.conf 
configuration file:

EXTRA_IMAGE_FEATURES += "tools-debug"

So that GDB can access debug information of the shared libraries and executables, add the 
following to the conf/local.conf file:

EXTRA_IMAGE_FEATURES += "dbg-pkgs"
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The images running on the target and the toolchain's sysroot need to match. For example, if 
you are using core-image-minimal images, the toolchain needs to have been generated in 
the same project with:

$ bitbake -c populate_sdk core-image-minimal

This will generate a sysroot containing debug information for binaries and libraries.

How to do it...
Once the toolchain is installed, you can run the application to be debugged on the target using 
gdbserver—in this case, wvdial—in the following steps:

1. Launch gdbserver with the application to run as argument:
# gdbserver localhost:1234 /usr/bin/wvdial

Process wvdial created; pid = 879

Listening on port 1234

The gdbserver is launched listening on localhost on a random 1234 port and is 
waiting for a connection from the remote GDB.

2. In the host, you can now set up the environment using the recently installed 
toolchain:
$ cd /opt/poky/1.7.1/

$ source environment-setup-cortexa9hf-vfp-neon-poky-linux-  
  gnueabi

You can then launch the cross GDB, passing to it the absolute path to the debug 
version of the application to debug, which is located in a .debug directory on the 
sysroot:

$ arm-poky-linux-gnueabi-gdb  
  /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-neon-poky-linux-  
  gnueabi/usr/bin/.debug/wvdial

Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/usr/bin/.debug/wvdial...done.

(gdb)

3. Next configure GDB to consider all files as trusted so that it auto loads whatever it 
needs:
(gdb) set auto-load safe-path /



Chapter 5

527

4. Also as you know, wvdial will generate a SIGILL signal that will interrupt our 
debugging session, instruct GDB not to stop when that signal is seen:
(gdb) handle SIGILL nostop

5. You can then connect to the remote target on the 1234 port with:
(gdb) target remote <target_ip>:1234
Remote debugging using 192.168.128.6:1234
Cannot access memory at address 0x0
0x76fd7b00 in ?? ()

6. The first thing to do is to set sysroot so that GDB is able to find dynamically loaded 
libraries:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-  
  vfp-neon-poky-linux-gnueabi/lib/ld-linux-  
  armhf.so.3...done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/lib/ld-linux-armhf.so.3

7. Type c to continue with the program's execution. You will see wvdial continuing on 
the target:
--> WvDial: Internet dialer version 1.61

--> Initializing modem.

--> Sending: ATZ

ATZ

OK

--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

OK

--> Sending: AT+CGDCONT=1,"IP","internet"

AT+CGDCONT=1,"IP","internet"

OK

--> Modem initialized.

--> Idle Seconds = 3000, disabling automatic reconnect.
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8. You will then see GDB intercepting a SIGILL and SEGSEGV signal on the host:
Program received signal SIGILL, Illegal instruction.

Program received signal SIGSEGV, Segmentation fault.
0x76dc14c4 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:416
416     utils/wvtask.cc: No such file or directory.

9. You can now ask to see a backtrace:

(gdb) bt
#0  0x76dc14c4 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:416
#1  0x00000000 in ?? ()

Although limited, this backtrace could still be useful to debug the application.

How it works...
We see a limited backtrace because the compiled binaries are not suitable for debugging, as 
they omit stack frames. To keep information on stack frames, add the following to the conf/
local.conf configuration file:

DEBUG_BUILD = "1"

This changes the compilation flags to debug optimization as follows:

DEBUG_OPTIMIZATION = "-O -fno-omit-frame-pointer ${DEBUG_FLAGS} -  
  pipe"

The -fno-omit-frame-pointer flag will tell gcc to keep stack frames. The compiler will 
also reduce the optimization level to provide a better debugging experience.

A debug build will also make it possible to trace variables and set breakpoints and 
watchpoints, as well as other common debugging features.

After building and installing the target images and toolchain again, you can now follow the 
same process as in the preceding recipe:

1. Use the following code for connecting to the remote target:
(gdb) target remote <target_ip>:1234
Remote debugging using 192.168.128.6:1234
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
Cannot access memory at address 0x0
0x76fdd800 in ?? ()
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Set the sysroot as follows:
(gdb) set sysroot /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi
Reading symbols from /opt/poky/1.7.1/sysroots/cortexa9hf-  
  vfp-neon-poky-linux-gnueabi/lib/ld-linux-  
  armhf.so.3...done.
Loaded symbols for /opt/poky/1.7.1/sysroots/cortexa9hf-vfp-  
  neon-poky-linux-gnueabi/lib/ld-linux-armhf.so.3

2. Once you are done with the setup, instruct the program to continue as follows:

(gdb) c
Continuing.

Program received signal SIGILL, Illegal instruction.

Program received signal SIGABRT, Aborted.
0x76b28bb4 in __GI_raise (sig=sig@entry=6) at  
  ../sysdeps/unix/sysv/linux/raise.c:55
55      ../sysdeps/unix/sysv/linux/raise.c: No such file or  
  directory.
(gdb) bt
#0  0x76b28bb4 in __GI_raise (sig=sig@entry=6) at  
  ../sysdeps/unix/sysv/linux/raise.c:55
#1  0x76b2cabc in __GI_abort () at abort.c:89
#2  0x76decfa8 in __assert_fail (__assertion=0x76df4600  
  "magic_number == -0x123678",
    __file=0x1 <error: Cannot access memory at address  
  0x1>, __line=427,
    __function=0x76df4584  
  <WvTaskMan::_stackmaster()::__PRETTY_FUNCTION__> "static  
  void WvTaskMan::_stackmaster()")
    at utils/wvcrashbase.cc:98
#3  0x76dc58c8 in WvTaskMan::_stackmaster () at  
  utils/wvtask.cc:427
Cannot access memory at address 0x123678
#4  0x00033690 in ?? ()
Cannot access memory at address 0x123678
Backtrace stopped: previous frame identical to this frame  
  (corrupt stack?)

You can now see a complete backtrace.
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Using strace for application debugging
Debugging does not always involve working with source code. Sometimes it is a change in an 
external factor that is causing the problem.

Strace is a tool that is useful for scenarios where we are looking for problems outside of the 
binary itself; for example configuration files, input data, and kernel interfaces. This recipe will 
explain how to use it.

Getting ready
To include strace in your system, add the following to your conf/local.conf file:

IMAGE_INSTALL_append = " strace"

Strace is also part of the tools-debug image feature, so you can also add it with:

EXTRA_IMAGE_FEATURES += "tools-debug"

Strace is also included in the -sdk images.

Before starting, we will also include pgrep, a process utility that will make our debugging 
easier by looking up process IDs by name. To do so, add the following to your conf/local.
conf configuration file:

IMAGE_INSTALL_append = " procps"

How to do it...
When printing a system call, strace prints the values passed to the kernel or returned from the 
kernel. The verbose option prints more details for some system calls.

For example, filtering just the sendto() system calls from a single ping looks as follows:

# strace -f -t -e sendto /bin/bash -c "ping -c 1 127.0.0.1"

5240  17:18:04 sendto(0,  
  "\10\0;\220x\24\0\0\225m\256\355\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\  
  0\0"..., 64, 0, {sa_family=AF_INET, sin_port=htons(0),  
  sin_addr=inet_addr("127.0.0.1")}, 28) = 64

How it works...
Strace allows the monitoring of system calls of running processes into the Linux kernel. It uses 
the ptrace() system call to do so. This means that other programs that use ptrace(), 
such as gdb, will not run simultaneously.
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Strace is a disruptive monitoring tool, and the process being monitored will slow down and 
create many more context switches. A generic way of running strace on a given program is:

strace -f -e <filter> -t -s<num> -o <log file>.strace <program>

The arguments are explained below:

 f f: Tells strace to trace all child processes.

 f e: Filters the output to a selection of comma separated system calls.

 f t: Prints absolute timestamps. Use r for timestamps relative to the last syscall, and T 
to add the time spent in the syscall.

 f s: Increases the maximum length of strings from the default of 32.

 f o: Redirects the output to a file that can then be analyzed offline.

It can also attach to running processes using the following command:

$ strace -p $( pgrep <program> )

Or several instances of a process using the following command:

$ strace $( pgrep <program> | sed 's/^/-p' )

To detach, just press Ctrl + C.

See also
 f The corresponding man pages for more information about strace at http://man7.

org/linux/man-pages/man1/strace.1.html

Using the kernel's performance counters
Hardware performance counters are perfect for code optimization, especially in embedded 
systems with a single workload. They are actively used by a wide range of tracing and  
profiling tools. This recipe will introduce the Linux performance counters subsystem and  
show how to use it.

Getting ready
The Linux Kernel Performance Counters Subsystem (LPC), commonly known as linux_
perf, is an abstraction interface to different CPU-specific performance measurements. The 
perf_events subsystem not only exposes hardware performance counters from the CPU, 
but also kernel software events using the same API. It also allows the mapping of events to 
processes, although this has a performance overhead. Further, it provides generalized events 
which are common across architectures.



Debugging, Tracing, and Profiling

532

Events can be categorized into three main groups:

 f Software events: Based on kernel counters, these events are used for things such as 
context switches and minor faults tracking.

 f Hardware events: These come from the processor's CPU Performance Monitoring 
Unit (PMU) and are used to track architecture-specific items, such as the number of 
cycles, cache misses, and so on. They vary with each processor type.

 f Hardware cache events: These are common hardware events that will only be 
available if they actually map to a CPU hardware event.

To know whether perf_event support is available for your platform, you can check for the 
existence of the /proc/sys/kernel/perf_event_paranoid file. This file is also used to 
restrict access to the performance counters, which by default are set to allow both user and 
kernel measurement. It can have the following values:

 f 2: Only allows user-space measurements

 f 1: Allows both kernel and user measurements (default)

 f 0: Allows access to CPU-specific data but not raw tracepoint samples

 f -1: No restrictions

The i.MX6 SoC has a Cortex-A9 CPU which includes a PMU, providing six counters to gather 
statistics on the operation of the processor and memory, each one of them able to monitor 
any of 58 available events.

You can find a description of the available events in the Cortex-A9 Technical  
Reference Manual.

The i.MX6 performance counters do not allow exclusive access to just user or just kernel 
measurements. Also, i.MX6 SoC designers have unfortunately joined the PMU interrupts 
from all CPU cores, when ideally they should only be handled by the same CPU that raises 
them. You can start the i.MX6 with just one core, using the maxcpus=1 kernel command-line 
argument, so that you can still use the perf_events interface. 

To configure the Linux kernel to boot with one core, stop at the U-Boot prompt and change the 
mmcargs environment variable as follows:

> setenv mmcargs 'setenv bootargs console=${console},${baudrate} 
root=${mmcroot} ${extra_bootargs}; run videoargs'

> setenv extra_bootargs maxcpus=1
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The mmcargs environmental variable is only used when booting from an 
MMC device like the microSD card. If the target is booting from another 
source, such as a network, the corresponding environmental variable will 
have to be changed. You can dump the whole U-Boot environment with the 
printenv U-Boot command, and change the required variable with setenv.

How to do it...
The interface introduces a sys_perf_event_open() syscall, with the counters being 
started and stopped using ioctls, and read either with read() calls or mmapping samples 
into circular buffers. The perf_event_open() syscall is defined as follows:

#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>

int perf_event_open(struct perf_event_attr *attr,
                    pid_t pid, int cpu, int group_fd,
                    unsigned long flags);

There is no C library wrapper for it, so it needs to be called using syscall().

How it works...
Following is an example, perf_example.c, program modified from the perf_event_open 
man page to measure instruction count for a printf call:

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>
 
static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
                int cpu, int group_fd, unsigned long flags)
{
    int ret;

    ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
                   group_fd, flags);
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    return ret;
}

int
main(int argc, char **argv)
{
    struct perf_event_attr pe;
    long long count;
    int fd;

    memset(&pe, 0, sizeof(struct perf_event_attr));
    pe.type = PERF_TYPE_HARDWARE;
    pe.size = sizeof(struct perf_event_attr);
    pe.config = PERF_COUNT_HW_INSTRUCTIONS;
    pe.disabled = 1;
   
    fd = perf_event_open(&pe, 0, -1, -1, 0);
    if (fd == -1) {
       fprintf(stderr, "Error opening leader %llx\n", pe.config);
       exit(EXIT_FAILURE);
    }

    ioctl(fd, PERF_EVENT_IOC_RESET, 0);
    ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

    printf("Measuring instruction count for this printf\n");

    ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
    read(fd, &count, sizeof(long long));

    printf("Used %lld instructions\n", count);

    close(fd);

    return 0;
}

For compiling this program externally, we can use the following commands:

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ ${CC} perf_example.c -o perf_example
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After copying the binary to your target, you can then execute it with the help of the following 
code:

# ./perf_example

Measuring instruction count for this printf

Used 0 instructions

Obviously, using zero instructions for the printf() call can't be correct. Looking into possible 
causes, we find a documented erratum (ERR006259) on i.MX6 processors that states that 
in order for the PMU to be used, the SoC needs to receive at least 4 JTAG clock cycles after 
power on reset.

Rerun the example with the JTAG connected:

# ./perf_example

Measuring instruction count for this printf

Used 3977 instructions

There's more...
Even though you can access the perf_events interface directly as in the preceding 
example, the recommended way to use it is through a user space application, such as perf, 
which we will see in the Tracing and profiling with perf recipe in this chapter.

See also
 f The Technical Reference Manual at http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html for more 
information about the Cortex-A9 PMU

Using static kernel tracing
The Linux kernel is continuously being instrumented with static probe points called 
tracepoints, which when disabled have a very small overhead. They allow us to record more 
information than the function tracer we saw in Chapter 2, The BSP Layer. Tracepoints are 
used by multiple tracing and profiling tools in Yocto.

This recipe will explain how to use and define static tracepoints independently of user  
space tools.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
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Getting ready
Static tracepoints can be instrumented using custom kernel modules, and also through the 
event tracing infrastructure. Enabling any of the tracing features in the kernel will create a 
/sys/kernel/debug/tracing/ directory; for example, the function tracing feature as 
explained in the Using the kernel function tracing system in Chapter 2, The BSP Layer.

So before continuing with this recipe, you need to configure the function tracing feature in the 
Linux kernel as explained before.

How to do it...
The static tracing functionality is exposed via the debugfs filesystem. The functionality 
offered by the interface includes:

 f Listing events:

You can see a list of available tracepoints exposed via sysfs and ordered in 
subsystem directories with:
# ls /sys/kernel/debug/tracing/events/

asoc          ftrace        migrate       rcu           spi

block         gpio          module        regmap        sunrpc

cfg80211      header_event  napi          regulator     task

compaction    header_page   net           rpm           timer

drm           irq           oom           sched         udp

enable        jbd           power         scsi          vmscan

ext3          jbd2          printk        signal        workqueue

ext4          kmem          random        skb           writeback

filemap       mac80211      raw_syscalls  sock

Or in the available_events file with the <subsystem>:<event> format using 
the following commands:

#  grep 'net'  /sys/kernel/debug/tracing/available_events 

net:netif_rx

net:netif_receive_skb

net:net_dev_queue

net:net_dev_xmit
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 f Describing events:

Each event has a specific printing format that describes the information included in 
the log event, as follows:

#cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/format

name: netif_receive_skb

ID: 378

format:

  field:unsigned short common_type;  offset:0;  size:2;  
  signed:0;

  field:unsigned char common_flags;  offset:2;  size:1;  
  signed:0;

  field:unsigned char common_preempt_count;  offset:3;  
  size:1;  signed:0;

  field:int common_pid;  offset:4;  size:4;  signed:1;

  field:void * skbaddr;  offset:8;  size:4;  signed:0;

  field:unsigned int len; offset:12;  size:4;  signed:0;

  field:__data_loc char[] name; offset:16;  size:4;  signed:0;

print fmt: "dev=%s skbaddr=%p len=%u", __get_str(name), REC-  
  >skbaddr, REC->len

 f Enabling and disabling events:

You can enable or disable events in the following ways:

 � By echoing 0 or 1 to the event enable file:
# echo 1 >  
  /sys/kernel/debug/tracing/events/net/netif_receive_skb/
enable

 � By subsystem directory, which will enable or disable all the tracepoints in the 
directory/subsystem:
# echo 1 > /sys/kernel/debug/tracing/events/net/enable

 � By echoing the unique tracepoint name into the set_event file:
# echo netif_receive_skb >>  
  /sys/kernel/debug/tracing/set_event



Debugging, Tracing, and Profiling

538

Note the append operation >> is used not to clear events.

 � Events can be disabled by appending an exclamation mark to their names:
# echo '!netif_receive_skb' >>  
  /sys/kernel/debug/tracing/set_event

 � Events can also be enabled/disabled by subsystem:
# echo 'net:*' > /sys/kernel/debug/tracing/set_event

 � To disable all events:

# echo > /sys/kernel/debug/tracing/set_event

You can also enable tracepoints from boot by passing a trace_event=<comma 
separated event list> kernel command line-argument.

 f Adding events to the tracing buffer:

To see the tracepoints appear on the tracing buffer, turn tracing on:
# echo 1 > /sys/kernel/debug/tracing/tracing_on

Tracepoint events are integrated into the ftrace subsystem so that if you enable a 
tracepoint, when a tracer is running, it will show up in the trace. Take a look at the 
following commands:

# cd /sys/kernel/debug/tracing

# echo 1 > events/net/netif_receive_skb/enable

# echo netif_receive_skb > set_ftrace_filter

# echo function > current_tracer

# cat trace

          <idle>-0     [000] ..s2  1858.542206:  
  netif_receive_skb <-napi_gro_receive

          <idle>-0     [000] ..s2  1858.542214:  
  netif_receive_skb: dev=eth0 skbaddr=dcb5bd80 len=168

How it works...
A tracepoint is inserted using the TRACE_EVENT macro. It inserts a callback in the kernel 
source that gets called with the tracepoint parameters as arguments. Tracepoints added with 
the TRACE_EVENT macro allow ftrace or any other tracer to use them. The callback inserts 
the trace at the calling tracer's ring buffer.

To insert a new tracepoint into the Linux kernel, define a new header file with a special format. 
By default, tracepoint kernel files are located in include/trace/events, but the kernel 
has functionality so that the header files can be located in a different path. This is useful 
when defining a tracepoint in a kernel module.
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To use the tracepoint, the header file must be included in any file that inserts the tracepoint, 
and a single C file must define CREATE_TRACE_POINT. For example, to extend the hello 
world Linux kernel module we saw in a previous chapter with a tracepoint, add the following 
code to meta-bsp-custom/recipes-kernel/hello-world-tracepoint/files/
hello_world.c:

#include <linux/module.h>
#include "linux/timer.h"
#define CREATE_TRACE_POINTS
#include "trace.h"

static struct timer_list hello_timer;

void hello_timer_callback(unsigned long data)
{
        char a[] = "Hello";
        char b[] = "World";
        printk("%s %s\n",a,b);
      /* Insert the static tracepoint */
        trace_log_dbg(a, b);
      /* Trigger the timer again in 8 seconds */
        mod_timer(&hello_timer, jiffies + msecs_to_jiffies(8000));
}

static int hello_world_init(void)
{
      /* Setup a timer to fire in 2 seconds */
        setup_timer(&hello_timer, hello_timer_callback, 0);
        mod_timer(&hello_timer, jiffies + msecs_to_jiffies(2000));
        return 0;
}

static void hello_world_exit(void)
{
      /* Delete the timer */
        del_timer(&hello_timer);
}

module_init(hello_world_init);
module_exit(hello_world_exit);

MODULE_LICENSE("GPL v2");
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The tracepoint header file in meta-bsp-custom/recipes-kernel/hello-world-
tracepoint/files/trace.h would be:

#undef TRACE_SYSTEM
#define TRACE_SYSTEM log_dbg

#if !defined(_HELLOWORLD_TRACE) || defined(TRACE_HEADER_MULTI_READ)
#define _HELLOWORLD_TRACE

#include <linux/tracepoint.h>

TRACE_EVENT(log_dbg,
            TP_PROTO(char *a, char *b),
            TP_ARGS(a, b),
            TP_STRUCT__entry(
                    __string(a, a)
                    __string(b, b)),
            TP_fast_assign(
                    __assign_str(a, a);
                    __assign_str(b, b);),
            TP_printk("log_dbg: a %s b %s",
                      __get_str(a), __get_str(b))
        );
#endif

/* This part must be outside protection */
#undef TRACE_INCLUDE_PATH
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_PATH .
#define TRACE_INCLUDE_FILE trace
#include <trace/define_trace.h>

And the module's Makefile file in meta-bsp-custom/recipes-kernel/hello-world-
tracepoint/files/Makefile would look as follows:

obj-m   := hello_world.o
CFLAGS_hello_world.o    += -I$(src)

SRC := $(shell pwd)

all:
        $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)"

modules_install:
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        $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)" modules_install

clean:
        rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
        rm -f Module.markers Module.symvers modules.order
        rm -rf .tmp_versions Modules.symvers

Note the highlighted line that includes the current folder in the search path for include files.

We can now build the module externally, as we saw in the Building external kernel modules 
recipe in Chapter 2, The BSP Layer. The corresponding Yocto recipe is included in the source 
that accompanies the book. Here is the code for the same:

$ cd /opt/yocto/fsl-community-bsp/sources/meta-bsp-custom/recipes-  
  kernel/hello-world-tracepoint/files/

$ source /opt/poky/1.7.1/environment-setup-cortexa9hf-vfp-neon-poky-  
  linux-gnueabi

$ KERNEL_SRC=/opt/yocto/linux-wandboard make

After copying the resulting hello_world.ko module to the Wandboard's root filesystem, you 
can load it with:

# insmod hello_world.ko

Hello World

You can now see a new log_dbg directory inside /sys/kernel/debug/tracing/events, 
which contains a log_dbg event tracepoint with the following format:

# cat /sys/kernel/debug/tracing/events/log_dbg/log_dbg/format

name: log_dbg

ID: 622

format:

        field:unsigned short common_type;       offset:0;        
  size:2; signed:0;

        field:unsigned char common_flags;       offset:2;        
  size:1; signed:0;

        field:unsigned char common_preempt_count;       offset:3;     
  size:1; signed:0;

        field:int common_pid;   offset:4;       size:4; signed:1;

        field:__data_loc char[] a;      offset:8;       size:4;  
  signed:0;
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        field:__data_loc char[] b;      offset:12;      size:4;  
  signed:0;

print fmt: "log_dbg: a %s b %s", __get_str(a), __get_str(b)

You can then enable the function tracer on the hello_timer_callback function:

# cd /sys/kernel/debug/tracing

# echo 1 > events/log_dbg/log_dbg/enable

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# cat trace

          <idle>-0     [000] ..s2    57.425040: log_dbg: log_dbg: a  
  Hello b World

There's more...
Static tracepoints can also be filtered. When an event matches a filter set, it is kept, otherwise 
it is discarded. Events without filters are always kept.

For example, to set a matching filter for the log_dbg event inserted in the preceding code,  
you could match either the a or b variables:

# echo "a == \"Hello\"" >  
  /sys/kernel/debug/tracing/events/log_dbg/log_dbg/filter

See also
 f The Linux kernel documentation at https://git.kernel.org/cgit/linux/

kernel/git/torvalds/linux.git/plain/Documentation/trace/events.
txt for more information regarding static tracepoints events

 f The Using the TRACE_EVENT() macro article series by Steven Rostedt at http://
lwn.net/Articles/379903/

Using dynamic kernel tracing
kprobes is a kernel debugging facility that allows us to dynamically break into almost any 
kernel function (except kprobe itself) to collect debugging and profiling information non-
disruptively. Some architectures keep an array of blacklisted functions, which cannot be 
probed using kprobe, but on ARM the list is empty.

Because kprobes can be used to change a function's data and registers, it should only be 
used in development environments.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/trace/events.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/trace/events.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/trace/events.txt
http://lwn.net/Articles/379903/
http://lwn.net/Articles/379903/
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There are three types of probes:

 f kprobes: This is the kernel probe which can be inserted into any location with more 
than one kprobe added at a single location, if needed.

 f jprobe: This is the jumper probe inserted at the entry point of a kernel function to 
provide access to its arguments. Only one jprobe may be added at a given location.

 f kretprobe: This is the return probe which triggers on a function return. Also, only 
one kretprobe may be added to the same location.

They are packaged into a kernel module, with the init function registering the probes and 
the exit function unregistering them.

This recipe will explain how to use all types of dynamic probes.

Getting ready
To configure the Linux kernel with kprobes support, you need to:

 f Define the CONFIG_KPROBES configuration variable

 f Define CONFIG_MODULES and CONFIG_MODULE_UNLOAD so that modules can be 
used to register probes

 f Define CONFIG_KALLSYMS and CONFIG_KALLSYMS_ALL (recommended) so that 
kernel symbols can be looked up

 f Optionally, define the CONFIG_DEBUG_INFO configuration variable so that probes 
can be inserted in the middle of functions as offsets from the entry point. To find the 
insertion point, you can use objdump, as seen in the following excerpt for the do_
sys_open function:

arm-poky-linux-gnueabi-objdump -d -l vmlinux | grep  
  do_sys_open
8010bfa8 <do_sys_open>:
do_sys_open():
8010c034:       0a000036        beq     8010c114  
  <do_sys_open+0x16c>
8010c044:       1a000031        bne     8010c110  
  <do_sys_open+0x168>

The kprobes API is defined in the kprobes.h file and includes registration/
unregistration and enabling/disabling functions for the three types of probes  
as follows:
#include <linux/kprobes.h>
int register_kprobe(struct kprobe *kp);
int register_jprobe(struct jprobe *jp);
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int register_kretprobe(struct kretprobe *rp);

void unregister_kprobe(struct kprobe *kp);
void unregister_jprobe(struct jprobe *jp);
void unregister_kretprobe(struct kretprobe *rp);

By default, a kprobe probe is enabled when registering, except when the KPROBE_
FLAG_DISABLED flag is passed. The following function definitions enable or  
disable the probe:
int disable_kprobe(struct kprobe *kp);
int disable_kretprobe(struct kretprobe *rp);
int disable_jprobe(struct jprobe *jp);

int enable_kprobe(struct kprobe *kp);
int enable_kretprobe(struct kretprobe *rp);
int enable_jprobe(struct jprobe *jp);

The registered kprobe probes can be listed through debugfs:
$ cat /sys/kernel/debug/kprobes/list

They can globally be enabled or disabled with:

$ echo 0/1 > /sys/kernel/debug/kprobes/enabled

How to do it...
On registration, the kprobe probe places a breakpoint (or jump, if optimized) instruction at 
the start of the probed instruction. When the breakpoint is hit, a trap occurs, the registers are 
saved, and control passes to kprobes, which calls the pre-handler. It then single steps the 
breakpoint and calls the post-handler. If a fault occurs, the fault handler is called. Handlers 
can be NULL if desired.

A kprobe probe can be inserted either in a function symbol or into an address, using the 
offset field, but not in both.

On occasions, kprobe will still be too intrusive to debug certain 
problems, as it slows the functions and may affect scheduling and be 
problematic when called from interrupt context.



Chapter 5

545

For example, to place a kprobe probe in the open syscall, we would use the meta-bsp-
custom/recipes-kernel/open-kprobe/files/kprobe_open.c custom module:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>

static struct kprobe kp = {
  .symbol_name  = "do_sys_open",
};

static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
  pr_info("pre_handler: p->addr = 0x%p, lr = 0x%lx,"
    " sp = 0x%lx\n",
  p->addr, regs->ARM_lr, regs->ARM_sp);

  /* A dump_stack() here will give a stack backtrace */
  return 0;
}

static void handler_post(struct kprobe *p, struct pt_regs *regs,
      unsigned long flags)
{
  pr_info("post_handler: p->addr = 0x%p, status = 0x%lx\n",
    p->addr, regs->ARM_cpsr);
}

static int handler_fault(struct kprobe *p, struct pt_regs *regs,  
  int trapnr)
{
  pr_info("fault_handler: p->addr = 0x%p, trap #%dn",
    p->addr, trapnr);
  /* Return 0 because we don't handle the fault. */
  return 0;
}

static int kprobe_init(void)
{
  int ret;
  kp.pre_handler = handler_pre;
  kp.post_handler = handler_post;
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  kp.fault_handler = handler_fault;

  ret = register_kprobe(&kp);
  if (ret < 0) {
    pr_err("register_kprobe failed, returned %d\n", ret);
    return ret;
  }
  pr_info("Planted kprobe at %p\n", kp.addr);
  return 0;
}

static void kprobe_exit(void)
{
  unregister_kprobe(&kp);
  pr_info("kprobe at %p unregistered\n", kp.addr);
}
 
module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");

We compile it with a Yocto recipe, as explained in the Building external kernel modules 
recipe in Chapter 2, The BSP Layer. Here is the code for the meta-bsp-custom/recipes-
kernel/open-kprobe/open-kprobe.bb Yocto recipe file:

SUMMARY = "kprobe on do_sys_open kernel module."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-  
  2.0;md5=801f80980d171dd6425610833a22dbe6"

inherit module

PV = "0.1"

SRC_URI = " \
    file://kprobe_open.c \
    file://Makefile \
"

S = "${WORKDIR}"
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With the Makefile file in meta-bsp-custom/recipes-kernel/open-kprobe/files/
Makefile being:

obj-m  := kprobe_open.o

SRC := $(shell pwd)

all:
  $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)"

modules_install:
  $(MAKE) -C "$(KERNEL_SRC)" M="$(SRC)" modules_install

clean:
  rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
  rm -f Module.markers Module.symvers modules.order
  rm -rf .tmp_versions Modules.symvers

Copy it to a target running the same kernel it has been linked against, and load it with  
the following:

$ insmod kprobe_open.ko

Planted kprobe at 8010da84

We can now see the handlers printing in the console when a file is opened:

pre_handler: p->addr = 0x8010da84, lr = 0x8010dc34, sp = 0xdca75f98

post_handler: p->addr = 0x8010da84, status = 0x80070013

There's more...
A jprobe probe is implemented with a kprobe. It sets a breakpoint at the given symbol or 
address (but it must be the first instruction of a function), and makes a copy of a portion of 
the stack. When hit, it then jumps to the handler with the same registers and stack as the 
probed function. The handler must have the same argument list and return type as the probed 
function, and call jprobe_return() before returning to pass the control back to kprobes. 
Then the original stack and CPU state are restored and the probed function is called.

Following is an example of a jprobe in the open syscall in the meta-bsp-custom/
recipes-kernel/open-jprobe/files/jprobe_open.c file:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
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static long jdo_sys_open(int dfd, const char __user *filename, int  
  flags, umode_t mode)
{
  pr_info("jprobe: dfd = 0x%x, filename = 0xs "
    "flags = 0x%x mode umode %x\n", dfd, filename, flags, mode);

  /* Always end with a call to jprobe_return(). */
  jprobe_return();
  return 0;
}

static struct jprobe my_jprobe = {
  .entry        = jdo_sys_open,
  .kp = {
    .symbol_name  = "do_sys_open",
  },
};

static int jprobe_init(void)
{
  int ret;

  ret = register_jprobe(&my_jprobe);
  if (ret < 0) {
    pr_err("register_jprobe failed, returned %d\n", ret);
    return -1;
  }
  pr_info("Planted jprobe at %p, handler addr %p\n",
        my_jprobe.kp.addr, my_jprobe.entry);
  return 0;
}

static void jprobe_exit(void)
{
  unregister_jprobe(&my_jprobe);
  pr_info("jprobe at %p unregistered\n", my_jprobe.kp.addr);
}

module_init(jprobe_init)
module_exit(jprobe_exit)
MODULE_LICENSE("GPL");
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A kretprobe probe sets a kprobe at the given symbol or function address which when hit, 
replaces the return address with a trampoline, usually a nop instruction, where kprobe is 
registered. When the probed function returns, the kprobe probe on the trampoline is hit, calling 
the return handler and setting back the original return address before resuming execution.

Following is an example of a kretprobe probe in the open syscall in the meta-bsp-
custom/recipes-kernel/open-kretprobe/files/kretprobe_open.c file:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/ktime.h>
#include <linux/limits.h>
#include <linux/sched.h>

/* per-instance private data */
struct my_data {
  ktime_t entry_stamp;
};

static int entry_handler(struct kretprobe_instance *ri, struct  
  pt_regs *regs)
{
  struct my_data *data;

  if (!current->mm)
    return 1;  /* Skip kernel threads */

  data = (struct my_data *)ri->data;
  data->entry_stamp = ktime_get();
  return 0;
}

static int ret_handler(struct kretprobe_instance *ri, struct  
  pt_regs *regs)
{
  int retval = regs_return_value(regs);
  struct my_data *data = (struct my_data *)ri->data;
  s64 delta;
  ktime_t now;

  now = ktime_get();
  delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
  pr_info("returned %d and took %lld ns to execute\n",
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        retval, (long long)delta);
  return 0;
}

static struct kretprobe my_kretprobe = {
  .handler    = ret_handler,
  .entry_handler    = entry_handler,
  .data_size    = sizeof(struct my_data),
  .maxactive    = 20,
};

static int kretprobe_init(void)
{
  int ret;

  my_kretprobe.kp.symbol_name = "do_sys_open";
  ret = register_kretprobe(&my_kretprobe);
  if (ret < 0) {
    pr_err("register_kretprobe failed, returned %d\n",
        ret);
    return -1;
}
  pr_info("Planted return probe at %s: %p\n",
  my_kretprobe.kp.symbol_name,            my_kretprobe.kp.addr);
  return 0;
}

static void kretprobe_exit(void)
{
  unregister_kretprobe(&my_kretprobe);
  pr_info("kretprobe at %p unregistered\n",
      my_kretprobe.kp.addr);

  /* nmissed > 0 suggests that maxactive was set too low. */
  pr_info("Missed probing %d instances of %s\n",
    my_kretprobe.nmissed, my_kretprobe.kp.symbol_name);
}

module_init(kretprobe_init)
module_exit(kretprobe_exit)
MODULE_LICENSE("GPL");
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The highlighted maxactive variable is the number of reserved storage for return addresses 
in the kretprobe probe, and by default, it is the number of CPUs (or twice the number of 
CPUs in preemptive systems with a maximum of 10). If maxactive is too low, some probes 
will be missed.

The complete examples, including Yocto recipes, can be found in the source that accompanies 
the book.

See also
 f The kprobes documentation on the Linux kernel at https://git.kernel.org/

cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/
kprobes.txt

Using dynamic kernel events
Although dynamic tracing is a very useful feature, custom kernel modules is not a user-friendly 
interface. Fortunately, the Linux kernel has been extended with the support of kprobe events, 
which allow us to set kprobes probes using a debugfs interface.

Getting ready
To make use of this feature, we need to configure our kernel with the CONFIG_KPROBE_
EVENT configuration variable.

How to do it...
The debugfs interface adds probes via the /sys/kernel/debug/tracing/kprobe_
events file. For example, to add a kprobe called example_probe to the do_sys_open 
function, you can execute the following command:

# echo 'p:example_probe do_sys_open dfd=%r0 filename=%r1 flags=%r2  
  mode=%r3' > /sys/kernel/debug/tracing/kprobe_events

The probe will print the function's argument list, according to the function's declaration 
arguments as seen in the funcion's definition below:

long do_sys_open(int dfd, const char __user *filename, int flags,  
  umode_t mode);

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/kprobes.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/kprobes.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/kprobes.txt
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You can then manage kprobes through the sysfs as follows:

 f To see all the registered probes:
# cat /sys/kernel/debug/tracing/kprobe_events

p:kprobes/example_probe do_sys_open dfd=%r0 filename=%r1  
  flags=%r2 mode=%r3

 f To print the probe format:
# cat  
  /sys/kernel/debug/tracing/events/kprobes/example_probe/format

name: example_probe

ID: 1235

format:

        field:unsigned short common_type;       offset:0;       
  size:2; signed:0;

        field:unsigned char common_flags;       offset:2;       
  size:1; signed:0;

        field:unsigned char common_preempt_count;        
  offset:3;       size:1; signed:0;

        field:int common_pid;   offset:4;       size:4;  
  signed:1;

        field:unsigned long __probe_ip; offset:8;        
  size:4; signed:0;

        field:u32 dfd;  offset:12;      size:4; signed:0;

        field:u32 filename;     offset:16;      size:4;  
  signed:0;

        field:u32 flags;        offset:20;      size:4;  
  signed:0;

        field:u32 mode; offset:24;      size:4; signed:0;

print fmt: "(%lx) dfd=%lx filename=%lx flags=%lx mode=%lx",  
  REC->__probe_ip, REC->dfd, REC->filename, REC->flags, REC-  
  >mode

 f To enable the probe use the following command:
# echo 1 >  
  /sys/kernel/debug/tracing/events/kprobes/example_probe/enable

 f To see the probe output on either the trace or trace_pipe files:
# cat /sys/kernel/debug/tracing/trace

# tracer: nop

#
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# entries-in-buffer/entries-written: 59/59   #P:4

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth

#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

              sh-737   [000] d...  1610.378856: example_probe:  
  (do_sys_open+0x0/0x184) dfd=ffffff9c filename=f88488  
  flags=20241 mode=16

              sh-737   [000] d...  1660.888921: example_probe:  
  (do_sys_open+0x0/0x184) dfd=ffffff9c filename=f88a88  
  flags=20241 mode=16

 f To clear the probe (after disabling it):
# echo '-:example_probe' >>  
  /sys/kernel/debug/tracing/kprobe_events

 f To clear all probes:
# echo > /sys/kernel/debug/tracing/kprobe_events

 f To check the number of hit and missed events:

# cat /sys/kernel/debug/tracing/kprobe_profile

example_probe                             78               0

With the format being as follows:

<event name> <hits> <miss-hits>

How it works...
To set a probe we use the following syntax:

<type>:<event name> <symbol> <fetch arguments>
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Let's explain each of the mentioned parameters:

 f type: This is either p for kprobe or r for a return probe.

 f event name: This is optional and has the format <group/event>. If the group 
name is omitted, it defaults to kprobes, and if the event name is omitted, it is 
autogenerated based on the symbol. When an event name is given, it adds a 
directory under /sys/kernel/debug/tracing/events/kprobes/ with the 
following content:

 � id: This is the ID of the probe event

 � filter: This specifies user filtering rules

 � format: This is the format of the probe event

 � enabled: This is used to enable or disable the probe event

 f symbol: This is either the symbol name plus an optional offset or the memory 
address where the probe is to be inserted.

 f fetch arguments: These are optional and represent the information to extract with 
a maximum of 128 arguments. They have the following format:

<name>=<offset>(<argument>):<type>

Lets explain each of the mentioned parameters:

 � name: This sets the argument name

 � offset: This adds an offset to the address argument

 � argument: This can be of the following format:

%<register>: This fetches the specified register. For ARM these are:

r0 to r10

fp

ip

sp

lr

pc

cpsr

ORIG_r0

@<address>: This fetches the memory at the specified kernel address

@<symbol><offset>: This fetches the memory at the specified symbol and optional 
offset

$stack: This fetches the stack address
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$stack<N>: This fetches the nth entry of the stack

And for return probes we have:

$retval: This fetches the return value

 � type: This one sets the argument type used by kprobe to access the 
memory from the following options:

u8,u16,u32,u64, for unsigned types

s8,s16,s32,s64, for signed types

string, for null terminated strings

bitfield, with the following format:

b<bit-width>@<bit-offset>/<container-size>

There's more...
Current versions of the Linux kernel (from v3.14 onwards) also have support for user space 
probe events (uprobes), with a similar interface to the one for the kprobes events.

Exploring Yocto's tracing and profiling tools
Tracing and profiling tools are used to increase the performance, efficiency, and quality 
of both, applications and systems. User space tracing and profiling tools make use of 
performance counters and static and dynamic tracing functionality that the Linux kernel 
offers, as we have seen in the previous recipes.

Getting ready
Tracing enables us to log an application's activity so that its behavior can be analyzed, 
optimized, and corrected.

Yocto offers several tracing tools including:

 f trace-cmd: This is a command line interface to the ftrace kernel subsystem, and 
kernelshark, a graphical interface to trace-cmd.

 f perf: This is a tool that originated in the Linux kernel as a command line interface to 
its performance counter events subsystem. It has since then expanded and added 
several other tracing mechanisms.



Debugging, Tracing, and Profiling

556

 f blktrace: This is a tool that provides information about the block layer input/output.

 f Linux Trace Toolkit Next Generation (LTTng): This is a tool that allows for correlated 
tracing of the Linux kernel, applications, and libraries. Yocto also includes babeltrace, 
a tool to translate the traces into human readable logs.

 f SystemTap: This is a tool to dynamically instrument the Linux kernel.

Profiling refers to a group of techniques used to measure an application's consumed 
resources and the time taken to execute an application. The data is then used to improve the 
application's performance and optimize it. Some of the aforementioned tools such as perf and 
SystemTap have evolved to become powerful tracing and profiling tools.

Apart from the enlisted tracing tools, which can also be used for profiling, Yocto offers several 
other profiling tools:

 f OProfile: This is a statistical profiler for Linux that profiles all running code with  
low overhead.

 f Powertop: This is a tool used to analyze the system's power consumption and  
power management.

 f Latencytop: This is a tool used to analyze system latencies.

 f Sysprof: This tool is included for Intel architectures on X11 graphical images. It does 
not work on ARM architectures.

How to do it...
These tools can be added to your target image either individually or with the tools-profile 
feature. To use the tools, we also need to include debug information in our applications. To 
this extent we should use the -dbg version of the packages, or better, configure Yocto so that 
debug information is generated with the dbg-pkgs image feature. To add both features to 
your images, add the following to your project's conf/local.conf file:

EXTRA_IMAGE_FEATURES = "tools-profile dbg-pkgs"

The -sdk version of target images already adds these features.

There's more...
Apart from these tools, Yocto also offers the standard monitoring tools available on a Linux 
system. Some examples are:

 f htop: This tool is available in the meta-oe layer and provides process monitoring.

 f iotop: This tool is also included in the meta-oe layer and provides block device I/O 
statistics by process.
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 f procps: This one is available in Poky and includes the following tools:

 � ps: This tool is used to list and provide process statuses.

 � vmstat: This is used for virtual memory statistics.

 � uptime: This is useful for load averages monitoring.

 � free: This is used for memory usage monitoring. Remember to take  
kernel caches into account.

 � slabtop: This one provides memory usage statistics for the kernel  
slab allocator.

 f sysstat: This is available in Poky and contains, among others, the following tools:

 � pidstat: This is another option for process statistics.

 � iostat: This one provides block I/O statistics.

 � mpstat: This tool provides multi-processor statistics.

And Yocto also offers the following network tools:

 f tcpdump: This networking tool is included in the meta-networking layer in  
meta-openembedded. It captures and analyzes network traffic.

 f netstat: This is part of the net-tools package in Poky. It provides network protocol 
statistics.

 f ss: This tool is included in the iproute2 package in Poky. It provides  
sockets statistics.

Tracing and profiling with perf
The perf Linux tool can instrument the Linux kernel with both hardware and software 
performance counter events as well as static and dynamic kernel trace points. For this, it uses 
the kernel functionality we have seen in previous recipes, providing a common interface to all 
of them.

This tool can be used to debug, troubleshoot, optimize, and measure applications, workloads, 
or the full system, which covers the processor, kernel, and applications. Perf is probably the 
most complete of the tracing and profiling tools available for a Linux system.

Getting ready
The perf source is part of the Linux kernel. To include perf in your system, add the following to 
your conf/local.conf file:

IMAGE_INSTALL_append = " perf"
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Perf is also part of the tools-profile image feature, so you can also add it with the 
following:

EXTRA_IMAGE_FEATURES += "tools-profile"

Perf is also included in the -sdk images.

To take the maximum advantage of this tool, we need to have symbols both in user space 
applications and libraries, as well as the Linux kernel. For this, we need to avoid stripping 
binaries by adding the following to the conf/local.conf configuration file:

INHIBIT_PACKAGE_STRIP = "1"

Also, adding the debug information of the applications by adding the following is 
recommended:

EXTRA_IMAGE_FEATURES += "dbg-pkgs"

By default, the debug information is placed in a .debug directory in the same location as the 
binary it corresponds to. But perf needs a central location to look for all debug information. 
So, to configure our debug information with a structure that perf understands, we also need 
the following in our conf/local.conf configuration file:

PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'

Finally, configure the Linux kernel with the CONFIG_DEBUG_INFO configuration variable to 
include debug information, CONFIG_KALLSYMS to add debug symbols into the kernel, and 
CONFIG_FRAME_POINTER to be able to see complete stack traces.

As we saw in the Using the kernel's performance counters recipe, we will 
also need to pass maxcpus=1 (or maxcpus=0 to disable SMP) to the Linux 
kernel in order to use the i.MX6 PMU, due to the sharing of the PMU interrupt 
between all cores. Also, in order to use the PMU on i.MX6 processors, the 
SoC needs to receive at least 4 JTAG clock cycles after power on reset. This is 
documented in the errata number ERR006259.

At the time of writing, the meta-fsl-arm layer for Yocto 1.7 disables some of perf features. 
To be able to follow the upcoming examples, remove the following line from the meta-fsl-
arm layer's /opt/yocto/fsl-community-bsp/sources/meta-fsl-arm/conf/
machine/include/imx-base.inc file:

-PERF_FEATURES_ENABLE = ""

Newer Yocto releases will include this by default.
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How to do it...
Perf can be used to provide a default set of event statistics for a particular workload with:

# perf stat <command>

For example, a single ping will provide the following output:

# perf stat ping -c 1 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: seq=0 ttl=64 time=6.489 ms

--- 192.168.1.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 6.489/6.489/6.489 ms

 Performance counter stats for 'ping -c 1 192.168.1.1':

 

          8.984333 task-clock                #    0.360 CPUs utilized

                15 context-switches          #    0.002 M/sec

                 0 cpu-migrations            #    0.000 K/sec

               140 page-faults               #    0.016 M/sec

           3433188 cycles                    #    0.382 GHz

            123948 stalled-cycles-frontend   #    3.61% frontend  
  cycles idle   

            418329 stalled-cycles-backend    #   12.18% backend   
  cycles idle   

            234497 instructions              #    0.07  insns per  
  cycle        

                                             #    1.78  stalled  
  cycles per insn

             22649 branches                  #    2.521 M/sec

              8123 branch-misses             #   35.86% of all  
  branches        

       0.024962333 seconds time elapsed

If we are only interested in a particular set of events, we can specify the events we want to 
output information from using the -e option.
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We can also sample data and store it so that it can be later analyzed:

# perf record <command>

Better still, we can add stack backtraces with the -g option:

# perf record -g -- ping -c 1 192.168.1.1

The result will be stored on a perf.data file which we would then analyze with:

# perf report

Its output can be seen in the following screenshot:

The functions order may be customized with the --sort option.

We can see how perf has resolved both user space and kernel symbols. Perf will read kernel 
symbols from the Linux kernel ELF file under /boot. If it is stored in a non-standard location, 
we can optionally pass its location with a -k option. If it does not find it, it will fall back to 
using /proc/kallsyms, where the Linux kernel exports the kernel symbols to user space 
when built with the CONFIG_KALLSYMS configuration variable.

If a perf report is not showing kernel symbols, it may be because the ELF file 
does not match the running kernel. You can try to rename it and see if using /
proc/kallsyms works.
Also, to obtain complete backtraces, applications need to be compiled with 
debug optimization by using the DEBUG_BUILD configuration variable, as we 
saw earlier in this chapter.
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By default, Perf uses a newt interface (TUI) that needs the expand utility, part of coreutils. If 
coreutils is not included in your root filesystem, you can ask for a text-only output with:

# perf report –stdio

After executing the preceding command we get the following output:

We can see all the functions called with the following columns:

 f Overhead: This represents the percentage of the sampling data corresponding to  
that function.

 f Command: This refers to the name of the command passed to the perf record.

 f Shared Object: This represents the ELF image name (kernel.kallsyms will  
appear for the kernel).

 f Privilege Level: It has the following modes:

 � for user mode

 � k for kernel mode

 � g for virtualized guest kernel

 � u for virtualized host user space

 � H for hypervisor

 f Symbol: This is the resolved symbol name.
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In the TUI interface, we can press enter on a function name to access a sub-menu, which will 
give us the following output:

From this we can, for example, annotate the code as shown in the following screenshot:

If using text mode, we can also get annotated output with:

# perf annotate -d <command>

Perf can also do system-wide profiling instead of focusing on a specific workload. For example, 
to monitor the system for five seconds, we would execute the following command:

# perf stat -a sleep 5

Performance counter stats for 'sleep 5':



Chapter 5

563

       5006.660002 task-clock                #    1.000 CPUs  
  utilized[100.00%]

               324 context-switches          #    0.065 K/sec  
  [100.00%]

                 0 cpu-migrations            #    0.000 K/sec  
  [100.00%]

               126 page-faults               #    0.025 K/sec

          12200175 cycles                    #    0.002 GHz [100.00%]

           2844703 stalled-cycles-frontend   #   23.32% frontend  
  cycles idle    [100.00%]

           9152564 stalled-cycles-backend    #   75.02% backend   
  cycles idle    [100.00%]

           4645466 instructions              #    0.38  insns per  
  cycle        

                                             #    1.97  stalled  
  cycles per insn [100.00%]

            479051 branches                  #    0.096 M/sec  
  [100.00%]

            222903 branch-misses             #   46.53% of all  
  branches        

       5.006115001 seconds time elapsed

Or to sample the system for five seconds, we will execute the following command:

# perf record -a -g -- sleep 5

When using system-wide measurements the command is just used as measurement duration. 
For this, the sleep command will not consume extra cycles.

How it works...
The perf tool provides statistics for both user and kernel events occurring in the system. It can 
instrument in two modes:

 f Event counting (perf stat): This counts events in kernel context and prints 
statistics at the end. It has the least overhead.

 f Event sampling (perf record): This writes the gathered data to a file at a given 
sampling period. The data can then be read as profiling (perf report) or trace data 
(perf script). Gathering data to a file can be resource intensive and the file can 
quickly grow in size.
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By default, perf counts events for all the threads in the given command, including child 
processes, until the command finishes or is interrupted.

A generic way to run perf is as follows:

perf stat|record [-e <comma separated event list> --filter '<expr>']  
  [-o <filename>] [--] <command> [<arguments>]

Let's explain the preceding code in detail:

 f e: This specifies an event list to use instead of the default set of events. An event 
filter can also be specified, with its syntax explained in the Linux kernel source 
documentation at Documentation/trace/events.txt.

 f o: This specifies the output file name, by default perf.data.

 f --: This is used as a separator when the command needs arguments.

It can also start or sample a running process by passing the -p <pid> option.

We can obtain a list of all available events by executing the following command:

# perf list

Or on a specific subsystem with the following command:

# perf list '<subsystem>:*'

You can also access raw PMU events directly by using the r<event> event, for example, to 
read the data cache misses on an ARM core:

# perf stat -e r3 sleep 5

Unless specified, the perf record will sample hardware events at an average rate of 1000 Hz, 
but the rate can be modified with the -F <freq> argument. Tracepoints will be counted on 
each occurrence.

Reading tracing data
Perf records samples and stores tracing data in a file. The raw timestamped trace data can  
be seen with:

# perf script
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After executing the command we get the following output:

As we have seen, we can use a perf report to look at the sampled data formatted for profiling 
analysis, but we can also generate python scripts that we can then modify to change the way 
the data is presented, by running the following line of code:

# perf script -g python

This will generate a perf-script.py script that looks as follows:
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To run the script, use the following command:

# perf script -s perf-script.py

You need to install the perf-python package in our target image. You can add this to your 
image with:

IMAGE_INSTALL_append = " perf-python"

Now you will get a similar output as with the perf script earlier. But now you can modify the 
print statements in the python code to post process the sampled data to your specific needs.

There's more...
Perf can use dynamic events to extend the event list to any location where kprobe can be 
placed. For this, configure the kernel for kprobe and uprobe support (if available), as seen in 
the Using dynamic kernel events recipe earlier.

To add a probe point in a specific function execute the following command:

# perf probe --add "tcp_sendmsg"

Added new event:

  probe:tcp_sendmsg    (on tcp_sendmsg)

You can now use it in all perf tools, such as profiling the download of a file:

# perf record -e probe:tcp_sendmsg -a -g -- wget  
  http://downloads.yoctoproject.org/releases/yocto/yocto-  
  1.7.1/RELEASENOTES

Connecting to downloads.yoctoproject.org (198.145.29.10:80)

RELEASENOTES         100% |**********************************************
****************************************| 11924   0:00:00 ETA

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 0.025 MB perf.data (~1074 samples)  
  ]

And you can view the profiling data executing the following command:

# perf report
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And then you get the following output:

You may need to configure DNS servers in your target for the wget 
command as seen in the preceding code to work. To use Google's public 
DNS servers, you can add the following to your /etc/resolv.conf file:
nameserver 8.8.8.8

nameserver 8.8.4.4

You can then delete the probe with:

# perf probe --del tcp_sendmsg

/sys/kernel/debug//tracing/uprobe_events file does not exist - please  
  rebuild kernel with CONFIG_UPROBE_EVENT.

Removed event: probe:tcp_sendmsg

Profile charts
System behavior can be visualized using a perf timechart. To gather data, run:

# perf timechart record -- <command> <arguments>

And to turn it into an svg file use the following command:

# perf timechart
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Using perf as strace substitute
Perf can be used as an alternative to strace but with much less overhead with the following 
syntax:

# perf trace record <command>

However, the Yocto recipe for perf does not currently build this support. We can see the 
missing library in the compilation log:

Makefile:681: No libaudit.h found, disables 'trace' tool, please  
  install audit-libs-devel or libaudit-dev

See also
 f A list of the available ARM i.MX6 PMU events at http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html

 f An extended tutorial in the use of perf at https://perf.wiki.kernel.org/
index.php/Tutorial

 f Some advanced examples at Brendan Gregg's perf site http://www.
brendangregg.com/perf.html

Using SystemTap
SystemTap is a GPLv2 licensed system wide tool that allows you to gather tracing and  
profiling data from a running Linux system. The user writes a systemtap script, which is  
then compiled into a Linux kernel module linked against the same kernel source it is going  
to run under.

The script sets events and handlers, which are called by the kernel module on the specified 
events triggering. For this, it uses the kprobes and uprobes (if available) interfaces in the 
kernel, as we saw in the Using dynamic kernel events recipe before.

Getting ready
To use SystemTap, we need to add it to our target image either by adding it specifically, as in:

IMAGE_INSTALL_append = " systemtap"

We can also add it by using the tools-profile image feature, or an -sdk image.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/BEHGGDJC.html 
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
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We will also need an SSH server running on the target. This is already available on the -sdk 
image; otherwise we can add one to our image with the following:

EXTRA_IMAGE_FEATURES += "ssh-server-openssh"

We will also need to compile the kernel with the CONFIG_DEBUG_INFO configuration variable 
to include debug information, as well as performance events counters and kprobes as 
explained in previous recipes.

How to do it...
To use systemtap on a Yocto system, we need to run the crosstap utility in the host, passing it 
the systemtap script to run. For example, to run the sys_open.stp sample script, we can 
run the following code:

probe begin
{
        print("Monitoring starts\n")
        printf("%6s %6s %16s\n", "UID", "PID", "NAME");
}

probe kernel.function("sys_open")
{
          printf("%6d %6d %16s\n", uid(), pid(), execname());
}

probe timer.s(60)
{
        print("Monitoring ends\n")
        exit()
}

We would run the following commands:

$ source setup-environment wandboard-quad

$ crosstap root@<target_ip> sys_open.stp

Yocto does not support running scripts on the target, as that would require building modules 
on the target, and that is untested.
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How it works...
SystemTap scripts are written with its own C/awk like language. They enable us to trace 
events by instrumenting the kernel code at different locations, such as:

 f Beginning and end of SystemTap sessions

 f Entry, return, or specific offset of kernel and user space functions

 f Timer events

 f Performance hardware counter events

They also enable us to extract data, such as:

 f Thread, process, or user ID

 f Current CPU

 f Process name

 f Time

 f Local variables

 f Kernel and user space backtraces

Additionally, SystemTap also offers the ability to analyze the gathered data, and for different 
probes to work together. SystemTap includes a wide selection of example scripts and a 
framework for creating script libraries that can be shared. These tapsets are installed by 
default and can be extended by the user's own scripts. When a symbol is not defined in a 
script, SystemTap will search the tapset library for it.

See also
 f The tapset reference at https://sourceware.org/systemtap/tapsets/

 f All examples included in the source at https://sourceware.org/systemtap/
examples/

 f A reference to the systemtap scripting language at https://sourceware.org/
systemtap/langref/

https://sourceware.org/systemtap/tapsets/
https://sourceware.org/systemtap/examples/
https://sourceware.org/systemtap/examples/
https://sourceware.org/systemtap/langref/ 
https://sourceware.org/systemtap/langref/ 
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Using OProfile
OProfile is a statistical profiler released under the GNU GPL license. The version included in 
the Yocto 1.7 release is a system-wide profiler, which uses the legacy profiling mode with a 
kernel module to sample hardware performance counters data and a user space daemon to 
write them to a file. More recent Yocto releases use newer versions that use the performance 
events subsystem, which we introduced in the Using the kernel's performance counters 
recipe, so they are able to profile processes and workloads as well.

The version included in Yocto 1.7 consists of a kernel module, a user space daemon to collect 
sample data, and several profiling tools to analyze captured data.

This recipe will focus on the OProfile version included in the 1.7 Yocto release.

Getting ready
To include OProfile in your system, add the following to your conf/local.conf file:

 IMAGE_INSTALL_append += " oprofile"

OProfile is also part of the tools-profile image feature, so you can also add it with:

EXTRA_IMAGE_FEATURES += "tools-profile"

OProfile is also included in the -sdk images.

OProfile does not need debugging symbols in applications unless annotated results are 
needed. For callgraph analysis, the binaries must have stack frames information so they 
should be build with debug optimization by setting the DEBUG_BUILD variable in the conf/
local.conf file:

DEBUG_BUILD = "1"

To build the kernel driver, configure the Linux kernel with profiling support, CONFIG_
PROFILING, and the CONFIG_OPROFILE configuration variable to build the OProfile module.

OProfile uses the hardware counters support in the SoC, but it can also work on a timer-based 
mode. To work with the timer-based model, you need to pass the oprofile.timer=1 kernel 
argument to the Linux kernel, or load the OProfile module with:

# modprobe oprofile timer=1
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Because OProfile relies on the i.MX6 performance counters, we still 
need to boot with maxcpus=1 for it to work. This restricts the profiling 
in i.MX6 SoCs to one core.

How to do it...
To profile a single ping, start a profiling session as follows:

# opcontrol --start --vmlinux=/boot/vmlinux --callgraph 5

Using 2.6+ OProfile kernel interface.

Reading module info.

Using log file /var/lib/oprofile/samples/oprofiled.log

Daemon started.

Profiler running.

Then run the workload to profile, for example, a single ping:

# ping -c 1 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: seq=0 ttl=64 time=5.421 ms

--- 192.168.1.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 5.421/5.421/5.421 ms

And stop collecting data with:

 # opcontrol --stop

We will get a parsing error if the kernel image name contains special 
characters. To avoid it, we can use a symbolic link as follows:
# ln -s /boot/vmlinux-3.10.17-1.0.2-  
  wandboard+gbe8d6872b5eb /boot/vmlinux

Also, if you see the following error:
Count 100000 for event CPU_CYCLES is below the minimum 
1500000

You will need to change the reset count of the CPU_CYCLES event to that 
minimum, with:
# opcontrol --setup --event=CPU_CYCLES:1500000
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You can then view the collected data with:

# opreport -f

Using /var/lib/oprofile/samples/ for samples directory.

CPU: ARM Cortex-A9, speed 996000 MHz (estimated)

Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No  
  unit mask) count 1500000

CPU_CYCLES:150...|

  samples|      %|

------------------

      401 83.0228 /boot/vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb

       31  6.4182 /bin/bash

       28  5.7971 /lib/libc-2.20.so

       18  3.7267 /lib/ld-2.20.so

        3  0.6211 /usr/bin/oprofiled

        1  0.2070 /usr/bin/ophelp

        1  0.2070 /usr/sbin/sshd

And an excerpt for output with callgraph and symbols is as follows:

# opreport -cl

Using /var/lib/oprofile/samples/ for samples directory.

warning: [heap] (tgid:790 range:0x3db000-0x4bc000) could not be  
  found.

warning: [stack] (tgid:785 range:0x7ee11000-0x7ee32000) could not be  
  found.

CPU: ARM Cortex-A9, speed 996000 MHz (estimated)

Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No  
  unit mask) count 1500000

samples  %        app name                 symbol name

-------------------------------------------------------------------------
------

  102      48.8038  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq

  107      51.1962  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  do_softirq

102      21.1180  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq

  102      47.4419  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq
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  102      47.4419  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  __do_softirq [self]

  7         3.2558  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  net_rx_action

  4         1.8605  vmlinux-3.10.17-1.0.2-wandboard+gbe8d6872b5eb  
  run_timer_softirq

---------------------------------------------------------------------  
  ----------

31        6.4182  bash                     /bin/bash

How it works...
The OProfile daemon records data continuously, accumulating data from multiple runs. Use 
the --start and --stop options to start and stop accumulating new data. If you want to 
start collecting data from scratch, use the --reset option first.

Before running a profiling session, you need to configure the OProfile daemon to run with 
or without kernel profiling. Specifying the kernel profiling option is the only compulsory 
configuration variable.

In order to configure the OProfile daemon, stop it first (if running) with the --shutdown 
option. The --stop option will only stop data collection, but will not kill the daemon.

To configure OProfile without kernel profiling you execute the following command:

opcontrol --no-vmlinux <options>

And to configure the kernel profiling, we can run the following command:

opcontrol --vmlinux=/boot/path/to/vmlinux <options>

Both of these will configure the daemon and load the OProfile kernel module, if needed. Some 
common options are:

 f --separate=<type>: This controls how the profiled data is separated into different 
files, with type being:

 � none: This does not separate profiles.

 � library: This separates shared libraries profiles per application. The sample 
file name will include the name of library and the executable.

 � kernel: This adds kernel profiling.

 � thread: This adds per thread profiles.

 � cpu: This adds per CPU profiles.

 � all: This does all of the above.
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 f --callgrah=<depth>: This logs called and calling functions as well as the time 
spent in functions.

Once the daemon is configured, you can start a profiling session.

To check the current configuration, you execute:

# opcontrol --status

Daemon not running

Session-dir: /var/lib/oprofile

Separate options: library kernel

vmlinux file: /boot/vmlinux

Image filter: none

Call-graph depth: 5

The sampled data is stored in the /var/lib/oprofile/samples/ directory.

We can then analyze the collected data with:

opreport <options>

Some useful options include:

 f -c: This shows callgraph information, if available.

 f -g: This shows the source file and line number for each symbol.

 f -f: This shows full object paths.

 f -o: This provides the output to the specified file instead of stdout.

OProfile mounts a pseudo filesystem in /dev/oprofile which is used to report and receive 
configuration from user space. It also contains a character device node used to pass sampled 
data from the kernel module to the user space daemon.

There's more...
Yocto includes a graphical user interface for OProfile that can be run in the host. However, it is 
not part of Poky and needs to be downloaded and installed separately.

Refer to the oprofileui repository at https://git.yoctoproject.org/cgit/cgit.
cgi/oprofileui/ for a README with instructions, or to the Yocto Project's Profiling and 
Tracing Manual at http://www.yoctoproject.org/docs/1.7.1/profile-manual/profile-manual.html.

https://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/
https://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/
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See also
 f The project's home page for more information about OProfile at http://oprofile.

sourceforge.net/news/

Using LTTng
LTTng is a set of dual licensed GPLv2 and LGPL tracing and profiling tools for both applications 
and kernel. It produces binary trace files in the production optimized Compact Trace Format 
(CTF), which can then be analyzed by tools, such as babeltrace.

Getting ready
To include the different LTTng tools in your system, add the following to your conf/local.
conf file:

IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"

They are also part of the tools-profile image feature, so you can also add them with:

EXTRA_IMAGE_FEATURES += "tools-profile"

These are also included in the -sdk images.

At the time of writing, Yocto 1.7 excludes lttng-modules from 
the tools-profile feature and sdk images for ARM; so they 
have to be added manually.

The LTTng command-line tool is the main user interface to LTTng. It can be used to trace both 
the Linux kernel—using the kernel tracing interfaces we have seen in previous recipes—as well 
as instrumented user space applications.

How to do it...
A kernel profiling session workflow is as follows:

1. Create a profiling session with:
# lttng create test-session

Session test-session created.

Traces will be written in /home/root/lttng-traces/test-  
  session-20150117-174945

http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
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2. Enable the events you want to trace with:
# lttng enable-event --kernel sched_switch,sched_process_fork

Warning: No tracing group detected

Kernel event sched_switch created in channel channel0

Kernel event sched_process_fork created in channel channel0

You can get a list of the available kernel events with:
# lttng list --kernel

This corresponds to the static tracepoint events available in the Linux kernel.

3. Now, you are ready to start sampling profiling data:
# lttng start

Tracing started for session test-session

4. Run the workload you want to profile:
# ping -c 1 192.168.1.1

5. When the command finishes or is interrupted, stop the gathering of profiling data:
# lttng stop

Waiting for data availability.

Tracing stopped for session test-session

6. Finally, destroy the profiling session using the following command. Note that this 
keeps the tracing data and only destroys the session.
# lttng destroy

Session test-session destroyed

7. To view the profiling data so that it is readable by humans, start babeltrace with:

# babeltrace /home/root/lttng-traces/test-session-20150117-  
  174945

The profiling data can also be copied to the host to be analyzed.

User space applications and libraries need to be instrumented so that they can be profiled. 
This is done by linking them with the liblttng-ust library.
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Applications can then make use of the tracef function call, which has the same format 
as printf(), to output traces. For example, to instrument the example helloworld.c 
application we saw in previous chapters, modify the source in meta-custom/recipes-
example/helloworld/helloworld-1.0/helloworld.c as follows:

#include <stdio.h>
#include <lttng/tracef.h>

main(void)
{
    printf("Hello World");
    tracef("I said: %s", "Hello World");
}

Modify its Yocto recipe in meta-custom/recipes-example/helloworld/
helloworld_1.0.bb as follows:

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM =  
  "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4  
  f302"

SRC_URI = "file://helloworld.c"
DEPENDS = "lttng-ust"

S = "${WORKDIR}"
 
do_compile() {
             ${CC} helloworld.c -llttng-ust -o helloworld
}

do_install() {
             install -d ${D}${bindir}
             install -m 0755 helloworld ${D}${bindir}
}
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Then build the package, copy it to the target, and start a profiling session as follows:

1. Create a profiling session by executing the following command:
# lttng create test-user-session

Session test-user-session created.

Traces will be written in /home/root/lttng-traces/test-user-  
  session-20150117-185731

2. Enable the events you want to profile—in this case, all the user space events:
# lttng enable-event -u -a

Warning: No tracing group detected

All UST events are enabled in channel channel0

3. Start to gather profiling data:
# lttng start

Tracing started for session test-user-session

4. Run the workload—in this case, the instrumented hello world example program:
# helloworld

Hello World

5. Once it finishes, stop gathering data:
# lttng stop

Waiting for data availability.

Tracing stopped for session test-user-session

6. Without destroying the session, you can start babeltrace executing:
# lttng view

[18:58:22.625557512] (+0.001278334) wandboard-quad  
  lttng_ust_tracef:event: { cpu_id = 0 }, { _msg_length = 19,  
  msg = "I said: Hello World" }

7. Finally, you can destroy the profiling session:

# lttng destroy test-user-session

Session test-user-session destroyed
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How it works...
Kernel tracing is done using the tracing functionalities available in the Linux kernel, as we 
have seen in previous recipes. For the following examples to work, the Linux kernel must be 
configured appropriately as seen in the corresponding recipes earlier.

LTTng provides a common user interface to control some of the kernel tracing features we saw 
previously, such as the following:

 f Static tracepoint events:

You can enable specific static tracepoint events with:
# lttng enable-event <comma separated event list> -k

You can enable all tracepoints with:
# lttng enable-event -a -k --tracepoint

You can also enable all syscalls with:
# lttng enable-event -a -k --syscall

You can enable all tracepoints and syscalls with:

# lttng enable-event -a -k

 f Dynamic tracepoint events:

You can also add dynamic tracepoints with:
# lttng enable-event <probe_name> -k --probe <symbol>+<offset>

You can also add them with:

# lttng enable-event <probe_name> -k --probe <address>

 f Function tracing:

You can also use the function tracing kernel functionality with:

# lttng enable-event <probe_name> -k --function <symbol>

 f Performance counter events:

And the hardware performance counters, for example for the CPU cycles, with the 
following command:
# lttng add-context -t perf:cpu:cpu-cycles -k

Use the add-context --help option to list further context options and perf 
counters.
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Extending application profiling
Further applications tracing flexibility can be achieved with the tracepoint() call by writing 
a template file (.tp), and using the lttng-gen-tp script along with the source file. This 
generates an object file that can then be linked to your application.

At the time of writing, Yocto has no standard way to cross-instrument user space applications, 
but it can be done natively using an -sdk image, or adding the following image features to the 
conf/local.conf file:

EXTRA_IMAGE_FEATURES += "tools-sdk dev-pkgs"

For example, define a tracepoint hw.tp file as follows:

TRACEPOINT_EVENT(
    hello_world_trace_provider,
    hw_tracepoint,
    TP_ARGS(
        int, my_integer_arg,
        char*, my_string_arg
    ),
    TP_FIELDS(
        ctf_string(my_string_field, my_string_arg)
        ctf_integer(int, my_integer_field, my_integer_arg)
    )
)

Pass this through the lttng-gen-tp tool to obtain hw.c, hw.h, and hw.o files:

# lttng-gen-tp hw.tp

Note that the lttng-gen-tp tool is not installed with the lttng-ust 
package, but with the lttng-ust-bin package. This has to be added to  
be the target image, for example, by adding the following in your conf/
local.conf file:
IMAGE_INSTALL_append = " lttng-ust-bin"

You can now add the hw.h header file to your helloworld application that is in the 
helloworld.c file and use the tracepoint() call as follows:

#include <stdio.h>
#include "hw.h"
 
main(void)
{
    printf("Hello World");
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    tracepoint(hello_world_trace_provider,  hw_tracepoint, 1, "I  
  said: Hello World");
}

Now link your application with the native gcc as follows:

# gcc -o hw helloworld.c hw.o -llttng-ust -ldl

Note that in order to use gcc on the target, we need to build one of the 
-sdk images, or add some extra features to our image, such as:
EXTRA_IMAGE_FEATURES = "tools-sdk dev-pkgs"

To profile your application, do the following:

1. Create a profiling session:
# lttng create test-session

Spawning a session daemon

Warning: No tracing group detected

Session test-session created.

Traces will be written in /home/root/lttng-traces/test-  
  session-20150117-195930

2. Enable the specific event you want to profile:
# lttng enable-event --userspace  
  hello_world_trace_provider:hw_tracepoint

Warning: No tracing group detected

UST event hello_world_trace_provider:hw_tracepoint created in  
  channel channel0

3. Start gathering profiling data:
# lttng start

Tracing started for session test-session

4. Run the workload to profile—in this case the helloworld application:
#./hw

Hello World

5. Stop gathering data:
# lttng stop
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6. Now start babeltrace with:
# lttng view

[20:00:43.537630037] (+?.?????????) wandboard-quad  
  hello_world_trace_provider:hw_tracepoint: { cpu_id = 0 }, {  
  my_string_field = "I said: Hello World", my_integer_field =  
  1 }

7. Finally, destroy the profiling session:
# lttng destroy test-session

There's more...
You can also use the Trace Compass application or Eclipse plugin to analyze the traces in the 
host by visiting http://projects.eclipse.org/projects/tools.tracecompass/
downloads. A stable release was not yet available at the time of writing.

See also
 f Details on using LTTng at http://lttng.org/docs/

 f Details about the instrumenting of C applications at http://lttng.org/
docs/#doc-c-application

 f A tracepoint() example in the lttng-ust source at http://git.lttng.
org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a25
3fa84a04982edab52829c;hb=HEAD

Using blktrace
There are a few tools available to perform block devices I/O monitoring and profiling.

Starting with iotop which we mentioned in the Exploring Yocto's tracing and profiling tools 
recipe, which gives a general idea of the throughput on a system and a particular process. 
Or iostat, which provides many more statistics regarding CPU usage and device utilization, 
but does not provide per process details. And finally blktrace that is a GPLv2 licensed tool 
which monitors specific block devices I/O at a low level, and can also compute I/O operations 
per second (IOPS).

This recipe will explain how to use blktrace to trace block devices and blkparse, to 
convert the traces into human readable format.

http://projects.eclipse.org/projects/tools.tracecompass/downloads
http://projects.eclipse.org/projects/tools.tracecompass/downloads
http://lttng.org/docs/
http://lttng.org/docs/#doc-c-application
http://lttng.org/docs/#doc-c-application
http://git.lttng.org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a253fa84a04982edab52829c;hb=HEAD
http://git.lttng.org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a253fa84a04982edab52829c;hb=HEAD
http://git.lttng.org/?p=lttng-ust.git;a=tree;f=tests/hello;h=4ae310caf62a8321a253fa84a04982edab52829c;hb=HEAD
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Getting ready
To use blktrace and blkparse, you can add them to the target image by adding it 
specifically, as in:

IMAGE_INSTALL_append = " blktrace"

Alternately, you can also use  the tools-profile image feature, or an -sdk image.

You will also need to configure the Linux kernel with CONFIG_FTRACE and CONFIG_BLK_
DEV_IO_TRACE to be able to trace block I/O actions.

When profiling a block device, it is important to minimize the effect of the tracing on the 
results; for example, not storing the tracing data on the block device being profiled.

There are several ways to achieve this:

 f Running the trace from a different block device.

 f Running the trace from a RAM-based tmpfs device (such as /var/volatile). 
Running from a memory-based device will limit the amount of tracing data that can 
be stored though.

 f Running the trace from a network-mounted filesystem.

 f Running the trace over the network.

Also, the filesystem being used in the block device to profile is an important factor, as 
filesystem features such as journalism will distort the I/O statistics. Flash filesystems, even if 
they are presented to user space as block devices, cannot be profiled with blktrace.

How to do it...
Let's imagine you want to profile the I/O for the microSD card device on the Wandboard. 
By booting the system from the network, as seen in the Configuring network booting for a 
development setup recipe from Chapter 1, The Build System, you can avoid unnecessary 
access to the device by the system.

For this example, we will mount as an ext2 partition to avoid journalism, but other tweaks may 
be needed for effective profiling of a specific workload:

# mount -t ext2 /dev/mmcblk0p2 /mnt

EXT2-fs (mmcblk0p2): warning: mounting ext3 filesystem as ext2

EXT2-fs (mmcblk0p2): warning: mounting unchecked fs, running e2fsck  
  is recommended
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The workflow to profile a specific workload is as follows:

1. Start blktrace to gather tracing data on the /dev/mmcblk0 device with:
# blktrace /dev/mmcblk0

2. Start the workload to profile, for example, the creation of a 10 KB file. Open an SSH 
connection to the target and execute:
# dd if=/dev/urandom of=/mnt/home/root/random-10k-file bs=1k  
  count=10 conv=fsync

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.00585167 s, 1.7 MB/s

3. Stop the profiling on the console with Ctrl + C. This will create a file in the same 
directory called mmcblk0.blktrace.0 . You will see the following output:
^C=== mmcblk0 ===
  CPU  0:                   30 events,        2 KiB data
  Total:                    30 events (dropped 0),        2  
  KiB data

Some useful options for blktrace are:

 f -w: This is used to run only for the specified number of seconds

 f -a: This adds a mask to the current file, where the masks can be:

 � barrier: This refers to the barrier attribute

 � complete: This refers to an operation completed by the driver

 � fs: These are the FS requests

 � issue: This option refers to operations issued to the driver

 � pc: This refers to packet command events

 � queue: This option represents queue operations

 � read: This refers to read traces

 � requeue: This is used for requeue operations

 � sync: This represents synchronous attributes

 � write: This refers to write traces
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How it works...
Once you have gathered the tracing data, you can process it with blkparse as follows:

# blkparse mmcblk0

This provides an stdout output for all the gathered data, and a final summary, as follows:

Input file mmcblk0.blktrace.0 added
179,0    0        1     0.000000000   521  A   W 1138688 + 8 <-  
  (179,2) 1114112
179,0    0        2     0.000003666   521  Q   W 1138688 + 8  
  [kworker/u8:0]
179,0    0        3     0.000025333   521  G   W 1138688 + 8  
  [kworker/u8:0]
179,0    0        4     0.000031000   521  P   N [kworker/u8:0]
179,0    0        5     0.000044666   521  I   W 1138688 + 8  
  [kworker/u8:0]
179,0    0        0     0.000056666     0  m   N cfq519A   
  insert_request
179,0    0        0     0.000063000     0  m   N cfq519A   
  add_to_rr
179,0    0        6     0.000081000   521  U   N [kworker/u8:0] 1
179,0    0        0     0.000121000     0  m   N cfq workload  
  slice:6
179,0    0        0     0.000132666     0  m   N cfq519A   
  set_active wl_class:0 wl_type:0
179,0    0        0     0.000141333     0  m   N cfq519A  Not  
  idling. st->count:1
179,0    0        0     0.000150000     0  m   N cfq519A  fifo=   
  (null)
179,0    0        0     0.000156000     0  m   N cfq519A   
  dispatch_insert
179,0    0        0     0.000167666     0  m   N cfq519A   
  dispatched a request
179,0    0        0     0.000175000     0  m   N cfq519A  activate  
  rq, drv=1
179,0    0        7     0.000181333    83  D   W 1138688 + 8  
  [mmcqd/2]
179,0    0        8     0.735417000    83  C   W 1138688 + 8 [0]
179,0    0        0     0.739904333     0  m   N cfq519A  complete  
  rqnoidle 0
179,0    0        0     0.739910000     0  m   N cfq519A   
  set_slice=4
179,0    0        0     0.739912000     0  m   N cfq schedule  
  dispatch
CPU0 (mmcblk0):
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 Reads Queued:           0,        0KiB  Writes Queued:1,4KiB
 Read Dispatches:        0,        0KiB  Write Dispatches:1,4KiB
 Reads Requeued:         0               Writes Requeued:0
 Reads Completed:        0,        0KiB  Writes Completed:1,4KiB
 Read Merges:            0,        0KiB  Write Merges:0,0KiB
 Read depth:             0               Write depth:1
 IO unplugs:             1               Timer unplugs:0

Throughput (R/W): 0KiB/s / 5KiB/s
Events (mmcblk0): 20 entries
Skips: 0 forward (0 -   0.0%)

The output format from blkparse is:

179,0    0        7     0.000181333    83  D   W 1138688 + 8  
  [mmcqd/2]

This corresponds to:

<mayor,minor> <cpu> <seq_nr> <timestamp> <pid> <actions> <rwbs>  
  <start block> + <nr of blocks> <command>

The columns correspond to:

 f A: I/O remapped to a different device

 f B: I/O bounced

 f C: I/O completed

 f D: I/O issued to driver

 f F: I/O front merged with request on queue

 f G: Get request

 f I: I/O inserted into request queue

 f M: I/O back merged with request on queue

 f P: Plug request

 f Q: I/O handled by request queue code

 f S: Sleep request

 f T: Unplug due to timeout

 f U: Unplug request

 f X: Split
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The RWBS field corresponds to:

 f R: Read

 f W: Write

 f B: Barrier

 f S: Synchronous

Another way of tracing non-disruptively is using live monitoring, that is, piping the output of 
blktrace to blkparse directly without writing anything to disk, as follows:

# blktrace /dev/mmcblk0 -o - | blkparse -i -

This can also be done in just one line:

# btrace /dev/mmcblk0

There's more...
The blktrace command can also send the tracing data over the network so that it is stored 
on a different device.

For this, start blktrace on the target system as follows:

# blktrace -l /dev/mmcblk0

And on another device, run another instance as follows:

$ blktrace -d /dev/mmcblk0 -h <target_ip>

Back to the target, you can now execute the specific workload you want to trace:

# dd if=/dev/urandom of=/mnt/home/root/random-10k-file bs=1k count=10  
  conv=fsync

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.00585167 s, 1.7 MB/s

Once it finishes, interrupt the remote blktrace with Ctrl + C. A summary will be printed at 
both the target and the host.

You can now run blkparse to process the gathered data.
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Starting Out
You are about to begin working on your next project, and this time it is going to be 
running Linux. What should you think about before you put finger to keyboard? 
Let's begin with a high-level look at embedded Linux and see why it is popular,  
what are the implications of open source licenses, and what kind of hardware  
you will need to run Linux.

Linux first became a viable choice for embedded devices around 1999. That was 
when Axis (www.axis.com) released their first Linux-powered network camera and 
TiVo (www.tivo.com) their first DVR (Digital Video Recorder). Since 1999, Linux 
has become ever more popular, to the point that today it is the operating system of 
choice for many classes of product. At the time of writing, in 2015, there are about two 
billion devices running Linux. That includes a large number of smartphones running 
Android, which uses a Linux kernel, and hundreds of millions of set top boxes, smart 
TVs, and Wi-Fi routers, not to mention a very diverse range of devices such as vehicle 
diagnostics, weighing scales, industrial devices, and medical monitoring units that 
ship in smaller volumes.

So, why does your TV run Linux? At first glance, the function of a TV is simple: it 
has to display a stream of video on a screen. Why is a complex Unix-like operating 
system like Linux necessary?

The simple answer is Moore's Law: Gordon Moore, co-founder of Intel, observed in 
1965 that the density of components on a chip will double about every two years. 
That applies to the devices that we design and use in our everyday lives just as much 
as it does to desktops, laptops, and servers. At the heart of most embedded devices 
is a highly integrated chip that contains one or more processor cores and interfaces 
with main memory, mass storage, and peripherals of many types. This is referred 
to as a System on Chip, or SoC, and they are increasing in complexity in accordance 
with Moore's Law. A typical SoC has a technical reference manual that stretches 
to thousands of pages. Your TV is not simply displaying a video stream as the old 
analog sets used to do. 
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The stream is digital, possibly encrypted, and it needs processing to create an image. 
Your TV is (or soon will be) connected to the Internet. It can receive content from 
smartphones, tablets, and home media servers. It can be (or soon will be) used to 
play games. And so on and so on. You need a full operating system to manage this 
degree of complexity.

Here are some points that drive the adoption of Linux:

• Linux has the necessary functionality. It has a good scheduler, a good 
network stack, support for USB, Wi-Fi, Bluetooth, many kinds of storage 
media, good support for multimedia devices, and so on. It ticks all the boxes.

• Linux has been ported to a wide range of processor architectures, including 
some that are very commonly found in SoC designs — ARM, MIPS, x86,  
and PowerPC.

• Linux is open source, so you have the freedom to get the source code and 
modify it to meet your needs. You, or someone working on your behalf,  
can create a board support package for your particular SoC board or device. 
You can add protocols, features, and technologies that may be missing from 
the mainline source code. You can remove features that you don't need to 
reduce memory and storage requirements. Linux is flexible.

• Linux has an active community; in the case of the Linux kernel, very active. 
There is a new release of the kernel every 10 to 12 weeks, and each release 
contains code from around 1,000 developers. An active community means 
that Linux is up to date and supports current hardware, protocols,  
and standards.

• Open source licenses guarantee that you have access to the source code. 
There is no vendor tie-in.

For these reasons, Linux is an ideal choice for complex devices. But there are a few 
caveats I should mention here. Complexity makes it harder to understand. Coupled 
with the fast moving development process and the decentralized structures of  
open source, you have to put some effort into learning how to use it and to keep  
on re-learning as it changes. I hope that this book will help in the process.
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Selecting the right operating system
Is Linux suitable for your project? Linux works well where the problem being solved 
justifies the complexity. It is especially good where connectivity, robustness, and 
complex user interfaces are required. However it cannot solve every problem, so 
here are some things to consider before you jump in:

• Is your hardware up to the job? Compared to a traditional RTOS (real-time 
operating system) such as VxWorks, Linux requires a lot more resources.  
It needs at least a 32-bit processor, and lots more memory. I will go into  
more detail in the section on typical hardware requirements.

• Do you have the right skill set? The early parts of a project, board bring-up, 
require detailed knowledge of Linux and how it relates to your hardware. 
Likewise, when debugging and tuning your application, you will need to 
be able to interpret the results. If you don't have the skills in-house you may 
want to outsource some of the work. Of course, reading this book helps!

• Is your system real-time? Linux can handle many real-time activities so  
long as you pay attention to certain details, which I will cover in detail in 
Chapter 14, Real-time Programming.

Consider these points carefully. Probably the best indicator of success is to look 
around for similar products that run Linux and see how they have done it; follow 
best practice.

The players
Where does open source software come from? Who writes it? In particular, how 
does this relate to the key components of embedded development—the toolchain, 
bootloader, kernel, and basic utilities found in the root filesystem?

The main players are:

• The open source community. This, after all, is the engine that generates  
the software you are going to be using. The community is a loose alliance  
of developers, many of whom are funded in some way, perhaps by a  
not-for-profit organization, an academic institution, or a commercial 
company. They work together to further the aims of the various projects. 
There are many of them, some small, some large. Some that we will be 
making use of in the remainder of this book are Linux itself, U-Boot, 
BusyBox, Buildroot, the Yocto Project, and the many projects under  
the GNU umbrella.
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• CPU architects—These are the organizations that design the CPUs we use. 
The important ones here are ARM/Linaro (ARM-based SoCs), Intel (x86 and 
x86_64), Imagination Technologies (MIPS), and Freescale/IBM (PowerPC). 
They implement or, at the very least, influence support for the basic CPU 
architecture.

• SoC vendors (Atmel, Broadcom, Freescale, Intel, Qualcomm, TI, and many 
others)—They take the kernel and toolchain from the CPU architects and 
modify it to support their chips. They also create reference boards: designs 
that are used by the next level down to create development boards and 
working products.

• Board vendors and OEMs—these people take the reference designs from 
SoC vendors and build them in to specific products, for instance set-top-
boxes or cameras, or create more general purpose development boards, such 
as those from Avantech and Kontron. An important category are the cheap 
development boards such as BeagleBoard/BeagleBone and Raspberry Pi that 
have created their own ecosystems of software and hardware add-ons.

These form a chain, with your project usually at the end, which means that you do 
not have a free choice of components. You cannot simply take the latest kernel from 
kernel.org, except in a few rare cases, because it does not have support for the chip 
or board that you are using.

This is an ongoing problem with embedded development. Ideally, the developers 
at each link in the chain would push their changes upstream, but they don't. It is 
not uncommon to find a kernel which has many thousands of patches that are not 
merged upstream. In addition, SoC vendors tend to actively develop open source 
components only for their latest chips, meaning that support for any chip more  
than a couple of years old will be frozen and not receive any updates.

The consequence is that most embedded designs are based on old versions of 
software. They do not receive security fixes, performance enhancements, or features 
that are in newer versions. Problems such as Heartbleed (a bug in the OpenSSL 
libraries) and Shellshock (a bug in the bash shell) go unfixed. I will talk more  
about this later in this chapter under the topic of security.

What can you do about it? First, ask questions of your vendors: what is their update 
policy, how often do they revise kernel versions, what is the current kernel version, 
what was the one before that? What is their policy for merging changes up-stream? 
Some vendors are making great strides in this way. You should prefer their chips.

Secondly, you can take steps to make yourself more self-sufficient. This book aims to 
explain the dependencies in more detail and show you where you can help yourself. 
Don't just take the package offered to you by the SoC or board vendor and use it 
blindly without considering the alternatives.
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Project lifecycle
This book is divided into four sections that reflect the phases of a project. The phases 
are not necessarily sequential. Usually they overlap and you will need to jump back 
to revisit things that were done previously. However, they are representative of a 
developer's preoccupations as the project progresses:

• Elements of embedded Linux (chapters 1 to 6) will help you set up the 
development environment and create a working platform for the later 
phases. It is often referred to as the "board bring-up" phase.

• System architecture and design choices (chapters 7 to 9) will help you to look 
at some of the design decisions you will have to make concerning the storage 
of programs and data, how to divide work between kernel device drivers 
and applications, and how to initialize the system.

• Writing embedded applications (chapters 10 and 11) show how to make 
effective use of the Linux process and threads model and how to manage 
memory in a resource-constrained device.

• Debugging and optimizing performance (chapters 12 and 13) describe how to 
trace, profile, and debug your code in both the applications and the kernel.

The fifth section on real-time (Chapter 14, Real-time Programming) stands somewhat 
alone because it is a small, but important, category of embedded systems. Designing 
for real-time behavior has an impact on each of the four main phases.

The four elements of embedded Linux
Every project begins by obtaining, customizing, and deploying these four elements: 
the toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of 
the first section of this book:

• Toolchain: This consists of the compiler and other tools needed to create 
code for your target device. Everything else depends on the toolchain.

• Bootloader: This is necessary to initialize the board and to load and boot  
the Linux kernel.

• Kernel: This is the heart of the system, managing system resources and 
interfacing with hardware.

• Root filesystem: This contains the libraries and programs that are run once 
the kernel has completed its initialization.
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Of course, there is also a fifth element, not mentioned here. That is the collection of 
programs that are specific to your embedded application which make the device do 
whatever it is supposed to do, be it weigh groceries, display movies, control a robot, 
or fly a drone.

Typically you will be offered some or all of these elements as a package when you 
buy your SoC or board. But, for the reasons mentioned in the preceding paragraph, 
they may not be the best choices for you. I will give you the background to make 
the right selections in the first six chapters and I will introduce you to two tools that 
automate the whole process for you: Buildroot and the Yocto Project.

Open source
The components of embedded Linux are open source, so now is a good time to 
consider what that means, why open sources work the way they do and how this 
affects the often proprietary embedded device you will be creating from it.

Licenses
When talking about open source, the word, "free" is often used. People new to the 
subject often take it to mean nothing to pay, and open source software licenses do 
indeed guarantee that you can use the software to develop and deploy systems for 
no charge. However, the more important meaning here is freedom, since you are 
free to obtain the source code and modify it in any way you see fit and redeploy it 
in other systems. These licenses give you this right. Compare that with shareware 
licenses which allow you to copy the binaries for no cost but do not give you the 
source code, or other licenses that allow you to use the software for free under 
certain circumstances, for example, for personal use but not commercial.  
These are not open source.

I will provide the following comments in the interest of helping you understand the 
implications of working with open source licenses, but I would like to point out that 
I am an engineer and not a lawyer. What follows is my understanding of the licenses 
and the way they are interpreted.

Open source licenses fall broadly into two categories: the GPL (General Public 
License) from the Free Software Foundation and the permissive licenses derived 
from BSD (Berkeley Software Distribution), the Apache Foundation, and others.

The permissive licenses say, in essence, that you may modify the source code and 
use it in systems of your own choosing so long as you do not modify the terms of the 
license in any way. In other words, with that one restriction, you can do with it what 
you want, including building it into possibly proprietary systems.
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The GPL licenses are similar, but have clauses which compel you to pass the rights 
to obtain and modify the software on to your end users. In other words you share 
your source code. One option is to make it completely public by putting it onto a 
public server. Another is to offer it only to your end users by means of a written 
offer to provide the code when requested. The GPL goes further to say that you 
cannot incorporate GPL code into proprietary programs. Any attempt to do so 
would make the GPL apply to the whole. In other words, you cannot combine  
GPL and proprietary code in one program.

So, what about libraries? If they are licensed with the GPL, any program linked 
with them becomes GPL also. However, most libraries are licensed under the Lesser 
General Public License (LGPL). If this is the case, you are allowed to link with them 
from a proprietary program.

All of the preceding description relates specifically to GPL v2 and LGPL v2.1.  
I should mention the latest versions of GPL v3 and LGPL v3. These are controversial, 
and I will admit that I don't fully understand the implications. However, the intention 
is to ensure that the GPLv3 and LGPL v3 components in any system can be replaced by 
the end user, which is in the spirit of open source software for everyone. It does pose 
some problems though. Some Linux devices are used to gain access to information 
according to a subscription level or another restriction, and replacing critical parts 
of the software may compromise that. Set-top boxes fit into this category. There are 
also issues with security. If the owner of a device has access to the system code, then 
so might an unwelcome intruder. Often the defense is to have kernel images that are 
signed by an authority, the vendor, so that unauthorized updates are not possible.  
Is that an infringement of my right to modify my device? Opinions differ.

The TiVo set-top box is an important part of this debate. It uses 
a Linux kernel, which is licensed under GPL v2. TiVo release the 
source code of their version of the kernel and so comply with the 
license. TiVo also have a bootloader that will only load a kernel 
binary that is signed by them. Consequently, you can build a 
modified kernel for a TiVo box, but you cannot load it on the 
hardware. The FSF take the position that this is not in the spirit of 
open source software and refer to this procedure as "tivoization". 
The GPL v3 and LGPL v3 were written to explicitly prevent this 
happening. Some projects, the Linux kernel in particular, have 
been reluctant to adopt the version three licenses because of the 
restrictions it would place on device manufacturers.
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Hardware for embedded Linux
If you are designing or selecting hardware for an embedded Linux project, what do 
you look out for?

Firstly, a CPU architecture that is supported by the kernel – unless you plan to add a 
new architecture yourself of course! Looking at the source code for Linux 4.1, there 
are 30 architectures, each represented by a sub-directory in the arch/ directory. They 
are all 32- or 64-bit architectures, most with a memory management unit (MMU), 
but some without. The ones most often found in embedded devices are ARM, MIPS, 
PowerPC, and X86, each in 32- and 64-bit variants, and all of which have memory 
management units.

Most of this book is written with this class of processor in mind. There is another group 
that doesn't have an MMU that runs a subset of Linux known as micro controller Linux 
or uClinux. These processor architectures include ARC, Blackfin, Microblaze, and 
Nios. I will mention uClinux from time to time but I will not go into details because it 
is a rather specialized topic.

Secondly, you will need a reasonable amount of RAM. 16 MiB is a good minimum, 
although it is quite possible to run Linux using half that. It is even possible to run 
Linux with 4 MiB if you are prepared to go to the trouble of optimizing every part of 
the system. It may even be possible to get lower, but there comes a point at which it 
is no longer Linux.

Thirdly, there is non-volatile storage, usually flash memory. 8 MiB is enough for a 
simple device such as a webcam or a simple router. As with RAM, you can create 
a workable Linux system with less storage if you really want to but, the lower you 
go, the harder it becomes. Linux has extensive support for flash storage devices, 
including raw NOR and NAND flash chips and managed flash in the form of SD 
cards, eMMC chips, USB flash memory, and so on.

Fourthly, a debug port is very useful, most commonly an RS-232 serial port. It does 
not have to be fitted on production boards, but makes board bring-up, debugging, 
and development much easier.

Fifthly, you need some means of loading software when starting from scratch. A few 
years ago, boards would have been fitted with a JTAG interface for this purpose, 
but modern SoCs have the ability to load boot code directly from removable media, 
especially SD and micro SD cards, or serial interfaces such as RS-232 or USB.
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In addition to these basics, there are interfaces to the specific bits of hardware your 
device needs to get its job done. Mainline Linux comes with open source drivers for 
many thousands of different devices, and there are drivers (of variable quality) from 
the SoC manufacturer and drivers from the OEMs of third-party chips that may be 
included in the design, but remember my comments on the commitment and ability 
of some manufacturers. As a developer of embedded devices, you will find that you 
spend quite a lot of time evaluating and adapting third-party code, if you have it, or 
liaising with the manufacturer if you don't. Finally, you will have to write the device 
support for any interfaces that are unique to the device, or find someone to do it  
for you.

Hardware used in this book
The worked examples in this book are intended to be generic, but to make them 
relevant and easy to follow, I have had to choose a specific device as an example. 
I have used two exemplar devices: the BeagleBone Black and QEMU. The first is 
a widely-available and cheap development board which can be used in serious 
embedded hardware. The second is a machine emulator that can be used to create 
a range of systems that are typical of embedded hardware. It was tempting to use 
QEMU exclusively, but, like all emulations, it is not quite the same as the real thing. 
Using a BeagleBone, you have the satisfaction of interacting with real hardware and 
seeing real LEDs flash. It was also tempting to select a more up-to-date board than 
the BeagleBone Black, which is several years old now, but I believe that its popularity 
gives it a degree of longevity and means that it will continue to be available for some 
years yet.

In any case, I encourage you to try out as many of the examples as you can using 
either of these two platforms, or indeed any embedded hardware you may have  
to hand.

The BeagleBone Black
The BeagleBone and the later BeagleBone Black are open hardware designs for a 
small, credit card sized development board produced by Circuitco LLC. The main 
repository of information is at www.beagleboard.org. The main points of the 
specification are:

• TI AM335x 1GHz ARM® Cortex-A8 Sitara SoC
• 512 MiB DDR3 RAM
• 2 or 4 GiB 8-bit eMMC on-board flash storage
• Serial port for debug and development
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• MicroSD connector, which can be used as the boot device
• Mini USB OTG client/host port that can also be used to power the board
• Full size USB 2.0 host port
• 10/100 Ethernet port
• HDMI for video and audio output

In addition, there are two 46-pin expansion headers for which there are a great 
variety of daughter boards, known as capes, which allow you to adapt the board  
to do many different things. However, you do not need to fit any capes in the 
examples in this book.

In addition to the board itself, you will need:

• a mini USB to full-size USB cable (supplied with the board) to provide 
power, unless you have the last item on this list.

• an RS-232 cable that can interface with the 6-pin 3.3 volt TTL level  
signals provided by the board. The Beagleboard website has links  
to compatible cables.

• a microSD card and a means of writing to it from your development  
PC or laptop, which will be needed to load software onto the board.

• an Ethernet cable, as some of the examples require network connectivity.
• optional, but recommended, a 5V power supply capable of delivering 1 A  

or more.

QEMU
QEMU is a machine emulator. It comes in a number of different flavors, each of 
which can emulate a processor architecture and a number of boards built using  
that architecture. For example, we have the following:

• qemu-system-arm: ARM
• qemu-system-mips: MIPS
• qemu-system-ppc: PowerPC
• qemu-system-x86: x86 and x86_64
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For each architecture, QEMU emulates a range of hardware, which you can see by 
using the option -machine help. Each machine emulates most of the hardware  
that would normally be found on that board. There are options to link hardware 
to local resources, such as using a local file for the emulated disk drive. Here is a 
concrete example:

$ qemu-system-arm -machine vexpress-a9 -m 256M -drive  
file=rootfs.ext4,sd -net nic -net use -kernel zImage -dtb vexpress- 
v2p-ca9.dtb -append "console=ttyAMA0,115200 root=/dev/mmcblk0" - 
serial stdio -net nic,model=lan9118 -net tap,ifname=tap0

The options used in the preceding command line are:

• -machine vexpress-a9: creates an emulation of an ARM Versatile Express 
development board with a Cortex A-9 processor

• -m 256M: populates it with 256 MiB of RAM
• -drive file=rootfs.ext4,sd: connect the sd interface to the local file 

rootfs.ext4 (which contains a filesystem image)
• -kernel zImage: loads the Linux kernel from the local file named zImage
• -dtb vexpress-v2p-ca9.dtb: loads the device tree from the local file 

vexpress-v2p-ca9.dtb

• -append "...": supplies this string as the kernel command line
• -serial stdio: connects the serial port to the terminal that launched 

QEMU, usually so that you can log on to the emulated machine via the  
serial console

• -net nic,model=lan9118: creates a network interface
• -net tap,ifname=tap0: connects the network interface to the virtual 

network interface tap0

To configure the host side of the network, you need the tunctl command from  
the User Mode Linux (UML) project; on Debian and Ubuntu the package is named 
uml-utilities. You use it to create a virtual network using the following command:

$ sudo tunctl -u $(whoami) -t tap0

This creates a network interface named tap0 which is connected to the network 
controller in the emulated QEMU machine. You configure tap0 in exactly the same 
way as any other interface.

All of these options are described in detail in the following chapters. I will be using 
Versatile Express for most of my examples, but it should be easy to use a different 
machine or architecture.
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Software used in this book
I have used only open source software both for the development tools and the target 
operating system and applications. I assume that you will be using Linux on your 
development system. I tested all the host commands using Ubuntu 14.04 and so there 
is a slight bias towards that particular version, but any modern Linux distribution is 
likely to work just fine.

Summary
Embedded hardware will continue to get more complex, following the trajectory set 
by Moore's Law. Linux has the power and the flexibility to make use of hardware in 
an efficient way.

Linux is just one component of open source software out of the many that you 
need to create a working product. The fact that the code is freely available means 
that people and organizations at many different levels can contribute. However, 
the sheer variety of embedded platforms and the fast pace of development lead 
to isolated pools of software which are not shared as efficiently as they should be. 
In many cases, you will become dependent on this software, especially the Linux 
kernel that is provided by your SoC or Board vendor, and to a lesser extent the 
toolchain. Some SoC manufacturers are getting better at pushing their changes 
upstream and the maintenance of these changes is getting easier.

Fortunately, there are some powerful tools that can help you create and maintain  
the software for your device. For example, Buildroot is ideal for small systems and 
the Yocto Project for larger ones.

Before I describe these build tools, I will describe the four elements of embedded 
Linux, which you can apply to all embedded Linux projects, however they are 
created. The next chapter is all about the first of these, the toolchain, which you  
need to compile code for your target platform.
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Learning About Toolchains
The toolchain is the first element of embedded Linux and the starting point of your 
project. The choices you make at this early stage will have a profound impact on 
the final outcome. Your toolchain should be capable of making effective use of your 
hardware by using the optimum instruction set for your processor, using the floating 
point unit if there is one, and so on. It should support the languages that you require 
and have a solid implementation of POSIX and other system interfaces. Not only that, 
but it should be updated when security flaws are discovered or bugs found. Finally, it 
should be constant throughout the project. In other words, once you have chosen your 
toolchain it is important to stick with it. Changing compilers and development libraries 
in an inconsistent way during a project will lead to subtle bugs.

Obtaining a toolchain is as simple as downloading and installing a package. But, the 
toolchain itself is a complex thing, as I will show you in this chapter.

What is a toolchain?
A toolchain is the set of tools that compiles source code into executables that can 
run on your target device, and includes a compiler, a linker, and run-time libraries. 
Initially, you need one to build the other three elements of an embedded Linux 
system: the bootloader, the kernel, and the root filesystem. It has to be able to 
compile code written in assembly, C, and C++ since these are the languages  
used in the base open source packages.
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Usually, toolchains for Linux are based on components from the GNU project 
(http://www.gnu.org) and that is still true in the majority of cases at the time of 
writing. However, over the past few years, the Clang compiler and the associated 
LLVM project (http://llvm.org) have progressed to the point that it is now a viable 
alternative to a GNU toolchain. One major distinction between LLVM and GNU-based 
toolchains is in the licensing; LLVM has a BSD license, while GNU has the GPL. There 
are some technical advantages to Clang as well, such as faster compilation and better 
diagnostics, but GNU GCC has the advantage of compatibility with the existing code 
base and support for a wide range of architectures and operating systems. Indeed, 
there are still some areas where Clang cannot replace the GNU C compiler, especially 
when it comes to compiling a mainline Linux kernel. It is probable that, in the next year 
or so, Clang will be able to compile all the components needed for embedded Linux 
and so will become an alternative to GNU. There is a good description of how to use 
Clang for cross compilation at http://clang.llvm.org/docs/CrossCompilation.
html. If you would like to use it as part of an embedded Linux build system, the 
EmbToolkit (https://www.embtoolkit.org) fully supports both GNU and LLVM/
Clang toolchains and various people are working on using Clang with Buildroot 
and the Yocto Project. I will cover embedded build systems in Chapter 6, Selecting a 
Build System. Meanwhile, this chapter focuses on the GNU toolchain as it is the only 
complete option at this time.

A standard GNU toolchain consists of three main components:

• Binutils: A set of binary utilities including the assembler, and the linker, ld. 
It is available at http://www.gnu.org/software/binutils/.

• GNU Compiler Collection (GCC): These are the compilers for C and 
other languages which, depending on the version of GCC, include C++, 
Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a 
common back-end which produces assembler code which is fed to the  
GNU assembler. It is available at http://gcc.gnu.org/.

• C library: A standardized API based on the POSIX specification which is  
the principle interface to the operating system kernel from applications. 
There are several C libraries to consider, see the following section.

As well as these, you will need a copy of the Linux kernel headers, which contain 
definitions and constants that are needed when accessing the kernel directly. Right 
now, you need them to be able to compile the C library, but you will also need them 
later when writing programs or compiling libraries that interact with particular 
Linux devices, for example to display graphics via the Linux frame buffer driver. 
This is not simply a question of making a copy of the header files in the include 
directory of your kernel source code. Those headers are intended for use in the 
kernel only and contain definitions that will cause conflicts if used in their raw  
state to compile regular Linux applications.
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Instead, you will need to generate a set of sanitized kernel headers which I have 
illustrated in Chapter 5, Building a Root Filesystem.

It is not usually crucial whether the kernel headers are generated from the exact 
version of Linux you are going to be using or not. Since the kernel interfaces are 
always backwards-compatible, it is only necessary that the headers are from a  
kernel that is the same as or older than the one you are using on the target.

Most people would consider the GNU debugger, GDB, to be part of the toolchain as 
well, and it is usual that it is built at this point. I will talk about GDB in Chapter 12, 
Debugging with GDB.

Types of toolchain - native versus cross 
toolchain
For our purposes, there are two types of toolchain:

• Native: This toolchain runs on the same type of system, sometimes the  
same actual system, as the programs it generates. This is the usual case  
for desktops and servers, and it is becoming popular on certain classes  
of embedded devices. The Raspberry Pi running Debian for ARM, for 
example, has self-hosted native compilers.

• Cross: This toolchain runs on a different type of system than the target, 
allowing the development to be done on a fast desktop PC and then  
loaded onto the embedded target for testing.

Almost all embedded Linux development is done using a cross development 
toolchain, partly because most embedded devices are not well suited to program 
development since they lack computing power, memory, and storage, but also 
because it keeps the host and target environments separate. The latter point is 
especially important when the host and the target are using the same architecture, 
X86_64, for example. In this case, it is tempting to compile natively on the host and 
simply copy the binaries to the target. This works up to a point but it is likely that 
the host distribution will receive updates more often than the target, that different 
engineers building code for the target will have slightly different versions of the host 
development libraries and so you will violate the principle that the toolchain should 
remain constant throughout the life of the project. You can make this approach work 
if you ensure that the host and target build environments are in lockstep with each 
other, but a much better approach is to keep the host and the target separate, and a 
cross toolchain is a way to do that.
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However, there is a counter argument in favor of native development. Cross 
development creates the burden of cross-compiling all the libraries and tools that 
you need for your target. We will see later on in this chapter that cross-compiling is 
not always simple because most open source packages are not designed to be built 
in this way. Integrated build tools, including Buildroot and the Yocto Project, help 
by encapsulating the rules to cross compile a range of packages that you need in 
typical embedded systems but, if you want to compile a large number of additional 
packages, then it is better to natively compile them. For example, to provide a Debian 
distribution for the Raspberry Pi or BeagleBone using a cross compiler is impossible, 
they have to be natively compiled. Creating a native build environment from scratch 
is not easy and involves creating a cross compiler first to bootstrap a native build 
environment on the target and using that to build packages. You would need a build 
farm of well-provisioned target boards or you may be able to use QEMU to emulate 
the target. If you want to look into this further, you may want to look at the Scratchbox 
project, now in its second incarnation as Scratchbox2 (https://maemo.gitorious.
org/scratchbox2). It was developed by Nokia to build their Maemo Linux operating 
system, and is used today by the Mer project and the Tizen project, among others.

Meanwhile, in this chapter, I will focus on the more mainstream cross compiler 
environment, which is relatively easy to set up and administer.

CPU architectures
The toolchain has to be built according to the capabilities of the target CPU,  
which includes:

• CPU architecture: arm, mips, x86_64, and so on
• Big- or little-endian operation: Some CPUs can operate in both modes,  

but the machine code is different for each
• Floating point support: Not all versions of embedded processors implement 

a hardware floating point unit, in which case, the toolchain can be configured 
to call a software floating point library instead

• Application Binary Interface (ABI): The calling convention used for passing 
parameters between function calls
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With many architectures, the ABI is constant across the family of processors.  
One notable exception is ARM. The ARM architecture transitioned to the Extended 
Application Binary Interface (EABI) in the late 2000's, resulting in the previous  
ABI being named the Old Application Binary Interface (OABI). While the OABI is 
now obsolete, you continue to see references to EABI. Since then, the EABI has split 
into two, based on the way that floating point parameters are passed. The original 
EABI uses general purpose (integer) registers while the newer EABIHF uses floating 
point registers. The EABIHF is significantly faster at floating point operations since  
it removes the need for copying between integer and floating point registers, but it  
is not compatible with CPUs that do not have a floating point unit. The choice, then, 
is between two incompatible ABIs: you cannot mix and match the two and so you 
have to decide at this stage.

GNU uses a prefix to the tools to identify the various combinations that can be 
generated, consisting of a tuple of three or four components separated by dashes,  
as described here:

• CPU: The CPU architecture, such as arm, mips, or x86_64. If the CPU has 
both endian modes, they may be differentiated by adding el for little-endian, 
or eb for big-endian. Good examples are little-endian MIPS, mipsel and  
big-endian ARM, armeb.

• Vendor: This identifies the provider of the toolchain. Examples include 
buildroot, poky, or just unknown. Sometimes it is left out altogether.

• Kernel: For our purposes, it is always 'linux'.
• Operating system: A name for the user space component, which might  

be gnu or uclibcgnu. The ABI may be appended here as well so, for  
ARM toolchains, you may see gnueabi, gnueabihf, uclibcgnueabi,  
or uclibcgnueabihf.

You can find the tuple used when building the toolchain by using the -dumpmachine 
option of gcc. For example, you may see the following on the host computer:

$ gcc -dumpmachine

x86_64-linux-gnu

When a native compiler is installed on a machine, it is normal to 
create links to each of the tools in the toolchain with no prefixes 
so that you can call the compiler with the command gcc.

Here is an example using a cross compiler:

$ mipsel-unknown-linux-gnu-gcc -dumpmachine

mipsel-unknown-linux-gnu
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Choosing the C library
The programming interface to the Unix operating system is defined in the  
C language, which is now defined by the POSIX standards. The C library is  
the implementation of that interface; it is the gateway to the kernel for Linux 
programs, as shown in the following diagram. Even if you are writing programs  
in another language, maybe Java or Python, the respective run-time support  
libraries will have to call the C library eventually:

The C library is the gateway to the kernel for applications

Whenever the C library needs the services of the kernel it will use the kernel system 
call interface to transition between user space and kernel space. It is possible to 
bypass the C library by making kernel system calls directly, but that is a lot of trouble 
and almost never necessary.

There are several C libraries to choose from. The main options are as follows:

• glibc: Available at http://www.gnu.org/software/libc. It is the standard 
GNU C library. It is big and, until recently, not very configurable, but it is the 
most complete implementation of the POSIX API.

• eglibc: Available at http://www.eglibc.org/home. This is the embedded 
GLIBC. It was a series of patches to glibc which added configuration options 
and support for architectures not covered by glibc (specifically, the PowerPC 
e500). The split between eglibc and glibc was always rather artificial and, 
fortunately, the code base from eglibc has been merged back into glibc as 
of version 2.20, leaving us with one improved library. eglibc is no longer 
maintained.



Chapter 2

[ 609 ]

• uClibc: Available at http://www.uclibc.org. The 'u' is really a Greek 
'mu' character, indicating that this is the micro controller C library. It was 
first developed to work with uClinux (Linux for CPUs without memory 
management units), but has since been adapted to be used with full Linux. 
There is a configuration utility which allows you to fine-tune its features  
to your needs. Even a full configuration is smaller than glibc but it is not  
as complete an implementation of the POSIX standards.

• musl libc: Available at http://www.musl-libc.org. It is a new C library 
designed for embedded systems.

So, which to choose? My advice is to use uClibc only if you are using uClinux or 
if you have very limited amounts of storage or RAM and so the small size would 
be an advantage. Otherwise, I prefer to use an up-to-date glibc, or eglibc. I have no 
experience of musl libc but if you find that glibc/eglibc is not suitable, by all means 
give it a go. This process is summarized in the following figure:

Choosing a C library



Learning About Toolchains

[ 610 ]

Finding a toolchain
You have three choices for your cross development toolchain: you may find a  
ready built toolchain that matches your needs, you can use the one generated by  
an embedded build tool which is covered in Chapter 6, Selecting a Build System,  
or you can create one yourself as described later in this chapter.

A pre-built cross toolchain is an attractive option in that you only have to download 
and install it, but you are limited to the configuration of that particular toolchain  
and you are dependent on the person or organization you got it from. Most likely,  
it will be one of these:

• SoC or board vendor. Most vendors offer a Linux toolchain.
• A consortium dedicated to providing system-level support for a given 

architecture. For example, Linaro, (https://www.linaro.org) have  
pre-built toolchains for the ARM architecture.

• Third-party Linux tool vendors such as Mentor Graphics, TimeSys,  
or MontaVista.

• Cross tool packages for your desktop Linux distribution, for example, 
Debian-based distributions have packages for cross compiling for ARM, 
MIPS, and PowerPC targets.

• A binary SDK produced by one of the integrated embedded build tools, the 
Yocto Project has some examples at http://autobuilder.yoctoproject.
org/pub/releases/CURRENT/toolchain and there is also the Denx 
Embedded Linux Development Kit at ftp://ftp.denx.de/pub/eldk/.

• A link from a forum that you can't find any more.

In all of these cases, you have to decide whether the pre-built toolchain on offer 
meets your requirements. Does it use the C library you prefer? Will the provider  
give you updates for security fixes and bugs, bearing in mind my comments on 
support and updates from Chapter 1, Starting Out. If your answer is no to any of  
these then you should consider creating your own.

Unfortunately, building a toolchain is no easy task. If you truly want to do the whole 
thing yourself, take a look at Cross Linux From Scratch (http://trac.clfs.org). 
There, you will find step-by-step instructions on how to create each component.

A simpler alternative is to use crosstool-NG, which encapsulates the process into 
a set of scripts and has a menu-driven front-end. You still need a fair degree of 
knowledge, though, just to make the right choices.
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It is simpler still to use a build system such as Buildroot or the Yocto Project since 
they generate a toolchain as part of the build process. This is my preferred solution 
as I have shown in Chapter 6, Selecting a Build System.

Building a toolchain using crosstool-NG
I am going to begin with crosstool-NG because it allows you to see the process of 
creating the toolchain and to create several different sorts.

Some years ago, Dan Kegel wrote a set of scripts and makefiles for generating cross 
development toolchains and called it crosstool (kegel.com/crosstool). In 2007, 
Yann E. Morin used that base to create the next generation of crosstool, crosstool-NG 
(crosstool-ng.org). Today it is, by far, the most convenient way to create a stand-
alone cross toolchain from source.

Installing crosstool-NG
Before you begin, you will need a working native toolchain and build tools on your 
host PC. To work with crosstool-NG on an Ubuntu host, you will need to install the 
packages using the following command:

$ sudo apt-get install automake bison chrpath flex g++ git gperf  
gawk libexpat1-dev libncurses5-dev libsdl1.2-dev libtool  
python2.7-dev texinfo

Next, get the current release from the croostool-NG downloads section,  
http://crosstool-ng.org/download/crosstool-ng. In my examples I have  
used 1.20.0. Extract it and create the front-end menu system, ct-ng, as shown in  
the following commands:

$ tar xf crosstool-ng-1.20.0.tar.bz2

$ cd crosstool-ng-1.20.0

$ ./configure --enable-local

$ make

$ make install

The --enable-local option means that the program will be installed into the 
current directory, which avoids the need for root permissions as would be required 
if you were to install it in the default location, /usr/local/bin. Type ./ct-ng from 
the current directory to launch the crosstool menu.
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Selecting the toolchain
Crosstool-NG can build many different combinations of toolchains. To make the 
initial configuration easier, it comes with a set of samples that cover many of the 
common use-cases. Use ./ct-ng list-samples to generate the list.

As an example, suppose that your target is a BeagleBone Black which has an ARM 
Cortex A8 core and a VFPv3 floating point unit, and that you want to use a current 
version of glibc. The closest sample is arm-cortex_a8-linux-gnueabi. You can see 
the default configuration by prefixing the name with show-:

$ ./ct-ng show-arm-cortex_a8-linux-gnueabi

[L..] arm-cortex_a8-linux-gnueabi

OS             : linux-3.15.4

Companion libs : gmp-5.1.3 mpfr-3.1.2 cloog-ppl-0.18.1 mpc-1.0.2  
libelf-0.8.13

binutils       : binutils-2.22

C compiler     : gcc-4.9.1 (C,C++)

C library      : glibc-2.19 (threads: nptl)

Tools          : dmalloc-5.5.2 duma-2_5_15 gdb-7.8 ltrace- 
0.7.3 strace-4.8

To select this as the target configuration, you would type:

$ ./ct-ng  arm-cortex_a8-linux-gnueabi

At this point, you can review the configuration and make changes using the 
configuration menu command menuconfig:

$ ./ct-ng menuconfig

The menu system is based on the Linux kernel menuconfig and so navigation of the 
user interface will be familiar to anyone who has configured a kernel. If not, please 
refer to Chapter 4, Porting and Configuring the Kernel for a description of menuconfig.

There are a few configuration changes that I would recommend you make at  
this point:

• In Paths and misc options, disable Render the toolchain read-only  
(CT_INSTALL_DIR_RO)

• In Target options | Floating point, select hardware (FPU)  
(CT_ARCH_FLOAT_HW)

• In C-library | extra config, add --enable-obsolete-rpc  
(CT_LIBC_GLIBC_EXTRA_CONFIG_ARRAY)
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The first is necessary if you want to add libraries to the toolchain after it has been 
installed, which I will describe later in this chapter. The next is to select the optimum 
floating point implementation for a processor with a hardware floating point unit. 
The last forces the toolchain to be generated with an obsolete header file, rpc.h, 
which is still used by a number of packages (note that this is only a problem if you 
selected glibc). The names in parentheses are the configuration labels stored in the 
configuration file. When you have made the changes, exit menuconfig, and save the 
configuration as you do so.

The configuration data is saved into a file named .config. Looking at the file, you 
will see that the first line of text reads Automatically generated make config: don't edit 
which is generally good advice, but I recommend that you ignore it in this case. Do 
you remember from the discussion about toolchain ABIs that ARM has two variants, 
one which passes floating point parameters in integer registers and one that uses the 
VFP registers? The float configuration you have just chosen is of the latter type and 
so the ABI part of the tuple should read eabihf. There is a configuration parameter 
that does exactly what you want but it is not enabled by default, neither does it 
appear in the menu, at least not in this version of crosstool. Consequently, you will 
have to edit .config and add the line shown in bold as follows:

[…]

#

# arm other options

#

CT_ARCH_ARM_MODE="arm"

CT_ARCH_ARM_MODE_ARM=y

# CT_ARCH_ARM_MODE_THUMB is not set

# CT_ARCH_ARM_INTERWORKING is not set

CT_ARCH_ARM_EABI_FORCE=y

CT_ARCH_ARM_EABI=y

CT_ARCH_ARM_TUPLE_USE_EABIHF=y

[...]

Now you can use crosstool-NG to get, configure, and build the components according 
to your specification by typing the following command:

$ ./ct-ng build

The build will take about half an hour, after which you will find your toolchain is 
present in ~/x-tools/arm-cortex_a8-linux-gnueabihf/.
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Anatomy of a toolchain
To get an idea of what is in a typical toolchain, I want to examine the crosstool-NG 
toolchain you have just created.

The toolchain is in the directory ~/x-tools/arm-cortex_a8-linux-gnueabihf/
bin. In there you will find the cross compiler, arm-cortex_a8-linux-gnueabihf-
gcc. To make use of it, you need to add the directory to your path using the 
following command:

$ PATH=~/x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH

Now you can take a simple hello world program that looks like this:

#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[])
{
  printf ("Hello, world!\n");
  return 0;
}

And compile it like this:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld

You can confirm that it has been cross compiled by using the file command to  
print the type of the file:

$ file helloworld

helloworld: ELF 32-bit LSB executable, ARM, version 1 (SYSV),  
dynamically linked (uses shared libs), for GNU/Linux 3.15.4, not  
stripped

Finding out about your cross compiler
Imagine that you have just received a toolchain, and that you would like to  
know more about how it was configured. You can find out a lot by querying gcc.  
For example, to find the version, you use --version:

$ arm-cortex_a8-linux-gnueabi-gcc --version

arm-cortex_a8-linux-gnueabi-gcc (crosstool-NG 1.20.0) 4.9.1

Copyright (C) 2014 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There  
is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.
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To find how it was configured, use -v:

$ arm-cortex_a8-linux-gnueabi-gcc -v
Using built-in specs.
COLLECT_GCC=arm-cortex_a8-linux-gnueabihf-gcc
COLLECT_LTO_WRAPPER=/home/chris/x-tools/arm-cortex_a8-linux- 
gnueabihf/libexec/gcc/arm-cortex_a8-linux-gnueabihf/4.9.1/lto-wrapper
Target: arm-cortex_a8-linux-gnueabihf
Configured with:  
/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/src/gcc-4.9.1/configure --build=x86_64-build_unknown- 
linux-gnu --host=x86_64-build_unknown-linux-gnu --target=arm- 
cortex_a8-linux-gnueabihf --prefix=/home/chris/x-tools/arm-cortex_a8- 
linux-gnueabihf --with-sysroot=/home/chris/x-tools/arm-cortex_a8- 
linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot --enable- 
languages=c,c++ --with-arch=armv7-a --with-cpu=cortex-a8 --with- 
tune=cortex-a8 --with-float=hard --with-pkgversion='crosstool-NG  
1.20.0' --enable-__cxa_atexit --disable-libmudflap --disable-libgomp  
--disable-libssp --disable-libquadmath --disable-libquadmath-support  
--disable-libsanitizer --with- 
gmp=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with- 
mpfr=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with- 
mpc=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with- 
isl=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with- 
cloog=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with- 
libelf=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng- 
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-host- 
libstdcxx='-static-libgcc -Wl,-Bstatic,-lstdc++,-Bdynamic -lm' -- 
enable-threads=posix --enable-target-optspace --enable-plugin -- 
enable-gold --disable-nls --disable-multilib --with-local- 
prefix=/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm- 
cortex_a8-linux-gnueabihf/sysroot --enable-c99 --enable-long-long
Thread model: posix
gcc version 4.9.1 (crosstool-NG 1.20.0)

There is a lot of output there but the interesting things to note are:

• --with-sysroot=/home/chris/x-tools/arm-cortex_a8-linux-
gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot: This is the  
default sysroot directory, see the following section for an explanation

• --enable-languages=c,c++: Using this we have both C and C++  
languages enabled
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• --with-arch=armv7-a: The code is generated using the ARM v7a  
instruction set

• --with-cpu=cortex-a8 and --with-tune=cortex-a8: The the code  
is further tweaked for a Cortex A8 core

• --with-float=hard: Generate opcodes for the floating point unit and  
uses the VFP registers for parameters

• --enable-threads=posix: Enable POSIX threads

These are the default settings for the compiler. You can override most of them on  
the gcc command line so, for example, if you want to compile for a different CPU, 
you can override the configured setting, –-with-cpu, by adding -mcpu to the 
command line, as follows:

$ arm-cortex_a8-linux-gnueabihf-gcc -mcpu=cortex-a5 helloworld.c -o  
helloworld

You can print out the the range of architecture-specific options available using 
--target-help, as follows:

$ arm-cortex_a8-linux-gnueabihf-gcc --target-help

You may be wondering if it matters whether or not you get the exact configuration 
right at the time you generate the toolchain if you can change it later on, and the 
answer depends on the way you anticipate using it. If you plan to create a new 
toolchain for each target, then it makes sense to set everything up at the beginning 
because it will reduce the risks of getting it wrong later on. Jumping ahead a little to 
Chapter 6, Selecting a Build System, I call this the Buildroot philosophy. If, on the other 
hand, you want to build a toolchain that is generic and you are prepared to provide 
the correct settings when you build for a particular target, then you should make  
the base toolchain generic, which is the way the Yocto Project handles things.  
The preceding examples follow the Buildroot philosophy.

The sysroot, library, and header files
The toolchain sysroot is a directory which contains subdirectories for libraries, 
header files, and other configuration files. It can be set when the toolchain is 
configured through --with-sysroot= or it can be set on the command line,  
using --sysroot=. You can see the location of the default sysroot by using  
-print-sysroot:

$ arm-cortex_a8-linux-gnueabi-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8- 
linux-gnueabihf/sysroot
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You will find the following in the sysroot:

• lib: Contains the shared objects for the C library and the dynamic linker/
loader, ld-linux

• usr/lib: the static library archives for the C library and any other libraries 
that may be installed subsequently

• usr/include: Contains the headers for all the libraries
• usr/bin: Contains the utility programs that run on the target, such as the  

ldd command
• /usr/share: Used for localization and internationalization
• sbin: Provides the ldconfig utility, used to optimize library loading paths

Plainly, some of these are needed on the development host to compile programs,  
and others – for example the shared libraries and ld-linux – are needed on the 
target at runtime.

Other tools in the toolchain
The following table shows various other commands in the toolchain together with a 
brief description:

Command Description
addr2line Converts program addresses into filenames and numbers by reading 

the debug symbol tables in an executable file. It is very useful when 
decoding addresses printed out in a system crash report.

ar The archive utility is used to create static libraries.

as This is the GNU assembler.

c++filt This is used to demangle C++ and Java symbols.

cpp This is the C preprocessor, and is used to expand #define, #include, 
and other similar directives. You seldom need to use this by itself.

elfedit This is used to update the ELF header of ELF files.

g++ This is the GNU C++ front-end, which assumes source files contain  
C++ code.

gcc This is the GNU C front-end, which assumes source files contain C code.



Learning About Toolchains

[ 618 ]

Command Description
gcov This is a code coverage tool.

gdb This is the GNU debugger.

gprof This is a program profiling tool.

ld This is the GNU linker.

nm This lists symbols from object files.

objcopy This is used to copy and translate object files.

objdump This is used to display information from object files.

ranlib This creates or modifies an index in a static library, making the linking 
stage faster.

readelf This displays information about files in ELF object format.

size This lists section sizes and the total size.

strings This display strings of printable characters in files.

strip This is used to strip an object file of debug symbol tables, thus making 
it smaller. Typically, you would strip all the executable code that is put 
onto the target.

Looking at the components of the  
C library
The C library is not a single library file. It is composed of four main parts that 
together implement the POSIX functions API:

• libc: The main C library that contains the well-known POSIX functions  
such as printf, open, close, read, write, and so on

• libm: Maths functions such as cos, exp, and log
• libpthread: All the POSIX thread functions with names beginning  

with pthread_
• librt: The real-time extensions to POSIX, including shared memory  

and asynchronous I/O
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The first one, libc, is always linked in but the others have to be explicitly linked 
with the -l option. The parameter to -l is the library name with lib stripped off.  
So, for example,  a program that calculates a sine function by calling sin() would  
be linked with libm using -lm:

arm-cortex_a8-linux-gnueabihf-gcc myprog.c -o myprog -lm

You can verify which libraries have been linked in this or any other program by 
using the readelf command:

$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "Shared  
library"

0x00000001 (NEEDED)         Shared library: [libm.so.6]

0x00000001 (NEEDED)         Shared library: [libc.so.6]

Shared libraries need a run-time linker, which you can expose using:

$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "program  
interpreter"

    [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

This is so useful that I have a script file with these commands into a shell script:

#!/bin/sh

${CROSS_COMPILE}readelf -a $1 | grep "program interpreter"

${CROSS_COMPILE}readelf -a $1 | grep "Shared library"

Linking with libraries: static and  
dynamic linking
Any application you write for Linux, whether it be in C or C++, will be linked with 
the C library, libc. This is so fundamental that you don't even have to tell gcc or g++ 
to do it because it always links libc. Other libraries that you may want to link with 
have to be explicitly named through the -l option.

The library code can be linked in two different ways: statically, meaning that all 
the library functions your application calls and their dependencies are pulled from 
the library archive and bound into your executable; and dynamically, meaning that 
references to the library files and functions in those files are generated in the code 
but the actual linking is done dynamically at runtime.
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Static libraries
Static linking is useful in a few circumstances. For example, if you are building a 
small system which consists of only BusyBox and some script files, it is simpler to 
link BusyBox statically and avoid having to copy the runtime library files and linker. 
It will also be smaller because you only link in the code that your application uses 
rather than supplying the entire C library. Static linking is also useful if you need to 
run a program before the filesystem that holds the runtime libraries is available.

You tell gcc to link all libraries statically by adding -static to the command line:

$ arm-cortex_a8-linux-gnueabihf-gcc -static helloworld.c -o  
helloworld-static

You will notice that the size of the binary increases dramatically:

$ ls -l

-rwxrwxr-x 1 chris chris   5323 Oct  9 09:01 helloworld

-rwxrwxr-x 1 chris chris 625704 Oct  9 09:01 helloworld-static

Static linking pulls code from a library archive, usually named lib[name].a.  
In the preceding case it is libc.a, which is in [sysroot]/usr/lib:

$ ls -l $(arm-cortex_a8-linux-gnueabihf-gcc -print- 
sysroot)/usr/lib/libc.a

-r--r--r-- 1 chris chris 3434778 Oct  8 14:00 /home/chris/x- 
tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux- 
gnueabihf/sysroot/usr/lib/libc.a

Note that the syntax $(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot) 
places the output of the program on the command line. I am using it as a generic  
way to refer to the files in the sysroot.

Creating a static library is as simple as creating an archive of object files using the ar 
command. If I had two source files named test1.c and test2.c and I want to create 
a static library named libtest.a, then I would do this:

$ arm-cortex_a8-linux-gnueabihf-gcc -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -c test2.c

$ arm-cortex_a8-linux-gnueabihf-ar rc libtest.a test1.o test2.o

$ ls -l

total 24

-rw-rw-r-- 1 chris chris 2392 Oct  9 09:28 libtest.a

-rw-rw-r-- 1 chris chris  116 Oct  9 09:26 test1.c



Chapter 2

[ 621 ]

-rw-rw-r-- 1 chris chris 1080 Oct  9 09:27 test1.o

-rw-rw-r-- 1 chris chris  121 Oct  9 09:26 test2.c

-rw-rw-r-- 1 chris chris 1088 Oct  9 09:27 test2.o

Then I could link libtest into my helloworld program using:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest -L../libs - 
I../libs -o helloworld

Shared libraries
A more common way to deploy libraries is as shared objects that are linked at 
runtime, which makes more efficient use of storage and system memory, since  
only one copy of the code needs to be loaded. It also makes it easy to update  
library files without having to re-link all the programs that use them.

The object code for a shared library must be position-independent so that the 
runtime linker is free to locate it in memory at the next free address. To do this,  
add the -fPIC parameter to gcc, and then link it using the -shared option:

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test2.c

$ arm-cortex_a8-linux-gnueabihf-gcc -shared -o libtest.so test1.o  
test2.o

To link an application with this library, you add -ltest, exactly as in the static  
case mentioned in the preceding paragraph but, this time, the code is not included  
in the executable, but there is a reference to the library that the runtime linker will 
have to resolve:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest -L../libs - 
I../libs -o helloworld

$ list-libs helloworld

[Requesting program interpreter: /lib/ld- 
linux-armhf.so.3]

0x00000001 (NEEDED)                     Shared library: [libtest.so]

0x00000001 (NEEDED)                     Shared library: [libc.so.6]

The runtime linker for this program is /lib/ld-linux-armhf.so.3, which must 
be present in the target's filesystem. The linker will look for libtest.so in the 
default search path: /lib and /usr/lib. If you want it to look for libraries in other 
directories as well, you can place a colon-separated list of paths in the shell variable 
LD_LIBRARY_PATH:

# export LD_LIBRARY_PATH=/opt/lib:/opt/usr/lib
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Understanding shared library version numbers
One of the benefits of shared libraries is that they can be updated independently 
of the programs that use them. Library updates are of two types: those that fix 
bugs or add new functions in a backwards-compatible way, and those that break 
compatibility with existing applications. GNU/Linux has a versioning scheme to 
handle both these cases.

Each library has a release version and an interface number. The release version is 
simply a string that is appended to the library name, for example the JPEG image 
library, libjpeg, is currently at release 8.0.2 and so the library is named libjpeg.
so.8.0.2. There is a symbolic link named libjpeg.so to libjpeg.so.8.0.2 so that, 
when you compile a program with –ljpeg, you link with the current version. If you 
install version 8.0.3, the link is updated and you will link with that one instead.

Now, suppose that version 9.0.0 comes along and that breaks backwards compatibility. 
The link from libjpeg.so now points to libjpeg.so.9.0.0, so that any new 
programs are linked with the new version, possibly throwing compile errors when 
the interface to libjpeg changes, which the developer can fix. Any programs on the 
target that are not recompiled are going to fail in some way because they are still using 
the old interface. This is where the soname helps. The soname encodes the interface 
number when the library was built and is used by the runtime linker when it loads the 
library. It is formatted as <library name>.so.<interface number>. For libjpeg.
so.8.0.2, the soname is libjpeg.so.8:

$ readelf -a /usr/lib/libjpeg.so.8.0.2 | grep SONAME

0x000000000000000e (SONAME)             Library soname:  
[libjpeg.so.8]

Any program compiled with it will request libjpeg.so.8 at runtime which will be 
a symbolic link on the target to libjpeg.so.8.0.2. When version 9.0.0 of libjpeg is 
installed, it will have a soname of libjpeg.so.9, and so it is possible to have two 
incompatible versions of the same library installed on the same system. Programs 
that were linked with libjpeg.so.8.*.* will load libjpeg.so.8, and those linked 
with libjpeg.so.9.*.* will load libjpeg.so.9.

This is why, when you look at the directory listing of <sysroot>/usr/lib/libjpeg*, 
you find these four files:

• libjpeg.a: This is the library archive used for static linking
• libjpeg.so -> libjpeg.so.8.0.2 : This is a symbolic link, used for 

dynamic linking
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• libjpeg.so.8 -> libjpeg.so.8.0.2: This is a symbolic link used when 
loading the library at runtime

• libjpeg.so.8.0.2: This is the actual shared library, used at both compile 
time and runtime

The first two are only needed on the host computer for building, the last two are 
needed on the target at runtime.

The art of cross compiling
Having a working cross toolchain is the starting point of a journey, not the end of it.  
At some point, you will want to begin cross compiling the various tools, applications, 
and libraries that you need on your target. Many of them will be open source packages, 
each of which has its own method of compiling, and each with its own peculiarities. 
There are some common build systems, including:

• Pure makefiles where the toolchain is controlled by the make  
variable CROSS_COMPILE

• The GNU build system known as Autotools
• CMake (https://cmake.org)

I will cover only the first two here since these are the ones needed for even a basic 
embedded Linux system. For CMake, there are some excellent resources on the 
CMake website referenced in the preceding point.

Simple makefiles
Some important packages are very simple to cross compile, including the Linux 
kernel, the U-Boot bootloader, and Busybox. For each of these, you only need  
to put the toolchain prefix in the make variable CROSS_COMPILE, for example  
arm-cortex_a8-linux-gnueabi-. Note the trailing dash -.

So, to compile Busybox, you would type:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

Or, you can set it as a shell variable:

$ export CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-
$ make

In the case of U-Boot and Linux, you also have to set the make variable ARCH to one 
of the machine architectures they support, which I will cover in Chapter 3, All About 
Bootloaders and Chapter 4, Porting and Configuring the Kernel.
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Autotools
The name, Autotools, refers to a group of tools that are used as the build system in 
many open source projects. The components, together with the appropriate project 
pages, are:

• GNU Autoconf  
(http://www.gnu.org/software/autoconf/autoconf.html)

• GNU Automake  
(http://www.gnu.org/savannah-checkouts/gnu/automake)

• GNU Libtool (http://www.gnu.org/software/libtool/libtool.html)
• Gnulib (https://www.gnu.org/software/gnulib)

The role of Autotools is to smooth over the differences between the many different 
types of system that the package may be compiled for, accounting for different 
versions of compilers, different versions of libraries, different locations of header 
files, and dependencies with other packages. Packages that use Autotools come 
with a script named configure that checks dependencies and generates makefiles 
according to what it finds. The configure script may also give you the opportunity  
to enable or disable certain features. You can find the options on offer by running  
./configure --help.

To configure, build, and install a package for the native operating system, you would 
typically run these three commands:

$ ./configure

$ make

$ sudo make install

Autotools is able to handle cross development as well. You can influence the 
behavior of the configure script by setting these shell variables:

• CC: The C compiler command
• CFLAGS: Additional C compiler flags
• LDFLAGS: Additional linker flags, for example if you have libraries in  

a non-standard directory <lib dir> you would add it to the library  
search path by adding -L<lib dir>

• LIBS: Contains a list of additional libraries to pass to the linker,  
for instance -lm for the math library
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• CPPFLAGS: Contains C/C++ preprocessor flags, for example you would 
add -I<include dir> to search for headers in a non-standard directory 
<include dir>

• CPP: The C preprocessor to use

Sometimes it is sufficient to set only the CC variable, as follows:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc ./configure

At other times, that will result in an error like this:

[...]

checking whether we are cross compiling... configure: error: in '/home/
chris/MELP/build/sqlite-autoconf-3081101':

configure: error: cannot run C compiled programs.

If you meant to cross compile, use '--host'.

See 'config.log' for more details

The reason for the failure is that configure often tries to discover the capabilities of 
the toolchain by compiling snippets of code and running them to see what happens, 
which cannot work if the program has been cross compiled. Nevertheless, there is a 
hint in the error message of how to solve the problem. Autotools understands three 
different types of machine that may be involved when compiling a package:

• Build: This is the computer that is to build the package, which defaults to the 
current machine.

• Host: This is the computer the program will run on: for a native compile this is 
left blank and it defaults to be the same computer as build. For a cross compile 
you set it to be the tuple of your toolchain.

• Target: This is the computer the program will generate code for: you would 
set this when building a cross compiler, for example.

So, to cross compile, you just need to override host, as follows:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf

One final thing to note is that the default install directory is <sysroot>/usr/
local/*. You would usually install it in <sysroot>/usr/* so that the header 
files and libraries would be picked up from their default locations. The complete 
command to configure a typical Autotools package is:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr
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An example: SQLite
The SQLite library implements a simple relational database and is quite popular on 
embedded devices. You begin by getting a copy of SQLite:

$ wget http://www.sqlite.org/2015/sqlite-autoconf-3081101.tar.gz

$ tar xf sqlite-autoconf-3081101.tar.gz

$ cd sqlite-autoconf-3081101

Next, run the configure script:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

That seems to work! If it failed, there would be error messages printed to the 
terminal and recorded in config.log. Note that several makefiles have been  
created, so now you can build it:

$ make

Finally, you install it into the toolchain directory by setting the make variable 
DESTDIR. If you don't, it will try to install it into the host computer's /usr directory 
which is not what you want.

$ make DESTDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)  
install

You may find that final command fails with a file permissions error. A crosstool-NG 
toolchain will be read-only by default, which is why it is useful to set CT_INSTALL_
DIR_RO to y when building it. Another common problem is that the toolchain is 
installed in a system directory such as /opt or /usr/local in which case you will 
need root permissions when running the install.

After installing, you should find that various files have been added to your toolchain:

• <sysroot>/usr/bin: sqlite3. This is a command-line interface for SQLite that 
you can install and run on the target.

• <sysroot>/usr/lib: libsqlite3.so.0.8.6, libsqlite3.so.0, libsqlite3.so libsqlite3.
la libsqlite3.a. These are the shared and static libraries.

• <sysroot>/usr/lib/pkgconfig: sqlite3.pc: This is the package 
configuration file, as described in the following section.

• <sysroot>/usr/lib/include: sqlite3.h, sqlite3ext.h: These are the 
header files.

• <sysroot>/usr/share/man/man1: sqlite3.1. This is the manual page.
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Now you can compile programs that use sqlite3 by adding -lsqlite3 at the  
link stage:

$ arm-cortex_a8-linux-gnueabihf-gcc -lsqlite3 sqlite-test.c -o  
sqlite-test

Where, sqlite-test.c is a hypothetical program that calls SQLite functions.  
Since sqlite3 has been installed into the sysroot, the compiler will find the header  
and library files without any problem. If they had been installed elsewhere you 
would have to add -L<lib dir> and -I<include dir>.

Naturally, there will be runtime dependencies as well, and you will have to install 
the appropriate files into the target directory as described in Chapter 5, Building a  
Root Filesystem.

Package configuration
Tracking package dependencies is quite complex. The package configuration utility, 
pkg-config (http://www.freedesktop.org/wiki/Software/pkg-config) helps 
track which packages are installed and which compile flags each needs by keeping 
a database of Autotools packages in [sysroot]/usr/lib/pkgconfig. For instance, 
the one for SQLite3 is named sqlite3.pc and contains essential information needed 
by other packages that need to make use of it:

$ cat $(arm-cortex_a8-linux-gnueabihf-gcc -print- 
sysroot)/usr/lib/pkgconfig/sqlite3.pc

# Package Information for pkg-config

prefix=/usr

exec_prefix=${prefix}

libdir=${exec_prefix}/lib

includedir=${prefix}/include

Name: SQLite

Description: SQL database engine

Version: 3.8.11.1

Libs: -L${libdir} -lsqlite3

Libs.private: -ldl -lpthread

Cflags: -I${includedir}
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You can use the utility pkg-config to extract information in a form that you can feed 
straight to gcc. In the case of a library like libsqlite3, you want to know the library 
name (--libs) and any special C flags (--cflags):

$ pkg-config sqlite3 --libs --cflags

Package sqlite3 was not found in the pkg-config search path.

Perhaps you should add the directory containing `sqlite3.pc'

to the PKG_CONFIG_PATH environment variable

No package 'sqlite3' found

Oops! That failed because it was looking in the host's sysroot and the development 
package for libsqlite3 has not been installed on the host. You need to point it at the 
sysroot of the target toolchain by setting the shell variable PKG_CONFIG_LIBDIR:

$ PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print- 
sysroot)/usr/lib/pkgconfig \

pkg-config sqlite3 --libs --cflags

 -lsqlite3

Now the output is -lsqlite3. In this case, you knew that already, but generally you 
wouldn't, so this is a valuable technique. The final command to compile would be:

$ PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print- 
sysroot)/usr/lib/pkgconfig \

arm-cortex_a8-linux-gnueabihf-gcc $(pkg-config sqlite3 --cflags -- 
libs) sqlite-test.c -o sqlite-

Problems with cross compiling
Sqlite3 is a well-behaved package and cross compiles nicely but not all packages are 
so tame. Typical pain points include:

• Home-grown build systems, zlib, for example, has a configure script but it 
does not behave like the Autotools configure described in the previous section

• Configure scripts that read pkg-config information, headers, and other files 
from the host, disregarding the --host override

• Scripts that insist on trying to run cross compiled code
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Each case requires careful analysis of the error and additional parameters to the 
configure script to provide the correct information or patches to the code to avoid the 
problem altogether. Bear in mind that one package may have many dependencies, 
especially with programs that have a graphical interface using GTK or QT or handle 
multimedia content. As an example, mplayer, which is a popular tool for playing 
multimedia content, has dependencies on over 100 libraries. It would take weeks of 
effort to build them all.

Therefore, I would not recommend manually cross compiling components for the 
target in this way except when there is no alternative, or the number of packages 
to build is small. A much better approach is to use a build tool such as Buildroot 
or the Yocto Project, or, avoid the problem altogether by setting up a native build 
environment for your target architecture. Now you can see why distributions like 
Debian are always compiled natively.

Summary
The toolchain is always your starting point: everything that follows from that is 
dependent on having a working, reliable toolchain.

Most embedded build environments are based on a cross development toolchain 
which creates a clear separation between a powerful host computer building the 
code and a target computer on which it runs. The toolchain itself consists of the 
GNU binutils, a C compiler from the GNU compiler collection – and quite likely 
the C++ compiler as well – plus one of the C libraries I have described. Usually the 
GNU debugger, gdb, will be generated at this point, which I describe in Chapter 12, 
Debugging with GDB. Also, keep a watch out for the Clang compiler, as it will develop 
over the next few years.

You may start with nothing but a toolchain – perhaps built using crosstool-NG or 
downloaded from Linaro – and use it to compile all of the packages that you need 
on your target, accepting the amount of hard work this will entail. Or, you may 
obtain the toolchain as part of a distribution which includes a range of packages. 
A distribution can be generated from source code using a build system such as 
Buildroot or the Yocto Project, or it can be a binary distribution from a third party, 
maybe a commercial enterprise like Mentor Graphics or an open source project such 
as the Denx ELDK. Beware of toolchains or distributions that are offered to you 
for free as part of a hardware package: they are often poorly configured and not 
maintained. In any case, you should make the choice according to your situation,  
and then be consistent in its use throughout the project.

Once you have a toolchain, you can use it to build the other components of your 
embedded Linux system. In the next chapter, you will learn about the bootloader, 
which brings your device to life and begins the boot process.





[ 631 ]

All About Bootloaders
The bootloader is the second element of embedded Linux. It is the part that starts 
the system up and loads the operating system kernel. In this chapter, I will look at 
the role of the bootloader and, in particular, how it passes control from itself to the 
kernel using a data structure called a device tree, also known as a flattened device 
tree or FDT. I will cover the basics of device trees so that you will be able to follow 
the connections described in a device tree and relate it to real hardware.

I will look at the popular open source bootloader U-Boot and see how to use it to 
boot a target device and also how to customize it to a new device. Finally, I will take 
a quick look at Barebox, a bootloader that shares its past with U-Boot but which has, 
arguably, a cleaner design.

What does a bootloader do?
In an embedded Linux system, the bootloader has two main jobs: basic system 
initialization and the loading of the kernel. In fact, the first job is somewhat 
subsidiary to the second in that it is only necessary to get as much of the system 
working as is needed to load the kernel.

When the first lines of bootloader code are executed, following power-on or a reset, 
the system is in a very minimal state. The DRAM controller will not have been set 
up so main memory is not accessible, likewise other interfaces will not have been 
configured so storage accessed via NAND flash controllers, MMC controllers, and 
so on, are also not usable. Typically, the only resources operational at the beginning 
are a single CPU core and some on-chip static memory. As a result, system bootstrap 
consists of several phases of code, each bringing more of the system into operation.
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The early boot phase stops once the interfaces required to load a kernel are working. 
That includes main memory and the peripherals used to access the kernel and other 
images, be they mass storage or network. The final act of the bootloader is to load  
the kernel into RAM and create an execution environment for it. The details of the 
interface between the bootloader and the kernel are architecture-specific but, in 
all cases, it means passing a pointer to information about the hardware that the 
bootloader knows about and passing a kernel command line, which is an ASCII string 
containing essential information for Linux. Once the kernel has begun executing, the 
bootloader is no longer needed and all the memory it was using can be reclaimed.

A subsidiary job of the bootloader is to provide a maintenance mode for updating 
boot configurations, loading new boot images into memory and, maybe, running 
diagnostics. This is usually controlled by a simple command-line user interface, 
commonly over a serial interface.

The boot sequence
In simpler times, some years ago, it was only necessary to place the bootloader in 
non-volatile memory at the reset vector of the processor. NOR flash memory was 
common at that time and, since it can be mapped directly into the address space, it 
was the ideal method of storage. The following diagram shows such a configuration, 
with the reset vector at 0xfffffffc at the top end of an area of flash memory. The 
bootloader is linked so that there is a jump instruction at that location that points  
to the start of the bootloader code:

Boot in the old days
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From that point, it can initialize the memory controller so that the main memory, the 
DRAM, becomes available and copies itself into DRAM. Once fully operational, the 
bootloader can load the kernel from flash memory into DRAM and transfer control to it.

However, once you move away from a simple linearly addressable storage medium 
like NOR flash, the boot sequence becomes a complex, multi-stage procedure.  
The details are very specific to each SoC, but they generally follow each of the 
following phases.

Phase 1: ROM code
In the absence of reliable external memory, the code that runs immediately after 
a reset or power-on has to be stored on-chip in the SoC; this is known as ROM 
code. It is programmed into the chip when it is manufactured, hence ROM code is 
proprietary and cannot be replaced by an open source equivalent. The ROM code 
can make very few assumptions about any hardware that is not on the chip, because 
it will be different from one design to another. This applies even to the DRAM chips 
used for the main system memory. Consequently, the only RAM that the ROM code 
has access to is the small amount of static RAM (SRAM) found in most SoC designs. 
The size of the SRAM varies from as little as 4 KiB up to a few hundred KiB:

Phase 1 bootloader

The ROM code is capable of loading a small chunk of code from one of several 
preprogrammed locations into the SRAM. As an example, TI OMAP and Sitara 
chips will try to load code from the first few pages of NAND flash memory, or from 
flash memory connected through SPI (Serial Peripheral Interface), or from the first 
sectors of an MMC device (which could be an eMMC chip or an SD card), or from a 
file named MLO on the first partition of an MMC device. If reading from all of those 
memory devices fails, then it will try reading a byte stream from Ethernet, USB, or 
UART; the latter is provided mainly as a means of loading code into flash memory 
during production rather than for use in normal operation. Most embedded SoCs 
have ROM code that works in a similar way. In SoCs where the SRAM is not large 
enough to load a full bootloader like U-Boot, there has to be an intermediate loader 
called the secondary program loader, or SPL.
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At the end of this phase, the next stage bootloader is present in on-chip memory and 
the ROM code jumps to the beginning of that code.

Phase 2: SPL
The SPL must set up the memory controller and other essential parts of the system 
preparatory to loading the third stage program loader (TPL) into main memory, the 
DRAM. The functionality of the SPL is limited by its size. It can read a program from a 
list of storage devices, as can the ROM code, once again using preprogrammed offsets 
from the start of a flash device, or a well known file name such as u-boot.bin. The 
SPL usually doesn't allow for any user interaction but it may print version information 
and progress messages which you will see on the console. The following diagram 
explains the phase 2 architecture:

Second stage boot

The SPL may be open source, as is the case with the TI x-loader and Atmel 
AT91Bootstrap, but it is quite common for it to contain proprietary code that  
is supplied by the manufacturer as a binary blob.

At the end of the second phase, the third stage loader is present in DRAM, and the 
SPL can make a jump to that area.
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Phase 3: TPL
Now, at last, we are running a full bootloader like U-Boot or Barebox. Usually, there 
is a simple command-line user interface that will let you perform maintenance tasks 
such as loading new boot and kernel images into flash storage, loading and booting a 
kernel, and there is a way to load the kernel automatically without user intervention. 
The following diagram explains the phase 3 architecture:

Third stage boot

At the end of the third phase, there is a kernel in memory, waiting to be started. 
Embedded bootloaders usually disappear from memory once the kernel is running 
and perform no further part in the operation of the system.
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Booting with UEFI firmware
Most embedded PC designs and some ARM designs have firmware based on the 
Universal Extensible Firmware Interface (UEFI) standard, see the official website at 
http://www.uefi.org for more information. The boot sequence is fundamentally 
the same as described in the preceding section:

Phase 1: The processor loads the UEFI boot manager firmware from flash memory. 
In some designs, it is loaded directly from NOR flash memory, in others there is 
ROM code on-chip which loads the boot manager from SPI flash memory. The boot 
manager is roughly equivalent to the SPL, but may allow user interaction through a 
text-based or graphical interface.

Phase 2: The boot manager loads the boot firmware from the EFI System Partition 
(ESP) or a hard disk or SSD, or from a network server via PXE boot. If loading  
from a local disk drive, the ESP is identified by a well-known GUID value of 
C12A7328-F81F-11D2-BA4B-00A0C93EC93B. The partition should be formatted 
using the FAT32 format. The third stage bootloader should be in a file named  
<efi_system_partition>/boot/boot<machine_type_short_name>.efi.

For example, the file path to the loader on an x86_64 system is: /efi/boot/bootx64.
efi

Phase 3: The TPL in this case has to be a bootloader that is capable of loading a Linux 
kernel and an optional RAM disk into memory. Common choices are:

• GRUB 2: This is the GNU Grand Unified Bootloader, version 2, and it is 
the most commonly used Linux loader on PC platforms. However, there 
is one controversy in that it is licensed under GPL v3, which may make it 
incompatible with secure booting since the license requires the boot keys 
to to be supplied with the code. The website is https://www.gnu.org/
software/grub/.

• gummiboot: This is a simple UEFI-compatible bootloader which has since 
been integrated into systemd, and is licensed under LGPL v2.1 The website  
is https://wiki.archlinux.org/index.php/Systemd-boot.

Moving from bootloader to kernel
When the bootloader passes control to the kernel it has to pass some basic 
information to the kernel, which may include some of the following:

• On PowerPC and ARM architectures: a number unique to the type of the SoC
• Basic details of the hardware detected so far, including at least the size and 

location of the physical RAM, and the CPU clock speed
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• The kernel command line
• Optionally, the location and size of a device tree binary
• Optionally, the location and size of an initial RAM disk

The kernel command line is a plain ASCII string which controls the behavior of 
Linux, setting, for example, the device that contains the root filesystem. I will look  
at the details of this in the next chapter. It is common to provide the root filesystem 
as a RAM disk, in which case it is the responsibility of the bootloader to load the 
RAM disk image into memory. I will cover the way you create initial RAM disks  
in Chapter 5, Building a Root Filesystem.

The way this information is passed is dependent on the architecture and has changed 
in recent years. For instance, with PowerPC, the bootloader simply used to pass a 
pointer to a board information structure, whereas, with ARM, it passed a pointer  
to a list of "A tags". There is a good description of the format of the kernel source  
in Documentation/arm/Booting.

In both cases, the amount of information passed was very limited, leaving the bulk 
of it to be discovered at runtime or hard-coded into the kernel as "platform data". 
The widespread use of platform data meant that each device had to have a kernel 
configured and modified for that platform. A better way was needed, and that way 
is the device tree. In the ARM world, the move away from A tags began in earnest in 
February 2013 with the release of Linux 3.8 but there are still quite a lot of devices in 
the field, and even in development, still using A tags.

Introducing device trees
You are almost certainly going to encounter device trees at some point. This section 
aims to give you a quick overview of what they are and how they work but there are 
many details that are not discussed.

A device tree is a flexible way to define the hardware components of a computer 
system. Usually, the device tree is loaded by the bootloader and passed to the kernel, 
although it is possible to bundle the device tree with the kernel image itself to cater 
for bootloaders that are not capable of handling them separately.

The format is derived from a Sun Microsystems bootloader known as OpenBoot, 
which was formalized as the Open Firmware specification, IEEE standard IEEE1275-
1994. It was used in PowerPC-based Macintosh computers and so was a logical 
choice for the PowerPC Linux port. Since then, it has been adapted on a large 
scale by the many ARM Linux implementations and, to a lesser extent, by MIPS, 
MicroBlaze, ARC, and other architectures.

I would recommend visiting http://devicetree.org for more information.
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Device tree basics
The Linux kernel contains a large number of device tree source files in  
arch/$ARCH/boot/dts, and this is a good starting point for learning about  
device trees. There are also a smaller number of sources in the U-boot source  
code in arch/$ARCH/dts. If you acquired your hardware from a third party,  
the dts file forms part of a board support package and you should expect to  
receive one along with the other source files.

The device tree represents a computer system as a collection of components  
joined together in a hierarchy, like a tree. The device tree begins with a root  
node, represented by a forward slash, /, which contains subsequent nodes 
representing the hardware of the system. Each node has a name and contains a 
number of properties in the form name = "value". Here is a simple example:

/dts-v1/;
/{
  model = "TI AM335x BeagleBone";
  compatible = "ti,am33xx";
  #address-cells = <1>;
  #size-cells = <1>;
  cpus {
    #address-cells = <1>;
    #size-cells = <0>;
    cpu@0 {
      compatible = "arm,cortex-a8";
      device_type = "cpu";
      reg = <0>;
    };
  };
  memory@0x80000000 {
    device_type = "memory";
    reg = <0x80000000 0x20000000>; /* 512 MB */
  };
};

Here we have a root node which contains a cpus node and a memory node. The cpus 
node contains a single CPU node named cpu@0. It is a common convention that the 
names of nodes include an @ followed by an address that distinguishes them from 
any others.
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Both the root and CPU nodes have a compatible property. The Linux kernel 
uses this to match this name against the strings exported by device drivers in a 
struct of_device_id (more on this in Chapter 8, Introducing Device Drivers). It is 
a convention that the value is composed of a manufacturer name and a component 
name to reduce confusion between similar devices made by different manufacturers, 
hence ti,am33xx and arm,cortex-a8. It is also quite common to have more than 
one value for compatible where there is more than one driver that can handle this 
device. They are listed with the most suitable first.

The CPU node and the memory node have a device_type property which describes 
the class of device. The node name is often derived from the device_type.

The reg property
The memory and CPU nodes have a reg property, which refers to a range of units in 
a register space. A reg property consists of two values representing the start address 
and the size (length) of the range. Both are written down as zero or more 32-bit 
integers, called cells. Hence, the memory node refers to a single bank of memory  
that begins at 0x80000000 and is 0x20000000 bytes long.

Understanding reg properties becomes more complex when the address or size 
values cannot be represented in 32 bits. For example, on a device with 64-bit 
addressing, you need two cells for each:

/ {
  #address-cells = <2>;
  #size-cells = <2>;
  memory@80000000 {
    device_type = "memory";
    reg = <0x00000000 0x80000000 0 0x80000000>;
  };
}

The information about the number of cells required is held in #address-cells  
and #size_cells declarations in an ancestor node. In other words, to understand a 
reg property, you have to look backwards down the node hierarchy until you find 
#address-cells and #size_cells. If there are none, the default values are 1 for 
each – but it is bad practice for device tree writers to depend on fall-backs.

Now, let's return to the cpu and cpus nodes. CPUs have addresses as well: in a quad 
core device they might be addressed as 0, 1, 2, and 3. That can be thought of as a one-
dimensional array without any depth so the size is zero. Therefore, you can see that 
we have #address-cells = <1> and #size-cells = <0> in the cpus node, and in 
the child node, cpu@0, we assign a single value to the reg property: node reg = <0>.
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Phandles and interrupts
The structure of the device tree described so far assumes that there is a single 
hierarchy of components, whereas in fact there are several. As well as the obvious 
data connection between a component and other parts of the system, it might also  
be connected to an interrupt controller, to a clock source and to a voltage regulator. 
To express these connections, we have phandles.

Take an example of a system containing a serial port which can generate interrupts 
and the interrupt controller:

/dts-v1/;
{
  intc: interrupt-controller@48200000 {
    compatible = "ti,am33xx-intc";
    interrupt-controller;
    #interrupt-cells = <1>;
    reg = <0x48200000 0x1000>;
  };
  serial@44e09000 {
    compatible = "ti,omap3-uart";
    ti,hwmods = "uart1";
    clock-frequency = <48000000>;
    reg = <0x44e09000 0x2000>;
    interrupt-parent = <&intc>;
    interrupts = <72>;
  };
};

We have an interrupt-controller node which has the special property #interrupt-
cells, which tells us how many 4-byte values are needed to represent an interrupt 
line. In this case, it is just one giving the IRQ number, but it is quite common to use 
additional values to characterize the interrupt, for example 1 = low-to-high edge 
triggered, 2 = high-to-low edge triggered, and so on.

Looking at the serial node, it has an interrupt-parent property which references 
the interrupt-controller it is connected to by using its label. This is the phandle.  
The actual IRQ line is given by the interrupts property, 72 in this case.

The serial node has other properties that we have not seen before: clock-frequency 
and ti,hwmods. These are part of the bindings for this particular type of device, in 
other words, the kernel device driver will read these properties to manage the device. 
The bindings can be found in the Linux kernel source, in directory Documentation/
devicetree/bindings/.
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Device tree include files
A lot of hardware is common between SoCs of the same family and between boards 
using the same SoC. This is reflected in the device tree by splitting out common 
sections into include files, usually with the extension .dtsi. The Open Firmware 
standard defines /include/ as the mechanism to be used, as in this snippet from 
vexpress-v2p-ca9.dts:

/include/ "vexpress-v2m.dtsi"

Look through the .dts files in the kernel, though, and you will find an alternative 
include statement that is borrowed from C, for example in am335x-boneblack.dts:

#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"

Here is another example from am33xx.dtsi:

#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/pinctrl/am33xx.h>

Lastly, include/dt-bindings/pinctrl/am33xx.h contains normal C macros:

#define PULL_DISABLE (1 << 3)
#define INPUT_EN (1 << 5)
#define SLEWCTRL_SLOW (1 << 6)
#define SLEWCTRL_FAST 0

All of this is resolved if the device tree sources are built using kernel kbuild, which 
first runs them through the C pre-processor, cpp, where the #include and #define 
statements are processed into plain text that is suitable for the device tree compiler. 
The motivation is shown in the previous example: it means that device tree sources 
can use the same constant definitions as the kernel code.

When we include files in this way the nodes are overlaid on top of one another to 
create a composite tree in which the outer layers extend or modify the inner ones.  
For example, am33xx.dtsi, which is general to all am33xx SoCs, defines the first 
MMC controller interface like this:

mmc1: mmc@48060000 {
  compatible = "ti,omap4-hsmmc";
  ti,hwmods = "mmc1";
  ti,dual-volt;
  ti,needs-special-reset;
  ti,needs-special-hs-handling;
  dmas = <&edma 24  &edma 25>;
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  dma-names = "tx", "rx";
  interrupts = <64>;
  interrupt-parent = <&intc>;
  reg = <0x48060000 0x1000>;
  status = "disabled";
};

Note that the status is disabled, meaning that no device driver 
should be bound to it, and also that it has the label mmc1.

In am335x-bone-common.dtsi, which is included with both BeagleBone and 
BeagleBone Black, the same node is referenced by its phandle:

&mmc1 {
  status = "okay";
  bus-width = <0x4>;
  pinctrl-names = "default";
  pinctrl-0 = <&mmc1_pins>;
  cd-gpios = <&gpio0 6 GPIO_ACTIVE_HIGH>;
  cd-inverted;
};

Here, mmc1 is enabled (status="okay") because both variants have a physical 
MMC1 device, and the pinctrl is established. Then, in am335x-boneblack.dts, 
you will see another reference to mmc1 which associates it with a voltage regulator:

&mmc1 {
  vmmc-supply = <&vmmcsd_fixed>;
};

So, layering source files like this gives flexibility and reduces the need for  
duplicated code.

Compiling a device tree
The bootloader and kernel require a binary representation of the device tree, so it  
has to be compiled using the device tree compiler, dtc. The result is a file ending 
with .dtb, which is referred to as a device tree binary or a device tree blob.

There is a copy of dtc in the Linux source, in scripts/dtc/dtc, and it is also 
available as a package on many Linux distributions. You can use it to compile  
a simple device tree (one that does not use #include) like this:

$ dtc simpledts-1.dts -o simpledts-1.dtb
DTC: dts->dts on file "simpledts-1.dts"
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Be wary of the fact that dtc does not give helpful error messages and it makes no 
checks other than on the basic syntax of the language, which means that debugging  
a typing error in a source file can be a lengthy business.

To build more complex examples, you will have to use the kernel kbuild, as shown 
in the next chapter.

Choosing a bootloader
Bootloaders come in all shapes and sizes. The kind of characteristics you want 
from a bootloader are that they be simple and customizable with lots of sample 
configurations for common development boards and devices. The following table 
shows a number of them that are in general use:

Name Architectures
Das U-Boot ARM, Blackfin, MIPS, PowerPC, SH
Barebox ARM, Blackfin, MIPS, PowerPC
GRUB 2 X86, X86_64
RedBoot ARM, MIPS, PowerPC, SH
CFE Broadcom MIPS
YAMON MIPS

We are going to focus on U-Boot because it supports a good number of processor 
architectures and a large number of individual boards and devices. It has been 
around for a long time and has a good community for support.

It may be that you received a bootloader along with your SoC or board. As always, 
take a good look at what you have and ask questions about where you can get the 
source code from, what the update policy is, how they will support you if you want 
to make changes, and so on. You may want to consider abandoning the vendor-
supplied loader and use the current version of an open source bootloader instead.

U-Boot
U-Boot, or to give its full name, Das U-Boot, began life as an open source bootloader 
for embedded PowerPC boards. Then, it was ported to ARM-based boards and  
later to other architectures, including MIPS, SH, and x86. It is hosted and maintained 
by Denx Software Engineering. There is plenty of information available, and a  
good place to start is www.denx.de/wiki/U-Boot. There is also a mailing list at 
u-boot@lists.denx.de.
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Building U-Boot
Begin by getting the source code. As with most projects, the recommended way is  
to clone the git archive and check out the tag you intend to use which, in this case,  
is the version that was current at the time of writing:

$ git clone git://git.denx.de/u-boot.git

$ cd u-boot

$ git checkout v2015.07

Alternatively, you can get a tarball from ftp://ftp.denx.de/pub/u-boot/.

There are more than 1,000 configuration files for common development boards  
and devices in the configs/ directory. In most cases, you can make a good guess  
of which to use, based on the filename, but you can get more detailed information  
by looking through the per-board README files in the board/ directory, or you can 
find information in an appropriate web tutorial or forum. Beware, though, the 
way U-Boot is configured has undergone a lot of changes since the 2014.10 release. 
Double-check that the instructions you are following are appropriate.

Taking the BeagleBone Black as an example, we find that there is a likely 
configuration file named am335x_boneblack_defconfig in configs/ and we  
find the text The binary produced by this board supports … Beaglebone Black  
in the board README files for the am335x chip, board/ti/am335x/README. With  
this knowledge, building U-Boot for a BeagleBone Black is simple. You need to 
inform U-Boot of the prefix for your cross compiler by setting the make variable 
CROSS_COMPILE and then select the configuration file using a command of the  
type make [board]_defconfig, as follows:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-  
am335x_boneblack_defconfig

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

The results of the compilation are:

• u-boot: This is U-Boot in ELF object format, suitable for use with a debugger
• u-boot.map: This is the symbol table
• u-boot.bin: This is U-Boot in raw binary format, suitable for running on 

your device
• u-boot.img: This is u-boot.bin with a U-Boot header added, suitable for 

uploading to a running copy of U-Boot
• u-boot.srec: This is U-Boot in Motorola srec format, suitable for 

transferring over a serial connection
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The BeagleBone Black also requires a Secondary Program Loader (SPL), as described 
earlier. This is built at the same time and is named MLO:

$ ls -l MLO u-boot*

-rw-rw-r-- 1 chris chris 76100 Dec 20 11:22 MLO

-rwxrwxr-x 1 chris chris 2548778 Dec 20 11:22 u-boot

-rw-rw-r-- 1 chris chris 449104 Dec 20 11:22 u-boot.bin

-rw-rw-r-- 1 chris chris 449168 Dec 20 11:22 u-boot.img

-rw-rw-r-- 1 chris chris 434276 Dec 20 11:22 u-boot.map

-rw-rw-r-- 1 chris chris 1347442 Dec 20 11:22 u-boot.srec

The procedure is similar for other targets.

Installing U-Boot
Installing a bootloader on a board for the first time requires some outside assistance. 
If the board has a hardware debug interface, such as JTAG, it is usually possible to 
load a copy of U-Boot directly into RAM and set it running. From that point, you 
can use U-Boot commands to copy it into flash memory. The details of this are very 
board-specific and outside the scope of this book.

Some SoC designs have a boot ROM built in which can be used to read boot code 
from various external sources such as SD cards, serial interfaces, or USBs, and this is 
the case with the AM335x chip in the BeagleBone Black. Here is how to load U-Boot 
via the micro-SD card.

Firstly, format a micro-SD card so that the first partition is in FAT32 format,  
and mark it as bootable. If you have a direct SD slot available, the card appears as  
/dev/mmcblk0, otherwise, if you are using a memory card reader, it will be seen  
as /dev/sdb, or /dev/sdc, and so on. Now, type the following command to  
partition the micro-SD card, assuming that the card is seen as /dev/mmcblk0:

$ sudo sfdisk -D -H 255 -S 63 /dev/mmcblk0 << EOF 

,9,0x0C,*

,,,-

EOF

Format the first partition as FAT16:

$ sudo mkfs.vfat -F 16 -n boot /dev/mmcblk0p1
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Now, mount the partition you have just formatted: on some systems it is enough  
to simply remove the micro-SD card and then plug it back in again, on others you 
may have to click on an icon. On current versions of Ubuntu, it should be mounted 
as /media/[user]/boot so I would copy U-Boot and the SPL to it like this:

cp MLO u-boot.img /media/chris/boot

Finally, unmount it.

With no power on the BeagleBone board, insert the micro-SD card.

Plug in the serial cable. A serial port should appear on your PC as /dev/ttyUSB0  
or similar.

Start a suitable terminal program such as gtkterm, minicom, or picocom and attach 
to the port at 115,200 bps with no flow control:

$ gtkterm -p /dev/ttyUSB0 -s 115200

Press and hold the Boot Switch button on the Beaglebone, power up the board  
using the external 5V power connector, and release the button after about 5 seconds. 
You should see a U-Boot prompt on the serial console:

U-Boot#

Using U-Boot
In this section, I will describe some of the common tasks that you can use U-Boot  
to perform.

Usually, U-Boot offers a command-line interface over a serial port. It gives a command 
prompt which is customized for each board. In the examples, I will use U-Boot#. 
Typing help prints out all the commands configured in this version of U-Boot; typing 
help <command> prints out more information about a particular command.

The default command interpreter is quite simple. There is no command-line  
editing by pressing cursor left or right keys; there is no command completion by 
pressing the Tab key; there is no command history by pressing the cursor up key. 
Pressing any of these keys will disrupt the command you are currently trying to 
type and you will have to type Ctrl+C and start over again. The only line editing 
key you can safely use is the back space. As an option, you can configure a different 
command shell called Hush, which has more sophisticated interactive support.
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The default number format is hexadecimal. For example, as shown in this command:

nand read 82000000 400000 200000

This command will read 0x200000 bytes from offset 0x400000 from the start of the 
NAND flash memory into RAM address 0x82000000.

Environment variables
U-Boot uses environment variables extensively to store and pass information 
between functions and even to create scripts. Environment variables are simple 
name=value pairs that are stored in an area of memory. The initial population of 
variables may be coded in the board configuration header file, like this:

#define CONFIG_EXTRA_ENV_SETTINGS \
"myvar1=value1\0" \
"myvar2=value2\0"

You can create and modify variables from the U-Boot command line using setenv. 
For example setenv foo bar creates the variable foo with the value bar. Note that 
there is no = sign between the variable name and the value. You can delete a variable 
by setting it to a null string, setenv foo. You can print all the variables to the 
console using printenv, or a single variable using printenv foo.

Usually, it is possible to use the saveenv command to save the entire environment to 
permanent storage of some kind. If there is raw NAND or NOR flash, then an erase 
block is reserved for this purpose, often with another used for a redundant copy to 
guard against corruption. If there is eMMC or SD card storage it can be stored in 
a file in a partition of the disk. Other options include storing in a serial EEPROM 
connected via an I2C or SPI interface or non-volatile RAM.

Boot image format
U-Boot doesn't have a filesystem. Instead, it tags blocks of information with a 64-
byte header so that it can track the contents. You prepare files for U-Boot using the 
mkimage command. Here is a brief summary of its usage:

$ mkimage

Usage: mkimage -l image

-l ==> list image header information

mkimage [-x] -A arch -O os -T type -C comp -a addr -e ep -n name -d  
data_file[:data_file...] image

-A ==> set architecture to 'arch'
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-O ==> set operating system to 'os'

-T ==> set image type to 'type'

-C ==> set compression type 'comp'

-a ==> set load address to 'addr' (hex)

-e ==> set entry point to 'ep' (hex)

-n ==> set image name to 'name'

-d ==> use image data from 'datafile'

-x ==> set XIP (execute in place)

mkimage [-D dtc_options] -f fit-image.its fit-image

mkimage -V ==> print version information and exit

For example, to prepare a kernel image for an ARM processor, the command is:

$ mkimage -A arm -O linux -T kernel -C gzip -a 0x80008000 \

-e 0x80008000 -n 'Linux' -d zImage uImage

Loading images
Usually, you will load images from removable storage such as an SD card or a 
network. SD cards are handled in U-Boot by the mmc driver. A typical sequence  
to load an image into memory would be:

U-Boot# mmc rescan

U-Boot# fatload mmc 0:1 82000000 uimage

reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)

U-Boot# iminfo 82000000

## Checking Image at 82000000 ...

Legacy image found

Image Name: Linux-3.18.0

Created: 2014-12-23 21:08:07 UTC

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 4604936 Bytes = 4.4 MiB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK
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The command mmc rescan re-initializes the mmc driver, perhaps to detect that  
an SD card has recently been inserted. Next, fatload is used to read a file from  
a FAT-formatted partition on the SD card. The format is:

fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes  
[pos]]]]]

If <interface> is mmc, as in our case, <dev:part> is the device number of the mmc 
interface counting from zero, and the partition number counting from one. Hence 
<0:1> is the first partition on the first device. The memory location, 0x82000000, is 
chosen to be in an area of RAM that is not being used at this moment. If we intend to 
boot this kernel, we have to make sure that this area of RAM will not be overwritten 
when the kernel image is decompressed and located at the runtime location, 
0x80008000.

To load image files over a network you use the Trivial File Transfer Protocol 
(TFTP). This requires you to install a TFTP daemon, tftpd, on your development 
system and start it running. You also have to configure any firewalls between your 
PC and the target board to allow the TFTP protocol on UDP port 69 to pass through. 
The default configuration of tftpd allows access only to the directory /var/lib/
tftpboot. The next step is to copy the files you want to transfer to the target into 
that directory. Then, assuming that you are using a pair of static IP addresses, which 
removes the need for further network administration, the sequence of commands to 
load a set of kernel image files should look like this:

U-Boot# setenv ipaddr 192.168.159.42

U-Boot# setenv serverip 192.168.159.99

U-Boot# tftp 82000000 uImage

link up on port 0, speed 100, full duplex

Using cpsw device

TFTP from server 192.168.159.99; our IP address is 192.168.159.42

Filename 'uImage'.

Load address: 0x82000000

Loading:

#################################################################

#################################################################

#################################################################

######################################################

3 MiB/s

done

Bytes transferred = 4605000 (464448 hex)
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Finally, let's look at how to program images into NAND flash memory and read 
them back, which is is handled by the nand command. This example loads a kernel 
image via TFTP and programs it into flash:

U-Boot# fatload mmc 0:1 82000000 uimage

reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)

U-Boot# nandecc hw

U-Boot# nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size 0x400000

Erasing at 0x660000 -- 100% complete.

OK

U-Boot# nand write 82000000 280000 400000

NAND write: device 0 offset 0x280000, size 0x400000

4194304 bytes written: OK

Now you can load the kernel from flash memory using nand read:

U-Boot# nand read 82000000 280000 400000

Booting Linux
The bootm command starts a kernel image running. The syntax is:

bootm [address of kernel] [address of ramdisk] [address of dtb].

The address of the kernel image is necessary, but the address of ramdisk and dtb  
can be omitted if the kernel configuration does not need them. If there is a dtb but  
no ramdisk, the second address can be replaced with a dash (-). That would look  
like this:

U-Boot# bootm 82000000 - 83000000
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Automating the boot with U-Boot scripts
Plainly, typing a long series of commands to boot your board each time it is turned 
on is not acceptable. To automate the process, U-Boot stores a sequence of commands 
in environment variables. If the special variable named bootcmd contains a script, 
it is run at power-up after a delay of bootdelay seconds. If you are watching this 
on the serial console, you will see the delay counting down to zero. You can press 
any key during this period to terminate the countdown and enter into an interactive 
session with U-Boot.

The way that you create scripts is simple, though not easy to read. You simply 
append commands separated by semicolons, which must be preceded by a backslash 
escape character. So, for example, to load a kernel image from an offset in flash 
memory and boot it, you might use the following command:

setenv bootcmd nand read 82000000 400000 200000\;bootm 82000000

Porting U-Boot to a new board
Let's assume that your hardware department has created a new board called  
"Nova" that is based on the BeagleBone Black and that you need to port U-Boot to 
it. You will need to understand the layout of the U-Boot code and how the board 
configuration mechanism works. In the 2014.10 release, U-Boot adopted the same 
configuration mechanism as the Linux kernel, Kconfig. Over the next few releases, 
the existing configuration settings will be moved from the current location in the 
header files in include/configs into Kconfig files. As of the 2014.10 release, each 
board had a Kconfig file which contains minimal information derived from the old 
boards.cfg file.

The main directories you will be dealing with are:

• arch: Contains code specific to each supported architecture in directories 
arm, mips, powerpc, and so on. Within each architecture, there is a 
subdirectory for each member of the family, for example, in arch/arm/cpu, 
there are directories for the architecture variants, including amt926ejs, armv7, 
and armv8. 

• board: Contains code specific to a board. Where there are several boards 
from the same vendor, they can be collected together into a subdirectory, 
hence the support for the am335x evm board, on which the BeagelBone is 
based, is in board/ti/am335x.

• common: Contains core functions including the command shells and  
the commands that can be called from them, each in a file named  
cmd_[command name].c.
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• doc: Contains several README files describing various aspects of U-Boot.  
If you are wondering how to proceed with your U-Boot port, this is a  
good place to start.

• include: In addition to many shared header files, this contains the very 
important subdirectory include/configs where you will find the majority 
of the board configuration settings. As the move to Kconfig progresses, the 
information will be moved out into Kconfig files but, at the time of writing, 
that process has only just begun.

Kconfig and U-Boot
The way that Kconfig extracts configuration information from Kconfig files and 
stores the total system configuration in a file named .config is described in some 
detail in Chapter 4, Porting and Configuring the Kernel. U-Boot has adopted kconfig and 
kbuild with one change. A U-Boot build can produce up to three binaries: a normal 
u-boot.bin, a Secondary Program Loader (SPL), and a Tertiary Program Loader 
(TPL), each with possibly different configuration options. Consequently, lines in 
.config and default configuration files can be prefixed with the codes shown in  
the following table to indicate which target they apply to:

None Normal image only
S: SPL image only
T: TPL image only
ST: SPL and TPL images
+S: Normal and SPL images
+T: Normal and TPL images
+ST: Normal, SPL and TPL images

Each board has a default configuration stored in configs/[board name}_defconfig. 
For your Nova board, you will have to create a file named nova_defonfig. for 
example, and add these lines to it:

CONFIG_SPL=y
CONFIG_SYS_EXTRA_OPTIONS="SERIAL1,CONS_INDEX=1,EMMC_BOOT"
+S:CONFIG_ARM=y
+S:CONFIG_TARGET_NOVA=y

On the first line, CONFIG_SPL=y causes the SPL binary, MLO, to be generated, 
CONFIG_ARM=y causes the contents of arch/arm/Kconfig to be included on line 
three. On line four, CONFIG_TARGET_NOVA=y selects your board. Note that lines three 
and four are prefixed by +S: so that they apply to both the SPL and normal binaries.
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You should also add a menu option to the ARM architecture Kconfig that allows 
people to select Nova as a target:

CONFIG_SPL=y
config TARGET_NOVA
bool "Support Nova!"

Board-specific files
Each board has a subdirectory named board/[board name] or board/[vendor]/
[board name] which should contain:

• Kconfig: Contains configuration options for the board
• MAINTAINERS: Contains a record of whether the board is currently 

maintained and, if so, by whom
• Makefile: Used to build the board-specific code
• README: Contains any useful information about this port of U-Boot,  

for example, which hardware variants are covered

In addition, there may be source files for board specific functions.

Your Nova board is based on a BeagleBone which, in turn, is based on a TI AM335x 
EVM, so, you can start by taking a copy of the am335x board files:

$ mkdir board/nova

$ cp -a board/ti/am335x board/nova

Next, change the Kconfig file to reflect the Nova board:

if TARGET_NOVA

config SYS_CPU
default "armv7"

config SYS_BOARD
default "nova"

config SYS_SOC
default "am33xx"

config SYS_CONFIG_NAME
default "nova"
endif
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Setting SYS_CPU to armv7 causes the code in arch/arm/cpu/armv7 to be compiled and 
linked. Setting SYS_SOC to am33xx causes the code in arch/arm/cpu/armv7/am33xx 
to be included, setting SYS_BOARD to nova brings in board/nova and setting SYS_
CONFIG_NAME to nova means that the header file include/configs/nova.h is used  
for further configuration options.

There is one other file in board/nova that you need to change, the linker  
script placed at board/nova/u-boot.lds, which has a hard-coded reference  
to board/ti/am335x/built-in.o. Change this to use the copy local to nova:

diff --git a/board/nova/u-boot.lds b/board/nova/u-boot.lds
index 78f294a..6689b3d 100644
--- a/board/nova/u-boot.lds
+++ b/board/nova/u-boot.lds
@@ -36,7 +36,7 @@ SECTIONS
*(.__image_copy_start)
*(.vectors)
CPUDIR/start.o (.text*)
- board/ti/am335x/built-in.o (.text*)
+ board/nova/built-in.o (.text*)
*(.text*)
}

Configuration header files
Each board has a header file in include/configs which contains the majority of the 
configuration. The file is named by the SYS_CONFIG_NAME identifier in the board's 
Kconfig. The format of this file is described in detail in the README file at the top 
level of the U-Boot source tree.

For the purposes of your Nova board, simply copy am335x_evm.h to nova.h to 
nova.h and make a small number of changes:

diff --git a/include/configs/nova.h b/include/configs/nova.h
index a3d8a25..8ea1410 100644
--- a/include/configs/nova.h
+++ b/include/configs/nova.h
@@ -1,5 +1,5 @@
/*
- * am335x_evm.h
+ * nova.h, based on am335x_evm.h
*
* Copyright (C) 2011 Texas Instruments Incorporated -  
http://www.ti.com/
*
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@@ -13,8 +13,8 @@
* GNU General Public License for more details.
*/
-#ifndef __CONFIG_AM335X_EVM_H
-#define __CONFIG_AM335X_EVM_H
+#ifndef __CONFIG_NOVA
+#define __CONFIG_NOVA
#include <configs/ti_am335x_common.h>
@@ -39,7 +39,7 @@
#define V_SCLK (V_OSCK)
/* Custom script for NOR */
-#define CONFIG_SYS_LDSCRIPT "board/ti/am335x/u-boot.lds"
+#define CONFIG_SYS_LDSCRIPT "board/nova/u-boot.lds"
/* Always 128 KiB env size */
#define CONFIG_ENV_SIZE (128 << 10)
@@ -50,6 +50,9 @@
#define CONFIG_PARTITION_UUIDS
#define CONFIG_CMD_PART
+#undef CONFIG_SYS_PROMPT
+#define CONFIG_SYS_PROMPT "nova!> "
+
#ifdef CONFIG_NAND
#define NANDARGS \
"mtdids=" MTDIDS_DEFAULT "\0" \

Building and testing
To build for the Nova board, select the configuration you have just created:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabi- nova_defconfig

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

Copy MLO and u-boot.img to the FAT partition of the micro-SD card you created 
earlier and boot the board.

Falcon mode
We are used to the idea that booting a modern embedded processor involves the 
CPU boot ROM loading an SPL which loads u-boot.bin which then loads a Linux 
kernel. You may be wondering if there is a way to reduce the number of steps, thereby 
simplifying and speeding up the boot process. The answer is U-Boot "Falcon mode", 
named after the Peregrine falcon which is claimed to be the fastest of all birds.
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The idea is simple: have the SPL load a kernel image directly, missing out u-boot.bin. 
There is no user interaction and there are no scripts. It just loads a kernel from a known 
location in flash or eMMC into memory, passes it a pre-prepared parameter block and 
starts it running. The details of configuring Falcon mode are beyond this book. If you 
would like more information, take a look at doc/README.falcon.

Barebox
I will complete this chapter with a look at another bootloader that has the same 
roots as U-Boot but takes a new approach to bootloaders. It is derived from U-Boot 
and was actually called U-Boot v2 in the early days. The Barebox developers aimed 
to combine the best parts of U-Boot and Linux, including a POSIX-like API and 
mountable filesystems.

The Barebox project website is www.barebox.org and the developer mailing list is 
barebox@lists.infradead.org.

Getting Barebox
To get Barebox, clone the git repository and check out the version you want to use:

$ git clone git://git.pengutronix.de/git/barebox.git

$ cd barebox

$ git checkout v2014.12.0

The layout of the code is similar to U-Boot:

• arch: Contains code specific to each supported architecture, which includes all 
the major embedded architectures. SoC support is in arch/[architecture]/
mach-[SoC]. Support for individual boards is in  
arch/[architecture]/boards.

• common: Contains core functions, including the shell.
• commands: Contains the commands that can be called from the shell.
• Documentation: Contains the templates for documentation files. To build it, 

type "make docs". The results are put in Documentation/html.
• drivers: Contains the code for the device drivers.
• include: Contains header files.



Chapter 3

[ 657 ]

Building Barebox
Barebox has used kconfig/kbuild for a long time. There are default configuration 
files in arch/[architecture]/configs. As an example, assume that you want to 
build Barebox for the BeagleBoard C4. You need two configurations, one for the SPL, 
and one for the main binary. Firstly, build MLO:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-  
omap3530_beagle_xload_defconfig

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

The result is the secondary program loader, MLO.

Next, build Barebox:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-  
omap3530_beagle_defconfig

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-

Copy both to an SD card:

$ cp MLO /media/boot/

$ cp barebox-flash-image /media/boot/barebox.bin

Then, boot up the board and you should see messages like these on the console:

barebox 2014.12.0 #1 Wed Dec 31 11:04:39 GMT 2014

Board: Texas Instruments beagle

nand: Trying ONFI probe in 16 bits mode, aborting !

nand: NAND device: Manufacturer ID: 0x2c, Chip ID: 0xba (Micron ), 
256MiB, page

size: 2048, OOB size: 64

omap-hsmmc omap3-hsmmc0: registered as omap3-hsmmc0

mci0: detected SD card version 2.0

mci0: registered disk0

malloc space: 0x87bff400 -> 0x87fff3ff (size 4 MiB)

booting from MMC

barebox 2014.12.0 #2 Wed Dec 31 11:08:59 GMT 2014

Board: Texas Instruments beagle

netconsole: registered as netconsole-1
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i2c-omap i2c-omap30: bus 0 rev3.3 at 100 kHz

ehci ehci0: USB EHCI 1.00

nand: Trying ONFI probe in 16 bits mode, aborting !

nand: NAND device: Manufacturer ID: 0x2c, Chip ID: 0xba (Micron NAND  
256MiB 1,8V

16-bit), 256MiB, page size: 2048, OOB size: 64

omap-hsmmc omap3-hsmmc0: registered as omap3-hsmmc0

mci0: detected SD card version 2.0

mci0: registered disk0

malloc space: 0x85e00000 -> 0x87dfffff (size 32 MiB)

environment load /boot/barebox.env: No such file or directory

Maybe you have to create the partition.

no valid environment found on /boot/barebox.env. Using default  
environment

running /env/bin/init...

Hit any key to stop autoboot: 0

Barebox is continuing to evolve. At the time of writing, it lacks the breadth of 
hardware support that U-Boot has, but it is worth considering for new projects.

Summary
Every system needs a bootloader to bring the hardware to life and to load a kernel. 
U-Boot has found favor with many developers because it supports a useful  
range of hardware and it is fairly easy to port to a new device. Over the last few 
years, the complexity and ever increasing variety of embedded hardware has led  
to the introduction of the device tree as a way of describing hardware. The device 
tree is simply a textual representation of a system that is compiled into a device 
 tree binary (dtb) and which is passed to the kernel when it loads. It is up to the 
kernel to interpret the device tree and to load and initialize drivers for the devices  
it finds there.

In use, U-Boot is very flexible, allowing images to be loaded from mass storage, flash 
memory, or a network, and booted. Likewise, Barebox can achieve the same but with 
a smaller base of hardware support. Despite its cleaner design and POSIX-inspired 
internal APIs, at the time of writing it does not seem to have been accepted beyond 
its own small but dedicated community.

Having covered some of the intricacies of booting Linux, in the next chapter you will 
see the next stage of the process as the third element of your embedded project, the 
kernel, comes into play.
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Porting and Configuring  
the Kernel

The kernel is the third element of embedded Linux. It is the component that is 
responsible for managing resources and interfacing with hardware and so affects 
almost every aspect of your final software build. It is usually tailored to your particular 
hardware configuration although, as we saw in Chapter 3, All About Bootloaders, device 
trees allow you to create a generic kernel that is tailored to particular hardware by the 
contents of the device tree.

In this chapter, we will look at how to get a kernel for a board and how to configure 
and compile it. We will look again at bootstrap, this time focusing on the part the 
kernel plays. We will also look at device drivers and how they pick up information 
from the device tree.

What does the kernel do?
Linux began in 1991 when Linus Torvalds started writing an operating system for 
Intel 386 and 486-based personal computers. He was inspired by the Minix operating 
system written by Andrew S. Tanenbaum four years earlier. Linux differed in many 
ways from Minix, the main differences being that it was a 32-bit virtual memory kernel 
and the code was open source, later released under the GPL 2 license.

He announced it on the 25th August 1991 on the comp.os.minix newsgroup in a famous 
post that begins as Hello everybody out there using minix - I'm doing a (free) operating 
system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has 
been brewing since april, and is starting to get ready. I'd like any feedback on things people  
like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system 
(due to practical reasons) among other things).
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To be strictly accurate, Linus did not write an operating system, he wrote a kernel 
instead, which is one component of an operating system. To create a working system, 
he used components from the GNU project, especially the toolchain, C library, and 
basic command-line tools. That distinction remains today, and gives Linux a lot of 
flexibility in the way it is used. It can be combined with a GNU user space to create a 
full Linux distribution that runs on desktops and servers, which is sometimes called 
GNU/Linux; it can be combined with an Android user space to create the well-known 
mobile operating system or it can be combined with a small Busybox-based user space 
to create a compact embedded system. Contrast this with the BSD operating systems, 
FreeBSD, OpenBSD, and NetBSD, in which the kernel, the toolchain, and the user 
space are combined into a single code base.

The kernel has three main jobs: to manage resources, to interface with hardware, and 
to provide an API that offers a useful level of abstraction to user space programs, as 
summarized in the following diagram:

Applications running in user space run at a low CPU privilege level. They can do 
very little other than make library calls. The primary interface between the user 
space and the kernel space is the C library, which translates user level functions such 
as those defined by POSIX into kernel system calls. The system call interface uses an 
architecture-specific method such as a trap or a software interrupt to switch the CPU 
from the low privilege user mode to the high privilege kernel mode, which allows 
access to all memory addresses and CPU registers.
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The system call handler dispatches the call to the appropriate kernel subsystem: 
scheduling calls to the scheduler, the filesystem, calls to the filesystem code, and 
so on. Some of those calls require input from the underlying hardware and will be 
passed down to a device driver. In some cases, the hardware itself invokes a kernel 
function by raising an interrupt. Interrupts can only be handled in a device driver, 
never by a user space application.

In other words, all the useful things that your application does, it does them through 
the kernel. The kernel, then, is one of the most important elements in the system.

Choosing a kernel
The next step is to choose the kernel for your project, balancing the desire to always 
use the latest version of software against the need for vendor-specific additions.

Kernel development cycle
Linux has been developed at a fast pace, with a new version being released every  
8 to 12 weeks. The way that the version numbers are constructed has changed a  
bit in recent years. Before July 2011, there was a three number version scheme with 
version numbers that looked like 2.6.39. The middle number indicated whether it  
was a developer or stable release, odd numbers (2.1.x, 2.3.x, 2.5.x) were for developers 
and even numbers were for end users. From version 2.6 onwards, the idea of a long-
lived development branch (the odd numbers) was dropped as it slowed down the 
rate at which new features were made available to users. The change in numbering 
from 2.6.39 to 3.0 in July 2011 was purely because Linus felt that the numbers were 
becoming too large: there was no huge leap in the features or architecture of Linux 
between those two versions. He also took the opportunity to drop the middle number. 
Since then, in April 2015, he bumped the major from 3 to 4, again purely for neatness, 
not because of any large architectural shift.

Linus manages the development kernel tree. You can follow him by cloning his git 
tree like so:

$ git clone \  
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

This will check out into subdirectory linux. You can keep up to date by running the 
command git pull in that directory from time to time.
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Currently, a full cycle of kernel development begins with a merge window of two 
weeks, during which Linus will accept patches for new features. At the end of the 
merge window, a stabilization phase begins, during which Linus will produce 
release candidates with version numbers ending in -rc1, -rc2, and so on, usually up 
to -rc7 or -rc8. During this time, people test the candidates and submit bug reports 
and fixes. When all significant bugs have been fixed, the kernel is released.

The code incorporated during the merge window has to be fairly mature already. 
Usually, it is pulled from the repositories of the many subsystem and architecture 
maintainers of the kernel. By keeping to a short development cycle, features can be 
merged when they are ready. If a feature is deemed not sufficiently stable or well 
developed by the kernel maintainers, it can simply be delayed until the next release.

Keeping a track of what has changed from release to release is not easy. You can read 
the commit log in Linus' git repository but, with roughly 10,000 or more entries per 
release, it is not easy to get an overview. Thankfully, there is the Linux Kernel Newbies 
website, http://kernelnewbies.org where you will find a succinct overview of 
each version, at http://kernelnewbies.org/LinuxVersions.

Stable and long term support releases
The rapid rate of change of Linux is a good thing in that it brings new features 
into the mainline code base, but it does not fit very well with the longer life cycle 
of embedded projects. Kernel developers address this in two ways. Firstly, it is 
acknowledged that a release may contain bugs that need to be fixed before the next 
kernel release comes around. That is the role of the stable Linux kernel, maintained 
by Greg Kroah-Hartman. After release, the kernel moves from being mainline 
(maintained by Linus) to stable (maintained by Greg). Bug fix releases of the stable 
kernel are marked by a third number, 3.18.1, 3.18.2, and so on. Before version 3,  
there were four release numbers, 2.6.29.1, 2.6.39.2, and so on.

You can get the stable tree by using the following command:

$ git clone \  
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux- 
stable.git

You can use git chckout to get a particular version, for example version 4.1.10:

$ cd linux-stable

$ git checkout v4.1.10
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Usually, the stable kernel is maintained only until the next mainline release, 8 to 12 
weeks later, so you will see that there is just one or sometimes two stable kernels at 
kernel.org. To cater for those users who would like updates for a longer period of 
time and be assured that any bugs will be found and fixed, some kernels are labeled 
long term and maintained for two or more years. There is at least one long term 
kernel each year. Looking at kernel.org at the time of writing, there are a total 
of eight long term kernels: 4.1, 3.18, 3.14, 3.12, 3.10, 3.4, 3.2, and 2.6.32. The latter 
has been maintained for five years and is at version 2.6.32.68. If you are building a 
product that you will have to maintain for this length of time the latest long term 
kernel might well be a good choice.

Vendor support
In an ideal world, you would be able to download a kernel from kernel.org and 
configure it for any device that claims to support Linux. However, that is not always 
possible: in fact mainline Linux has solid support for only a small subset of the 
many devices that can run Linux. You may find support for your board or SoC from 
independent open source projects, Linaro or the Yocto Project, for example, or from 
companies providing third party support for embedded Linux, but in many cases 
you will be obliged to look to the vendor of your SoC or board for a working kernel. 
As we also know, some are better than others.

My only advice at this point is to choose vendors who give 
good support or who, even better, take the trouble to get 
their kernel changes into the mainline.

Licensing
The Linux source code is licensed under GPL v2, which means that you must make 
the source code of your kernel available in one of the ways specified in the license.

The actual text of the license for the kernel is in the file COPYING. It begins with 
an addendum written by Linus that states that code calling the kernel from user 
space via the system call interface is not considered a derivative work of the kernel 
and so is not covered by the license. Hence, there is no problem with proprietary 
applications running on top of Linux.
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However, there is one area of Linux licensing that causes endless confusion and 
debate: kernel modules. A kernel module is simply a piece of code that is dynamically 
linked with the kernel at runtime, thereby extending the functionality of the kernel. 
The GPL makes no distinction between static and dynamic linking, so it would appear 
that the source for kernel modules is covered by the GPL. But, in the early days of 
Linux, there were debates about exceptions to this rule, for example, in connection 
with the Andrew filesystem. This code predates Linux and therefore (it was argued) 
is not a derivative work, and so the license does not apply. Similar discussions took 
place over the years with respect to other pieces of code, with the result that it is 
now accepted practice that the GPL does not necessarily apply to kernel modules. 
This is codified by the kernel MODULE_LICENSE macro, which may take the value 
Proprietary to indicate that it is not released under the GPL. If you plan to use the 
same arguments yourself, you may want to read though an oft-quoted email thread 
titled Linux GPL and binary module exception clause? (http://yarchive.net/comp/
linux/gpl_modules.html).

The GPL should be considered a good thing because it guarantees that when you and 
I are working on embedded projects, we can always get the source code for the kernel. 
Without it, embedded Linux would be much harder to use and more fragmented.

Building the kernel
Having decided which kernel to base your build on, the next step is to build it.

Getting the source
Let's assume that you have a board that is supported in mainline. You can get the 
source code through git or by downloading a tarball. Using git is better because you 
can see the commit history, you can easily see any changes you may make and you 
can switch between branches and versions. In this example, we are cloning the stable 
tree and checking out the version tag 4.1.10:

$ git clone  
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux- 
stable.git linux

$ cd linux

$ git checkout v4.1.10

Alternatively, you could download the tarball from https://https://cdn.kernel.
org/pub/linux/kernel/v4.x/linux-4.1.10.tar.xz.
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There is a lot of code here. There are over 38,000 files in the 4.1 kernel containing 
C source code, header files, and assembly code, amounting to a total of over 12.5 
million lines of code (as measured by the cloc utility). Nevertheless, it is worth 
knowing the basic layout of the code and to know, approximately, where to look  
for a particular component. The main directories of interest are:

• arch: This contains architecture-specific files. There is one subdirectory  
per architecture.

• Documentation: This contains kernel documentation. Always look here  
first if you want to find more information about an aspect of Linux.

• drivers: This contains device drivers, thousands of them. There is a 
subdirectory for each type of driver.

• fs: This contains filesystem code.
• include: This contains kernel header files, including those required  

when building the toolchain.
• init: This contains the kernel start-up code.
• kernel: This contains core functions, including scheduling, locking,  

timers, power management, and debug/trace code.
• mm: This contains memory management.
• net: This contains network protocols.
• scripts: This contains many useful scripts including the device tree 

compiler, dtc, which I described in Chapter 3, All About Bootloaders.
• tools: This contains many useful tools, including the Linux performance 

counters tool, perf, which I will describe in Chapter 13, Profiling and Tracing.

Over a period of time, you will become familiar with this structure, and realize that, 
if you are looking for the code for the serial port of a particular SoC, you will find 
it in drivers/tty/serial and not in arch/$ARCH/mach-foo because it is a device 
driver and not something central to the running of Linux on that SoC.

Understanding kernel configuration
One of the strengths of Linux is the degree to which you can configure the kernel 
to suit different jobs, from a small dedicated device such as a smart thermostat 
to a complex mobile handset. In current versions there are many thousands of 
configuration options. Getting the configuration right is a task in itself but, before 
that, I want to show you how it works so that you can better understand what is 
going on.
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The configuration mechanism is called Kconfig, and the build system that it  
integrates with is called Kbuild. Both are documented in Documentation/kbuild/. 
Kconfig/Kbuild is used in a number of other projects as well as the kernel, including 
crosstool-NG, U-Boot, Barebox, and BusyBox.

The configuration options are declared in a hierarchy of files named Kconfig using  
a syntax described in Documentation/kbuild/kconfig-language.txt. In Linux, 
the top level Kconfig looks like this:

mainmenu "Linux/$ARCH $KERNELVERSION Kernel Configuration"
config SRCARCH
  string
  option env="SRCARCH"
  source "arch/$SRCARCH/Kconfig"

The last line includes the architecture-dependent configuration file which sources 
other Kconfig files depending on which options are enabled. Having the architecture 
play such a role has two implications: firstly, that you must specify an architecture 
when configuring Linux by setting ARCH=[architecture], otherwise it will default 
to the local machine architecture, and second that the layout of the top level menu is 
different for each architecture.

The value you put into ARCH is one of the subdirectories you find in directory arch, 
with the oddity that ARCH=i386 and ARCH=x86_64 both have the source arch/x86/
Kconfig.

The Kconfig files consist largely of menus, delineated by menu, menu title,  
and endmenu keywords, and menu items marked by config. Here is an example, 
taken from drivers/char/Kconfig:

menu "Character devices"
[...]
config DEVMEM
  bool "/dev/mem virtual device support"
  default y
    help
    Say Y here if you want to support the /dev/mem device.
    The /dev/mem device is used to access areas of physical
    memory.
    When in doubt, say "Y".

The parameter following config names a variable that, in this case, is DEVMEM. Since 
this option is a Boolean, it can only have two values: if it is enabled it is assigned to y, 
if not the variable is not defined at all. The name of the menu item that is displayed 
on the screen is the string following the bool keyword.
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This configuration item, along with all the others, is stored in a file named .config 
(note that the leading dot '.' means that it is a hidden file that will not be shown by 
the ls command unless you type ls -a to show all files). The variable names stored 
in .config are prefixed with CONFIG_, so if DEVMEM is enabled, the line reads:

CONFIG_DEVMEM=y

There are several other data types in addition to bool. Here is the list:

• bool: This is either y or not defined.
• tristate: This is used where a feature can be built as a kernel module  

or built into the main kernel image. The values are m for a module, y to  
be built in, and not defined if the feature is not enabled.

• int: This is an integer value written using decimal notation.
• hex: This is an unsigned integer value written using hexadecimal notation.
• string: This is a string value.

There may be dependencies between items, expressed by the depends on phrase,  
as shown here:

config MTD_CMDLINE_PARTS
  tristate "Command line partition table parsing"
  depends on MTD

If CONFIG_MTD has not been enabled elsewhere, this menu option is not shown and so 
cannot be selected.

There are also reverse dependencies: the select keyword enables other options if 
this one is enabled. The Kconfig file in arch/$ARCH has a large number of select 
statements that enable features specific to the architecture, as can be seen here for arm:

config ARM
  bool
default y
  select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
  select ARCH_HAS_ELF_RANDOMIZE
[...]

There are several configuration utilities that can read the Kconfig files and produce 
a .config file. Some of them display the menus on screen and allow you to make 
choices interactively. Menuconfig is probably the one most people are familiar with, 
but there is also xconfig and gconfig.
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You launch each one via make, remembering that, in the case of the kernel, you have 
to supply an architecture, as illustrated here:

$ make ARCH=arm menuconfig

Here, you can see menuconfig with the DEVMEM config option highlighted in the 
previous paragraph:

Kernel configuration using menuconfig

The star (*) to the left of an item means that it is selected (="y") or, if it is an M, that 
it has been selected to be built as a kernel module.

You often see instructions like enable CONFIG_BLK_DEV_
INITRD, but with so many menus to browse through, it can 
take a while to find the place where that configuration is set. All 
configuration editors have a search function. You can access it 
in menuconfig by pressing the forward slash key, /. In xconfig, 
it is in the edit menu but, in this case make sure you miss off the 
CONFIG_ part of the variable you are searching for.
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With so many things to configure, it is unreasonable to start with a clean sheet each 
time you want to build a kernel so there are a set of known working configuration files 
in arch/$ARCH/configs, each containing suitable configuration values for a single 
SoC or a group of SoCs. You can select one with make [configuration file name]. 
For example, to configure Linux to run on a wide range of SoCs using the armv7-a 
architecture, which includes the BeagleBone Black AM335x, you would type:

$ make ARCH=arm multi_v7_defconfig

This is a generic kernel that runs on various different boards. For a more specialized 
application, for example when using a vendor-supplied kernel, the default 
configuration file is part of the board support package; you will need to find out 
which one to use before you can build the kernel.

There is another useful configuration target named oldconfig. This takes an exiting 
.config file and asks you to supply configuration values for any options that 
don't have them. You would use it when moving a configuration to a newer kernel 
version: copy .config from the old kernel to the new source directory and run make 
ARCH=arm oldconfig to bring it up to date. It can also be used to validate a .config 
file that you have edited manually (ignoring the text Automatically generated 
file; DO NOT EDIT that occurs at the top: sometimes it is OK to ignore warnings).

If you do make changes to the configuration, the modified .config file becomes part 
of your device and needs to be placed under source code control.

When you start the kernel build, a header file, include/generated/autoconf.h,  
is generated which contains a #define for each configuration value so that it can  
be included in the kernel source, exactly as with U-Boot.

Using LOCALVERSION to identify your kernel
You can discover the kernel version that you have built using the make 
kernelversion target:

$ make kernelversion

4.1.10

This is reported at runtime through the uname command and is also used in naming 
the directory where kernel modules are stored.
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If you change the configuration from the default it is advisable to append your own 
version information, which you can configure by setting CONFIG_LOCALVERSION, 
which you will find in the General setup configuration menu. It is also possible  
(but discouraged) to do the same by editing the top level makefile and appending  
it to the line that begins with EXTRAVERSION. As an example, if I wanted to mark  
the kernel I am building with an identifier melp and version 1.0, I would define  
the local version in the .config file like this:

CONFIG_LOCALVERSION="-melp-v1.0"

Running make kernelversion produces the same output as before but now, if I run 
make kernelrelease, I see:

$ make kernelrelease

4.1.10-melp-v1.0

It is also printed at the beginning of the kernel log:

Starting kernel ...

[    0.000000] Booting Linux on physical CPU 0x0

[    0.000000] Linux version 4.1.10-melp-v1.0 (chris@builder) (gcc  
version 4.9.1 (crosstool-NG 1.20.0) ) #3 SMP Thu Oct 15 21:29:35 BST 2015

I can now identify and track my custom kernel.

Kernel modules
I have mentioned kernel modules several times already. Desktop Linux distributions 
use them extensively so that the correct device and kernel functions can be loaded at 
runtime depending on the hardware detected and features required. Without them, 
every single driver and feature would have to be statically linked in to the kernel, 
making it unfeasibly large.

On the other hand, with embedded devices, the hardware and kernel configuration 
is usually known at the time the kernel is built so modules are not so useful. In fact, 
they cause a problem because they create a version dependency between the kernel 
and the root filesystem which can cause boot failures if one is updated but not the 
other. Consequently, it is quite common for embedded kernels to be built without 
any modules at all. Here are a few cases where kernel modules are a good idea:

• When you have proprietary modules, for the licensing reasons given  
in the preceding section.

• To reduce boot time by deferring the loading of non-essential drivers.
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• When there are a number of drivers that could be loaded and it would take 
up too much memory to compile them statically. For example, you have 
a USB interface to support a range of devices. This is essentially the same 
argument as is used in desktop distributions.

Compiling
The kernel build system, kbuild, is a set of make scripts that take the configuration 
information from the .config file, work out the dependencies and compile 
everything that is necessary to produce a kernel image containing all the statically 
linked components, possibly a device tree binary and possibly one or more kernel 
modules. The dependencies are expressed in the makefiles that are in each directory 
with buildable components. For instance, these two lines are taken from drivers/
char/Makefile:

obj-y                    += mem.o random.o
obj-$(CONFIG_TTY_PRINTK) += ttyprintk.o

The obj-y rule unconditionally compiles a file to produce the target, so mem.c 
and random.c are always part of the kernel. In the second line, ttyprintk.c is 
dependent on a configuration parameter. If CONFIG_TTY_PRINTK is y it is compiled  
as a built in, if it is m it is built as a module and, if the parameter is undefined, it is  
not compiled at all.

For most targets, just typing make (with the appropriate ARCH and CROSS_COMPILE) 
will do the job, but it is instructive to take it one step at a time.

Compiling the kernel image
To build a kernel image, you need to know what your bootloader expects. This is a 
rough guide:

• U-Boot: Traditionally U-Boot has required a uImage, but newer versions  
can load a zImage file using the bootz command

• x86 targets: It requires a bzImage file
• Most other bootloaders: It requires a zImage file
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Here is an example of building a zImage file:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-  
zImage

The -j 4 option tells make how many jobs to run in parallel, 
which reduces the time taken to build. A rough guide is to run 
as many jobs as you have CPU cores.

It is the same when building bzImage and uImage targets.

There is a small issue with building a uImage file for ARM with multi-platform 
support, which is the norm for the current generation of ARM SoC kernels. Multi-
platform support for ARM was introduced in Linux 3.7. It allows a single kernel 
binary to run on multiple platforms and is a step on the road toward having a small 
number of kernels for all ARM devices. The kernel selects the correct platform by 
reading the machine number or the device tree passed to it by the bootloader. The 
problem occurs because the location of physical memory might be different for each 
platform, and so the relocation address for the kernel (usually 0x8000 bytes from the 
start of physical RAM) might also be different. The relocation address is coded into 
the uImage header by the mkimage command when the kernel is built, but it will 
fail if there is more than one relocation address to choose from. To put it another 
way, the uImage format is not compatible with multi-platform images. You can still 
create a uImage binary from a multi-platform build so long as you give the LOADADDR 
of the particular SoC you are hoping to boot this kernel on. You can find the load 
address by looking in mach-[your SoC]/Makefile.boot and noting the value of 
zreladdr-y.

In the case of a BeagleBone Black, the full command would look like this:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-  
LOADADDR=0x80008000 uImage
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A kernel build generates two files in the top level directory: vmlinux and System.
map. The first, vmlinux, is the kernel as an ELF binary. If you have compiled your 
kernel with debug enabled (CONFIG_DEBUG_INFO=y), it will contain debug symbols 
which can be used with debuggers like kgdb. You can also use other ELF binary tools 
such as size:

$ arm-cortex_a8-linux-gnueabihf-size vmlinux

  text     data      bss        dec       hex    filename

8812564   790692   8423536   18026792   1131128   vmlinux

System.map contains the symbol table in human readable form.

Most bootloaders cannot handle ELF code directly. There is a further stage of 
processing which takes vmlinux and places those binaries in arch/$ARCH/boot  
that are suitable for the various bootloaders:

• Image: vmlinux converted to raw binary.
• zImage: For the PowerPC architecture, this is just a compressed version  

of Image, which implies that the bootloader must do the decompression.  
For all other architectures, the compressed Image is piggybacked onto a  
stub of code that decompresses and relocates it.

• uImage: zImage plus a 64-byte U-Boot header.

While the build is running, you will see a summary of the commands being executed:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- 
zImage
CC     init/main.o
CHK    include/generated/compile.h
CC     init/version.o
CC     init/do_mounts.o
CC     init/do_mounts_rd.o
CC     init/do_mounts_initrd.o
LD     init/mounts.o
[...]
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Sometimes, when the kernel build fails, it is useful to see the actual commands being 
executed. To do that, add V=1 to the command line:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- V=1  
zImage
[...]
arm-cortex_a8-linux-gnueabihf-gcc -Wp,- 
MD,init/.do_mounts_initrd.o.d  -nostdinc -isystem /home/chris/x- 
tools/arm-cortex_a8-linux-gnueabihf/lib/gcc/arm-cortex_a8-linux- 
gnueabihf/4.9.1/include -I./arch/arm/include - 
Iarch/arm/include/generated/uapi -Iarch/arm/include/generated  - 
Iinclude -I./arch/arm/include/uapi - 
Iarch/arm/include/generated/uapi -I./include/uapi - 
Iinclude/generated/uapi -include ./include/linux/kconfig.h - 
D__KERNEL__ -mlittle-endian -Wall -Wundef -Wstrict-prototypes - 
Wno-trigraphs -fno-strict-aliasing -fno-common -Werror-implicit- 
function-declaration -Wno-format-security -std=gnu89 -fno-dwarf2- 
cfi-asm -mabi=aapcs-linux -mno-thumb-interwork -mfpu=vfp -funwind- 
tables -marm -D__LINUX_ARM_ARCH__=7 -march=armv7-a -msoft-float - 
Uarm -fno-delete-null-pointer-checks -O2 --param=allow-store-data- 
races=0 -Wframe-larger-than=1024 -fno-stack-protector -Wno-unused- 
but-set-variable -fomit-frame-pointer -fno-var-tracking- 
assignments -Wdeclaration-after-statement -Wno-pointer-sign -fno- 
strict-overflow -fconserve-stack -Werror=implicit-int - 
Werror=strict-prototypes -Werror=date-time -DCC_HAVE_ASM_GOTO    - 
D"KBUILD_STR(s)=#s" - 
D"KBUILD_BASENAME=KBUILD_STR(do_mounts_initrd)"  - 
D"KBUILD_MODNAME=KBUILD_STR(mounts)" -c -o init/do_mounts_initrd.o  
init/do_mounts_initrd.c
[...]

Compiling device trees
The next step is to build the device tree, or trees if you have a multi-platform build. 
The dtbs target builds device trees according to the rules in arch/$ARCH/boot/dts/
Makefile using the device tree source files in that directory:

$ make ARCH=arm dtbs
...
DTC     arch/arm/boot/dts/omap2420-h4.dtb
DTC     arch/arm/boot/dts/omap2420-n800.dtb
DTC     arch/arm/boot/dts/omap2420-n810.dtb
DTC     arch/arm/boot/dts/omap2420-n810-wimax.dtb
DTC     arch/arm/boot/dts/omap2430-sdp.dtb
...

The .dtb files are generated in the same directory as the sources.
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Compiling modules
If you have configured some features to be built as modules, you can build them 
separately using the modules target:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-  
modules

The compiled modules have a .ko suffix and are generated in the same directory as 
the source code, meaning that they are scattered all around the kernel source tree. 
Finding them is a little tricky but you can use the modules_install make target 
to install them in the right place. The default location is /lib/modules in your 
development system, which is almost certainly not what you want. To install them 
into the staging area of your root filesystem (we will talk about root filesystems in 
the next chapter), provide the path using INSTALL_MOD_PATH:

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-  
INSTALL_MOD_PATH=$HOME/rootfs modules_install

Kernel modules are put into the directory /lib/modules/[kernel version], 
relative to the root of the filesystem.

Cleaning kernel sources
There are three make targets for cleaning the kernel source tree:

• clean: removes object files and most intermediates.
• mrproper: removes all intermediate files, including the .config file. Use this 

target to return the source tree to the state it was in immediately after cloning 
or extracting the source code. If you are curious about the name, Mr Proper is 
a cleaning product common in some parts of the world. The meaning of make 
mrproper is to give the kernel sources a really good scrub.

• distclean: This is the same as mrproper but also deletes editor backup files, 
patch leftover files, and other artifacts of software development.
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Booting your kernel
Booting is highly device-dependent, but here is an example using U-Boot on a 
BeagleBone Black and QEMU:.

BeagleBone Black
The following U-Boot commands show how to boot Linux on a BeagleBone Black:

U-Boot# fatload mmc 0:1 0x80200000 zImage
reading zImage
4606360 bytes read in 254 ms (17.3 MiB/s)
U-Boot# fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb
reading am335x-boneblack.dtb
29478 bytes read in 9 ms (3.1 MiB/s)
U-Boot# setenv bootargs console=ttyO0,115200
U-Boot# bootz 0x80200000 - 0x80f00000
Kernel image @ 0x80200000 [ 0x000000 - 0x464998 ]
## Flattened Device Tree blob at 80f00000
   Booting using the fdt blob at 0x80f00000
   Loading Device Tree to 8fff5000, end 8ffff325 ... OK
Starting kernel ...
[   0.000000] Booting Linux on physical CPU 0x0
...

Note that we set the kernel command line to console=ttyO0,115200. That tells 
Linux which device to use for console output which, in this case, is the first UART  
on the board, device ttyO0, at a speed of 115,200 bits per second. Without this,  
we would not see any messages after Starting the kernel ... and therefore 
would not know if it was working or not.

QEMU
Assuming that you have already installed qemu-system-arm, you can launch it with 
the multi_v7 kernel and the .dtb file for the ARM Versatile Express, as follows:

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel zImage - 
dtb vexpress-v2p-ca9.dtb -append "console=ttyAMA0"

Note that setting QEMU_AUDIO_DRV to none is just to suppress error messages from 
QEMU about missing configurations for the audio drivers, which we do not use.

To exit from QEMU, type Ctrl-A then x (two separate keystrokes).
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Kernel panic
While things started off well, they ended badly:

[    1.886379] Kernel panic - not syncing: VFS: Unable to mount  
root fs on unknown-block(0,0)
[    1.895105] ---[ end Kernel panic - not syncing: VFS: Unable to  
mount root fs on unknown-block(0, 0)

This is a good example of a kernel panic. A panic occurs when the kernel encounters 
an unrecoverable error. By default, it will print out a message to the console and then 
halt. You can set the panic command line parameter to allow a few seconds before it 
reboots following a panic.

In this case, the unrecoverable error is because there is no root filesystem, illustrating 
that a kernel is useless without a user space to control it. You can supply a user space 
by providing a root filesystem either as a ramdisk or on a mountable mass storage 
device. We will talk about how to create a root filesystem in the next chapter but, to 
get things up and running, assume that we have a ramdisk in the file uRamdisk and 
you can then boot to a shell prompt by entering these commands into U-Boot:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

fatload mmc 0:1 0x81000000 uRamdisk

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 0x81000000 0x80f00000

Here, I have added rdinit=/bin/sh to the command line so that the kernel will run 
a shell and give us a shell prompt. Now, the output on the console looks like this:

...

[    1.930923] sr_init: No PMIC hook to init smartreflex

[    1.936424] sr_init: platform driver register failed for SR

[    1.964858] Freeing unused kernel memory: 408K (c0824000 -  
c088a000)

/ # uname -a

Linux (none) 3.18.3 #1 SMP Wed Jan 21 08:34:58 GMT 2015 armv7l  
GNU/Linux

/ #

At last, we have a prompt and can interact with our device.
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Early user space
In order to transition from kernel initialization to user space, the kernel has to  
mount a root filesystem and execute a program in that root filesystem. This can be 
via a ramdisk, as shown in the previous section, or by mounting a real filesystem  
on a block device. The code for all of this is in init/main.c, starting with the 
function rest_init() which creates the first thread with PID 1 and runs the code 
in kernel_init(). If there is a ramdisk, it will try to execute the program /init, 
which will take on the task of setting up the user space.

If it fails to find and run /init, it tries to mount a filesystem by calling the function 
prepare_namespace() in init/do_mounts.c. This requires a root= command line 
to give the name of the block device to use for mounting, usually in the form:

• root=/dev/<disk name><partition number>

• root=/dev/<disk name>p<partition number>

For example, for the first partition on an SD card, that would be root=/dev/
mmcblk0p1. If the mount succeeds, it will try to execute /sbin/init, followed by  
/etc/init, /bin/init, and then /bin/sh, stopping at the first one that works.

The init program can be overridden on the command line. For a ramdisk, use 
rdinit=, (I used rdinit=/bin/sh earlier to execute a shell) and, for a filesystem,  
use init=.

Kernel messages
Kernel developers are fond of printing out useful information through liberal use 
of printk() and similar functions. The messages are categorized according to 
importance, 0 being the highest:

Level Value Meaning
KERN_EMERG 0 The system is unusable
KERN_ALERT 1 Action must be taken immediately
KERN_CRIT 2 Critical conditions
KERN_ERR 3 Error conditions
KERN_WARNING 4 Warning conditions
KERN_NOTICE 5 Normal but significant conditions
KERN_INFO 6 Informational
KERN_DEBUG 7 Debug-level messages
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They are first written to a buffer, __log_buf, the size of which is two to the power of 
CONFIG_LOG_BUF_SHIFT. For example, if it is 16, then __log_buf is 64 KiB. You can 
dump the entire buffer using the command dmesg.

If the level of a message is less than the console log level, it is displayed on the console 
as well as being placed in __log_buf. The default console log level is 7, meaning that 
messages of level 6 and lower are displayed, filtering out KERN_DEBUG which is level 
7. You can change the console log level in several ways, including by using the kernel 
parameter loglevel=<level> or the command dmesg -n <level>.

Kernel command line
The kernel command line is a string that is passed to the kernel by the bootloader, 
via the bootargs variable in the case of U-Boot; it can also be defined in the device 
tree, or set as part of the kernel configuration in CONFIG_CMDLINE.

We have seen some examples of the kernel command line already but there are  
many more. There is a complete list in Documentation/kernel-parameters.txt. 
Here is a smaller list of the most useful ones:

Name Description
debug Sets the console log level to the highest level, eight, to ensure that 

you see all the kernel messages on the console.
init= The init program to run from a mounted root filesystem, which 

defaults to /sbin/init.
lpj= Sets the loops_per_jiffy to a given constant, see the following 

paragraph.
panic= Behavior when the kernel panics: if it is greater than zero, it gives 

the number of seconds before rebooting; if it is zero, it waits 
forever (this is the default); or if it is less than zero, it reboots 
without any delay.

quiet Sets the console log level to one, suppressing all but emergency 
messages. Since most devices have a serial console, it takes time 
to output all those strings. Consequently, reducing the number of 
messages using this option reduces boot time.

rdinit= The init program to run from a ramdisk, it defaults to /init.
ro Mounts the root device as read-only. Has no effect on a ramdisk 

which is always read/write.
root= Device to mount the root filesystem.
rootdelay= The number of seconds to wait before trying to mount the root 

device, defaults to zero. Useful if the device takes time to probe 
the hardware, but also see rootwait.
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Name Description
rootfstype= The filesystem type for the root device. In many cases, it is auto-

detected during mount, but it is required for jffs2 filesystems.
rootwait Waits indefinitely for the root device to be detected. Usually 

necessary with mmc devices.
rw Mounts the root device as read-write (default).

The lpj parameter is often mentioned in connection with reducing the kernel boot 
time. During initialization, the kernel loops for approximately 250 ms to calibrate  
a delay loop. The value is stored in the variable loops_per_jiffy, and reported  
like this:

Calibrating delay loop... 996.14 BogoMIPS (lpj=4980736)

If the kernel always runs on the same hardware it will always calculate the same 
value. You can shave 250 ms off the boot time by adding lpj=4980736 to the 
command line.

Porting Linux to a new board
The scope of the task depends on how similar your board is to an existing 
development board. In Chapter 3, All About Bootloaders we ported U-Boot to a new 
board, named Nova, which is based on the BeagleBone Black (when I say based, it 
actually is one) so, in this case, there are very few changes to the kernel code to be 
made. If you are porting to completely new and innovative hardware, there will  
be more to do. I am only going to consider the simple case.

The organization of architecture-specific code in arch/$ARCH differs from one 
system to another. The x86 architecture is pretty clean because hardware details are 
detected at runtime. The PowerPC architecture puts SoC and board-specific files in 
subdirectory platforms. The ARM architecture has the most board and SoC-specific 
files of all because there are a lot of ARM boards and SoCs. Platform-dependent code 
is in directories named mach-* in arch/arm, approximately one per SoC. There are 
other directories named plat-* which contain code common to several versions of 
an SoC. In the case of the Nova board, the relevant directory is mach-omap2. Don't be 
fooled by the name, though, it contains support for OMAP2, 3, and 4 chips.

In the following sections, I am going do the port to the Nova board in two different 
ways. Firstly, I am going to show you how to do this with a device tree, and then 
without, since there are a lot of devices in the field that fit in this category. You will 
see that it is much simpler when you have a device tree.
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With a device tree
The first thing to do is create a device tree for the board and modify it to describe the 
additional or changed hardware on the board. In this simple case, we will just copy 
am335x-boneblack.dts to nova.dts and change the board name:

/dts-v1/;
#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"
/ {
     model = "Nova";
     compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";
  };
...

We can build nova.dtb explicitly:

$ make  ARCH=arm nova.dtb

Or, if we want nova.dtb to be produced by default for the OMAP2 platform with 
make ARCH=arm dtbs then we could add the following line to arch/arm/boot/dts/
Makefile:

dtb-$(CONFIG_SOC_AM33XX) += \
[...]
nova.dtb \
[...]

Now we can boot the same zImage file as before, configured with multi_v7_
defconfig, but load the nova.dtb as we can see here:

Starting kernel ...

[    0.000000] Booting Linux on physical CPU 0x0
[    0.000000] Initializing cgroup subsys cpuset
[    0.000000] Initializing cgroup subsys cpu
[    0.000000] Initializing cgroup subsys cpuacct
[    0.000000] Linux version 3.18.3-dirty (chris@builder) (gcc  
version 4.9.1 (crosstool-N
G 1.20.0) ) #1 SMP Wed Jan 28 07:50:50 GMT 2015
[    0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7),  
cr=10c5387d
[    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT  
aliasing instruction cache
[    0.000000] Machine model: Nova
...

We could create a custom configuration by taking a copy of multi_v7_defconfig 
and adding in those features we need, and cutting down code size by leaving out 
those we don't.



Porting and Configuring the Kernel

[ 682 ]

Without a device tree
Firstly, we need to create a configuration name for the board, in this case, it is 
NOVABOARD. We need to add this to the Kconfig file of the mach- directory for  
your SoC and we need to add a dependency for the SoC support itself, which  
is OMAPAM33XX.

These lines are added to arch/arm/mach-omap2/Kconfig:

config MACH_NOVA BOARD
bool "Nova board"
depends on SOC_OMAPAM33XX
default n

There is a source file named board-*.c for each board, which contains code and 
configurations which are specific to the target. In our case, it is board-nova.c, based 
on a copy of board-am335xevm.c. There must be a rule to compile it, conditional on 
CONFIG_MACH_NOVABOARD, which this addition to arch/arm/mach-omap2/Makefile 
takes care of:

obj-$(CONFIG_MACH_NOVABOARD) += board-nova.o

Since we are not using the device tree to identify the board, we will have to use 
the older machine number mechanism. This is a number unique to each board that 
is passed by the bootloader in register r1, and which the ARM start code will use 
to select the correct board support. The definitive list of ARM machine numbers 
is held at: www.arm.linux.org.uk/developer/machines/download.php. You 
can request a new machine number from: www.arm.linux.org.uk/developer/
machines/?action=new#.

If we hijack machine number 4242, we could add it to arch/arm/tools/mach-
types, as shown:

machine_is_xxx   CONFIG_xxxx        MACH_TYPE_xxx      number
...
nova_board       MACH_NOVABOARD     NOVABOARD          4242

When we build the kernel, it will be used to create the mach-types.h header file 
present in include/generated/.

The machine number and the board support are tied together by a structure which is 
defined like this:

MACHINE_START(NOVABOARD, "nova_board")
/* Maintainer: Chris Simmonds */
.atag_offset    = 0x100,
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.map_io         = am335x_evm_map_io,

.init_early     = am33xx_init_early,

.init_irq       = ti81xx_init_irq,

.handle_irq     = omap3_intc_handle_irq,

.timer          = &omap3_am33xx_timer,

.init_machine   = am335x_evm_init,
MACHINE_END

Note that there may be more than one machine structure in a board file, allowing 
us to create a kernel that will run on several different boards. The machine number 
passed by the bootloader selects the correct one.

Finally, we need a new default configuration for our board, which selects CONFIG_
MACH_NOVABOARD and other configuration options specific to it. In the following 
example, it would be in arch/arm/configs/novaboard_defconfig. Now you can 
build the kernel image as usual:

$ make ARCH=arm novaboard_defconfig

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi-  
zImage

There is still one step before the job is finished. The bootloader needs to be modified 
to pass the right machine number. Assuming that you are using U-Boot, you need to 
copy the machine numbers generated by Linux in arch/arm/include/asm/mach-
types.h to U-Boot file arch/arm/include/asm/mach-types.h. Then you need to 
update the configuration header file for Nova, include/configs/nova.h, and add 
the following line:

#define CONFIG_MACH_TYPE          MACH_TYPE_NOVABOARD

Now, at last, you can build U-Boot and use it to boot the new kernel on the  
Nova board:

Starting kernel ...

[    0.000000] Linux version 3.2.0-00246-g0c74d7a-dirty  
(chris@builder) (gcc version 4.9.
1 (crosstool-NG 1.20.0) ) #3 Wed Jan 28 11:45:10 GMT 2015
[    0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7),  
cr=10c53c7d
[    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT  
aliasing instruction cache
[    0.000000] Machine: nova_board
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Additional reading
The following resources have further information about the topics introduced in  
this chapter:

• Linux Kernel Newbies, kernelnewbies.org
• Linux Weekly News, www.lwn.net

Summary
Linux is a very powerful and complex operating system kernel that can be married to 
various types of user space ranging from a simple embedded device, to increasingly 
complex mobile devices using Android, to a full server operating system. One of its 
strengths is the degree of configurability. The definitive place to get the source code 
is www.kerenl.org, but you will probably need to get the source for a particular SoC 
or board from the vendor of that device or a third-party that supports that device. 
The customization of the kernel for a particular target may consist of changes to  
the core kernel code, additional drivers for devices that are not in mainline Linux,  
a default kernel configuration file and, a device tree source file.

Normally you start with the default configuration for your target board, and then 
tweak it by running one of the configuration tools such as menuconfig. One of the 
things you should consider at this point is whether kernel features and drivers should 
be compiled as modules or built-in. Kernel modules are usually no great advantage 
for embedded systems, where the feature set and hardware are usually well defined. 
However, modules are often used as a way to import proprietary code into the kernel, 
and also to reduce boot time by loading non-essential drivers after boot. Building the 
kernel produces a compressed kernel image file, named zImage, bzImage, or uImage 
depending on the bootloader you will be using and the target architecture. A kernel 
build will also generate any kernel modules (as .ko files) that you have configured,  
and device tree binaries (as .dtb files) if your target requires them.

Porting Linux to a new target board can be quite simple or very difficult depending 
on how different the hardware is from that in the mainline or vendor supplied kernel. 
If your hardware is based on a well-known reference design, then it may be just a 
question of making changes to the device tree or to the platform data. You may well 
need to add device drivers, which I discuss in Chapter 8, Introducing Device Drivers. 
However, if the hardware is radically different to a reference design, you may need 
additional core support, which is outside the scope of this book.

The kernel is the core of a Linux based system, but it cannot work by itself. It requires 
a root filesystem that contains user space. The root filesystem can be a ramdisk or a 
filesystem accessed via a block device, which will be the subject of the next chapter.  
As we have seen, booting a kernel without a root filesystem results in a kernel panic.
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Building a Root Filesystem
The root filesystem is the fourth and final element of embedded Linux. Once you 
have read this chapter, you will be able build, boot, and run a simple embedded 
Linux system.

This chapter explores the fundamental concepts behind the root filesystem by 
building one from scratch. The main aim is to provide the background information 
that you need to understand and make best use of build systems like Buildroot and 
the Yocto Project, which I will cover in Chapter 6, Selecting a Build System.

The techniques I will describe here are broadly known as roll your own or RYO. Back 
in the earlier days of embedded Linux, it was the only way to create a root filesystem. 
There are still some use cases where an RYO root filesystem is applicable, for example, 
when the amount of RAM or storage is very limited, for quick demonstrations, or 
for any case in which your requirements are not (easily) covered by the standard 
build system tools. Nevertheless, these cases are quite rare. Let me emphasize that 
the purpose of this chapter is educational, it is not meant to be a recipe for building 
everyday embedded systems: use the tools described in the next chapter for that.

The first objective is to create a minimal root filesystem that will give us a shell 
prompt. Then, using that as a base, we will add scripts to start up other programs 
and configure a network interface and user permissions. Knowing how to build the 
root filesystem from scratch is a useful skill and it will help you to understand what 
is going on when we look at more complex examples in later chapters.
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What should be in the root filesystem?
The kernel will get a root filesystem, either as a ramdisk, passed as a pointer from 
the bootloader, or by mounting the block device given on the kernel command line 
by the root= parameter. Once it has a root filesystem, the kernel will execute the 
first program, by default named init, as described in the section Early Userspace in 
Chapter 4, Porting and Configuring the Kernel. Then, as far as the kernel is concerned, 
its job is complete. It is up to the init program to begin processing scripts, start 
other programs, and so on, by calling system functions in the C library, which 
translate into kernel system calls.

To make a useful system, you need these components as a minimum:

• init: The program that starts everything off, usually by running a series  
of scripts.

• shell: Needed to give you a command prompt but, more importantly,  
to run the shell scripts called by init and other programs.

• daemons: Various server programs, started by init.
• libraries: Usually, the programs mentioned so far are linked with shared 

libraries which must be present in the root filesystem.
• Configuration files: The configuration for init and other daemons is  

stored in a series of ASCII text files, usually in the /etc directory.
• Device nodes: The special files that give access to various device drivers.
• /proc and /sys: Two pseudo filesystems that represent kernel data structures 

as a hierarchy of directories and files. Many programs and library functions 
read these files.

• kernel modules: If you have configured some parts of your kernel to be 
modules, they will be here, usually in /lib/modules/[kernel version].

In addition, there are the system application or applications that make the device do 
the job it is intended for, and the runtime end user data that they collect.

As an aside, it is possible to condense all of the above into a single program. You 
could create a statically linked program that is started instead of init and runs 
no others. I have come across such a configuration only once. For example, if your 
program was named /myprog, you would put the following command in the kernel 
command line:

init=/myprog
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Or, if the root filesystem was loaded as a ramdisk, you would put the  
following command:

rdinit=/myprog

The downside of this approach is that you can't make use of the many tools that 
normally go into an embedded system; you have to do everything yourself.

Directory layout
Interestingly, Linux does not care about the layout of files and directories beyond 
the existence of the program named by init= or rdinit=, so you are free to put 
things wherever you like. As an example, compare the file layout of a device running 
Android to that of a desktop Linux distribution: they are almost completely different.

However, many programs expect certain files to be in certain places, and it helps us 
developers if devices use a similar layout, Android aside. The basic layout of a Linux 
system is defined in the Filesystem Hierarchy Standard (FHS), see the reference 
at the end of this chapter. The FHS covers all implementations of Linux operating 
systems from the largest to the smallest. Embedded devices have a sub-set based  
on need but it usually includes the following:

• /bin: programs essential for all users
• /dev: device nodes and other special files
• /etc: system configuration
• /lib: essential shared libraries, for example, those that make up the C library
• /proc: the proc filesystem
• /sbin: programs essential to the system administrator
• /sys: the sysfs filesystem
• /tmp: a place to put temporary or volatile files
• /usr: as a minimum, this should contain the directories /usr/bin, /usr/lib 

and /usr/sbin, which contain additional programs, libraries, and system 
administrator utilities

• /var: a hierarchy of files and directories that may be modified at runtime,  
for example, log messages, some of which must be retained after boot
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There are some subtle distinctions here. The difference between /bin and /sbin is 
simply that /sbin need not be included in the search path for non-root users. Users 
of Red Hat-derived distributions will be familiar with this. The significance of /usr 
is that it may be in a separate partition from the root filesystem so it cannot contain 
anything that is needed to boot the system up. That is what essential means in the 
preceding description: it contains files that are needed at boot time and so must be 
part of the root filesystem.

While it might seem like overkill to have four directories to store 
programs, a counter argument would be that it does no harm, and 
it may even do some good because it allows you to store /usr in a 
different filesystem.

Staging directory
You should begin by creating a staging directory on your host computer where 
you can assemble the files that will eventually be transferred to the target. In the 
following examples, I have used ~/rootfs. You need to create a skeleton directory 
structure in that, for example:

$ mkdir ~/rootfs

$ cd ~/rootfs

$ mkdir bin dev etc home lib proc sbin sys tmp usr var

$ mkdir usr/bin usr/lib usr/sbin

$ mkdir var/log

To see the directory hierarchy more clearly you can use the handy tree command, 
used in the following example with the -d option to show only directories:

$ tree -d

├── bin

├── dev

├── etc

├── home

├── lib

├── proc

├── sbin

├── sys
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├── tmp

├── usr

│   ├── bin

│   ├── lib

│   └── sbin

└── var

    └── log

POSIX file access permissions
Every process which, in the context of this discussion, means every running program, 
belongs to a user and one or more groups. The user is represented by a 32-bit number 
called the user ID or UID. Information about users, including the mapping from a UID 
to a name, is kept in /etc/passwd. Likewise, groups are represented by a group ID or 
GID, with information kept in /etc/group. There is always a root user with a UID of 
0 and a root group with a GID of 0. The root user is also called the super-user because, 
in a default configuration, it bypasses most permission checks and can access all the 
resources in the system. Security in Linux-based systems is mainly about restricting 
access to the root account.

Each file and directory also has an owner and belongs to exactly one group. The level 
of access a process has to a file or directory is controlled by a set of access permission 
flags, called the mode of the file. There are three collections of three bits: the first 
collection applies to the owner of the file, the second to members of the same group 
as the file, and the last to everyone else, the rest of the world. The bits are for read (r), 
write (w), and execute (x) permissions on the file. Since three bits fit neatly into an 
octal digit, they are usually represented in octal, as shown in the following figure:
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There is a further group of three bits that have special meanings:

• SUID (4): If the file is an executable, change the effective UID of the process 
to that of the owner of the file.

• SGID (2): If the file is an executable, change the effective GID of the process 
to that of the group of the file.

• Sticky (1): In a directory, restrict deletion so that one user cannot delete files 
that are owned by another user. This is usually set on /tmp and /var/tmp.

The SUID bit is probably the most often used. It gives non-root users a temporary 
privilege escalation to super-user to perform a task. A good example is the ping 
program: ping opens a raw socket which is a privileged operation. In order for 
normal users to use ping, it is normally owned by the root and has the SUID bit  
set so that, when you run ping, it executes with UID 0 regardless of your UID.

To set these bits, use the octal numbers, 4, 2, 1, with the chmod command. For example, 
to set SUID on /bin/ping in your staging root directory, you could use the following:

$ cd ~/rootfs

$ ls -l bin/ping

-rwxr-xr-x 1 root root 35712 Feb  6 09:15 bin/ping

$ sudo chmod 4755 bin/ping

$ ls -l bin/ping

-rwsr-xr-x 1 root root 35712 Feb  6 09:15 bin/ping

Note the s in the last file listing: that is the indication 
that SUID is set.

File ownership permissions in the staging directory
For security and stability reasons, it is vitally important to pay attention to the 
ownership and permissions of the files that will be placed on the target device. 
Generally speaking, you want to restrict sensitive resources to be accessible only  
by the root and to run as many of the programs using non-root users so that, if they 
are compromised by an outside attack, they offer as few system resources to the 
attacker as possible. For example, the device node /dev/mem gives access to system 
memory, which is necessary in some programs. But, if it is readable and writeable  
by everyone, then there is no security because everyone can access everything. So  
/dev/mem should be owned by root, belong to the root group and have a mode of 
600, which denies read and write access to all but the owner.
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There is a problem with the staging directory though. The files you create there will 
be owned by you but, when they are installed on the device, they should belong to 
specific owners and groups, mostly the root user. An obvious fix is to change the 
ownership at this stage with the command shown here:

$ cd ~/rootfs

$ sudo chown -R root:root *

The problem is that you need root privileges to run that command and, from that 
point onward, you will need to be root to modify any files in the staging directory. 
Before you know it, you are doing all your development logged on as root, which  
is not a good idea. This is a problem that we will come back to later.

Programs for the root filesystem
Now, it is time to start populating the root filesystem with the essential programs 
and the supporting libraries, configuration, and data files that it needs to operate, 
beginning with an overview of the types of program you will need.

The init program
You have seen in the previous chapter that init is the first program to be run and so 
has PID 1. It runs as the root user and so has maximum access to system resources. 
Usually, it runs shell scripts which start daemons: a daemon is a program that runs 
in the background with no connection to a terminal, in other places it would be 
called a server program.

Shell
We need a shell to run scripts and to give us a command-line prompt so that we 
can interact with the system. An interactive shell is probably not necessary in a 
production device, but it is useful for development, debugging, and maintenance. 
There are various shells in common use in embedded systems:

• bash: is the big beast that we all know and love from desktop Linux. It is a 
superset of the Unix Bourne shell, with many extensions or bashisms.

• ash: also based on the Bourne shell, and has a long history with the BSD 
variants of Unix. Busybox has a version of ash which has been extended  
to make it more compatible with bash. It is much smaller than bash and 
hence is a very popular choice for embedded systems.
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• hush: is a very small shell that we briefly looked at in the chapter on 
bootloaders. It is useful on devices with very little memory. There is a  
version in BusyBox.

If you are using ash or hush as the shell on the target, make sure 
that you test your shell scripts on the target. It is very tempting 
to test them only on the host, using bash, and then be surprised 
that they don't work when you copy them to the target.

Utilities
The shell is just a way of launching other programs and a shell script is little more than 
a list of programs to run, with some flow control and a means of passing information 
between programs. To make a shell useful, you need the utility programs that the Unix 
command-line is based on. Even for a basic root filesystem, there are approximately 50 
utilities, which presents two problems. Firstly, tracking down the source code for each 
and cross compiling it would be quite a big job. Secondly, the resulting collection of 
programs would take up several tens of megabytes, which was a real problem in the 
early days of embedded Linux when a few megabytes was all you had. To solve this 
problem, BusyBox was born.

BusyBox to the rescue!
The genesis of BusyBox had nothing to do with embedded Linux. The project was 
instigated in 1996 by Bruce Perens for the Debian installer so that he could boot 
Linux from a 1.44 MB floppy disk. Coincidentally, that was about the size of the 
storage on contemporary devices and so the embedded Linux community quickly 
took it up. BusyBox has been at the heart of embedded Linux ever since.

BusyBox was written from scratch to perform the essential functions of those 
essential Linux utilities. The developers took advantage of the 80:20 rule: the most 
useful 80% of a program is implemented in 20% of the code. Hence, BusyBox tools 
implement a subset of the functions of the desktop equivalents, but they do enough 
to be useful in the majority of cases.

Another trick BusyBox employs is to combine all the tools together into a single 
binary, making it easy to share code between them. It works like this: BusyBox  
is a collection of applets, each of which exports its main function in the form 
[applet]_main. For example, the cat command is implemented in coreutils/
cat.c and exports cat_main. The main function of BusyBox itself dispatches the  
call to the correct applet based on the command-line arguments.
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So, to read a file, you can launch busybox with the name of the applet you want to 
run, followed by any arguments the applet expects, as shown here:

$ busybox cat my_file.txt

You can also run busybox with no arguments to get a list of all the applets that have 
been compiled.

Using BusyBox in this way is rather clumsy. A better way to get BusyBox to run the 
cat applet is to create a symbolic link from /bin/cat to /bin/busybox:

$ ls -l bin/cat bin/busybox

-rwxr-xr-x 1 chris chris 892868 Feb  2 11:01 bin/busybox

lrwxrwxrwx 1 chris chris      7 Feb  2 11:01 bin/cat -> busybox

When you type cat at the command line, busybox is the program that actually  
runs. BusyBox only has to check the command tail passed in argv[0], which will  
be /bin/cat, extract the application name, cat, and do a table look-up to match  
cat with cat_main. All this is in libbb/appletlib.c in this section of code  
(slightly simplified):

applet_name = argv[0];
applet_name = bb_basename(applet_name);
run_applet_and_exit(applet_name, argv);

BusyBox has over three hundred applets including an init program, several shells 
of varying levels of complexity, and utilities for most admin tasks. There is even a 
simple version of the vi editor so you can change text files on your device.

To summarize, a typical installation of BusyBox consists of a single program with a 
symbolic link for each applet, but which behaves exactly as if it were a collection of 
individual applications.

Building BusyBox
BusyBox uses the same Kconfig and Kbuild system of the kernel, so cross compiling 
is straightforward. You can get the source by cloning the git archive and checking 
out the version you want (1_24_1 was the latest at the time of writing), like this:

$ git clone git://busybox.net/busybox.git

$ cd busybox

$ git checkout 1_24_1
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You can also download the corresponding tarball file from http://busybox.
net/downloads. Then, configure BusyBox, starting in this case with the default 
configuration, which enables pretty much all of the features of BusyBox:

$ make distclean

$ make defconfig

At this point, you probably want to run make menuconfig to fine tune the 
configuration. You almost certainly want to set the install path in Busybox  
Settings | Installation Options (CONFIG_PREFIX) to point to the staging  
directory. Then, you can cross compile in the usual way:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

The result is the executable, busybox. For a defconfig build for ARM v7a,  
it comes out at about 900 KiB. If that is too big for you, you can slim it down  
by configuring out the utilities you don't need.

To install BusyBox, use the following command:

$ make install

This will copy the binary to the directory configured in CONFIG_PREFIX and  
create all the symbolic links to it.

ToyBox – an alternative to BusyBox
BusyBox is not the only game in town. For example, Android has an equivalent 
named Toolbox, but it is more tuned to the needs of Android and not useful in 
a general purpose embedded environment. A more useful option is ToyBox, a 
project started and maintained by Rob Landley, who was previously a maintainer 
of BusyBox. ToyBox has the same aim as BusyBox, but with more emphasis 
on complying with standards, especially POSIX-2008 and LSB 4.1, and less on 
compatibility with GNU extensions to those standards. ToyBox is smaller than 
BusyBox, partly because it implements fewer applets.

However, the main difference is the license, BSD rather than GPL v2, which  
makes it license-compatible with operating systems with a BSD-licensed user  
space, such as Android itself.
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Libraries for the root filesystem
Programs are linked with libraries. You could link them all statically, in which case, 
there would be no libraries on the target device. But, that takes up an unnecessarily 
large amount of storage if you have more than two or three programs. So, you need 
to copy shared libraries from the toolchain to the staging directory. How do you 
know which libraries?

One option is to copy all of them since they must be of some use, otherwise they 
wouldn't exist! That is certainly logical and, if you are creating a platform to be  
used by others for a range of applications, that would be the correct approach.  
Be aware, though, that a full glibc is quite large. In the case of a CrossTool-NG  
build of glibc 2.19, the space taken by /lib and /usr/lib is 33 MiB. Of course,  
you could cut down on that considerably by using uClibc or musl libc libraries.

Another option is to cherry pick only those libraries that you require, for which you 
need a means of discovering library dependencies. Using some of our knowledge 
from Chapter 2, Learning About Toolchains libraries, you can use readelf for that task:

$ cd ~/rootfs

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "program 
interpreter"

      [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "Shared 
library"

0x00000001 (NEEDED)              Shared library: [libm.so.6]

0x00000001 (NEEDED)              Shared library: [libc.so.6]

Now you need to find these files in the toolchain and copy them to the staging 
directory. Remember that you can find sysroot like this:

$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8- 
linux-gnueabihf/sysroot

To reduce the amount of typing, I am going to keep a copy of that in a shell variable:

$ export SYSROOT=`arm-cortex_a8-linux-gnueabihf-gcc -print- 
sysroot`

If you look at /lib/ld-linux-armhf.so.3, in sysroot, you will see that, it is, in 
fact, a symbolic link:

$ ls -l $SYSROOT/lib/ld-linux-armhf.so.3

[...]/sysroot/lib/ld-linux-armhf.so.3 -> ld-2.19.so
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Repeat the exercise for libc.so.6 and libm.so.6 and you will end up with a list of 
three files and three symbolic links. Copy them using cp -a, which will preserve the 
symbolic link:

$ cd ~/rootfs
$ cp -a $SYSROOT/lib/ld-linux-armhf.so.3 lib
$ cp -a $SYSROOT/lib/ld-2.19.so lib
$ cp -a $SYSROOT/lib/libc.so.6 lib
$ cp -a $SYSROOT/lib/libc-2.19.so lib
$ cp -a $SYSROOT/lib/libm.so.6 lib
$ cp -a $SYSROOT/lib/libm-2.19.so lib

Repeat this procedure for each program.

It is only worth doing this to get the very smallest embedded footprint 
possible. There is a danger that you will miss libraries that are loaded 
through dlopen(3) calls - plugins mostly. We will look at an example 
with the NSS libraries when we come to configure network interfaces 
later on in this chapter.

Reducing size by stripping
Libraries and programs are often compiled with a symbol table information built in, 
more so if you have compiled with the debug switch, -g. You seldom need these on 
the target. A quick and easy way to save space is to strip them. This example shows 
libc before and after stripping:

$ file rootfs/lib/libc-2.19.so
rootfs/lib/libc-2.19.so: ELF 32-bit LSB shared object, ARM, version 1  
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 3.15.4,  
not stripped
$ ls -og rootfs/lib/libc-2.19.so
-rwxrwxr-x 1 1547371 Feb  5 10:18 rootfs/lib/libc-2.19.so
$ arm-cortex_a8-linux-gnueabi-strip rootfs/lib/libc-2.19.so
$ file rootfs/lib/libc-2.19.so
rootfs/lib/libc-2.19.so: ELF 32-bit LSB shared object, ARM, version 1  
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 3.15.4,  
stripped
$ ls -l rootfs/lib/libc-2.19.so
-rwxrwxr-x 1 chris chris 1226024 Feb  5 10:19 rootfs/lib/libc-2.19.so
$ ls -og rootfs/lib/libc-2.19.so
-rwxrwxr-x 1 1226024 Feb  5 10:19 rootfs/lib/libc-2.19.so

In this case, we saved 321,347 bytes, which was about 20%.

When stripping kernel modules, use the following command:
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strip --strip-unneeded <module name>

Otherwise, you will strip out the symbols needed to relocate the module code and it 
will fail to load.

Device nodes
Most devices in Linux are represented by device nodes, in accordance with the Unix 
philosophy that everything is a file (except network interfaces, which are sockets). A 
device node may refer to a block device or a character device. Block devices are mass 
storage devices such as SD cards or hard drives. A character device is pretty much 
anything else, once again with the exception of network interfaces. The conventional 
location for device nodes is the directory /dev. For example, a serial port may be 
represented by the device node /dev/ttyS0.

Device nodes are created using the program mknod (short for make node):

mknod <name> <type> <major> <minor>

name is the name of the device node that you want to create, type is either, c for 
character devices, and b for block. They each have a major number and a minor 
number which is used by the kernel to route file requests to the appropriate device 
driver code. There is a list of standard major and minor numbers in the kernel source 
in Documentation/devices.txt.

You will need to create device nodes for all the devices you want to access on your 
system. You can do that manually by using the mknod command as I will illustrate 
here, or you can use one of the device managers mentioned later to create them 
automatically, at runtime.

You need just two nodes to boot with BusyBox: console and null. The console only 
needs to be accessible to root, the owner of the device node, so the access permissions 
are 600. The null device should be readable and writable by everyone, so the mode is 
666. You can use the -m option to mknod to set the mode when creating the node. You 
need to be root to create a device node:

$ cd ~/rootfs
$ sudo mknod -m 666 dev/null c 1 3
$ sudo mknod -m 600 dev/console c 5 1
$ ls -l dev
total 0
crw------- 1 root root 5, 1 Oct 28 11:37 console
crw-rw-rw- 1 root root 1, 3 Oct 28 11:37 null

You delete device nodes by using the standard rm command: there is no rmnod 
command because, once created, they are just files.
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The proc and sysfs filesystems
proc and sysfs are two pseudo filesystems that give a window onto the inner 
workings of the kernel. They both represent kernel data as files in a hierarchy of 
directories: when you read one of the files, the contents you see do not come from 
disk storage, it has been formatted on-the-fly by a function in the kernel. Some files 
are also writable, meaning that a kernel function is called with the new data you 
have written and, if it is of the correct format and you have sufficient permissions,  
it will modify the value stored in the kernel's memory. In other works, proc and 
sysfs provide another way to interact with device drivers and other kernel code.

proc and sysfs should be mounted on the directories /proc and /sys:

mount -t proc proc /proc

mount -t sysfs sysfs /sys

Although they are very similar in concept, they perform different functions. proc has 
been part of Linux since the early days. Its original purpose was to expose information 
about processes to user space, hence the name. To this end, there is a directory for each 
process named /proc/<PID> which contains information about its state. The process 
list command, ps, reads these files to generate its output. In addition, there are files 
that give information about other parts of the kernel, for example, /proc/cpuinfo tells 
you about the CPU, /proc/interrupts has information about interrupts, and so on. 
Finally, in /proc/sys, there are files that display and control the state and behavior  
of kernel sub-systems, especially scheduling, memory management, and networking. 
The best reference for the files you will find in proc is man page proc(5).

In fact, over time, the number of files in proc and their layout has become rather 
chaotic. In Linux 2.6, sysfs was introduced to export a subset of the data in an 
ordered way.

In contrast, sysfs exports a very ordered hierarchy of files relating to devices and 
the way they are connected to each other.

Mounting filesystems
The mount command allows us to attach one filesystem to a directory within another, 
forming a hierarchy of filesystems. The one at the top, which was mounted by 
the kernel when it booted, is called the root filesystem. The format of the mount 
command is as follows:

mount [-t vfstype] [-o options] device directory
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You need to specify the type of the filesystem, vfstype, the block device node it 
resides on, and the directory you want to mount it to. There are various options you 
can give after the -o, have a look at the manual for more information. As an example, 
if you want to mount an SD card containing an ext4 filesystem in the first partition 
onto directory /mnt, you would type the following:

mount -t ext4 /dev/mmcblk0p1 /mnt

Assuming the mount succeeds, you would be able to see the files stored on the SD 
card in the directory /mnt. In some cases, you can leave out the filesystem type and 
let the kernel probe the device to find out what is stored there.

Looking at the example of mounting the proc filesystem, there is something odd: 
there is no device node, /dev/proc, since it is a pseudo filesystem, not a real one.  
But the mount command requires a device as a parameter. Consequently we have  
to give a string where the device should go, but it does not matter much what that 
string is. These two commands achieve exactly the same result:

mount -t proc proc /proc

mount -t proc nodevice /proc

It is fairly common to use the filesystem type in the place of the device when 
mounting pseudo filesystems.

Kernel modules
If you have kernel modules, they need to be installed into the root filesystem, using 
the kernel make modules_install target, as we saw in the last chapter. This will 
copy them into the directory /lib/modules/<kernel version> together with the 
configuration files needed by the modprobe command.

Be aware that you have just created a dependency between the kernel and the root 
filesystem. If you update one, you will have to update the other.
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Transfering the root filesystem to  
the target
Having created a skeleton root filesystem in your staging directory, the next task is to 
transfer it to the target. In the sections that follow, I will describe three possibilities:

• ramdisk: a filesystem image that is loaded into RAM by the bootloader. 
Ramdisks are easy to create and have no dependencies on mass storage 
drivers. They can be used in fall-back maintenance mode when the main  
root filesystem needs updating. They can even be used as the main root 
filesystem in small embedded devices and, of course, as the early user  
space in mainstream Linux distributions. A compressed ramdisk uses  
the minimum amount of storage but still consumes RAM. The contents  
are volatile so you need another storage type to store permanent data  
such as configuration parameters.

• disk image: a copy of the root filesystem formatted and ready to be loaded 
onto a mass storage device on the target. For example, it could be an image in 
ext4 format ready to be copied onto an SD card, or it could be in jffs2 format 
ready to be loaded into flash memory via the bootloader. Creating a disk image 
is probably the most common option. There is more information about the 
different types of mass storage in Chapter 7, Creating a Storage Strategy.

• network filesystem: the staging directory can be exported to the network 
via an NFS server and mounted by the target at boot-time. This is often done 
during the development phase in preference to repeated cycles of creating 
a disk image and reloading it onto the mass storage device, which is quite a 
slow process.

I will start with ramdisk and use it to illustrate a few refinements to the root 
filesystem, like adding user names and a device manager to create device nodes 
automatically. Then, I will show you how to create a disk image and, finally,  
how to use NFS to mount the root filesystem over a network.

Creating a boot ramdisk
A Linux boot ramdisk, strictly speaking, an initial RAM filesystem or initramfs, 
is a compressed cpio archive. cpio is an old Unix archive format, similar to TAR 
and ZIP but easier to decode and so requiring less code in the kernel. You need to 
configure your kernel with CONFIG_BLK_DEV_INITRD to support initramfs.
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In fact, there are three different ways to create a boot ramdisk: as a standalone cpio 
archive, as a cpio archive embedded in the kernel image, and as a device table which 
the kernel build system processes as part of the build. The first option gives the most 
flexibility because we can mix and match kernels and ramdisks to our hearts content. 
However, it means that you have two files to deal with instead of one and not all 
bootloaders have the facility to load a separate ramdisk. I will show you how to 
build one into the kernel later.

Standalone ramdisk
The following sequence of instructions creates the archive, compresses it and adds a 
U-Boot header ready for loading onto the target:

$ cd ~/rootfs

$ find . | cpio -H newc -ov --owner root:root > ../initramfs.cpio

$ cd ..

$ gzip initramfs.cpio

$ mkimage -A arm -O linux -T ramdisk -d initramfs.cpio.gz uRamdisk

Note that we ran cpio with the option --owner root:root. This is a quick fix for 
the file ownership problem mentioned earlier, making everything in the cpio file 
UID and GID 0.

The final size of the uRamdisk file is ~ 2.9 MiB, with no kernel modules. Add to that 
4.4 MiB for the kernel zImage file, and 440 KiB for U-Boot and this gives a total of 7.7 
MiB of storage needed to boot this board. We are a little way off the 1.44 MiB floppy 
that started it all off. If size was a real problem, you could use one of these options:

• Make the kernel smaller by leaving out drivers and functions you don't need
• Make BusyBox smaller by leaving out utilities you don't need
• Use uClibc or musl libc in place of glibc
• Compile BusyBox statically

Booting the ramdisk
The simplest thing we can do is to run a shell on the console so that we can interact 
with the device. We can do that by adding rdinit=/bin/sh to the kernel command 
line. Now, you can boot the device.
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Booting with QEMU
QEMU has the option -initrd to load initframfs into memory, so the full 
command is now as follows:

$ cd ~/rootfs

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel zImage  
-append "console=ttyAMA0 rdinit=/bin/sh" -dtb vexpress-v2p-ca9.dtb  
-initrd initramfs.cpio.gz

Booting the BeagleBone Black
To boot the BeagleBone Black, boot to the U-Boot prompt and enter these commands:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

fatload mmc 0:1 0x81000000 uRamdisk

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 0x81000000 0x80f00000

If all goes well, you will get a root shell prompt on the console.

Mounting proc
Note that the ps command doesn't work: that is because the proc filesystem has not 
been mounted yet. Try mounting it and run ps again.

A refinement to this setup is to write a shell script that contains things that need to 
be done at boot-up and give that as the parameter to rdinit=. The script would look 
like the following snippet:

#!/bin/sh

/bin/mount -t proc proc /proc

/bin/sh

Using a shell as init in this way is very handy for quick hacks, for example, when 
you want to rescue a system with a broken init program. However, in most cases, 
you would use an init program, which we will cover further down.
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Building a ramdisk cpio into the kernel image
In some cases, it is preferable to build the ramdisk into the kernel image, for 
example, if the bootloader cannot handle a ramdisk file. To do this, change the  
kernel configuration and set CONFIG_INITRAMFS_SOURCE to the full path of the  
cpio archive you created earlier. If you are using menuconfig, it is in General  
setup | Initramfs source file(s). Note that it has to be the uncompressed cpio  
file ending in .cpio; not the gzipped version. Then, build the kernel. You should  
see that it is larger than before.

Booting is the same as before, except that there is no ramdisk file. For QEMU,  
the command is like this:

$ cd ~/rootfs

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel zImage - 
append "console=ttyAMA0 rdinit=/bin/sh" -dtb vexpress-v2p-ca9.dtb

For the BeagleBone Black, enter these commands into U-Boot:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 – 0x80f00000

Of course, you must remember to rebuild the kernel each time you change the 
contents of the ramdisk and regenerate the .cpio file.

Another way to build a kernel with ramdisk
An interesting way to build the ramdisk into the kernel image is by using a device 
table to generate a cpio archive. A device table is a text file which lists the files, 
directories, device nodes, and links that go into the archive. The overwhelming 
advantage is that you can create entries in the cpio file that are owned by root, or 
any other UID, without having root privileges yourself. You can even create device 
nodes. All this is possible because the archive is just a data file. It is only when it is 
expanded by Linux at boot time that real files and directories get created, using the 
attributes you have specified.

Here is a device table for our simple rootfs, but missing most of the symbolic links 
to busybox to make it manageable:

dir /proc 0755 0 0

dir /sys 0755 0 0
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dir /dev 0755 0 0

nod /dev/console 0600 0 0 c 5 1

nod /dev/null 0666 0 0 c 1 3

nod /dev/ttyO0 0600 0 0 c 252 0

dir /bin 0755 0 0

file /bin/busybox /home/chris/rootfs/bin/busybox 0755 0 0

slink /bin/sh /bin/busybox 0777 0 0

dir /lib 0755 0 0

file /lib/ld-2.19.so /home/chris/rootfs/lib/ld-2.19.so 0755 0 0

slink /lib/ld-linux.so.3 /lib/ld-2.19.so 0777 0 0

file /lib/libc-2.19.so /home/chris/rootfs/lib/libc-2.19.so 0755 0 0

slink /lib/libc.so.6 /lib/libc-2.19.so 0777 0 0

file /lib/libm-2.19.so /home/chris/rootfs/lib/libm-2.19.so 0755 0 0

slink /lib/libm.so.6 /lib/libm-2.19.so 0777 0 0

The syntax is fairly obvious:

• dir <name> <mode> <uid> <gid>

• file <name> <location> <mode> <uid> <gid>

• nod <name> <mode> <uid> <gid> <dev_type> <maj> <min>

• slink <name> <target> <mode> <uid> <gid>

The kernel provides a tool that reads this file and creates a cpio archive. The source is 
in usr/gen_init_cpio.c. There is a handy script in scripts/gen_initramfs_list.
sh that creates a device table from a given directory, which saves a lot of typing.

To complete, the task, you need to set CONFIG_INITRAMFS_SOURCE to point to the 
device table file and then build the kernel. Everything else is the same as before.

The old initrd format
There is an older format for a Linux ramdisk, known as initrd. It was the only 
format available before Linux 2.6 and is still needed if you are using the mmu-less 
variant of Linux, uCLinux. It is pretty obscure and I will not cover it here. There is 
more information in the kernel source, in Documentation/initrd.txt.
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The init program
Running a shell, or even a shell script, at boot time is fine for simple cases, but really 
you need something more flexible. Normally, Unix systems run a program called 
init that starts up and monitors other programs. Over the years, there have been 
many init programs, some of which I will describe in Chapter 9, Starting up - the init 
Program. For now, I will briefly introduce the init from BusyBox.

init begins by reading the configuration file, /etc/inittab. Here is a simple 
example which is adequate for our needs:

::sysinit:/etc/init.d/rcS
::askfirst:-/bin/ash

The first line runs a shell script, rcS, when init is started. The second line prints 
the message Please press Enter to activate this console to the console, and starts a 
shell when you press Enter. The leading - before /bin/ash means that it will be a 
login shell, which sources /etc/profile and $HOME/.profile before giving the 
shell prompt. One of the advantages of launching the shell like this is that job control 
is enabled. The most immediate effect is that you can use Ctrl + C to terminate the 
current program. Maybe you didn't notice it before but, wait until you run the ping 
program and find you can't stop it!

BusyBox init provides a default inittab if none is present in the root filesystem.  
It is a little more extensive than the preceding one.

The script /etc/init.d/rcS is the place to put initialization commands that need  
to be performed at boot, for example, mounting the proc and sysfs filesystems:

#!/bin/sh
mount -t proc proc /proc
mount -t sysfs sysfs /sys

Make sure that you make rcS executable, like this:

$ cd ~/rootfs

$ chmod +x etc/init.d/rcS

You can try it out on QEMU by changing the -append parameter, like this:

-append "console=ttyAMA0 rdinit=/sbin/init"

To achieve the same on the BeagelBone Black, you need to change the bootargs 
variable in U-Boot as shown:

setenv bootargs console=ttyO0,115200 rdinit=/sbin/init
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Configuring user accounts
As I have hinted already, it is not good practice to run all programs as root since, 
if one is compromised by an outside attack, then the whole system is at risk and a 
misbehaving program can do more damage if it is running as root. It is preferable  
to create unprivileged user accounts and use them where full root is not necessary.

User names are configured in /etc/passwd. There is one line per user, with seven 
fields of information separated by colons:

• The login name
• A hash code used to verify the password , or more usually an x to indicate 

that the password is stored in /etc/shadow
• UID
• GID
• A comment field, often left blank
• The user's home directory
• (Optional) the shell this user will use

For example, this creates users root with UID 0 and daemon with UID 1:

root:x:0:0:root:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/false

Setting the shell for user daemon to /bin/false ensures that any attempt to log on 
with that name will fail.

Various programs have to read /etc/passwd so as to be able to 
look up UIDs and names, and so it has to be word-readable. That 
is a problem if the password hashes are stored in there because a 
malicious program would be able to take a copy and discover the 
actual passwords using a variety of cracker programs. Therefore, to 
reduce the exposure of this sensitive information, the passwords are 
stored in /etc/shadow and an x is placed in the password field to 
indicate that this is the case. /etc/shadow is only accessible as root, 
and, so as long as the root user is restricted, the passwords are safe.

The shadow password file consists of one entry per user, made up of nine fields. 
Here is an example that mirrors the passwd file shown in the preceding paragraph:

root::10933:0:99999:7:::
daemon:*:10933:0:99999:7:::
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The first two fields are the username and the password hash. The remaining seven 
are related to password aging, which is not usually an issue on embedded devices.  
If you are curious about the full details, refer to the manual page shadow(5).

In the example, the password for root is empty, meaning that root can log on 
without giving a password, which is useful during development, but not for 
production! You can generate a password hash by using the command mkpasswd or 
by running the passwd command on the target and copy and pasting the hash field 
from /etc/shadow on the target into the default shadow file in the staging directory.

The password for daemon is *, which will not match any logon password, once 
again ensuring that the daemon cannot be used as a regular user account.

Group names are stored in a similar way in /etc/group. The format is as follows:

• The name of the group
• The group password, usually an x character, indicating that there is no  

group password
• The GID
• An optional list of users who belong to this group, separated by commas.

Here is an example:

root:x:0:
daemon:x:1:

Adding user accounts to the root filesystem
Firstly, you have to add to your staging directory etc/passwd, etc/shadow, and 
etc/group, as shown in the preceding section. Make sure that the permissions of 
shadow are 0600.

The login procedure is started by a program called getty, which is part of BusyBox. 
You launch it from inittab using the keyword respawn, which restarts getty when 
a login shell is terminated, so inittab should read like this:

::sysinit:/etc/init.d/rcS
::respawn:/sbin/getty 115200 console

Then rebuild the ramdisk and try it out using QEMU or BeagelBone Black as before.
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Starting a daemon process
Typically, you would want to run certain background processes at start up. Let's take 
the log daemon, syslogd, as an example. The purpose of syslogd is to accumulate 
log messages from other programs, mostly other daemons. Naturally, BusyBox has 
an applet for that!

Starting the daemon is as simple as adding a line like this to etc/inittab:

::respawn:syslogd -n

respawn means that, if the program terminates, it will be automatically restarted;  
-n means that it should run as a foreground process. The log is written to /var/log/
messages.

You may also want to start klogd in the same way: klogd 
sends kernel log messages to syslogd so that they can be 
logged to permanent storage.
As an aside, I should mention that, in the case of a typical 
embedded Linux system, writing log files to flash memory 
is not such a good idea as it will wear it out. I will cover the 
options for logging in Chapter 7, Creating a Storage Strategy.

A better way of managing device nodes
Creating device nodes statically with mknod is quite hard work and inflexible. There 
are other ways to create device nodes automatically on demand:

• devtmpfs: This is a pseudo filesystem that you mount over /dev at boot 
time. The kernel populates it with device nodes for all the devices that the 
kernel currently knows about and creates nodes for new devices as they 
are detected at runtime. The nodes are owned by root and have default 
permissions of  0600. Some well-known device nodes, such as /dev/null  
and /dev/random, override the default to 0666 (see struct memdev in 
drivers/char/mem.c).

• mdev: This is a BusyBox applet that is used to populate a directory with 
device nodes and to create new nodes as needed. There is a configuration  
file, /etc/mdev.conf, which contains rules for ownership and the mode  
of the nodes.

• udev: This is now part of systemd and is the solution you will find on 
desktop Linux and some embedded devices. It is very flexible and a  
good choice for higher end embedded devices.
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Although both mdev and udev create the device nodes 
themselves, it is more usual to let devtmpfs do that job 
and use mdev/udev as a layer on top to implement the 
policy for setting ownership and permissions.

An example using devtmpfs
If you have booted up one of the earlier ramdisk examples, trying out devtmpfs  
is as simple as entering this command:

# mount -t devtmpfs devtmpfs /dev

You should see that /dev is full of device nodes. For a permanent fix, add this to  
/etc/init.d/rcS:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

In point of fact, kernel initialization does this automatically unless you have  
supplied an initramfs ramdisk as we have done! To see the code, look in the  
init/do_mounts.c, function prepare_namespace().

An example using mdev
While mdev is a bit more complex to set up, it does allow you to modify the 
permissions of device nodes as they are created. Firstly, there is a startup phase, 
selected by the -s option, when mdev scans the /sys directory looking for 
information about current devices and populates the /dev directory with the 
corresponding nodes.

If you want to keep track of new devices coming on line and create nodes for them 
as well, you need to make mdev a hotplug client by writing to /proc/sys/kernel/
hotplug. These additions to /etc/init.d/rcS will achieve all of that:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

echo /sbin/mdev > /proc/sys/kernel/hotplug

mdev -s
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The default mode is 660 and ownership is root:root. You can change that by 
adding rules in /etc/mdev.conf. For example, to give the null, random, and 
urandom devices their correct modes, you would add this to /etc/mdev.conf:

null     root:root 666

random   root:root 444

urandom  root:root 444

The format is documented in the BusyBox source code in docs/mdev.txt and there 
are more examples in the directory named examples.

Are static device nodes so bad after all?
Statically created device nodes do have one advantage: they don't take any time during 
boot to create, whereas the other methods do. If minimizing boot time is a priority, 
using statically-created device nodes will save a measurable amount of time.

Configuring the network
Next, let's look at some basic network configurations so that we can communicate 
with the outside world. I am assuming that there is an Ethernet interface, eth0,  
and that we only need a simple IP v4 configuration.

These examples use the network utilities that are part of BusyBox, and are sufficient 
for a simple use case, using the old-but-reliable ifup and ifdown programs. You 
can read the man pages on both for more details. The main network configuration is 
stored in /etc/network/interfaces. You will need to create these directories in the 
staging directory:

etc/network
etc/network/if-pre-up.d
etc/network/if-up.d
var/run

For a static IP address, etc/network/interfaces would look like this:

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
  address 10.0.0.42
  netmask 255.255.255.0
  network 10.0.0.0
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For a dynamic IP address allocated using DHCP, etc/network/interfaces would 
look like this:

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet dhcp

You will also have to configure a DHCP client program. BusyBox has one named 
udchpcd. It needs a shell script that should go in /usr/share/udhcpc/default.
script. There is a suitable default in the BusyBox source code in the directory 
examples//udhcp/simple.script.

Network components for glibc
glibc uses a mechanism known as the name service switch (NSS) to control the 
way that names are resolved to numbers for networking and users. User names, for 
example, may be resolved to UIDs via the file /etc/passwd; network services such  
as HTTP can be resolved to the service port number via /etc/services, and so on.  
All this is configured by /etc/nsswitch.conf, see the manual page, nss(5) for 
full details. Here is a simple example that will suffice for most embedded Linux 
implementations:

passwd:      files
group:       files
shadow:      files
hosts:       files dns
networks:    files
protocols:   files
services:    files

Everything is resolved by the correspondingly named file in /etc, except for the host 
names, which may additionally be resolved by a DNS lookup.

To make this work, you need to populate /etc with those files. Networks, protocols, 
and services are the same across all Linux systems, so they can be copied from /etc 
in your development PC. /etc/hosts should, at least contain, the loopback address:

127.0.0.1 localhost

We will come to the others, passwd, group, and shadow, later.
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The last piece of the jigsaw is the libraries that perform the name resolution. They are 
plugins that are loaded as needed based on the contents of nsswitch.conf, meaning 
that they do not show up as dependencies if you use readelf or similar. You will 
simply have to copy them from the toolchain's sysroot:

$ cd ~/rootfs

$ cp -a $TOOLCHAIN_SYSROOT/lib/libnss* lib

$ cp -a $TOOLCHAIN_SYSROOT/lib/libresolv* lib

Creating filesystem images with  
device tables
The kernel has a utility, gen_init_cpio, that creates a cpio file based on format 
instructions set out in a text file, called a device table, which allows a non-root 
user to create device nodes and to allocate arbitrary UID and GID values to any  
file or directory.

The same concept has been applied to tools that create other filesystem image formats:

• jffs2: mkfs.jffs2
• ubifs: mkfs.ubifs
• ext2: genext2fs

We will look at jffs2 and ubifs in Chapter 7, Creating a Storage Strategy, when  
we look at filesystems for flash memory. The third, ext2, is a fairly old format for 
hard drives.

They each take a device table file with the format <name> <type> <mode> <uid> 
<gid> <major> <minor> <start> <inc> <count> in which the following applies:

• name: Filename
• type: One of the following:

 ° f: A regular file
 ° d: A directory
 ° c: A character special device file
 ° b: A block special device file
 ° p: A FIFO (named pipe)

• uid  The UID of the file
• gid: The GID of the file
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• major and minor: the device numbers (device nodes only)
• start, inc, and count: (device nodes only) allow you to create a group of 

device nodes starting from the minor number in start

You do not have to specify every file, as with gen_init_cpio: you just have to point 
them at a directory – the staging directory – and list the changes and exceptions you 
need to make in the final filesystem image.

A simple example which populates static device nodes for us is as follows:

/dev         d  755  0    0  -    -    -    -    -
/dev/null    c  666  0    0    1    3    0    0  -
/dev/console c  600  0    0    5    1    0    0  -
/dev/ttyO0   c  600  0    0   252   0    0    0  -

Then, use genext2fs to generate a filesystem image of 4 MiB (that is 4,096 blocks of 
the default size, 1,024 bytes):

$ genext2fs -b 4096 -d rootfs -D device-table.txt -U rootfs.ext2

Now, you can copy the resulting image, rootfs.ext, to an SD card or similar.

Putting the root filesytem onto an SD card
This is an example of mounting a filesystem from a normal block device, such as  
an SD card. The same principles apply to other filesystem types and we will look  
at them in more detail in Chapter 7, Creating a Storage Strategy.

Assuming that you have a device with an SD card, and that the first partition is used 
for the boot files, MLO and u-boot.img – as on a BeagleBone Black. Assume also that 
you have used genext2fs to create a filesystem image. To copy it to the SD card, 
insert the card and identify the block device it has been assigned: typically /dev/sd 
or /dev/mmcblk0. If it is the latter, copy the filesystem image to the second partition:

$ sudo dd if=rootfs.ext2 of=/dev/mmcblk0p2

Then, slot the SD card into the device, and set the kernel command line to  
root=/dev/mmcblk0p2. The complete boot sequence is as follows:

fatload mmc 0:1 0x80200000 zImage
fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb
setenv bootargs console=ttyO0,115200 root=/dev/mmcblk0p2
bootz 0x80200000 – 0x80f00000
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Mounting the root filesystem using NFS
If your device has a network interface, it is best to mount the root filesystem over the 
network during development. It gives you access to almost unlimited storage so you 
can add in debug tools and executables with large symbol tables. As an added bonus, 
updates made to the root filesystem hosted on the development machine are made 
available on the target immediately. You also have a copy of log files.

For this to work, your kernel has to be configured with CONFIG_ROOT_NFS. Then, you 
can configure Linux to do the mount at boot time by adding the following to the kernel 
command line:

root=/dev/nfs

Give the details of the NFS export as follows:

nfsroot=<host-ip>:<root-dir>

Configure the network interface that connects to the NFS server so that it is available 
at boot time, before the init program runs by using this command:

ip=<target-ip>

There is more information about NFS root mounts in the kernel source in 
Documentation/filesystems/nfs/nfsroot.txt.

You also need to install and configure an NFS server on your host which, for Ubuntu, 
you can do with this command:

$ sudo apt-get install nfs-kernel-server

The NFS server needs to be told which directories are being exported to the network, 
which is controlled by /etc/exports. Add a line like this one to that file:

/<path to staging> *(rw,sync,no_subtree_check,no_root_squash)

Then, restart the server to pick up the change which, for Ubuntu, is:

$ sudo /etc/init.d/nfs-kernel-server restart
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Testing with QEMU
The following script creates a virtual network between the network device tap0 
on the host and eth0 on the target using a pair of static IPv4 addresses and then 
launches QEMU with the parameters to use tap0 as the emulated interface.  
You will need to change the path to the root filesystem to be the full path to  
your staging directory, and maybe the IP addresses if they conflict with your 
network configuration:

#!/bin/bash

KERNEL=zImage
DTB=vexpress-v2p-ca9.dtb
ROOTDIR=/home/chris/rootfs

HOST_IP=192.168.1.1
TARGET_IP=192.168.1.101
NET_NUMBER=192.168.1.0
NET_MASK=255.255.255.0

sudo tunctl -u $(whoami) -t tap0
sudo ifconfig tap0 ${HOST_IP}
sudo route add -net ${NET_NUMBER} netmask ${NET_MASK} dev tap0
sudo sh -c "echo  1 > /proc/sys/net/ipv4/ip_forward"

QEMU_AUDIO_DRV=none \
qemu-system-arm -m 256M -nographic -M vexpress-a9 -kernel $KERNEL  
-append "console=ttyAMA0 root=/dev/nfs rw  
nfsroot=${HOST_IP}:${ROOTDIR} ip=${TARGET_IP}" -dtb ${DTB} -net  
nic -net tap,ifname=tap0,script=no

The script is available as run-qemu-nfs.sh.

It should boot up as before, but now using the staging directory directly via the  
NFS export. Any files that you create in that directory will be immediately visible 
to the target device and any files created in the device will be visible to the 
development PC.
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Testing with BeagleBone Black
In a similar way, you can enter these commands at the U-Boot prompt of the 
BeagleBone Black:

setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

setenv npath [path to staging directory]

setenv bootargs console=ttyO0,115200 root=/dev/nfs rw  
nfsroot=${serverip}:${npath} ip=${ipaddr}

Then; to boot it, load the kernel and dtb from sdcard, as before:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

bootz 0x80200000 - 0x80f00000

Problems with file permissions
The files that were already in the staging directory are owned by you and will  
show up on the target when you run ls -l with whatever your UID is, typically 
1,000. Any files created by the target device will be owned by root. The whole  
thing is a mess.

Unfortunately, there is no simple way out. The best advice is to make a copy of the 
staging directory and change ownership to root:root (using sudo chown -R  
0:0 *) and export this directory as the NFS mount. It reduces the inconvenience  
of having just one copy of the root filesystem shared between development and 
target systems.

Using TFTP to load the kernel
When working with real hardware such as the BeagleBone Black, it is best to load  
the kernel over the network, especially when the root filesystem is mounted via NFS. 
In this way, you are not using any local storage on the device. It saves time if you 
don't have to keep re-flashing the memory and means that you can get work done 
while the flash storage drivers are still being developed (it happens).

U-Boot has supported the Trivial File Transfer Protocol (TFTP) for many years. 
Firstly, you need to install a tftp daemon on your development machine. On Ubuntu, 
you would install the tftpd-hpa package, which grants read access to files in the 
directory /var/lib/tftpboot to tftp clients like U-Boot.
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Assuming that you have copied zImage and am335x-boneblack.dtb into /var/
lib/tftpboot, enter these commands into U-Boot to load and boot:

setenv serverip 192.168.1.1
setenv ipaddr 192.168.1.101
tftpboot 0x80200000 zImage
tftpboot 0x80f00000 am335x-boneblack.dtb
setenv npath [path to staging]
setenv bootargs console=ttyO0,115200 root=/dev/nfs rw  
nfsroot=${serverip}:${npath} ip=${ipaddr}
bootz 0x80200000 - 0x80f00000

It is fairly common for the response to tftpboot to look like this:

setenv ipaddr 192.168.1.101
nova!> setenv serverip 192.168.1.1
nova!> tftpboot 0x80200000 zImage
link up on port 0, speed 100, full duplex
Using cpsw device
TFTP from server 192.168.1.1; our IP address is 192.168.1.101
Filename 'zImage'.
Load address: 0x80200000
Loading: T T T T

The row of T characters on the last line indicate that there is something wrong and 
the TFTP requests are timing out. The most common reasons are as follows:

• Incorrect IP address for server.
• TFTP daemon not running on server.
• Firewall on server is blocking the TFTP protocol. Most firewalls do indeed 

block the TFTP port, 69, by default.

In this case, the tftp daemon was not running, so I started it with the  
following command:
$ sudo service tftpd-hpa restart

Additional reading
• Filesystem Hierarchy Standard, currently at version 3.0 available at  

http://refspecs.linuxfoundation.org/fhs.shtml.
• ramfs, rootfs and initramfs , Rob Landley, October 17, 2005, which is part of 

the Linux source code available at Documentation/filesystems/ramfs-
rootfs-initramfs.txt.
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Summary
One of the strengths of Linux is that it can support a wide range of root filesystems 
which allow it to be tailored to suit a wide range of needs. We have seen that it is 
possible to construct a simple root filesystem manually with a small number of 
components, and that BusyBox is especially useful in this regard. By going through 
the process one step at a time, it has given us insight into some of the basic workings 
of Linux systems, including network configuration and user accounts. However, the 
task rapidly becomes unmanageable as devices get more complex. And, there is the 
ever-present worry that there may be a security hole in the implementation which 
we have not noticed. In the next chapter, we will look at using embedded build 
systems to help us out.
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Selecting a Build System
The preceding chapters covered the four elements of embedded Linux and  
showed you, step-by-step, how to build a toolchain, a bootloader, a kernel, and  
a root filesystem, and then combine them into a basic embedded Linux system.  
And there are a lot of steps! Now it is time to look at ways to simplify the process by 
automating it as much as possible. I will look at how embedded build systems can 
help, and look at two in particular: Buildroot and the Yocto Project. Both are complex 
and flexible tools which would require an entire book to adequately describe how 
they work. In this chapter, I only want to show you the general ideas behind build 
systems. I will show you how to build a simple device image to get an overall feel 
of the system and then how to make some useful changes, using the Nova board 
example from the previous chapters.

No more rolling your own embedded 
Linux
The process of creating a system manually, as described in Chapter 5, Building a Root 
Filesystem, is called the roll your own (RYO) process. It has the advantage that you 
are in complete control of the software and you can tailor it to do anything you like. 
If you want it to do something truly odd but innovative, or if you want to reduce 
the memory footprint to the smallest possible, RYO is the way to go. But, in the vast 
majority of situations, building manually is a waste of time and produces inferior, 
unmaintainable systems.

They are usually built incrementally over a period of months, often undocumented 
and seldom recreated from scratch because nobody had a clue where each part  
came from.
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Build systems
The idea of a build system is to automate all the steps I have described up to  
this point. A build system should be able to build, from upstream source code,  
some or all of the following:

• The toolchain
• The bootloader
• The kernel
• The root filesystem

Building from an upstream source is important for a number of reasons. It means 
that you have peace of mind that you can rebuild at any time, without external 
dependencies. It also means that you have the source code for debugging and that 
you can meet your license requirements to distribute that to users where necessary.

Therefore to do its job, a build system has to be able to do the following:

• Download a source from upstream, either directly from the source code 
control system or as an archive, and cache it locally

• Apply patches to enable cross compilation, fix architecture-dependent bugs, 
apply local configuration policies, and so on

• Build the various components
• Create a staging area and assemble a root filesystem
• Create image files in various formats ready to be loaded onto the target

Other things that are useful are as follows:

• Add your own packages containing, for example, applications or kernel 
changes

• Select various root filesystem profiles: large or small, with and without 
graphics or other features

• Create a standalone SDK that you can distribute to other developers so  
that they don't have to install the complete build system

• Track which open source licenses are used by the various packages you  
have selected

• Allow you to create updates for in-field updating
• Have a user-friendly user interface
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In all cases, they encapsulate the components of a system into packages, some for 
the host and some for the target. Each package is defined by a set of rules to get the 
source, build it, and install the results in the correct location. There are dependencies 
between the packages and a build mechanism to resolve the dependencies and build 
the set of packages required.

Open source build systems have matured considerably over the last few years.  
There are many around, including:

• Buildroot: An easy-to-use system using GNU make and Kconfig  
(http://buildroot.org)

• EmbToolkit: A simple system for generating root filesystems; the only  
one at the time of writing that supports LLVM/Clang out of the box  
(https://www.embtoolkit.org)

• OpenEmbedded: A powerful system which is also a core component of the 
Yocto Project and others (http://openembedded.org)

• OpenWrt: A build tool oriented towards building firmware for wireless 
routers (https://openwrt.org)

• PTXdist: An open source build system sponsored by Pengutronix  
(http://www.pengutronix.de/software/ptxdist/index_en.html)

• Tizen: A comprehensive system, with emphasis on mobile, media,  
and in-vehicle devices (https://www.tizen.org)

• The Yocto Project: This extends the OpenEmbedded core with configuration, 
layers, tools, and documentation: probably the most popular system  
(http://www.yoctoproject.org)

I will concentrate on two of these: Buildroot and The Yocto Project. They approach 
the problem in different ways and with different objectives.

Buildroot has the primary aim of building root filesystem images, hence the name, 
although it can build bootloader and kernel images as well. It is easy to install and 
configure, and generates target images quickly.

The Yocto Project, on the other hand, is more general in the way it defines the target 
system and so it can build fairly complex embedded devices. Every component is 
generated as a package in RPM, .dpkg or .ipk format (see the following section) and 
then the packages are combined together to make the filesystem image. Furthermore, 
you can install a package manager in the filesystem image, which allows you to 
update packages at runtime. In other words, when you build with the Yocto Project, 
you are, in effect, creating your own custom Linux distribution.
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Package formats and package managers
Mainstream Linux distributions are, in most cases, constructed from collections of 
binary (precompiled) packages in either RPM or deb format. RPM stands for Red 
Hat Package Manager and is used in Red Hat, Suse, Fedora, and other distributions 
based on them. Debian-derived distributions, including Ubuntu and Mint, use the 
Debian package manager format, deb. In addition, there is a light-weight format 
specific to embedded devices known as the Itsy PacKage format, or ipk, which is 
based on deb.

The ability to include a package manager on the device is one of the big 
differentiators between build systems. Once you have a package manager on the 
target device, you have an easy path to deploy new packages to it and to update 
existing ones. I will talk about the implications of this in the next chapter.

Buildroot
The Buildroot project website is at http://buildroot.org.

Current versions of Buildroot are capable of building a toolchain, a bootloader 
(U-Boot, Barebox, GRUB2, or Gummiboot), a kernel, and a root filesystem. It uses 
GNU make as the principal build tool.

There is good online documentation at http://buildroot.org/docs.html, 
including The Buildroot User Manual.

Background
Buildroot was one of the first build systems. It began as part of the uClinux and 
uClibc projects as a way of generating a small root filesystem for testing. It became a 
separate project in late 2001 and continued to evolve through to 2006, after which it 
went into a rather dormant phase. However, since 2009, when Peter Korsgaard took 
over stewardship, it has been developing rapidly, adding support for glibc-based 
toolchains and the ability to build a bootloader and a kernel.

Buildroot is also the foundation of another popular build system, OpenWrt  
(http://wiki.openwrt.org) which forked from Buildroot around 2004.  
The primary focus of OpenWrt is to produce software for wireless routers  
and so the package mix is oriented towards networking infrastructure. It also  
has a runtime package manager using the .ipk format so that a device can be 
updated or upgraded without a complete re-flash of the image.
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Stable releases and support
The Buildroot developers produce stable releases four times a year, in February, 
May, August, and November. They are marked by git tags of the form <year>.02, 
<year>.05, <year>.08, and <year>.11. Typically, when you start your project, 
you will be using the latest stable release. However, the stable releases are seldom 
updated after release. To get security fixes and other bug fixes you will have to  
either continually update to the next stable release as they become available or 
backport the fixes into your version.

Installing
As usual, you can install Buildroot either by cloning the repository or downloading 
an archive. Here is an example of obtaining version 2015.08.1, which was the latest 
stable version at the time of writing:

$ git clone git://git.buildroot.net/buildroot

$ cd buildroot

$ git checkout 2015.08.1

The equivalent TAR archive is available from http://buildroot.org/downloads.

Next, you should read the section titled System Requirement from The Buildroot User 
Manual, available at http://buildroot.org/downloads/manual/manual.html  
and make sure that you have installed all the packages listed there.

Configuring
Buildroot uses the Kconfig and Kbuild mechanisms as the kernel, which I described 
in the section Understanding kernel configuration in Chapter 4, Porting and Configuring 
the Kernel. You can configure it from scratch directly using make menuconfig (or 
xconfig or gconfig), or you can choose one of the 90 or so configurations for 
various development boards and the QEMU emulator which you can find stored in 
the directory configs/. Typing make help lists all the targets including the default 
configurations.

Let's begin by building a default configuration that you can run on the ARM QEMU 
emulator:

$ cd buildroot

$ make qemu_arm_versatile_defconfig

$ make
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Note that you do not tell make how many parallel jobs to run with 
a -j option: Buildroot will make optimum use of your CPUs all by 
itself. If you want to limit the number of jobs, you can run make 
menuconfig and look under Build options.

The build will take half an hour to an hour, depending on the capabilities of your 
host system and the speed of your link to the Internet. When it is complete, you will 
find that two new directories have been created:

• dl/: This contains archives of the upstream projects that Buildroot has built
• output/: This contains all the intermediate and final compiled resources

You will see the following in output/:

• build/: This is the build directory for each component.
• host/: This contains various tools required by Buildroot that run on the host, 

including the executables of the toolchain (in output/host/usr/bin).
• images/: This is the most important of all and contains the results of the 

build. Depending on what you selected when configuring, you will find a 
bootloader, a kernel, and one or more root filesystem images.

• staging/: This is a symbolic link to the sysroot of the toolchain. The name 
of the link is a little confusing because it does not point to a staging area as I 
defined it in Chapter 5, Building a Root Filesystem.

• target/: This is the staging area for the root directory. Note that you cannot 
use this as a root filesystem, as it stands, because the file ownership and 
permissions are not set correctly. Buildroot uses a device table, as described 
in the previous chapter, to set ownership and permissions when the 
filesystem image is created.

Running
Some of the sample configurations have a corresponding entry in the directory 
boards/, which contains custom configuration files and information about installing 
the results on the target. In the case of the system you have just built, the relevant 
file is board/qemu/arm-vexpress/readme.txt, which tells you how to start QEMU 
with this target.
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Assuming that you have already installed qemu-system-arm as described in  
Chapter 1, Starting Out, you can run it using this command:

$ qemu-system-arm -M vexpress-a9 -m 256 \

-kernel output/images/zImage \

-dtb output/images/vexpress-v2p-ca9.dtb \

-drive file=output/images/rootfs.ext2,if=sd \

-append "console=ttyAMA0,115200 root=/dev/mmcblk0" \

-serial stdio -net nic,model=lan9118 -net user

You should see the kernel boot messages appear in the same terminal window where 
you started QEMU, followed by a login prompt:

Booting Linux on physical CPU 0x0

Initializing cgroup subsys cpuset

Linux version 4.1.0 (chris@builder) (gcc version 4.9.3 (Buildroot  
2015.08) ) #1 SMP Fri Oct 30 13:55:50 GMT 2015

CPU: ARMv7 Processor [410fc090] revision 0 (ARMv7), cr=10c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction  
cache

Machine model: V2P-CA9

[...]

VFS: Mounted root (ext2 filesystem) readonly on device 179:0.

devtmpfs: mounted

Freeing unused kernel memory: 264K (8061e000 - 80660000)

random: nonblocking pool is initialized

Starting logging: OK

Starting mdev...

Initializing random number generator... done.

Starting network...

Welcome to Buildroot

buildroot login:

Log in as root, no password.
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You will see that QEMU launches a black window in addition to the one with the 
kernel boot messages. It is there to display the graphics frame buffer of the target. 
In this case, the target never writes to the framebuffer, which is why it appears 
black. To close QEMU, either type poweroff at the root prompt or just close the 
framebuffer window. This works with QEMU 2.0 (default on Ubuntu 14.04),  
but fails with earlier versions including QEMU 1.0.50 (default on Ubuntu 12.04) 
because of problems with the SCSI emulation.

Creating a custom BSP
Next, let's use Buildroot to create a BSP for our Nova board, using the same versions 
of U-Boot and Linux from earlier chapters. The recommended places to store your 
changes are:

• board/<organization>/<device>: contains any patches, binary blobs, extra 
build steps, configuration files for Linux, U-Boot, and other components

• configs/<device>_defconfig: contains the default configuration for  
the board

• packages/<organization>/<package_name>: is the place to put any 
additional packages for this board

We can use the BeagleBone configuration file as a base, since Nova is a close cousin:

$ make clean  #  Always do a clean when changing targets

$ make beaglebone_defconfig

Now the .config file is set for BeagleBone. Next, create a directory for the  
board configuration:

$ mkdir -p board/melp/nova

U-Boot
In Chapter 3, All About Bootloaders, we created a custom bootloader for Nova, based 
on the 2015.07 of U-Boot version and created a patch file for it. We can configure 
Buildroot to select the same version, and apply our patch. Begin by by copying the 
patch file into board/melp/nova, and then use make menuconfig to set the U-Boot 
version to 2015.07, the patch directory to board/melp/nova and the board name to 
nova, as shown in this screenshot:
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Linux
In Chapter 4, Porting and Configuring the Kernel, we based the kernel on Linux 4.1.10 
and supplied a new device tree, named nova.dts. Copy the device tree to board/
melp/nova and change the Buildroot kernel configuration to use this version and  
the nova device tree as show in in this screenshot:
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Build
Now you can build the system for the Nova board just by typing make, which 
produces these files in the directory output/images:

MLO  nova.dtb  rootfs.ext2  u-boot.img  uEnv.txt  zImage

The last step is to save a copy of the configuration so that you and others can  
use it again:

$ make savedefconfig BR2_DEFCONFIG=configs/nova_defconfig

Now, you have a Buildroot configuration for the Nova board.

Adding your own code
Suppose that there are some programs that you have developed that you want to 
include in the build. You have two options: firstly to build them separately, using 
their own build systems, and then roll the binary into the final build as an overlay. 
Secondly you could create a Buildroot package that can be selected from the menu 
and built like any other.

Overlay
An overlay is simply a directory structure that is copied over the top of the Buildroot 
root filesystem at a late stage in the build process. It can contain executables, libraries 
and anything else you may want to include. Note that any compiled code must  
be compatible with the libraries deployed at runtime, which means that it must  
be compiled with the same toolchain that Buildroot uses. Using the Buildroot 
toolchain is quite easy: just add it to the path:

$ PATH=<path_to_buildroot>/output/host/usr/bin:$PATH

The prefix for the tools is <ARCH>-linux-.

The overlay directory is set by BR2_ROOTFS_OVERLAY, which contains a list  
of directories separated by spaces, which you should overlay on the Buildroot  
root filesystem. It can be configured in menuconfig with the option System 
configuration | Root filesystem overlay directories.
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For example, if you add a helloworld program to the bin directory, and a  
script to start it at boot time, you would create an overlay directory with the 
following contents:

Then you would add board/melp/nova/overlay to the overlay options.

The layout of the root filesystem is controlled by the system/skeleton directory, 
and the permissions are set in device_table_dev.txt and device_table.txt.

Adding a package
Buildroot packages are stored in the package directory, over 1,000 of them,  
each in its own subdirectory. A package consists of at least two files: Config.
in, containing the snippet of Kconfig code required to make the package visible 
in the configuration menu, and a makefile named <package_name>.mk. Note 
that the package does not contain the code, just the instructions to get the code by 
downloading a tarball, doing a git pull, and so on.

The makefile is written in a format expected by Buildroot and contains directives 
that allow Buildroot to download, configure, compile, and install the program. 
Writing a new package makefile is a complex operation which is covered in detail 
in the Buildroot User Manual. Here is an example which shows you how to create a 
package for a simple program stored locally, such as our helloworld program.

Begin by creating the subdirectory package/helloworld with a configuration file, 
Config.in, that looks like this:

config BR2_PACKAGE_HELLOWORLD
bool "helloworld"
help
  A friendly program that prints Hello World! every 10s
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The first line must be of the format BR2_PACKAGE_<uppercase package name>. That 
is followed by a Boolean and the package name as it will appear in the configuration 
menu and which will allow a user to select this package. The Help section is optional 
(but hopefully useful).

Next, link the new package into the Target Packages menu by editing  
package/Config.in and sourcing the configuration file as mentioned in the  
preceding section. You could append this to an existing sub-menu but, in this case,  
it seems neater to create a new sub-menu which only contains our package:

menu "My programs"
  source "package/helloworld/Config.in"
endmenu

Then, create a makefile, package/helloworld/helloworld.mk, to supply the data 
needed by Buildroot:

HELLOWORLD_VERSION:= 1.0.0
HELLOWORLD_SITE:= /home/chris/MELP/helloworld/
HELLOWORLD_SITE_METHOD:=local
HELLOWORLD_INSTALL_TARGET:=YES

define HELLOWORLD_BUILD_CMDS
  $(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C $(@D) all
endef

define HELLOWORLD_INSTALL_TARGET_CMDS
  $(INSTALL) -D -m 0755 $(@D)/helloworld $(TARGET_DIR)/bin
endef

$(eval $(generic-package))

The location of the code is hard-coded to a local path name. In a more realistic case, 
you would get the code from a source code system or from a central server of some 
kind: there are details of how to do this in the Buildroot User Guide and plenty of 
examples in other packages.

License compliance
Buildroot is based on open source software, as are the packages it compiles. At some 
point during the project, you should check the licenses, which you can do by running:

$ make legal-info
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The information is gathered into output/legal-info. There are summaries of the 
licenses used to compile the host tools in host-manifest.csv and, on the target,  
in manifest.csv. There is more information in the README file and in the Buildroot 
User Manual.

The Yocto Project
The Yocto Project is a more complex beast than Buildroot. Not only can it build 
toolchains, bootloaders, kernels, and root filesystems, as Buildroot can, but it can 
generate an entire Linux distribution for you, with binary packages that can be 
installed at runtime.

The Yocto Project is primarily a group of recipes, similar to Buildroot packages  
but written using a combination of Python and shell script, and a task scheduler 
called BitBake that produces whatever you have configured, from the recipes.

There is plenty of online documentation at https://www.yoctoproject.org/.

Background
The structure of the Yocto Project makes more sense if you look at the background 
first. Its roots are in OpenEmbedded, http://openembedded.org/ which, in turn, 
grew out of a number of projects to port Linux to various hand-held computers, 
including the Sharp Zaurus and Compaq iPaq. OpenEmbedded came to life in  
2003 as the build system for those hand-held computers but quickly expanded  
to encompass other embedded boards. It was developed and continues to be 
developed by an enthusiastic community of programmers.

The OpenEmbedded project set out to create a set of binary packages using the 
compact .ipk format, which could then be combined in various ways to create a 
target system and be installed on the target at runtime. It did this by creating recipes 
for each piece of software and using BitBake as the task scheduler. It was, and 
is, very flexible. By supplying the right metadata, you can create an entire Linux 
distribution to your own specification. One that is fairly well known is The Ångström 
Distribution, http://www.angstrom-distribution.org, but there are many others.
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At some time in 2005 Richard Purdie, then a developer at OpenedHand, created 
a fork of OpenEmbedded which had a more conservative choice of packages and 
created releases that were stable over a period of time. He named it Poky, after the 
Japanese snack (if you are worried about these things, Poky is pronounced to rhyme 
with hockey). Although Poky was a fork, OpenEmbedded and Poky continued to 
run alongside each other, sharing updates and keeping the architectures more or less 
in step. Intel brought out OpenedHand in 2008 and they transferred Poky Linux to 
the Linux Foundation in 2010 when they formed the Yocto Project.

Since 2010, the common components of OpenEmbedded and Poky have been 
combined into a separate project known as OpenEmbedded core, or just oe-core.

Therefore, the Yocto Project collects together several components, the most important 
of which are the following:

• Poky: The reference distribution
• oe-core: The core metadata, which is shared with OpenEmbedded
• BitBake: The task scheduler, which is shared with OpenEmbedded and  

other projects
• Documentation: User manuals and developer's guides for each component
• Hob: A graphical user interface to OpenEmbedded and BitBake
• Toaster: A web-based interface to OpenEmbedded and BitBake
• ADT Eclipse: A plug-in for Eclipse that makes it easier to build projects 

using the Yocto Project SDK

Strictly speaking, the Yocto Project is an umbrella for these sub-projects. It uses 
OpenEmbedded as its build system, and Poky as its default configuration and 
reference environment. However, people  often use the term "the Yocto Project" to  
refer to the build system alone. I feel that it is too late for me to turn this tide, so for 
brevity I will do the same. I apologise in advance to the developers of OpenEmbedded.

The Yocto Project provides a stable base which can be used as it is or which can be 
extended using meta layers, which I will discuss later in this chapter. Many SoC 
vendors provide board support packages for their devices in this way. Meta layers 
can also be used to create extended, or just different, build systems. Some are open 
source, such as the Angstrom Project, others are commercial, such as MontaVista 
Carrier Grade Edition, Mentor Embedded Linux, and Wind River Linux. The Yocto 
Project has a branding and compatibility testing scheme to ensure that there is 
interoperability between components. You will see statements like Yocto Project 
Compatible 1.7 on various web pages.
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Consequently, you should think of the Yocto Project as the foundation of a whole 
sector of embedded Linux, as well as being a complete build system in its own right. 
You may be wondering about the name, yocto. A yocto is the SI prefix for 10-24, in the 
same way that micro is 10-6. Why name the project yocto? It was partly to indicate 
that it could build very small Linux systems (although, to be fair, so can other build 
systems), but also, perhaps, to steal a march on the Ångström distribution which is 
based on OpenEmbedded. An Ångström is 10-10. That's huge, compared to a yocto!

Stable releases and support
Usually, there is a release of the Yocto Project every six months, in April and 
October. They are principally known by the code name, but it is useful to know the 
version numbers of the Yocto Project and Poky as well. Here is a table of the four 
most recent releases at the time of writing:

Code name Release date Yocto version Poky version
Fido April 2015 1.8 13
Dizzy October 2014 1.7 12
Daisy April 2014 1.6 11
Dora October 2013 1.5 10

The stable releases are supported with security and critical bug fixes for the 
current release cycle and the next cycle, that is approximately twelve months after 
release. No toolchain or kernel version changes are allowed for these updates. As 
with Buildroot, if you want continued support, you can update to the next stable 
release or you can backport changes to your version. You also also have the option 
of commercial support for periods of several years with the Yocto Project from 
operating system vendors such as Mentor Graphics, Wind River, and many others.

Installing the Yocto Project
To get a copy of the Yocto Project, you can either clone the repository, choosing the 
code name as the branch which is fido in this case:

$ git clone -b fido git://git.yoctoproject.org/poky.git

You can also download the archive from http://downloads.yoctoproject.org/
releases/yocto/yocto-1.8/poky-fido-13.0.0.tar.bz2.

In the first case, you will find everything in the poky directory, in the second case, 
poky-fido-13.0.0/.
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In addition, you should read the section titled System Requirements from the Yocto 
Project Reference Manual (http://www.yoctoproject.org/docs/current/ref-
manual/ref-manual.html#detailed-supported-distros) and, in particular, you 
should make sure that the packages listed there are installed on your host computer.

Configuring
As with Buildroot, let's begin with a build for the ARM QEMU emulator. Begin by 
sourcing a script to set up the environment:

$ cd poky

$ source oe-init-build-env

That creates a working directory for you named build and makes it the current 
directory. All of the configuration, intermediate, and deployable files will be put in  
this directory. You must source this script each time you want to work on this project.

You can choose a different working directory by adding it as a parameter to  
oe-init-build-env, for example:

$ source oe-init-build-env build-qemuarm

That will put you into the build-qemuarm directory. You can then have several 
projects on the go at the same time: you choose which one you want to work with 
through the parameter to oe-init-build-env.

Initially, the build directory contains only one subdirectory named conf, which 
contains the configuration files for this project:

• local.conf: Contains a specification of the device you are going to build 
and the build environment.

• bblayers.conf: Contains a list of the directories that contain the layers you 
are going to use. There will be more on layers later on.

• templateconf.cfg: Contains the name of a directory which contains various 
conf files. By default, it points to meta-yocto/conf.

For now, we just need to set the MACHINE variable in local.conf to qemuarm by 
removing the comment character at the start of this line:

MACHINE ?= "qemuarm"
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Building
To actually perform the build, you need to run bitbake, telling it which root 
filesystem image you want to create. Some common images are as follows:

• core-image-minimal: A small console-based system which is useful for  
tests and as the basis for custom images.

• core-image-minimal-initramfs: This is similar to core-image-minimal,  
but built as a ramdisk.

• core-image-x11: A basic image with support for graphics through an X11 
server and the xterminal terminal app.

• core-image-sato: A full graphical system based on Sato, which is a mobile 
graphical environment built on X11, and GNOME. The image includes 
several apps including a terminal, an editor, and a file manager.

By giving BitBake the final target, it will work backwards and build all the 
dependencies first, beginning with the toolchain. For now, we just want to  
create a minimal image to see whether or not it works:

$ bitbake core-image-minimal

The build is likely to take some time, maybe more than an hour. When it is  
complete, you will find several new directories in the build directory including 
build/downloads, which contains all the source downloaded for the build,  
and build/tmp which contains most of the build artifacts. You should see the 
following in tmp:

• work: Contains the build directory and the staging area for all components, 
including the root filesystem

• deploy: Contains the final binaries to be deployed on the target:
 ° deploy/images/[machine name]: Contains the bootloader, the 

kernel, and the root filesystem images ready to be run on the target
 ° deploy/rpm: Contains the RPM packages that went to make up  

the images
 ° deploy/licenses: Contains the license files extracted from  

each package
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Running
When you build a QEMU target, an internal version of QEMU is generated,  
which removes the need to install the QEMU package for your distribution and  
thus avoids version dependencies. There is a wrapper script named runqemu for  
this internal QEMU.

To run the QEMU emulation, make sure that you have sourced oe-init-build-env 
and then just type:

$ runqemu qemuarm

In this case, QEMU has been configured with a graphic console so that the boot 
messages and login prompt appear in the black framebuffer screen:
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You can log on as root, without a password. You can close down QEMU by closing 
the framebuffer window. You can launch QEMU without the graphic window by 
adding nographic to the command line:

$ runqemu qemuarm nographic

In this case, you close QEMU using the key sequence Ctrl + A + X.

The runqemu script has many other options, type runqemu help for more information.

Layers
The metadata for the Yocto Project is structured into layers, by convention, each with 
a name beginning with meta. The core layers of the Yocto Project are as follows:

• meta: This is the OpenEmbedded core
• meta-yocto: Metadata specific to the Yocto Project, including the  

Poky distribution
• meta-yocto-bsp: Contains the board support packages for the reference 

machines that the Yocto Project supports

The list of layers in which BitBake searches for recipes is stored in  
<your build directory>/conf/bblayers.conf and, by default, includes all  
three layers mentioned in the preceding list.

By structuring the recipes and other configuration data in this way, it is very easy to 
extend the Yocto Project by adding new layers. Additional layers are available from 
SoC manufacturers, the Yocto Project itself, and a wide range of people wishing to 
add value to the Yocto Project and OpenEmbedded. There is a useful list of layers  
at http://layers.openembedded.org. Here are some examples:

• meta-angstrom: The Ångström distribution
• meta-qt5: Qt5 libraries and utilities
• meta-fsl-arm: BSPs for Freescale ARM-based SoCs
• meta-fsl-ppc: BSPs for Freescale PowerPC-based SoCs
• meta-intel: BSPs for Intel CPUs and SoCs
• meta-ti: BSPs for TI ARM-based SoCs

Adding a layer is as simple as copying the meta directory into a suitable location, 
usually alongside the default meta layers, and adding it to bblayers.conf. Just 
make sure it is compatible with the version of the Yocto Project you are using.
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To illustrate the way layers work, let's create a layer for our Nova board which we 
can use for the remainder of the chapter as we add features. Each meta layer has 
to have at least one configuration file, conf/layer.conf, and should also have a 
README file and a license. There is a handy helper script that does the basics for us:

$ cd poky

$ scripts/yocto-layer create nova

The script asks for a priority, and if you want to create sample recipes. In the 
example here, I just accepted the defaults:

Please enter the layer priority you'd like to use for the layer:  
[default: 6]

Would you like to have an example recipe created? (y/n) [default: n]

Would you like to have an example bbappend file created? (y/n)  
[default: n]

New layer created in meta-nova.

Don't forget to add it to your BBLAYERS (for details see meta- 
nova\README).

That will create a layer named meta-nova with a conf/layer.conf, an outline 
README and a MIT license in COPYING.MIT. The layer.conf file looks like this:

# We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

# We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "nova"
BBFILE_PATTERN_nova = "^${LAYERDIR}/"
BBFILE_PRIORITY_nova = "6"

It adds itself to BBPATH and the recipes it contains to BBFILES. From looking at the 
code, you can see that the recipes are found in the directories with names beginning 
recipes- and have file names ending in .bb (for normal BitBake recipes), or 
.bbappend (for recipes that extend existing normal recipes by adding and overriding 
instructions). This layer has the name nova which is added to the list of layers in 
BBFILE_COLLECTIONS and it has a priority of 6. The layer priority is used if the same 
recipe appears in several layers: the one in the layer with the highest priority wins.
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Since you are about to build a new configuration, it is best to begin by creating a new 
build directory named build-nova:

$ cd ~/poky

$ . oe-init-build-env build-nova

Now you need to add this layer to your build configuration, conf/bblayers.conf:

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
  /home/chris/poky/meta \
  /home/chris/poky/meta-yocto \
  /home/chris/poky/meta-yocto-bsp \
  /home/chris/poky/meta-nova \
  "
BBLAYERS_NON_REMOVABLE ?= " \
  /home/chris/poky/meta \
  /home/chris/poky/meta-yocto \ 
  "

You can confirm that it is set up correctly by using another helper script:

$ bitbake-layers show-layers

layer                 path                     priority

==========================================================

meta              /home/chris/poky/meta            5

meta-yocto        /home/chris/poky/meta-yocto      5

meta-yocto-bsp    /home/chris/poky/meta-yocto-bsp  5

meta-nova         /home/chris/poky/meta-nova       6

There you can see the new layer. It has priority 6 which means that we could 
override recipes in the other layers, which have a lower priority.

At this point it would be a good idea to run a build, using this empty layer. The 
final target will be the Nova board but, for now, build for a BeagelBone Black by 
removing the comment before MACHINE ?= "beaglebone" in conf/local.conf. 
Then, build a small image using bitbake core-image-minimal as before.

As well as recipes, layers may contain BitBake classes, configuration files for 
machines, distributions, and more. I will look at recipes next and show you  
how to create a customized image and how to create a package.
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BitBake and recipes
BitBake processes metadata of several different types, which include the following:

• recipes: Files ending in .bb. These contain information about building a unit 
of software, including how to get a copy of the source code, the dependencies 
on other components, and how to build and install it.

• append: Files ending in .bbappend. These allow some details of a recipe to 
be overridden or extended. A.bbappend file simply appends its instructions 
to the end of a recipe (.bb) file of the same root name.

• include: Files ending in .inc. These contain information that is common  
to several recipes, allowing information to be shared among them. The files 
may be included using the include or require keywords. The difference is 
that require produces an error if the file does not exist, whereas include 
does not.

• classes: Files ending in .bbclass. These contain common build information, 
for example how to build a kernel or how to build an autotools project.  
The classes are inherited and extended in recipes and other classes using  
the inherit key word. The class classes/base.bbclass is implicitly 
inherited in every recipe.

• configuration: Files ending in .conf. They define various configuration 
variables that govern the project's build process.

A recipe is a collection of tasks written in a combination of Python and shell code. 
The tasks have names like do_fetch, do_unpack, do_patch, do_configure,  
do_compile, do_install, and so on. You use BitBake to execute these tasks.

The default task is do_build, so that you are running the build task for that recipe. 
You can list the tasks available in a recipe by running bitbake core-image-minimal 
like this:

$ bitbake -c listtasks core-image-minimal

The -c option allows you to specify the task, missing off the do_ part. A common use 
is -c fetch to get the code needed by a recipe:

$ bitbake -c fetch busybox

You can also use fetchall to get the code for the target and all the dependencies:

$ bitbake -c fetchall core-image-minimal
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The recipe files are are usually named <package-name>_version.bb. They may 
have dependencies on other recipes, which would allow BitBake to work out all  
the subtasks that need to be executed to complete the top level job. Unfortunately,  
I don't have the space in this book to describe the dependency mechanism, but you 
will find a full description in the Yocto Project documentation.

As an example, to create a recipe for our helloworld program in meta-nova, you 
would create a directory structure like this:

meta-nova/recipes-local/helloworld
├── files
│   └── helloworld.c
└── helloworld_1.0.bb

The recipe is helloworld_1.0.bb and the source is local to the recipe directory in 
the subdirectory files. The recipe contains these instructions:

DESCRIPTION = "A friendly program that prints Hello World!"
PRIORITY = "optional"
SECTION = "examples"

LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL- 
2.0;md5=801f80980d171dd6425610833a22dbe6"

SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"

do_compile() {
  ${CC} ${CFLAGS} -o helloworld helloworld.c
}

do_install() {
  install -d ${D}${bindir}
  install -m 0755 helloworld ${D}${bindir}
}

The location of the source code is set by SRC_URI: in this case it will search directories, 
files, helloworld, and helloworld-1.0 in the recipe directory. The only tasks that 
need to be defined are do_compile and do_install, which compile the one source  
file simply and install it into the target root filesystem: ${D} expands to the staging 
area of the target device and ${bindir} to the default binary directory, /usr/bin.
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Every recipe has a license, defined by LICENSE, which is set to GPLv2 here. The file 
containing the text of the license and a checksum is defined by LIC_FILES_CHKSUM. 
BitBake will terminate the build if the checksum does not match, indicating that the 
license has changed in some way. The license file may be part of the package or it 
may point to one of the standard license texts in meta/files/common-licenses,  
as is the case here.

By default, commercial licenses are disallowed, but it is easy to enable them. You need 
to specify the license in the recipe, as shown here:

LICENSE_FLAGS = "commercial"

Then, in your conf/local.conf, you would explicitly allow this license, like so:

LICENSE_FLAGS_WHITELIST = "commercial"

To make sure that it compiles correctly, you can ask BitBake to build it, like so:

$ bitbake  helloworld

If all goes well, you should see that it has created a working directory for it in  
tmp/work/cortexa8hf-vfp-neon-poky-linux-gnueabi/helloworld/.

You should also see there is an RPM package for it in tmp/deploy/rpm/
cortexa8hf_vfp_neon/helloworld-1.0-r0.cortexa8hf_vfp_neon.rpm.

It is not part of the target image yet, though. The list of packages to be installed is 
held in a variable named IMAGE_INSTALL. You can append to the end of that list  
by adding this line to your conf/local.conf:

IMAGE_INSTALL_append = " helloworld"

Note that there has to be a space between the first double quote and the first  
package name. Now, the package will be added to any image that you bitbake:

$ bitbake core-image-minimal

If you look in tmp/deploy/images/beaglebone/core-image-minimal-beaglebone.
tar.bz2 you will see that /usr/bin/helloworld has indeed been installed.

Customizing images via local.conf
You may often want to add a package to an image during development or tweak it in 
other ways. As shown previously, you can simply append to the list of packages to 
be installed by adding a statement like this:

IMAGE_INSTALL_append = " strace helloworld"
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It should be no surprise that you can also do the opposite: you can remove a package 
using this syntax:

IMAGE_INSTALL_remove = "someapp"

You can make more sweeping changes via EXTRA_IMAGE_FEATURES. There are too 
many to list here, I recommend you look at the Image Features section of the Yocto 
Project Reference Manual and the code in meta/classes/core-image.bbclass.  
Here is a short list which should give you an idea of the features you can enable:

• dbg-pkgs: installs debug symbol packages for all the packages installed in 
the image.

• debug-tweaks: allows root logins without passwords and other changes that 
make development easier.

• package-management: installs package management tools and preserves the 
package manager database.

• read-only-rootfs: makes the root filesystem read-only. We will cover this 
in more detail in Chapter 7, Creating a Storage Strategy.

• x11: installs the X server.
• x11-base: installs the X server with a minimal environment.
• x11-sato: installs the OpenedHand Sato environment.

Writing an image recipe
The problem with making changes to local.conf is that they are, well, local. If you 
want to create an image that is to be shared with other developers, or to be loaded 
onto a production system, then you should put the changes into an image recipe.

An image recipe contains instructions about how to create the image files for a target, 
including the bootloader, the kernel, and the root filesystem images. You can get a 
list of the images that are available by using this command:

$ ls meta*/recipes*/images/*.bb

The recipe for core-image-minimal is in meta/recipes-core/images/core-
image-minimal.bb.

A simple approach is to take an existing image recipe and modify it using statements 
similar to those you used in local.conf.
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For example, imagine that you want an image that is the same as  
core-image-minimal but includes your helloworld program and the strace 
utility. You can do that with a two-line recipe file which includes (using the require 
keyword) the base image and adds the packages you want. It is conventional to put 
the image in a directory named images, so add the recipe nova-image.bb with this 
content in meta-nova/recipes-local/images:

require recipes-core/images/core-image-minimal.bb
IMAGE_INSTALL += "helloworld strace"

Now you can remove the IMAGE_INSTALL_append line from your local.conf and 
build it using:

$ bitbake nova-image

If you want to go further and take total control of the contents of the root filesystem, 
you can start from scratch with an empty IMAGE_INSTALL variable and populate it 
like this:

SUMMARY = "A small image with helloworld and strace packages"  
IMAGE_INSTALL = "packagegroup-core-boot helloworld strace"
IMAGE_LINGUAS = " "
LICENSE = "MIT"
IMAGE_ROOTFS_SIZE ?= "8192"
inherit core-image

IMAGE_LINGUAS contains a list of glibc locales to be installed in the target image. They 
can take up a lot of space so, in this case, we set the list to be empty, which is fine so 
long as we do not need locale-dependent library functions. IMAGE_ROOTFS_SIZE is the 
size of the resulting disk image, in KiB. Most of the work is done by the core-image 
class which we inherit at the end.

Creating an SDK
It is very useful to be able to create a standalone toolchain that other developers can 
install, avoiding the need for everyone in the team to have a full installation of the 
Yocto Project. Ideally, you want the toolchain to include development libraries and 
header files for all the libraries installed on the target. You can do that for any image 
using the populate_sdk task, as shown here:

$ bitbake nova-image -c populate_sdk

The result is a self-installing shell script in tmp/deploy/sdk named:

poky-<c_library>-<host_machine>-<target_image><target_machine>- 
toolchain-<version>.sh
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Here is an example:

poky-glibc-x86_64-nova-image-cortexa8hf-vfp-neon-toolchain- 
1.8.1.sh

Note that, by default, the toolchain does not include static libraries. You can enable 
them individually by adding lines like this to your local.conf or the image recipe:

TOOLCHAIN_TARGET_TASK_append = " glibc-staticdev"

You can also enable them globally as shown:

SDKIMAGE_FEATURES_append = " staticdev-pkgs"

If you only want a basic toolchain with just C and C++ cross compilers, the C library 
and header files, you can instead run:

$ bitbake meta-toolchain

To install the SDK, just run the shell script. The default install directory is /opt/poky, 
but the install script allows you to change that:

$ tmp/deploy/sdk/poky-glibc-x86_64-nova-image-cortexa8hf-vfp-neon- 
toolchain-1.8.1.sh

Enter target directory for SDK (default: /opt/poky/1.8.1):

You are about to install the SDK to "/opt/poky/1.8.1". Proceed[Y/n]?

[sudo] password for chris:

Extracting SDK...done

Setting it up...done

SDK has been successfully set up and is ready to be used.

To make use of the toolchain, first source the environment set up script:

. /opt/poky/1.8.1/environment-setup-cortexa8hf-vfp-neon-poky-linux- 
gnueabi

Toolchains generated in this way are not configured with a valid sysroot:

$ arm-poky-linux-gnueabi-gcc -print-sysroot

/not/exist
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Consequently, if you try to cross compile as I have shown in previous chapters,  
it will fail like this:

$ arm-poky-linux-gnueabi-gcc helloworld.c -o helloworld

helloworld.c:1:19: fatal error: stdio.h: No such file or directory

#include <stdio.h>

                   ^

compilation terminated.

This is because the compiler has been configured to be generic to a wide range of 
ARM processors, and the fine tuning is done when you launch it using the right  
set of gcc flags. So long as you use $CC to compile, everything should work fine:

$ $CC helloworld.c -o helloworld

License audit
The Yocto Project insists that each package has a license. A copy of the license is  
in tmp/deploy/licenses/[packagenam.e] for each package, as it is built. In 
addition, a summary of the packages and licenses used in an image are in the  
<image name>-<machine name>-<date stamp> directory. This is shown here:

$ ls tmp/deploy/licenses/nova-image-beaglebone-20151104150124

license.manifest  package.manifest

The first file lists the licenses used by each package, the second lists the package 
names only.

Further reading
You can have look at the following documentation for more information:

• The Buildroot User Manual, http://buildroot.org/downloads/manual/
manual.html

• Yocto Project documentation: there are nine reference guides plus a  
tenth which is a composite of the others (the so-called Mega-manual")  
at https://www.yoctoproject.org/documentation
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• Instant Buildroot, by Daniel Manchón Vizuete, Packt Publishing, 2013
• Embedded Linux Development with Yocto Project, by Otavio Salvador and  

Daianne Angolini, Packt Publishing, 2014

Summary
Using a build system takes the hard work out of creating an embedded Linux 
system, and it is almost always better than hand crafting a roll your own system. 
There is a range of open source build systems available these days: Buildroot  
and the Yocto Project represent two different approaches. Buildroot is simple  
and quick, making it a good choice for fairly simple single-purpose devices: 
traditional embedded Linux as I like to think of them.

The Yocto Project is more complex and flexible. It is package based, meaning that 
you have the option to install a package manager and perform updates of individual 
packages in the field. The meta layer structure makes it easy to extend the metadata 
and indeed there is good support throughout the community and industry for the 
Yocto Project. The downside is that there is a very steep learning curve: you should 
expect it to take several months to become proficient with it, and even then it will 
sometimes do things that you didn't expect, or at least that is my experience.

Don't forget that any devices you create using these tools will need to be maintained 
in the field for a period of time, often many years. The Yocto Project will provide 
point releases for about one year after a release, Buildroot usually does not provide 
any point releases. In either case you will find yourself having to maintain your 
release yourself or else paying for commercial support. The third possibility, 
ignoring the problem, should not be considered an option!

In the next chapter I will look at file storage and filesystems, and at the way that 
the choices you make there will affect the stability and maintainability of your 
embedded Linux.
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Creating a Storage Strategy
The mass storage options for embedded devices have a great impact on the rest of 
the system in terms of robustness, speed, and methods of in-field updates.

Most devices employ flash memory in some form or other. Flash memory has 
become much less expensive over the past few years as storage capacities have 
increased from tens of megabytes to tens of gigabytes.

In this chapter, I will begin with a detailed look at the technology behind flash 
memory and how different memory organization affects the low level driver 
software that has to manage it, including the Linux memory technology device  
layer, MTD.

For each flash technology, there are different choices of filesystem. I will describe 
those most commonly found on embedded devices and complete the survey with  
a section giving a summary of choices for each type of flash.

The last sections consider techniques to make the best use of flash memory, look at 
how to update devices in the field, and draw everything together into a coherent 
storage strategy.

Storage options
Embedded devices need storage that takes little power, is physically compact, robust, 
and reliable over a lifetime of perhaps tens of years. In almost all cases, that means 
solid state storage, which was introduced many years ago with read-only memory 
(ROM), but for the past 20 years it has been flash memory of some kind. There have 
been several generations of flash memory in that time, progressing from NOR to 
NAND to managed flash such as eMMC.

NOR flash is expensive but reliable and can be mapped into the CPU address  
space, which allows you to execute code directly from flash. NOR flash chips  
are low-capacity, ranging from a few megabytes to a gigabyte or so.
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NAND flash memory is much cheaper than NOR and is available in higher capacities, 
in the range of tens of megabytes to tens of gigabytes. However, it needs a lot of 
hardware and software support to turn it into a useful storage medium.

Managed flash memory consists of one or more NAND flash chips packaged with a 
controller which handles the complexities of flash memory and presents a hardware 
interface similar to that of a hard disk. The attraction is that it removes complexity 
from the driver software and insulates the system designer against the frequent 
changes in flash technology. SD cards, eMMC chips, and USB flash drives fit into 
this category. Almost all of the current generation of smartphones and tablets 
have eMMC storage, and that trend is likely to progress with other categories of 
embedded devices.

Hard drives are seldom found in embedded systems. One exception is digital video 
recording in set-top boxes and smart TVs in which a large amount of storage is needed 
with fast write times.

In all cases, robustness is of prime importance: you want the device to boot and reach 
a functional state despite power failures and unexpected resets. You should choose 
filesystems that behave well under such circumstances.

NOR flash
The memory cells in NOR flash chips are arranged into erase blocks of, for example, 
128 KiB. Erasing a block sets all the bits to 1. It can be programmed one word at a 
time (8, 16 or 32 bits, depending on the data bus width). Each erase cycle damages 
the memory cells slightly and, after a number of cycles, the erase block becomes 
unreliable and cannot be used anymore. The maximum number of erase cycles 
should be given in the data sheet for the chip but is usually in the range of  
100K to 1M.

The data can be read word by word. The chip is usually mapped into the CPU 
address space which means that you can execute code directly from NOR flash. This 
makes it a convenient place to put the bootloader code as it needs no initialization 
beyond hardwiring the address mapping. SoCs that support NOR flash in this way 
have configurations that give a default memory mapping such that it encompasses 
the reset vector of the CPU.
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The kernel, and even the root filesystem, can also be located in flash memory, 
avoiding the need for copying them into RAM and thus creating devices with  
small memory footprints. The technique is known as eXecute In Place, or XIP.  
It is very specialized and I will not examine it further here. There are some  
references at the end of the chapter.

There is a standard register-level interface for NOR flash chips called the common 
flash interface or CFI, which all modern chips support.

NAND flash
NAND flash is much cheaper than NOR flash and has a higher capacity. First 
generation NAND chips stored one bit per memory cell in what is now known as an 
SLC or single level cell organization. Later generations moved on to two bits per cell 
in multi-level cell (MLC) chips and now to three bits per cell in tri-level cell (TLC) 
chips. As the number of bits per cell has increased, the reliability of the storage has 
decreased, requiring more complex controller hardware and software to compensate.

As with NOR flash, NAND flash is organized into erase blocks ranging in size from 
16 KiB to 512 KiB and, once again, erasing a block sets all the bits to 1. However, the 
number of erase cycles before the block becomes unreliable is lower, typically as few 
as 1K cycles for TLC chips and up to 100K for SLC. NAND flash can only be read and 
written in pages, usually of 2 or 4 KiB. Since they cannot be accessed byte-by-byte, they 
cannot be mapped into the address space and so code and data have to be copied into 
RAM before they can be accessed.

Data transfers to and from the chip are prone to bit flips, which can be detected and 
corrected using Error Correction Codes. SLC chips generally use a simple hamming 
code which can be implemented efficiently in software and can correct a single bit 
error in a page read. MLC and TLC chips need more sophisticated codes such as 
BCH (Bose-Chaudhuri-Hocquenghem) which can correct up to 8-bit errors per page. 
These need hardware support.



Creating a Storage Strategy

[ 752 ]

The error correction codes have to be stored somewhere and so there is an extra area 
of memory per page known as the out of band (OOB) area, or also the spare area. 
SLC designs usually have 1 byte of OOB per 32 bytes of main storage so, for a 2 KiB 
page device, the OOB is 64 bytes per page and for a 4 KiB page, 128 bytes. MLC and 
TLC chips have proportionally larger OOB areas to accommodate more complex 
error correction codes. The following diagram shows the organization of a chip with 
a 128 KiB erase block and 2 KiB pages:

During production, the manufacturer tests all the blocks and marks any that fail 
by setting a flag in the OOB area of each page in the block. It is not uncommon to 
find that brand new chips have up to 2% of their blocks marked bad in this way. 
Furthermore, it is within the specification for a similar proportion of blocks to give 
errors on erase before the erase cycle limit is reached. The NAND flash driver should 
detect this and mark it as bad.

After space has been taken in the OOB area for a bad block flag and ECC bytes, 
there are still some bytes left. Some flash filesystems make use of these free bytes to 
store filesystem metadata. Consequently, lots of people are interested in the layout 
of the OOB area: the SoC ROM boot code, the bootloader, the kernel MTD driver, 
the filesystem code, and the tools to create filesystem images. There is not much 
standardization so it is easy to get into a situation in which the bootloader writes 
data using an OOB format that cannot be read by the kernel MTD driver. It is up  
to you to make sure that they all agree.
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Access to NAND flash chips requires a NAND flash controller, which is usually part 
of the SoC. You will need the corresponding driver in the bootloader and kernel.  
The NAND flash controller handles the hardware interface to the chip, transferring 
data to and from pages, and may include hardware for error correction.

There is a standard register-level interface for NAND flash chips known as  
the open NAND flash interface or ONFi which most modern chips adhere to.  
See http://www.onfi.org.

Managed flash
The burden of supporting flash memory in the operating system, NAND in 
particular, becomes less if there is a well-defined hardware interface and a standard 
flash controller that hides the complexities of the memory. This is managed flash 
memory and it is becoming more and more common. In essence, it means combining 
one or more flash chips with a micro controller that offers an ideal storage device 
with a small sector size that is compatible with conventional filesystems. The most 
important types of managed flash for embedded systems are Secure Digital (SD) 
cards and the embedded variant known as eMMC.

MultiMediaCard and secure digital cards
The MultiMediaCard (MMC) was introduced in 1997 by SanDisk and Siemens  
as a form of packaged storage using flash memory. Shortly after, in 1999, SanDisk, 
Matsushita, and Toshiba created the SD card which is based on MMC but adds 
encryption and DRM (that is the secure part). Both were intended for consumer 
electronics such as digital cameras, music players, and similar devices. Currently, 
SD cards are the dominant form of managed flash for consumer and embedded 
electronics, even though the encryption features are seldom used. Newer versions  
of the SD specification allow for smaller packaging (mini SD and micro SD which is 
often written as uSD) and larger capacities: high capacity, SDHC, up to 32 GB and 
extended capacity, SDXC, up to 2 TB.

http://www.onfi.org
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The hardware interface for MMC and SD cards is very similar, and it is possible to 
use fully-sized MMC in full-sized SD card slots (but not the other way round). Early 
incarnations used a 1-bit Serial Peripheral Interface (SPI); more recent cards use a 
4-bit interface. There is a command set for reading and writing memory in sectors of 
512 bytes. Inside the package there is a microcontroller and one or more NAND flash 
chips, as shown in the diagram that follows:

The microcontroller implements the command set and manages the flash memory, 
performing the function of a flash translation layer, as described later on in this 
chapter. They are pre-formatted with a FAT filesystem: FAT16 on SDSC cards, FAT32 
on SDHC, and exFAT on SDXC. The quality of the NAND flash chips and the software 
on the microcontroller varies greatly between cards. It is questionable whether any 
of them are sufficiently reliable for deep embedded use, and certainly not with a FAT 
filesystem which is prone to file corruption. Remember that the prime use case for 
MMC and SD cards is for removable storage on cameras, tablets, and phones.

eMMC
eMMC or Embedded MMC is simply MMC memory packaged so that it can 
be soldered on to the motherboard, using a 4- or 8-bit interface for data transfer. 
However, they are intended to be used as storage for an operating system so the 
components are capable of performing that task. The chips are usually not pre-
formatted with any filesystem.
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Other types of managed flash
One of the first managed flash technologies was CompactFlash (CF), using a subset 
of the PCMCIA (Personal Computer Memory Card International Association) 
interface. CF exposes the memory through a parallel ATA interface and appears to 
the operating system as a standard hard disk. They are common in x86-based single 
board computers and professional video and camera equipment.

One other format which we use every day is the USB flash drive. In this case, the 
memory is accessed through a USB interface and the controller implements the USB 
mass storage specification as well as the flash translation layer and interface to the 
flash chip or chips. The USB mass storage protocol, in turn, is based on the SCSI disk 
command set. As with MMC and SD cards, they are usually pre-formatted with a FAT 
filesystem. Their main use case in embedded systems is exchanging data with PCs.

A recent addition to the list of options for managed flash storage 
is universal flash storage (UFS). Like eMMC, it is packaged in a 
chip that is mounted on the motherboard. It has a high-speed serial 
interface and can achieve data rates greater than eMMC. It supports 
a SCSI disk command set.

Accessing flash memory from the 
bootloader
In Chapter 3, All About Bootloaders, I mentioned the need for the bootloader to 
load kernel binaries and other images from various flash devices and to be able 
to perform system maintenance tasks such as erasing and reprogramming flash 
memory. It follows that the bootloader must have the drivers and infrastructure to 
support read, erase, and write operations on the type of memory you have, whether 
it be NOR, NAND, or managed. I will use U-Boot in the following example; other 
bootloaders follow a similar pattern.

U-Boot and NOR flash
U-Boot has drivers for NOR CFI chips in drivers/mtd and has the commands 
erase to erase memory and cp.b to copy data byte by byte, programming the flash. 
Suppose that you have NOR flash memory mapped from 0x40000000 to 0x48000000, 
of which 4MiB starting at 0x40040000 is a kernel image, then you would load a new 
kernel into flash using these U-Boot commands:
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U-Boot# tftpboot 100000 uImage
U-Boot# erase 40040000 403fffff
U-Boot# cp.b 100000 40040000 $(filesize)

The variable filesize in the preceding example is set by the tftpboot command to 
the size of the file just downloaded.

U-Boot and NAND flash
For NAND flash, you need a driver for the NAND flash controller on your SoC, 
which you can find in drivers/mtd/nand. You use the nand command to manage 
the memory using the sub-commands erase, write, and read. This example shows 
a kernel image being loaded into RAM at 0x82000000 and then placed into flash 
starting at offset 0x280000:

U-Boot# tftpboot 82000000 uImage
U-Boot# nand erase 280000 400000
U-Boot# nand write 82000000 280000 $(filesize)

U-Boot can also read files stored in the JFFS2, YAFFS2, and UBIFS filesystems.

U-Boot and MMC, SD and eMMC
U-Boot has drivers for several MMC controllers in drivers/mmc. You can access the 
raw data using mmc read and mmc write at the user interface level, which allows 
you to handle raw kernel and filesystem images.

U-boot can also read files from the FAT32 and ext4 filesystems on MMC storage.

Accessing flash memory from Linux
Raw NOR and NAND flash memory is handled by the memory technology device 
sub-system, or MTD, which provides basic interfaces to read, erase, and write blocks 
of flash memory. In the case of NAND flash, there are functions to handle the OOB 
area and to identify bad blocks.

For managed flash, you need drivers to handle the particular hardware interface. 
MMC/SD cards and eMMC use the mmcblk driver; CompactFlash and hard drives 
use the SCSI Disk driver, sd. USB flash drives use the usb_storage driver together 
with the sd driver.
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Memory technology devices
The memory technology devices (MTD), sub-system was started by David 
Woodhouse in 1999 and has been extensively developed over the intervening years. 
In this section, I will concentrate on the way it handles the two main technologies, 
NOR and NAND flash.

MTD consists of three layers: a core set of functions, a set of drivers for various types 
of chips, and user-level drivers that present the flash memory as a character device or 
a block device, as shown in the following diagram:

The chip drivers are at the lowest level and interface with flash chips. Only a small 
number of drivers are needed for NOR flash chips, enough to cover the CFI standard 
and variations plus a few non-compliant chips which are now mostly obsolete. For 
NAND flash, you will need a driver for the NAND flash controller you are using; 
this is usually supplied as part of the board support package. There are drivers for 
about 40 of them in the current mainline kernel in the directory drivers/mtd/nand.

MTD partitions
In most cases, you will want to partition the flash memory into a number of areas, for 
example, to provide space for a bootloader, a kernel image, or a root filesystem. In 
MTD, there are several ways to specify the size and location of partitions, the main 
ones being:

• Through the kernel command line using CONFIG_MTD_CMDLINE_PARTS
• Via the device tree using CONFIG_MTD_OF_PARTS
• With a platform mapping driver
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In the case of the first option, the kernel command line option to use is mtdparts, 
which is defined as follows in the Linux source code in drivers/mtd/cmdlinepart.c:

mtdparts=<mtddef>[;<mtddef]
<mtddef>  := <mtd-id>:<partdef>[,<partdef>]
<mtd-id>  := unique name for the chip
<partdef> := <size>[@<offset>][<name>][ro][lk]
<size>    := size of partition OR "-" to denote all remaining
             space
<offset>  := offset to the start of the partition; leave blank
             to follow the previous partition without any gap
<name>    := '(' NAME ')'

Perhaps an example will help. Imagine that you have one flash chip of 128 MB that is 
to be divided into five partitions. A typical command line would be:

mtdparts=:512k(SPL)ro,780k(U-Boot)ro,128k(U-BootEnv),
4m(Kernel),-(Filesystem)

The first element, before the colon, :, is mtd-id, which identifies the flash chip,  
either by number or by the name assigned by the board support package. If there 
is only one chip, as here, it can be left empty. If there is more than one chip, the 
information for each is separated by a semicolon, ;. Then, for each chip, there 
is a comma-separated list of partitions, each with a size in bytes, kilobytes, k, or 
megabytes, m, and a name in brackets. The ro suffix makes the partition read-only 
to MTD and is often used to prevent accidental overwriting of the bootloader. The 
size of the last partition for the chip may be replaced by a dash, -, indicating that it 
should take up all the remaining space.

You can see a summary of the configuration at runtime by reading /proc/mtd:

# cat /proc/mtd
dev:    size   erasesize   name
mtd0: 00080000 00020000  "SPL"
mtd1: 000C3000 00020000  "U-Boot"
mtd2: 00020000 00020000  "U-BootEnv"
mtd3: 00400000 00020000  "Kernel"
mtd4: 07A9D000 00020000  "Filesystem"

There is more detailed information for each partition in /sys/class/mtd, including 
the erase block size and the page size, and it is nicely summarized using mtdinfo:

# mtdinfo /dev/mtd0
mtd0
Name:                           SPL
Type:                           nand



Chapter 7

[ 759 ]

Eraseblock size:                131072 bytes, 128.0 KiB
Amount of eraseblocks:          4 (524288 bytes, 512.0 KiB)
Minimum input/output unit size: 2048 bytes
Sub-page size:                  512 bytes
OOB size:                       64 bytes
Character device major/minor:   90:0
Bad blocks are allowed:         true
Device is writable:             false

The equivalent partition information can be written as part of the device tree like so:

nand@0,0 {
  #address-cells = <1>;
  #size-cells = <1>;
  partition@0 {
    label = "SPL";
    reg = <0 0x80000>;
  };
  partition@80000 {
    label = "U-Boot";
    reg = <0x80000 0xc3000>;
  };
  partition@143000 {
    label = "U-BootEnv";
    reg = <0x143000 0x20000>;
  };
  partition@163000 {
    label = "Kernel";
    reg = <0x163000 0x400000>;
  };
  partition@563000 {
    label = "Filesystem";
    reg = <0x563000 0x7a9d000>;
  };
};

A third alternative is to code the partition information as platform data in an  
mtd_partition structure, as shown in this example taken from arch/arm/mach-
omap2/board-omap3beagle.c (NAND_BLOCK_SIZE is defined elsewhere to  
be 128K):

static struct mtd_partition omap3beagle_nand_partitions[] = {
  {
    .name           = "X-Loader",
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    .offset         = 0,
    .size           = 4 * NAND_BLOCK_SIZE,
    .mask_flags     = MTD_WRITEABLE,    /* force read-only */
  },
  {
    .name           = "U-Boot",
    .offset         = 0x80000;
    .size           = 15 * NAND_BLOCK_SIZE,
    .mask_flags     = MTD_WRITEABLE,    /* force read-only */
  },
  {
    .name           = "U-Boot Env",
    .offset         = 0x260000;
    .size           = 1 * NAND_BLOCK_SIZE,
  },
  {
    .name           = "Kernel",
    .offset         = 0x280000;
    .size           = 32 * NAND_BLOCK_SIZE,
  },
  {
    .name           = "File System",
    .offset         = 0x680000;
    .size           = MTDPART_SIZ_FULL,
  },
};

MTD device drivers
The upper level of the MTD sub-system is a pair of device drivers:

• A character device, with a major number of 90. There are two device  
nodes per MTD partition number, N: /dev/mtdN (minor number=N*2)  
and /dev/mtdNro (minor number=(N*2 + 1)). The latter is just a read-only 
version of the former.

• A block device, with a major number of 31 and a minor number of N.  
The device nodes are in the form /dev/mtdblockN.
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The MTD character device, mtd
The character devices are the most important: they allow you to access the 
underlying flash memory as an array of bytes so that you can read and write 
(program) the flash. It also implements a number of ioctl functions that allow  
you to erase blocks and to manage the OOB area on NAND chips. The following  
list is in include/uapi/mtd/mtd-abi.h:

IOCTL Description
MEMGETINFO Gets basic MTD characteristic information
MEMERASE Erases blocks in the MTD partition
MEMWRITEOOB Writes out-of-band data for the page
MEMREADOOB Reads out-of-band data for the page
MEMLOCK Locks the chip (if supported)
MEMUNLOCK Unlocks the chip (if supported)
MEMGETREGIONCOUNT Gets the number of erase regions: non-zero if there are erase 

blocks of differing sizes in the partition, which is common for 
NOR flash, rare on NAND

MEMGETREGIONINFO If MEMGETREGIONCOUNT is non-zero, this can be used to get the 
offset, size, and block count of each region

MEMGETOOBSEL Deprecated
MEMGETBADBLOCK Gets the bad block flag
MEMSETBADBLOCK Sets the bad block flag
OTPSELECT Sets OTP (one-time programmable) mode, if the chip supports it
OTPGETREGIONCOUNT Gets the number of OTP regions
OTPGETREGIONINFO Gets information about an OTP region
ECCGETLAYOUT Deprecated

There is a set of utility programs known as mtd-utils for manipulating flash 
memory that makes use of these ioctl functions. The source is available from 
http://git.infradead.org/mtd-utils.git and is available as a package in  
the Yocto Project and Buildroot. The essential tools are shown in the following  
list. The package also contains utilities for the JFFS2 and UBI/UBIFS filesystems 
which I will cover later. For each of these tools, the MTD character device is one  
of the parameters:

• flash_erase: Erases a range of blocks.
• flash_lock: Locks a range of blocks.
• flash_unlock: Unlocks a range of blocks.

http://git.infradead.org/mtd-utils.git
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• nanddump: Dumps memory from NAND flash, optionally including the 
OOB area. Skips bad blocks.

• nandtest: Tests and diagnostics for NAND flash.
• nandwrite: Writes (program) from a data file to NAND flash, skipping  

bad blocks.

You must always erase flash memory before writing new contents 
to it: flash_erase is the command to do that.

To program NOR flash, you simply copy bytes to the MTD device node using the  
cp command or similar.

Unfortunately, this doesn't work with NAND memory as the copy will fail at the first 
bad block. Instead, use nandwrite, which skips over any bad blocks. To read back 
NAND memory, you should use nanddump which also skips bad blocks.

The MTD block device, mtdblock
The mtdblock driver is little used. Its purpose is to present flash memory as a block 
device which you can use to format and mount as a filesystem. However, it has 
severe limitations because it does not handle bad blocks in NAND flash, does not do 
wear leveling, and does not handle the mismatch in size between filesystem blocks 
and flash erase blocks. In other words, it does not have a flash translation layer, 
which is essential for reliable file storage. The only case where the mtdblock device 
is useful is to mount read-only filesystems such as Squashfs on top of reliable flash 
memory such as NOR.

If you want a read-only filesystem on NAND flash, you should use 
the UBI driver, as described later in this chapter.

Logging kernel oops to MTD
Kernel errors, or oopsies, are normally logged via the klogd and syslogd daemons 
to a circular memory buffer or a file. Following a reboot, the log will be lost in the 
case of a ring buffer and, even in the case of a file, it may not have been properly 
written before the system crashed.
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A more reliable method is to write oops and kernel panics to an MTD 
partition as a circular log buffer. You enable it with CONFIG_MTD_OOPS 
and you add console=ttyMTDN to the kernel command line, N being 
the MTD device number to write the messages to.

Simulating NAND memory
The NAND simulator emulates a NAND chip using system RAM. The main use 
is for testing code that has to be NAND-aware without access to physical NAND 
memory. In particular, the ability to simulate bad blocks, bit flips, and other errors 
allows you to test code paths that are difficult to exercise using real flash memory. 
For more information, the best place to look is in the code itself, which has a 
comprehensive description of the ways you can configure the driver. The code  
is in drivers/mtd/nand/nandsim.c. Enable it with the kernel configuration 
CONFIG_MTD_NAND_NANDSIM.

The MMC block driver
MMC/SD cards and eMMC chips are accessed using the mmcblk block driver.  
You need a host controller to match the MMC adapter you are using, which is part 
of the board support package. The drivers are located in the Linux source code in 
drivers/mmc/host.

MMC storage is partitioned using a partition table in exactly the same way you 
would for hard disks, using fdisk or a similar utility.

Filesystems for flash memory
There are several challenges when making efficient use of flash memory for mass 
storage: the mismatch between the size of an erase block and a disk sector, the limited 
number of erase cycles per erase block, and the need for bad block handling on NAND 
chips. These differences are resolved by a Flash Translation Layer globally, or FTL.

Flash translation layers
A flash translation layer has the following features:

• Sub allocation: Filesystems work best with a small allocation unit, 
traditionally a 512-byte sector. This is much smaller than a flash erase  
block of 128 KiB or more. Therefore erase blocks have to be sub-divided  
into smaller units to avoid wasting large amounts of space.
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• Garbage collection: A consequence of sub-allocation is that an erase block 
will contain a mixture of good data and stale data after the filesystem has 
been in use for a while. Since we can only free up whole erase blocks, the 
only way to reclaim the free space is to coalesce the good data into one 
place and return the now empty erase block to the free list: this is garbage 
collection, and is usually implemented as a background thread.

• Wear leveling: There is a limit on the number of erase cycles for each block. 
To maximize the lifespan of a chip, it is important to move data around so 
that each block is erased roughly the same number of times.

• Bad block handling: On NAND flash chips, you have to avoid using any 
block marked bad and also mark good blocks as bad if they cannot be erased.

• Robustness: Embedded devices may be powered off or reset without 
warning, so any filesystem should be able to cope without corruption, 
usually by incorporating a journal or log of transactions.

There are several ways to deploy the flash translation layer:

• In the filesystem: as with JFFS2, YAFFS2, and UBIFS
• In the block device driver: the UBI driver, on which UBIFS depends, 

implements some aspects of a flash translation layer
• In the device controller: as with managed flash devices

When the flash translation layer is in the filesystem or the block driver, the code is 
part of the kernel and so it is open source, meaning that we can see how it works 
and we can expect that it will be improved over time. On the other hand, the FTL is 
inside a managed flash device; it is hidden from view and we cannot verify whether 
or not it works as we would want. Not only that, but putting the FTL into the disk 
controller means that it misses out on information that is held at the filesystem layer 
such as which sectors belong to files that have been deleted and so do not contain 
useful data anymore. The latter problem is solved by adding commands that pass 
this information between the filesystem and the device I will describe in the section 
on the TRIM command later, but the question of code visibility remains. If you are 
using managed flash, you just have to choose a manufacturer you can trust.

Filesystems for NOR and NAND flash 
memory
To use raw flash chips for mass storage, you have to use a filesystem that understands 
the peculiarities of the underlying technology. There are three such filesystems:
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• Journaling Flash File System 2, JFFS2: This was the first flash filesystem  
for Linux, and is still in use today. It works for NOR and NAND memory, 
but is notoriously slow during mount.

• Yet Another Flash File System 2, YAFFS2: This is similar to JFFS2, but 
specifically for NAND flash memory. It was adopted by Google as the 
preferred raw flash filesystem on Android devices.

• Unsorted Block Image File System, UBIFS: This is the latest flash-aware 
filesystem for both NOR and NAND memory, which is used in conjunction 
with the UBI block driver. It generally offers better performance than JFFS2 
or YAFFS2, and so should be the preferred solution for new designs.

All of these use MTD as the common interface to flash memory.

JFFS2
The Journaling Flash File System had its beginnings in the software for the Axis 2100 
network camera in 1999. For many years, it was the only flash filesystem for Linux 
and has been deployed on many thousands of different types of devices. Today, it 
is not the best choice, but I will cover it first because it shows the beginning of the 
evolutionary path.

JFFS2 is a log-structured filesystem that uses MTD to access flash memory. In a  
log-structured filesystem, changes are written sequentially as nodes to the flash 
memory. A node may contain changes to a directory, such as the names of files 
created and deleted, or it may contain changes to file data. After a while, a node  
may be superseded by information contained in subsequent nodes and becomes  
an obsolete node.

Erase blocks are categorized into three types:

• free: It contains no nodes at all
• clean: It contains only valid nodes
• dirty: It contains at least one obsolete node

At any one time, there is one block receiving updates which is called the open block. 
If power is lost or the system is reset, the only data that can be lost is the last write 
to the open block. In addition, nodes are compressed as they are written, increasing 
the effective storage capacity of the flash chip, which is important if you are using 
expensive NOR flash memory.

When the number of free blocks falls below a threshold, a garbage collector kernel 
thread is started, which scans for dirty blocks and copies the valid nodes into the 
open block, and then frees up the dirty block.
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At the same time, the garbage collector provides a crude form of wear leveling 
because it cycles valid data from one block to another. The way that the open block 
is chosen means that each block is erased roughly the same number of times so long 
as it contains data that changes from time to time. Sometimes a clean block is chosen 
for garbage collection to make sure that blocks containing static data that is seldom 
written are also wear leveled.

JFFS2 filesystems have a write through cache, meaning that writes are written to the 
flash memory synchronously as if they have been mounted with a -o sync option. 
While improving reliability, it does increase the time to write data. There is a further 
problem with small writes: if the length of a write is comparable to the size of the 
node header (40 bytes) the overhead becomes high. A well-known corner case is  
log files, produced, for example, by syslogd.

Summary nodes
There is one overriding disadvantage to JFFS2: since there is no on-chip index, the 
directory structure has to be deduced at mount-time by reading the log from start to 
finish. At the end of the scan, you have a complete picture of the directory structure 
of the valid nodes, but the time taken is proportional to the size of the partition. It is 
not uncommon to see mount times of the order of one second per megabyte, leading 
to total mount times of tens or hundreds of seconds.

To reduce the time to scan during mount, summary nodes became an option in 
Linux 2.6.15. A summary node is written at the end of the open erase block just 
before it is closed. The summary node contains all of the information needed for the 
mount-time scan, thereby reducing the amount of data to process during the scan. 
Summary nodes can reduce mount times by a factor of between two and five, at the 
expense of an overhead of about 5% of the storage space. They are enabled with the 
kernel configuration CONFIG_JFFS2_SUMMARY.

Clean markers
An erased block with all bits set to 1 is indistinguishable from a block that has been 
written with 1's, but the latter has not had its memory cells refreshed and cannot be 
programmed again until it is erased. JFFS2 uses a mechanism called clean markers 
to distinguish between these two situations. After a successful block erase, a clean 
marker is written, either to the beginning of the block, or to the OOB area of the first 
page of the block. If the clean marker exists then it must be a clean block.
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Creating a JFFS2 filesystem
Creating an empty JFFS2 filesystem at runtime is as simple as erasing an MTD 
partition with clean markers and then mounting it. There is no formatting step 
because a blank JFFS2 filesystem consists entirely of free blocks. For example, to 
format MTD partition 6, you would enter these commands on the device:

# flash_erase -j /dev/mtd6 0 0
# mount -t jffs2 mtd6 /mnt

The -j option to flash_erase adds the clean markers, and mounting with type 
jffs2 presents the partition as an empty filesystem. Note that the device to be 
mounted is given as mtd6, not /dev/mtd6. Alternatively, you can give the block 
device node /dev/mtdblock6. This is just a peculiarity of JFFS2. Once mounted,  
you can treat it like any filesystem and, when you next boot and mount it, all the  
files will still be there.

You can create a filesystem image directly from the staging area of your development 
system using mkfs.jffs2 to write out the files in JFFS2 format and sumtool to add 
the summary nodes. Both of these are part of the mtd-utils package.

As an example, to create an image of the files in rootfs for a NAND flash device 
with an erase block size of 128 KB (0x20000) and with summary nodes, you would 
use these two commands:

$ mkfs.jffs2 -n -e 0x20000 -p -d ~/rootfs -o ~/rootfs.jffs2

$ sumtool -n -e 0x20000 -p -i ~/rootfs.jffs2 -o ~/rootfs-sum.jffs2

The -p option adds padding at the end of the image file to make it a whole number 
of erase blocks. The -n option suppresses the creation of clean markers in the image, 
which is normal for NAND devices as the clean marker is in the OOB area. For NOR 
devices, you would leave out the -n option. You can use a device table with mkfs.
jffs2 to set the permissions and the ownership of files by adding -D [device table]. 
Of course, Buildroot and the Yocto Project will do all this for you.

You can program the image into flash memory from your bootloader. For example, if 
you have loaded a filesytem image into RAM at address 0x82000000 and you want to 
load it into a flash partition begins at 0x163000 bytes from the start of the flash chip 
and is 0x7a9d000 bytes long, the U-Boot commands would be:

nand erase clean 163000 7a9d000
nand write 82000000 163000 7a9d000

You can do the same thing from Linux using the mtd driver like this:

# flash_erase -j /dev/mtd6 0 0
# nandwrite /dev/mtd6 rootfs-sum.jffs2
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To boot with a JFFS2 root filesystem, you need to pass the mtdblock device on the 
kernel command line for the partition and a root fstype because JFFS2 cannot be 
auto-detected:

root=/dev/mtdblock6 rootfstype=jffs2

YAFFS2
The YAFFS filesystem was written by Charles Manning beginning in 2001, 
specifically to handle NAND flash chips at a time when JFFS2 did not. Subsequent 
changes to handle larger (2 KiB) page sizes resulted in YAFFS2. The website for 
YAFFS is http://www.yaffs.net.

YAFFS is also a log-structured filesystem following the same design principles  
as JFFS2. The different design decisions mean that it has a faster mount-time scan, 
simpler and faster garbage collection, and has no compression, which speeds up 
reads and writes at the expense of less efficient use of storage.

YAFFS is not limited to Linux; it has been ported to a wide range of operating 
systems. It has a dual license: GPLv2 to be compatible with Linux, and a commercial 
license for other operating systems. Unfortunately, the YAFFS code has never been 
merged into mainline Linux so you will have to patch your kernel, as shown in the 
following code.

To get YAFFS2 and patch a kernel, you would:

$ git clone git://www.aleph1.co.uk/yaffs2

$ cd yaffs2

$ ./patch-ker.sh c m <path to your link source>

Then, configure the kernel with CONFIG_YAFFS_YAFFS2.

Creating a YAFFS2 filesystem
As with JFFS2, to create a YAFFS2 filesystem at runtime, you only need to erase the 
partition and mount it but note that, in this case, you do not enable clean markers:

# flash_erase /dev/mtd/mtd6 0 0
# mount -t yaffs2 /dev/mtdblock6 /mnt

To create a filesystem image, the simplest thing to do is use the mkyaffs2 tool from 
https://code.google.com/p/yaffs2utils using the following command:

$ mkyaffs2 -c 2048 -s 64 rootfs rootfs.yaffs2

http://www.yaffs.net
https://code.google.com/p/yaffs2utils
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Here -c is the page size and -s the OOB size. There is a tool named mkyaffs2image 
that is part of the YAFFS code, but it has a couple of drawbacks. Firstly, the page 
and OOB size are hard-coded in the source: you will have to edit and recompile 
if you have memory that does not match the defaults of 2,048 and 64. Secondly, 
the OOB layout is incompatible with MTD, which uses the first two byes as a bad 
block marker, whereas mkyaffs2image uses those bytes to store part of the YAFFS 
metadata.

To copy the image to the MTD partition from a Linux shell prompt, follow these steps:

# flash_erase /dev/mtd6 0 0
# nandwrite -a /dev/mtd6 rootfs.yaffs2

To boot with a YAFFS2 root filesystem, add the following to the kernel  
command line:

root=/dev/mtdblock6 rootfstype=yaffs2

UBI and UBIFS
The unsorted block image (UBI) driver, is a volume manager for flash memory 
which takes care of bad block handling and wear leveling. It was implemented by 
Artem Bityutskiy and first appeared in Linux 2.6.22. In parallel with that, engineers 
at Nokia were working on a filesystem that would take advantage of the features 
of UBI which they called UBIFS; it appeared in Linux 2.6.27. Splitting the flash 
translation layer in this way makes the code more modular and also allows other 
filesystems to take advantage of the UBI driver, as we shall see later on.

UBI
UBI provides an idealized, reliable view of a flash chip by mapping physical erase 
blocks (PEB) to logical erase blocks (LEB). Bad blocks are not mapped to LEBs and 
so are never used. If a block cannot be erased, it is marked as bad and dropped from 
the mapping. UBI keeps a count of the number of times each PEB has been erased in 
the header of the LEB and changes the mapping to ensure that each PEB is erased the 
same number of times.



Creating a Storage Strategy

[ 770 ]

UBI accesses the flash memory through the MTD layer. As an extra feature, it can 
divide an MTD partition into a number of UBI volumes, which improves wear 
leveling in the following way. Imagine that you have two filesystems, one containing 
fairly static data, for example, a root filesystem, and the other containing data that is 
constantly changing. If they are stored in separate MTD partitions, the wear leveling 
only has an effect on the second one, whereas, if you choose to store them in two UBI 
volumes in a single MTD partition, the wear leveling takes place over both areas of 
the storage and the lifetime of the flash memory is increased. The following diagram 
illustrates this situation:

In this way, UBI fulfills two of the requirements of a flash translation layer: wear 
leveling and bad block handling.

To prepare an MTD partition for UBI, you don't use flash_erase as with JFFS2 and 
YAFFS2, instead you use the ubiformat utility, which preserves the erase counts 
that are stored in the _PEB_ headers. ubiformat needs to know the minimum unit of 
IO which, for most NAND flash chips, is the page size, but some chips allow reading 
and writing in sub pages that are a half or a quarter of the page size. Consult the chip 
data sheet for details and, if in doubt, use the page size. This example prepares mtd6 
using a page size of 2,048 bytes:

# ubiformat /dev/mtd6 -s 2048

You use the ubiattach command to load the UBI driver on an MTD partition that 
has been prepared in this way:

# ubiattach -p /dev/mtd6 -O 2048

This creates the device node /dev/ubi0 through which you can access the UBI 
volumes. You can use ubiattach multiple times for other MTD partitions, in which 
case they can be accessed through /dev/ubi1, /dev/ubi2, and so on.
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The PEB to LEB mapping is loaded into memory during the attach phase, a process 
that takes time proportional to the number of PEBs, typically a few seconds. A 
new feature was added in Linux 3.7 called the UBI fastmap which checkpoints 
the mapping to flash from time to time and so reduces the attach time. The kernel 
configuration option is CONFIG_MTD_UBI_FASTMAP.

The first time you attach to an MTD partition after a ubiformat there will be no 
volumes. You can create volumes using ubimkvol. For example, suppose you have a 
128MB MTD partition and you want to split it into two volumes of 32 MB and 96 MB 
using a chip with 128 KB erase blocks and 2 KB pages:

# ubimkvol /dev/ubi0 -N vol_1 -s 32MiB
# ubimkvol /dev/ubi0 -N vol_2 -s 96MiB

Now, you have device the nodes /dev/ubi0_0 and /dev/ubi0_1. You can confirm 
the situation using ubinfo:

# ubinfo -a /dev/ubi0
ubi0
Volumes count:                           2
Logical eraseblock size:                 15360 bytes, 15.0 KiB
Total amount of logical eraseblocks:     8192 (125829120 bytes,  
120.0 MiB)
Amount of available logical eraseblocks: 0 (0 bytes)
Maximum count of volumes                 89
Count of bad physical eraseblocks:       0
Count of reserved physical eraseblocks:  160
Current maximum erase counter value:     1
Minimum input/output unit size:          512 bytes
Character device major/minor:            250:0
Present volumes:                         0, 1
Volume ID:   0 (on ubi0)
Type:        dynamic
Alignment:   1
Size:        2185 LEBs (33561600 bytes, 32.0 MiB)
State:       OK
Name:        vol_1
Character device major/minor: 250:1
-----------------------------------
Volume ID:   1 (on ubi0)
Type:        dynamic
Alignment:   1
Size:        5843 LEBs (89748480 bytes, 85.6 MiB)
State:       OK
Name:        vol_2
Character device major/minor: 250:2
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Note that, since each LEB has a header to contain the meta information used by UBI, 
the LEB is smaller than the PEB by one page. For example, a chip with a PEB size of 
128 KB and 2 KB pages would have an LEB of 126 KB. This is important information 
that you will need when creating a UBIFS image.

UBIFS
UBIFS uses a UBI volume to create a robust filesystem. It adds sub-allocation and 
garbage collection to create a complete flash translation layer. Unlike JFFS2 and 
YAFFS2, it stores index information on-chip and so mounting is fast, although don't 
forget that attaching the UBI volume beforehand may take a significant amount  
of time. It also allows for write-back caching like a normal disk filesystem, which 
means that writes are much faster, but with the usual problem of potential loss  
of data that has not been flushed from the cache to flash memory in the event of 
power down. You can resolve the problem by making careful use of the fsync(2) 
and fdatasync(2) functions to force a flush of file data at crucial points.

UBIFS has a journal for fast recovery in the event power down. The journal takes  
up some space, typically 4 MiB or more, so UBIFS is not suitable for very small  
flash devices.

Once you have created the UBI volumes, you can mount them using the device node 
for the volume, /dev/ubi0_0, or by using the device node for the whole partition 
plus the volume name, as shown here:

# mount -t ubifs ubi0:vol_1 /mnt

Creating a filesystem image for UBIFS is a two-stage process: first you create a UBIFS 
image using mkfs.ubifs, and then embed it into a UBI volume using ubinize.

For the first stage, mkfs.ubifs needs to be informed of the page size with -m, the 
size of the UBI LEB with -e, remembering that the LEB is usually one page shorter 
than the PEB, and the maximum number of erase blocks in the volume with -c.  
If the first volume is 32 MiB and an erase block is 128 KiB, then the number of erase 
blocks is 256. So, to take the contents of the directory rootfs and create a UBIFS image 
named rootfs.ubi, you would type the following:

$ mkfs.ubifs -r rootfs -m 2048 -e 126KiB -c 256 -o rootfs.ubi

The second stage requires you to create a configuration file for ubinize which 
describes the characteristics of each volume in the image. The help page (ubinize -h) 
gives details of the format. This example creates two volumes, vol_1 and vol_2:

[ubifsi_vol_1]
mode=ubi
image=rootfs.ubi
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vol_id=0
vol_name=vol_1
vol_size=32MiB
vol_type=dynamic

[ubifsi_vol_2]
mode=ubi
image=data.ubi
vol_id=1
vol_name=vol_2
vol_type=dynamic
vol_flags=autoresize

The second volume has an auto-resize flag and so will expand to fill the remaining 
space on the MTD partition. Only one volume can have this flag. From this 
information, ubinize will create an image file named by the -o parameter,  
with the PEB size -p, the page size -m, and the sub-page size -s:

$ ubinize -o ~/ubi.img -p 128KiB -m 2048 -s 512 ubinize.cfg

To install this image on the target, you would enter these commands on the target:

# ubiformat /dev/mtd6 -s 2048
# nandwrite /dev/mtd6 /ubi.img
# ubiattach -p /dev/mtd6 -O 2048

If you want to boot with a UBIFS root filesystem, you would give these kernel 
command line parameters:

ubi.mtd=6 root=ubi0:vol_1 rootfstype=ubifs

Filesystems for managed flash
As the trend towards managed flash technologies continues, particularly eMMC, 
we need to consider how to use it effectively. While they appear to have the same 
characteristics as hard disk drives, some NAND flash chips have the limitations of 
large erase blocks with limited erase cycles and bad block handling. And, of course, 
we need robustness in the event of losing power.

It is possible to use any of the normal disk filesystems but we should try to choose 
one that reduces disk writes and has a fast restart after an unscheduled shutdown, 
typically provided by a journal.
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Flashbench
To make optimum use of the underlying flash memory, you need to know the erase 
block size and page size. Manufacturers do not publish these numbers, as a rule, but 
it is possible to deduce them by observing the behavior of the chip or card.

Flashbench is one such tool. It was initially written by Arnd Bergman, as described 
in the LWN article available at http://lwn.net/Articles/428584. You can get the 
code from https://github.com/bradfa/flashbench.

Here is a typical run on a SanDisk GiB SDHC card:

$ sudo ./flashbench -a  /dev/mmcblk0 --blocksize=1024

align 536870912 pre 4.38ms  on 4.48ms   post 3.92ms  diff 332µs

align 268435456 pre 4.86ms  on 4.9ms    post 4.48ms  diff 227µs

align 134217728 pre 4.57ms  on 5.99ms   post 5.12ms  diff 1.15ms

align 67108864  pre 4.95ms  on 5.03ms   post 4.54ms  diff 292µs

align 33554432  pre 5.46ms  on 5.48ms   post 4.58ms  diff 462µs

align 16777216  pre 3.16ms  on 3.28ms   post 2.52ms  diff 446µs

align 8388608   pre 3.89ms  on 4.1ms    post 3.07ms  diff 622µs

align 4194304   pre 4.01ms  on 4.89ms   post 3.9ms   diff 940µs

align 2097152   pre 3.55ms  on 4.42ms   post 3.46ms  diff 917µs

align 1048576   pre 4.19ms  on 5.02ms   post 4.09ms  diff 876µs

align 524288    pre 3.83ms  on 4.55ms   post 3.65ms  diff 805µs

align 262144    pre 3.95ms  on 4.25ms   post 3.57ms  diff 485µs

align 131072    pre 4.2ms   on 4.25ms   post 3.58ms  diff 362µs

align 65536     pre 3.89ms  on 4.24ms   post 3.57ms  diff 511µs

align 32768     pre 3.94ms  on 4.28ms   post 3.6ms   diff 502µs

align 16384     pre 4.82ms  on 4.86ms   post 4.17ms  diff 372µs

align 8192      pre 4.81ms  on 4.83ms   post 4.16ms  diff 349µs

align 4096      pre 4.16ms  on 4.21ms   post 4.16ms  diff 52.4µs

align 2048      pre 4.16ms  on 4.16ms   post 4.17ms  diff 9ns

Flashbench reads blocks of, in this case, 1,024 bytes just before and just after various 
power-of-two boundaries. As you cross a page or erase block boundary, the reads 
after the boundary take longer. The rightmost column shows the difference and is the 
one that is most interesting. Reading from the bottom, there is a big jump at 4 KiB, 
which is the most likely size of a page. There is a second jump from 52.4µs to 349µs at 
8 KiB. This is fairly common and indicates that the card can use multi-plane accesses 
to read two 4 KiB pages at the same time. Beyond that, the differences are less well 
marked, but there is a clear jump from 485µs to 805µs at 512 KiB, which is probably 
the erase block size. Given that the card being tested is quite old, these are the sort  
of numbers you would expect.

http://lwn.net/Articles/428584
https://github.com/bradfa/flashbench
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Discard and TRIM
Usually, when you delete a file, only the modified directory node is written to 
storage while the sectors containing the file's contents remain unchanged. When  
the flash translation layer is in the disk controller, as with managed flash, it does  
not know that this group of disk sectors no longer contains useful data and so it  
ends up copying stale data.

In the last few years, the addition of transactions that pass information about deleted 
sectors down to the disk controller has improved the situation. The SCSI and SATA 
specifications have a TRIM command and MMC has a similar command named 
ERASE. In Linux, this feature is known as discard.

To make use of discard, you need a storage device that supports it – most current 
eMMC chips do – and a Linux device driver to match. You can check by looking  
at the block system queue parameters in /sys/block/<block device>/queue/.  
The ones of interest are as follows:

• discard_granularity: The size of the internal allocation unit of the device
• discard_max_bytes: The maximum number of bytes that can be discarded 

in one go
• discard_zeroes_data: If 1, discarded data will be set to zero

If the device or the device driver does not support discard, these values are all  
set to zero. These are the parameters you will see from the eMMC chip on the 
BeagleBone Black:

# grep -s "" /sys/block/mmcblk0/queue/discard_*
/sys/block/mmcblk0/queue/discard_granularity:2097152
/sys/block/mmcblk0/queue/discard_max_bytes:2199023255040
/sys/block/mmcblk0/queue/discard_zeroes_data:1

There is more information in the kernel documentation file, Documentation/block/
queue-sysfs.txt.

You can enable discard when mounting a filesystem by adding the option  
-o discard to the mount command. Both ext4 and F2FS support it.

Make sure that the storage device supports discard before using the 
-o discard mount option, otherwise data loss can occur.
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It is also possible to force discard from the command line independently of how the 
partition is mounted, using the fstrim command which is part of the util-linux 
package. Typically, you would run this command periodically, once a week perhaps, 
to free up unused space. fstrim operates on a mounted filesystem so, to trim the 
root filesystem /, you would type the following:

# fstrim -v /
/: 2061000704 bytes were trimmed

The preceding example uses the verbose option, -v, so that it prints out the number 
of bytes potentially freed up. In this case 2,061,000,704 is the approximate amount of 
free space in the filesystem, so it is the maximum amount of storage that could have 
been freed.

Ext4
The extended filesystem, ext, has been the main filesystem for Linux desktops  
since 1992. The current version, ext4, is very stable, well tested and has a journal  
that makes recovery from an unscheduled shutdown fast and mostly painless. It is 
a good choice for managed flash devices and you will find that it is the preferred 
filesystem for Android devices that have eMMC storage. If the device supports 
discard, you should mount with the option -o discard.

To format and create an ext4 filesystem at runtime, you would type the following:

# mkfs.ext4 /dev/mmcblk0p2
# mount -t ext4 -o discard /dev/mmcblk0p1 /mnt

To create a filesystem image, you can use the genext2fs utility, available from 
http://genext2fs.sourceforge.net. In this example, I have specified the block 
size with -B and the number of blocks in the image with -b:

$ genext2fs -B 1024 -b 10000 -d rootfs rootfs.ext4

genext2fs can make use of a device table to set the file permissions and ownership, 
as described in Chapter 5, Building a Root Filesystem, with -D [file table].

As the name implies, this will actually generate an image in .ext2 format. You can 
upgrade using tune2fs as follows (details of the command options are in the main 
page for tune2fs):

$ tune2fs -j -J size=1 -O filetype,extents,uninit_bg,dir_index  
rootfs.ext4

$ e2fsck -pDf rootfs.ext4

http://genext2fs.sourceforge.net
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Both the Yocto Project and Buildroot use exactly these steps when creating images in 
.ext4 format.

While a journal is an asset for devices that may power down without warning, it does 
add extra write cycles to each write transaction, wearing out the flash memory. If the 
device is battery-powered, especially if the battery is not removable, the chances of an 
unscheduled power down are small and so you may want to leave the journal out.

F2FS
The Flash-Friendly File System, F2FS, is a log-structured filesystem designed for 
managed flash devices, especially eMMC and SD. It was written by Samsung and 
was merged into mainline Linux in 3.8. It is marked experimental, indicating that  
it has not been extensively deployed as yet, but it seems that some Android devices 
are using it.

F2FS takes into account the page and erase block sizes and tries to align data on these 
boundaries. The log format gives resilience in the face of power down and also gives 
good write performance, in some tests showing a two-fold improvement over ext4. 
There is a good description of the design of F2FS in the kernel documentation in 
Documentation/filesystems/f2fs.txt and there are references at the end of  
the chapter.

The mfs2.fs2 utility creates an empty F2FS filesystem with the label -l:

# mkfs.f2fs -l rootfs /dev/mmcblock0p1
# mount -t f2fs /dev/mmcblock0p1 /mnt

There isn't (yet) a tool to create F2FS filesystem images off-line.

FAT16/32
The old Microsoft filesystems, FAT16 and FAT32, continue to be important as a 
common format that is understood by most operating systems. When you buy  
an SD card or USB flash drive, it is almost certain to be formatted as FAT32 and, 
in some cases, the on-card microcontroller is optimized for FAT32 access patterns. 
Also, some boot ROMs require a FAT partition for the second stage bootloader, the 
TI OMAP-based chips for example. However, FAT formats are definitely not suitable 
for storing critical files because they are prone to corruption and make poor use of 
the storage space.
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Linux supports FAT16 through the msdos filesystem and both FAT32 and FAT16 
through the vfat filesystem. In most cases, you need to include the vfat driver. 
Then, to mount a device, say an SD card on the second mmc hardware adapter, you 
would type this:

# mount -t vfat /dev/mmcblock1p1 /mnt

In the past, there have been licensing issues with the vfat driver which may (or may 
not) infringe a patent held by Microsoft.

FAT32 has a limitation on the device size of 32 GiB. Devices of a larger capacity may 
be formatted using the Microsoft exFAT format and it is a requirement for SDXC 
cards. There is no kernel driver for exFAT, but it can be supported by means of a 
user-space FUSE driver. Since exFAT is proprietary to Microsoft there are certain to 
be licensing implications if you support this format on your device.

Read-only compressed filesystems
Compressing data is useful if you don't have quite enough storage to fit everything 
in. Both JFFS2 and UBIFS do on-the-fly data compression by default. However, if the 
files are never going to be written, as is usually the case with the root filesystem, you 
can achieve better compression ratios by using a read-only compressed filesystem. 
Linux supports several of these: romfs, cramfs, and squashfs. The first two are 
obsolete now, so I will describe only squashfs.

squashfs
squashfs was written by Phillip Lougher in 2002 as a replacement for cramfs.  
It existed as a kernel patch for a long time, eventually being merged into mainline 
Linux in version 2.6.29 in 2009. It is very easy to use: you create a filesystem image 
using mksquashfs and install it to the flash memory:

$ mksquashfs rootfs rootfs.squashfs

The resulting filesystem is read-only so there is no mechanism to modify any of the 
files at runtime. The only way to update a squashfs filesystem is to erase the whole 
partition and program in a new image.
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squashfs is not bad block-aware and so must be used with reliable flash memory 
such as NOR flash. It can be used on NAND flash as long as you use UBI to create 
an emulated, reliable, MTD volume on top of UBI. You have to enable kernel 
configuration CONFIG_MTD_UBI_BLOCK, which will create a read-only MTD block 
device for each UBI volume. The following diagram shows two MTD partitions,  
each with accompanying mtdblock devices. The second partition is also used  
to create a UBI volume which is exposed as a third, reliable, mtdblock device,  
which you can use for any read-only filesystem that is not bad block-aware:

Temporary filesystems
There are always some files that have a short lifetime or which have no significance 
after a reboot. Many such files are put into /tmp, and so it makes sense to keep these 
files from reaching permanent storage.

The temporary filesystem, tmpfs, is ideal for this purpose. You can create a 
temporary RAM-based filesystem by simply mounting tmpfs:

# mount -t tmpfs tmp_files /tmp

As with procfs and sysfs, there is no device node associated with tmpfs so you 
have to supply a place-keeper string, tmp_files in the preceding example.

The amount of memory used will grow and shrink as files are created and deleted. The 
default maximum size is half the physical RAM. In most cases, it would be a disaster  
if tmpfs grew that large, so it is a very good idea to cap it with a -o size parameter. 
The parameter can be given in bytes, KiB (k), MiB (m), or GiB (g), for example:

mount -t tmpfs -o size=1m tmp_files /tmp
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In addition to /tmp, some subdirectories of /var contain volatile data and it is good 
practice to use tmpfs for them as well, either by creating a separate filesystem for 
each or, more economically, by using symbolic links. Buildroot does it this way:

/var/cache -> /tmp
/var/lock ->  /tmp
/var/log ->   /tmp
/var/run ->   /tmp
/var/spool -> /tmp
/var/tmp ->   /tmp

In the Yocto Project, /run and /var/volatile are tmpfs mounts with symbolic links 
pointing to them as shown here:

/tmp ->       /var/tmp
/var/lock ->  /run/lock
/var/log ->   /var/volatile/log
/var/run ->   /run
/var/tmp ->   /var/volatile/tmp

Making the root filesystem read-only
You need to make your target device able to survive unexpected events including file 
corruption, and still be able to boot and achieve at least a minimum level of function. 
Making the root filesystem read-only is a key part of achieving this ambition because 
it eliminates accidental over-writes. Making it read-only is easy: replace rw with 
ro on the kernel command line or use an inherently read-only filesystem such as 
squashfs. However, you will find that there are a few files and directories that are 
traditionally writable:

• /etc/resolv.conf: This file is written by network configuration scripts to 
record the addresses of DNS name servers. The information is volatile, so 
you simply have to make it a symlink to a temporary directory, for example, 
/etc/resolv.conf -> /var/run/resolv.conf.

• /etc/passwd: This file, along with /etc/group, /etc/shadow, and /etc/
gshadow, stores user and group names and passwords. They need to be 
symbolically linked to an area of persistent storage.

• /var/lib: Many applications expect to be able to write to this directory and 
to keep permanent data here as well. One solution is to copy a base set of 
files to a tmpfs filesystem at boot time and then bind mount /var/lib to  
the new location by putting a sequence of commands such as these into  
one of the boot scripts:
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mkdir -p /var/volatile/lib

cp -a /var/lib/* /var/volatile/lib

mount --bind /var/volatile/lib /var/lib

• /var/log: This is the place where syslog and other daemons keep their logs. 
Generally, logging to flash memory is not desirable because of the many 
small write cycles it generates. A simple solution is to mount /var/log  
using tmpfs, making all log messages volatile. In the case of syslogd, 
BusyBox has a version that can log to a circular ring buffer.

If you are using the Yocto Project, you can create a read-only root filesystem by 
adding IMAGE_FEATURES = "read-only-rootfs" to conf/local.conf or to  
your image recipe.

Filesystem choices
So far we have looked at the technology behind solid state memory and at the many 
types of filesystems. Now it is time to summarize the options.

In most cases, you will be able to divide your storage requirements into these  
three categories:

• Permanent, readable, and writable data: Runtime configuration, network 
parameters, passwords, data logs, and user data

• Permanent, read-only data: Programs, libraries, and configurations files that 
are constant, for example, the root filesystem

• Volatile data: Temporary storage for example /tmp

The choices for read-write storage are as follows:

• NOR: UBIFS or JFFS2
• NAND: UBIFS, JFFS2, or YAFFS2
• eMMC: ext4 or F2FS

For read-only storage, you can use all of the above mounted with the 
ro attribute. Additionally, if you want to save space, you could use 
squashfs, in the case of NAND flash using UBI mtdblock device 
emulation to handle the bad blocks for you.

Finally, for volatile storage, there is only one choice, tmpfs.
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Updating in the field
There have been several well-publicized security flaws, including Heartbleed (a bug 
in the OpenSSL libraries) and Shellshock (a bug in the bash shell), both of which could 
have serious consequences for embedded Linux devices that are currently deployed. 
For this reason alone, it is highly desirable to have a mechanism to update devices 
in the field so that you can fix security problems as they arise. There are other good 
reasons as well: to deploy other bug fixes and feature updates.

The guiding principle of update mechanisms is that they should do no harm, 
remembering Murphy's Law: if it can go wrong, it will go wrong, eventually.  
Any update mechanism must be:

• Robust: It must not render the device inoperable. I will talk about updates 
being atomic; either the system is updated successfully or not updated at all 
and continues to run as before.

• Failsafe: It must handle interrupted updates gracefully.
• Secure: It must not allow unauthorized updates, otherwise it will become an 

attack mechanism.

Atomicity can be achieved by having duplicates of the things you want to update 
and switching to the new copy when safe to do so.

Failsafety requires there to be a mechanism to detect a failed update, such as a 
hardware watchdog, and a known good copy of software to fall back on.

Security can be achieved in the case of updates that are local and attended through 
authentication by a password or PIN code. But, if the update is remote and automatic, 
some level of authentication via the network is needed. Ultimately, you may want to 
add a secure bootloader and signed update binaries.

Some components are easier to update than others. The bootloader is very difficult 
to update since there are usually hardware constraints that mean there can only be 
one bootloader, and so there cannot be a backup if the update fails. On the other 
hand, bootloaders are not often a cause of runtime bugs. The best advice is to avoid 
bootloader updates in the field.
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Granularity: file, package, or image?
This is the big question, and depends on your overall system design and your 
desired level of robustness.

File updates can be made atomic: the technique is to write the new content to a 
temporary file in the same filesystem and then use the POSIX rename(2) function 
to move it over the old file. It works because rename is guaranteed to be atomic. 
However, this is only one part of the problem because there will be dependencies 
between files which need to be considered.

Updating at the level of packages (RPM, dpkg, or ipk) is a better option, assuming that 
you have a runtime package manager. This, after all, is how desktop distributions 
have been doing it for years. The package manager has a database of updates and 
can keep track of those which have been updated and those that haven't. Each 
package has an update script that is designed to make sure that the package update 
is atomic. The great advantage is that you can update existing packages, install 
new ones, and delete obsolete ones with ease. If you are using a root filesystem that 
is mounted as read-only, you will have to temporarily remount read-write while 
updating, which opens up a small window for corruption.

Package managers do have downsides as well. They are not able to update kernel or 
other images in raw flash memory. After devices have been deployed and updated 
several times, you may end up with a large number of combinations of packages 
and package versions, which will complicate QA for each new update cycle. Package 
managers are not bulletproof in the event of power failure during an update.

The third option is to update whole system images: the kernel, the root filesystem, 
user applications, and so on.

Atomic image update
In order to make the update atomic, we need two things: a second copy of the 
operating system that can be used during the update, and a mechanism in the 
bootloader to select which copy of the operating system to load. The second copy 
may be exactly the same as the first, resulting in full redundancy of the operating 
system, or it may be a small operating system dedicated to updating the main one.
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In the first scheme ,there are two copies of the operating system, each comprised 
of the Linux kernel, the root filesystem, and system applications, as shown in the 
following diagram:

Initially, the boot flag is not set, so the bootloader loads copy 1. To install an update, 
the updater application, which is part of the operating system, overwrites copy 2. 
When complete, it sets the boot flag and reboots. Now, the bootloader will load the 
new operating system. When a further update is installed, the updater in copy 2 
overwrites copy 1 and clears the boot flag and so you ping-pong between the  
two copies.

If an update fails, the boot flag is not changed and the last good operating system 
is used. Even if the update consists of several components, a kernel image, a DTB, 
a root filesystem, and a system application filesystem, the whole update is atomic 
because the boot flag is only updated when all updates are completed.

The main drawback with this scheme is that it requires storage for two copies of the 
operating system.

You can reduce storage requirements by keeping a minimal operating system purely 
for updating the main one, as shown in the following diagram:
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When you want to install an update, set the boot flag and reboot. Once the recovery 
operating system is running, it starts the updater which overwrites the main operating 
system images. When done, it clears the boot flag and reboots again, this time loading 
the new main operating system.

The recovery operating system is usually a lot smaller than the main operating 
system, maybe only a few megabytes, and so the storage overhead is not great. In 
fact, this is the scheme adopted by Android. The main operating system is several 
hundred megabytes, but the recovery mode operating system is a simple ramdisk  
of a few megabytes only.

Further reading
The following resources have further information about the topics introduced in  
this chapter:

• XIP: The past, the present... the future?, Vitaly Wool, presentation at FOSDEM 
2007: https://archive.fosdem.org/2007/slides/devrooms/embedded/
Vitaly_Wool_XIP.pdf

• General MTD documentation, http://www.linux-mtd.infradead.org/doc/
general.html

• Optimizing Linux with cheap flash drives, Arnd Bergmann: http://lwn.net/
Articles/428584/

• Flash memory card design: https://wiki.linaro.org/WorkingGroups/
KernelArchived/Projects/FlashCardSurvey

• eMMC/SSD File System Tuning Methodology: http://elinux.org/images/b/
b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf

• Flash-Friendly File System (F2FS): http://elinux.org/images/1/12/
Elc2013_Hwang.pdf

• An f2fS teardown: http://lwn.net/Articles/518988/
• Building Murphy-compatible embedded Linux systems, Gilad Ben-Yossef: 

https://www.kernel.org/doc/ols/2005/ols2005v1-pages-21-36.pdf

https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
http://www.linux-mtd.infradead.org/doc/general.html
http://www.linux-mtd.infradead.org/doc/general.html
http://lwn.net/Articles/428584/
http://lwn.net/Articles/428584/
https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
http://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
http://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf
http://elinux.org/images/1/12/Elc2013_Hwang.pdf
http://elinux.org/images/1/12/Elc2013_Hwang.pdf
http://lwn.net/Articles/518988/
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-21-36.pdf
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Summary
Flash memory has been the storage technology of choice for embedded Linux  
from the beginning and over the years Linux has gained very good support,  
from low-level drivers up to flash-aware filesystems, the latest being UBIFS.

However, as the rate at which new flash technologies are introduced increases, it is 
becoming harder to keep pace with the changes at the high end. System designers 
are increasingly turning to managed flash in the form of eMMC to provide a stable 
hardware and software interface which is independent of the memory chips inside. 
Embedded Linux developers are beginning to get to grips with these new chips. 
Support for TRIM in ext4 and F2FS is well established, and it is slowly finding its 
way into the chips themselves. Also, the appearance of new filesystems that are 
optimized to manage flash, such as F2FS, is a welcome step forward.

However, the fact remains that flash memory is not the same as a hard disk drive. 
You have to be careful to minimize the number of filesystem writes – especially as 
the higher density TLC chips may be able to support as few as 1,000 erase cycles.

Finally, it is essential to have a strategy for updating the files and images stored on 
the device in the field. A crucial part of this is the decision to use a package manager 
or not. A package manager gives you flexibility, but cannot give you a fully Murphy 
proof update solution. Your choice depends on the balance between convenience  
and robustness.

The next chapter describes how you control the hardware components of your 
system through the use of device drivers, both in the conventional sense of drivers 
that are part of the kernel, and also the extent to which you can control hardware 
from the user space.
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Introducing Device Drivers
Kernel device drivers are the mechanism through which the underlying hardware 
is exposed to the rest of the system. As a developer of embedded systems, you need 
to know how device drivers fit into the overall architecture and how to access them 
from user space programs. Your system will probably have some novel pieces of 
hardware and you will have to work out a way of accessing them. In many cases, 
you will find that there are device drivers provided for you and you can achieve 
everything you want without writing any kernel code. For example, you can 
manipulate GPIO pins and LEDs using files in sysfs, and there are libraries to  
access serial buses, including SPI and I2C.

There are many places to find out how to write a device driver, but few to tell you 
why you would want to and the choices you have in doing so. That is what I want  
to cover here. However, remember that this is not a book dedicated to writing  
kernel device drivers and that the information given here is to help you navigate  
the territory but not necessarily to set up home there. There are many good books 
and articles that will help you to write device drivers, some of which are listed at  
the end of this chapter.

The role of device drivers
As mentioned in Chapter 4, Porting and Configuring the Kernel, one of the functions of 
the kernel is to encapsulate the many hardware interfaces of a computer system and 
present them in a consistent manner to user-space programs. There are frameworks 
designed to make it easy to write the interface logic for a device in the kernel and 
you can integrate it with the kernel: this is a device driver, the piece of code that 
mediates between the kernel above it and the hardware below. A device driver 
is a piece of software that controls physical devices such as a UART or an MMC 
controller, or virtual devices such as the null device (/dev/null) or a ramdisk.  
One driver may control multiple devices of the same kind.
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Kernel device driver code runs at a high privilege level, as does the rest of the 
kernel. It has full access to the processor address space and hardware registers. It can 
handle interrupts and DMA transfers. It can make use of the sophisticated kernel 
infrastructure for synchronization and memory management. There is a downside to 
this, which is that if something goes wrong in a buggy driver, it can go really wrong 
and bring the system down. Consequently, there is a principle that device drivers 
should be as simple as possible, just providing information to applications where the 
real decisions are made. You often hear this being expressed as no policy in the kernel.

In Linux, there are three main types of device driver:

• character: This is for unbuffered I/O with a rich range of functions and a thin 
layer between the application code and the driver. It is the first choice when 
implementing custom device drivers.

• block: This has an interface tailored for block I/O to and from mass storage 
devices. There is a thick layer of buffering designed to make disk reads and 
writes as fast as possible, which makes it unsuitable for anything else.

• network: This is similar to a block device but is used for transmitting and 
receiving network packets rather than disk blocks.

There is also a fourth type that presents itself as a group of files in one of the pseudo 
filesystems. For example, you might access the GPIO driver through a group of files 
in /sys/class/gpio, as I will describe later on in this chapter. Let's begin by looking 
in more detail at the three basic device types.

Character devices
These devices are identified in user space by a filename: if you want to read from 
a UART, you open the device node, for example, the first serial port on the ARM 
Versatile Express would be /dev/ttyAMA0. The driver is identified differently in the 
kernel, using the major number which, in the example given, is 204. Since the UART 
driver can handle more than one UART, there is a second number, called the minor 
number, which identifies a specific interface, 64, in this case:

# ls -l /dev/ttyAMA*

crw-rw----    1 root     root      204,  64 Jan  1  1970 /dev/ttyAMA0
crw-rw----    1 root     root      204,  65 Jan  1  1970 /dev/ttyAMA1
crw-rw----    1 root     root      204,  66 Jan  1  1970 /dev/ttyAMA2
crw-rw----    1 root     root      204,  67 Jan  1  1970 /dev/ttyAMA3
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The list of standard major and minor numbers can be found in the kernel 
documentation, in Documentation/devices.txt. The list does not get updated 
very often and does not include the ttyAMA device described in the preceding 
paragraph. Nevertheless, if you look at the source code in drivers/tty/serial/
amba-pl011.c, you will see that the major and minor numbers are declared:

#define SERIAL_AMBA_MAJOR       204
#define SERIAL_AMBA_MINOR       64

Where there is more than one instance of a device, the naming convention for  
the device nodes is <base name><interface number>, for example, ttyAMA0,  
ttyAMA1, and so on.

As I mentioned in Chapter 5, Building a Root Filesystem, the device nodes can be 
created in several ways:

• devtmpfs: The node that is created when the device driver registers a new 
device interface using a base name supplied by the driver (ttyAMA) and an 
instance number.

• udev or mdev (without devtmpfs): Essentially the same as with devtmpfs, 
except that a user-space daemon program has to extract the device name 
from sysfs and create the node. I will talk about sysfs later.

• mknod: If you are using static device nodes, they are created manually  
using mknod.

You may have the impression from the numbers I have used above that both major 
and minor numbers are 8-bit numbers in the range 0 to 255. In fact, from Linux 2.6 
onwards, the major number is 12 bits long, which gives valid numbers from 1 to 
4,095, and the minor number is 20 bits, from 0 to 1,048,575.

When you open a device node, the kernel checks to see whether the major and minor 
numbers fall into a range registered by a device driver of that type (a character or 
block). If so, it passes the call to the driver, otherwise the open call fails. The device 
driver can extract the minor number to find out which hardware interface to use.  
If the minor number is out of range, it returns an error.

To write a program that accesses a device driver, you have to have some knowledge 
of how it works. In other words, a device driver is not the same as a file: the things 
you do with it change the state of the device. A simple example is the pseudo random 
number generator, urandom, which returns bytes of random data every time you read 
it. Here is a program that does just that:

#include <stdio.h>
#include <sys/types.h>
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#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main(void)
{
  int f;
  unsigned int rnd;
  int n;
  f = open("/dev/urandom", O_RDONLY);
  if (f < 0) {
    perror("Failed to open urandom");
    return 1;
  }
  n = read(f, &rnd, sizeof(rnd));
  if (n != sizeof(rnd)) {
    perror("Problem reading urandom");
    return 1;
  }
  printf("Random number = 0x%x\n", rnd);
  close(f);
  return 0;
}

The nice thing about the Unix driver model is that, once we know that there is a 
device named urandom and that every time we read from it, it returns a fresh set of 
pseudo random data, we don't need to know anything else about it. We can just use 
normal functions such as open(2), read(2), and close(2).

We could use the stream I/O functions fopen(3), fread(3), and fclose(3) instead, 
but the buffering implicit in these functions often causes unexpected behavior. For 
example, fwrite(3) usually only writes to the user-space buffer, not to the device. 
We would need to call fflush(3) to force the buffer to be written out.

Don't use stream I/O functions such as fread(3) and fwrite(3) 
when calling device drivers.

Block devices
Block devices are also associated with a device node, which also has major and  
minor numbers.
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Although character and block devices are identified using major and 
minor numbers, they are in different namespaces. A character driver 
with a major number 4 is in no way related to a block driver with a 
major number 4.

With block devices, the major number is used to identify the device driver and the 
minor number is used to identify the partition. Let's look at the MMC driver as  
an example:

# ls -l /dev/mmcblk*

brw-------    1 root root  179,   0 Jan  1  1970 /dev/mmcblk0
brw-------    1 root root  179,   1 Jan  1  1970 /dev/mmcblk0p1
brw-------    1 root root  179,   2 Jan  1  1970 /dev/mmcblk0p2
brw-------    1 root root  179,   8 Jan  1  1970 /dev/mmcblk1
brw-------    1 root root  179,   9 Jan  1  1970 /dev/mmcblk1p1
brw-------    1 root root  179,  10 Jan  1  1970 /dev/mmcblk1p2

The major number is 179 (look it up in devices.txt!). The minor numbers are used 
in ranges to identify different mmc devices and the partitions of the storage medium on 
that device. In the case of the mmcblk driver, the ranges are eight minor numbers per 
device: the minor numbers from 0 to 7 are for the first device, the numbers from 8 to 15 
are for the second, and so on. Within each range, the first minor number represents the 
entire device as raw sectors, and the others represent up to seven partitions.

You are probably aware of the SCSI disk driver, known as sd, which is used to 
control a range of disks that use the SCSI command set, which includes SCSI, SATA, 
USB mass storage, and UFS (universal flash storage). It has the major number eight 
and ranges of 16 minor numbers per interface (or disk). The minor numbers from 0 to 
15 are for the first interface, with device nodes named sda up to sda15, the numbers 
from 16 to 31 are for the second disk with device nodes sdb up to sdb15, and so on. 
This continues up to the sixteenth disk from 240 to 255, with the node name sdp. 
There are other major numbers reserved for them because SCSI disks are so popular, 
but we needn't worry about that here.

The partitions are created using utilities such as fdisk, sfidsk, or parted. An 
exception is raw flash memory: the partition information for the MTD driver is 
part of the kernel command line or in the device tree, or one of the other methods 
described in Chapter 7, Creating a Storage Strategy.
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A user-space program can open and interact directly with a block device through 
the device node. This is not a common thing to do, and is usually for performing 
administrative operations such as partitioning, formatting with a filesystem, and 
mounting. Once the filesystem is mounted, you interact with the block device 
indirectly through the files in that filesystem.

Network devices
Network devices are not accessed through device nodes and they do not have major 
and minor numbers. Instead, a network device is allocated a name by the kernel, 
based on a string and an instance number. Here is an example of the way a network 
driver registers an interface:

my_netdev = alloc_netdev(0, "net%d", NET_NAME_UNKNOWN,  
netdev_setup);
ret = register_netdev(my_netdev);

This creates a network device named net0 the first time it is called, net1 the second, 
and so on. More common names are lo, eth0, and wlan0.

Note that this is the name it starts off with; device managers, such as udev, may change 
to something different later on.

Usually, the network interface name is only used when configuring the network 
using utilities such as ip and ifconfig to establish a network address and route. 
Thereafter, you interact with the network driver indirectly by opening sockets,  
and let the network layer decide how to route them to the right interface.

However, it is possible to access network devices directly from user space by creating 
a socket and using the ioctl commands listed in include/linux/sockios.h. For 
example, this program uses SIOCGIFHWADDR to query the driver for the hardware 
(MAC) address:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/sockios.h>
#include <net/if.h>
int main (int argc, char *argv[])
{
  int s;
  int ret;
  struct ifreq ifr;
  int i;
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  if (argc != 2) {
    printf("Usage %s [network interface]\n", argv[0]);
    return 1;
  }
  s = socket(PF_INET, SOCK_DGRAM, 0);
  if (s < 0) {
    perror("socket");
    return 1;
  }
  strcpy(ifr.ifr_name, argv[1]);
  ret = ioctl(s, SIOCGIFHWADDR, &ifr);
  if (ret < 0) {
    perror("ioctl");
    return 1;
  }
  for (i = 0; i < 6; i++)
    printf("%02x:", (unsigned char)ifr.ifr_hwaddr.sa_data[i]);
  printf("\n");
  close(s);
  return 0;
}

This is a standard device, ioctl, which is handled by the network layer on the 
driver's behalf, but it is possible to define your own ioctl numbers and handle  
them in a custom network driver.

Finding out about drivers at runtime
Once you have a running Linux system, it is useful to know which device drivers  
are loaded and what state they are in. You can find out a lot by reading the files in  
/proc and /sys.

First of all, you can list the character and block device drivers currently loaded and 
active by reading /proc/devices:

# cat /proc/devices

Character devices:

  1 mem
  2 pty
  3 ttyp
  4 /dev/vc/0
  4 tty
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  4 ttyS
  5 /dev/tty
  5 /dev/console
  5 /dev/ptmx
  7 vcs
 10 misc
 13 input
 29 fb
 81 video4linux
 89 i2c
 90 mtd
116 alsa
128 ptm
136 pts
153 spi
180 usb
189 usb_device
204 ttySC
204 ttyAMA
207 ttymxc
226 drm
239 ttyLP
240 ttyTHS
241 ttySiRF
242 ttyPS
243 ttyWMT
244 ttyAS
245 ttyO
246 ttyMSM
247 ttyAML
248 bsg
249 iio
250 watchdog
251 ptp
252 pps
253 media
254 rtc

Block devices:

259 blkext
  7 loop
  8 sd
 11 sr
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 31 mtdblock
 65 sd
 66 sd
 67 sd
 68 sd
 69 sd
 70 sd
 71 sd
128 sd
129 sd
130 sd
131 sd
132 sd
133 sd
134 sd
135 sd
179 mmc

For each driver, you can see the major number and the base name. However, this 
does not tell you how many devices each driver is attached to. It only shows ttyAMA 
but gives you no clue that it is attached to four real UARTS. I will come back to that 
later when I look at sysfs. If you are using a device manager such as mdev, udev, or 
devtmpfs, you can list the character and block device interfaces by looking in /dev.

You can also list network interfaces using ifconfig or ip:

# ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state  
UNKNOWN mode DEFAULT
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc  
pfifo_fast state DOWN mode DEFAULT qlen 1000
    link/ether 54:4a:16:bb:b7:03 brd ff:ff:ff:ff:ff:ff

3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc  
pfifo_fast state UP mode DEFAULT qlen 1000
    link/ether aa:fb:7f:5e:a8:d5 brd ff:ff:ff:ff:ff:ff

You can also find out about devices attached to USB or PCI buses using the  
well-known commands lsusb and lspci. There is information about them in  
the respective manuals and plenty of online guides, so I will not describe them  
any further here.

The really interesting information is in sysfs, which is the next topic.
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Getting information from sysfs
You can define sysfs in a pedantic way as a representation of kernel objects, 
attributes and relationships. A kernel object is a directory, an attribute is a file,  
and a relationship is a symbolic link from one object to another.

From a more practical point of view, since the Linux device driver model, which  
was introduced in version 2.6, represents all devices and drivers as kernel objects. 
You can see the kernel's view of the system laid out before you by looking in /sys,  
as shown here:

# ls /sys

block  bus  class  dev  devices  firmware  fs  kernel  module   
power

In the context of discovering information about devices and drivers, I will look at 
three of the directories: devices, class, and block.

The devices: /sys/devices
This is the kernel's view of the devices discovered since boot and how they are 
connected to each other. It is organized at the top level by the system bus, so what 
you see varies from one system to another. This is the QEMU emulation of the 
Versatile Express:

# ls
 /sys/devices
armv7_cortex_a9  platform      system
breakpoint       software      virtual

There are three directories that are present on all systems:

• system: This contains devices at the heart of the system, including CPUs  
and clocks.

• virtual: This contains devices that are memory-based. You will find the 
memory devices that appear as /dev/null, /dev/random, and /dev/zero  
in virtual/mem. You will find the loopback device, lo, in virtual/net.

• platform: This is a catch-all for devices that are not connected via  
a conventional hardware bus. This may be almost everything on an 
embedded device.

The other devices appear in directories that correspond to actual system buses.  
For example, the PCI root bus, if there is one, appears as pci0000:00.
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Navigating this hierarchy is quite hard because it requires some knowledge of 
the topology of your system and the pathnames become quite long and hard to 
remember. To make life easier, /sys/class and /sys/block offer two different 
views of the devices.

The drivers: /sys/class
This is a view of the device drivers presented by their type, in other words, it is a 
software view rather than a hardware view. Each of the subdirectories represents  
a class of driver and is implemented by a component of the driver framework.  
For example, UART devices are managed by the tty layer and you will find them  
in /sys/class/tty. Likewise, you will find network devices in /sys/class/net, 
input devices such as the keyboard, the touchscreen, and the mouse in /sys/class/
input, and so on.

There is a symbolic link in each subdirectory for each instance of that type of device 
pointing to its representation in /sys/device.

To take a concrete example, let's look at /sys/class/tty/ttyAMA0:

# cd  /sys/class/tty/ttyAMA0/
# ls
close_delay      flags            line             uartclk
closing_wait     io_type          port             uevent
custom_divisor   iomem_base       power            xmit_fifo_size
dev              iomem_reg_shift  subsystem
device           irq              type

The link device references the hardware node for the device and subsystem points 
back to /sys/class/tty. The others are attributes of the device. Some are specific 
to a UART, such as xmit_fifo_size and others apply to many types of device such 
as the interrupt number, irq, and the device number dev. Some attribute files are 
writable and allow you to tune parameters in the driver at runtime.

The dev attribute is particularly interesting. If you look at its value, you will find  
the following:

# cat /sys/class/tty/ttyAMA0/dev
204:64

These are the major and minor numbers of this device. This attribute is created when 
the driver registered this interface and it is from this file that udev and mdev read that 
information if they are being used without the help of devtmpfs.
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The block drivers: /sys/block
There is one more view of the device model that is important: the block driver view 
that you will find in /sys/block. There is a subdirectory for each block device.  
This example is taken from a BeagleBone Black:

# ls /sys/block/

loop0  loop4  mmcblk0       ram0   ram12  ram2  ram6
loop1  loop5  mmcblk1       ram1   ram13  ram3  ram7
loop2  loop6  mmcblk1boot0  ram10  ram14  ram4  ram8
loop3  loop7  mmcblk1boot1  ram11  ram15  ram5  ram9

If you look into mmcblk1, which is the eMMC chip on this board, you can see the 
attributes of the interface and the partitions within it:

# cd /sys/block/mmcblk1
# ls

alignment_offset   ext_range     mmcblk1p1  ro
bdi                force_ro      mmcblk1p2  size
capability         holders       power      slaves
dev                inflight      queue      stat
device             mmcblk1boot0  range      subsystem
discard_alignment  mmcblk1boot1  removable  uevent

The conclusion, then, is that you can learn a lot about the devices (the hardware) and 
the drivers (the software) that are present on a system by reading sysfs.

Finding the right device driver
A typical embedded board is based on a reference design from the manufacturer 
with changes to make it suitable for a particular application. It may have a 
temperature sensor attached via I2C, lights and buttons connected via GPIO pins, an 
external Ethernet MAC, a display panel via a MIPI interface, or many other things. 
Your job is to create a custom kernel to control all of that, so where do you start?

Some things are so simple that you can write user space code to handle them. GPIOs 
and simple peripherals connected via I2C or SPI are easy to control from user space, 
as I will explain later.

Other things need a kernel driver so you need to know how to find one and 
incorporate it into your build. There is no simple answer, but here are some  
places to look.
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The most obvious place to look is the driver support page on the manufacturer's 
website, or you could ask them directly. In my experience, this seldom gets the result 
you want; hardware manufacturers are not are not particularly Linux-savvy and they 
often give you misleading information. They may have proprietary drivers as binary 
blobs or they may have source code, but for a different version of the kernel than the 
one you have. So, by all means try this route. I will always try to find an open source 
driver for the task in hand.

There may be support in your kernel already: there are many thousands of drivers 
in mainline Linux and there are many vendor-specific drivers in the vendor kernels. 
Begin by running make menuconfig (or xconfig) and search for the product name 
or number. If you do not find an exact match, try more generic searches, allowing for 
the fact that most drivers handle a range of products from the same family. Next, try 
searching through the code in the drivers directory (grep is you friend here). Always 
make sure you are running the latest kernel for your board: later kernels generally 
have more device drivers.

If you still don't have a driver, you can try searching online and asking in the relevant 
forums to see if there is a driver for a different version of Linux. If you find one, you 
will have to backport it to your kernel. If the kernel versions are similar, it may be easy, 
but if they are more than 12 to 18 months apart, the chances are that the interfaces 
will have changed to the extent that you will have to rewrite a chunk of the driver to 
integrate it with your kernel. You may want to outsource this work. If all of the above 
fails, you will have to find a solution yourself.

Device drivers in user-space
Before you start writing a device driver, pause for a moment to consider whether it is 
really necessary. There are generic device drivers for many common types of device 
that allow you to interact with hardware directly from user space without having  
to write a line of kernel code. User space code is certainly easier to write and debug. 
It is also not covered by the GPL, although I don't feel that is a good reason in itself 
to do it this way.

They fall into two broad categories: those that you control through files in sysfs, 
including GPIO and LEDs, and serial buses that expose a generic interface through  
a device node, such as I2C.
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GPIO
General Purpose Input/Output (GPIO) is the simplest form of digital interface since it 
gives you direct access to individual hardware pins, each of which can be configured 
as input or output. GPIO can even be used to create higher level interfaces such as I2C 
or SPI by manipulating each bit in the software, a technique that is called bit banging. 
The main limitation is the speed and accuracy of the software loops and the number 
of CPU cycles you want to dedicate to them. Generally speaking, it is hard to achieve 
timer accuracy better than a millisecond with kernels compiled with CONFIG_PREEMPT, 
and 100 microseconds with RT_PREEMPT, as we shall see in Chapter 14, Real-time 
Programming. More common use cases for GPIO are for reading push buttons and 
digital sensors and controlling LEDs, motors, and relays.

Most SoCs have a lot of GPIO bits which are grouped together in GPIO registers, 
usually 32 bits per register. On-chip GPIO bits are routed through to GPIO pins on 
the chip package via a multiplexer, known as a pin mux, which I will describe later. 
There may be additional GPIO bits available off-chip in the power management 
chip, and in dedicated GPIO extenders, connected through I2C or SPI buses. All this 
diversity is handled by a kernel subsystem known as gpiolib, which is not actually 
a library but the infrastructure GPIO drivers use to expose IO in a consistent way.

There are details about the implementation of gpiolib in the kernel source in 
Documentation/gpio and the drivers themselves are in drivers/gpio.

Applications can interact with gpiolib through files in the /sys/class/gpio 
directory. Here is an example of what you will see in there on a typical embedded 
board (a BeagleBone Black):

# ls  /sys/class/gpio
export  gpiochip0   gpiochip32  gpiochip64  gpiochip96  unexport

The gpiochip0 to gpiochip96 directories represent four GPIO registers, each with 32 
GPIO bits. If you look in one of the gpiochip directories, you will see the following:

# ls /sys/class/gpio/gpiochip96/
base  label   ngpio  power  subsystem  uevent

The file base contains the number of the first GPIO pin in the register and ngpio 
contains the number of bits in the register. In this case, gpiochip96/base is 96 and 
gpiochip96/ngpio is 32, which tells you that it contains GPIO bits 96 to 127. It is 
possible for there to be a gap between the last GPIO in one register and the first 
GPIO in the next.
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To control a GPIO bit from user space, you first have to export it from kernel space, 
which you do by writing the GPIO number to /sys/class/gpio/export. This 
example shows the process for GPIO 48:

# echo 48 > /sys/class/gpio/export
# ls /sys/class/gpio
export      gpio48    gpiochip0   gpiochip32  gpiochip64   
gpiochip96  unexport

Now there is a new directory, gpio48, which contains the files you need to control 
the pin. Note that if the GPIO bit is already claimed by the kernel, you will not be 
able to export it in this way.

The directory gpio48 contains these files:

# ls /sys/class/gpio/gpio48
active_low  direction  edge  power  subsystem   uevent  value

The pin begins as an input. To change it to an output, write out to the direction 
file. The file value contains the current state of the pin, which is 0 for low and 1 
for high. If it is an output, you can change the state by writing 0 or 1 to value. 
Sometimes, the meaning of low and high is reversed in hardware (hardware 
engineers enjoy doing that sort of thing), so writing 1 to active_low inverts the 
meaning so that a low voltage is reported as 1 in value and a high voltage as 0.

You can remove a GPIO from user space control by writing the GPIO number to  
/sys/class/gpio/unexport.

Handling interrupts from GPIO
In many cases, a GPIO input can be configured to generate an interrupt when it 
changes state, which allows you to wait for the interrupt rather than polling in  
an inefficient software loop. If the GPIO bit can generate interrupts, the file edge 
exists. Initially, it has the value none, meaning that it does not generate interrupts.  
To enable interrupts, you can set it to one of these values:

• rising: Interrupt on rising edge
• falling: Interrupt on falling edge
• both: Interrupt on both rising and falling edges
• none: No interrupts (default)
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You can wait for an interrupt using the poll() function with POLLPRI as the event. If 
you want to wait for a rising edge on GPIO 48, you first enable interrupts:

# echo 48 > /sys/class/gpio/export
# echo rising > /sys/class/gpio/gpio48/edge

Then, you use poll() to wait for the change, as shown in this code example:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>

int main (int argc, char *argv[])
{
  int f;
  struct pollfd poll_fds [1];
  int ret;
  char value[4];
  int n;
  f = open("/sys/class/gpio/gpio48/value", O_RDONLY);
  if (f == -1) {
    perror("Can't open gpio48");
    return 1;
  }
  poll_fds[0].fd = f;
  poll_fds[0].events = POLLPRI | POLLERR;
  while (1) {
    printf("Waiting\n");
    ret = poll(poll_fds, 1, -1);
    if (ret > 0) {
        n = read(f, &value, sizeof(value));
        printf("Button pressed: read %d bytes, value=%c\n",
        n, value[0]);
    }
  }
  return 0;
}
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LEDs
LEDs are often controlled though a GPIO pin, but there is another kernel 
subsystem that offers more specialized control specific to the purpose. The leds 
kernel subsystem adds the ability to set brightness, should the LED have that 
ability, and can handle LEDs connected in other ways than a simple GPIO pin. It 
can be configured to trigger the LED on an event such as block device access or 
just a heartbeat to show that the device is working. There is more information in 
Documentation/leds/ and the drivers are in drivers/leds/.

As with GPIOs, LEDs are controlled through an interface in sysfs, in /sys/class/leds. 
The LEDs have names in the form devicename:colour:function, as shown here:

# ls /sys/class/leds
beaglebone:green:heartbeat  beaglebone:green:usr2
beaglebone:green:mmc0       beaglebone:green:usr3

This shows one individual LED:

# ls /sys/class/leds/beaglebone:green:usr2
brightness    max_brightness  subsystem     uevent
device        power           trigger

The brightness file controls the brightness of the LED and can be a number 
between 0 (off) and max_brightness (fully on). If the LED doesn't support 
intermediate brightness, any non-zero value turns it on and zero turns it off.  
The file trigger lists the events that trigger the LED to turn on. The list of  
triggers is implementation-dependent. Here is an example:

# cat /sys/class/leds/beaglebone:green:heartbeat/trigger
none mmc0 mmc1 timer oneshot [heartbeat] backlight gpio cpu0  
default-on

The trigger currently selected is shown in square brackets. You can change it by 
writing one of the other triggers to the file. If you want to control the LED entirely 
through brightness, select none. If you set the trigger to timer, two extra files 
appear that allow you to set the on and off times in milliseconds:

# echo timer > /sys/class/leds/beaglebone:green:heartbeat/trigger
# ls /sys/class/leds/beaglebone:green:heartbeat
brightness  delay_on    max_brightness  subsystem   uevent
delay_off   device      power           trigger
# cat /sys/class/leds/beaglebone:green:heartbeat/delay_on
500
# cat /sys/class/leds/beaglebone:green:heartbeat/delay_off
500
#
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If the LED has on-chip timer hardware, the blinking takes place without interrupting 
the CPU.

I2C
I2C is a simple low speed 2-wire bus that is common on embedded boards, 
typically used to access peripherals which are not on the SoC board such as display 
controllers, camera sensors, GPIO extenders, and the like. There is a related standard 
known as SMBus (system management bus) that is found on PCs, that is used to 
access temperature and voltage sensors. SMBus is a subset of I2C.

I2C is a master-slave protocol, with the master being one or more host controllers on 
the SoC. Slaves have a 7-bit address assigned by the manufacturer – read the data 
sheet – allowing up to 128 nodes per bus, but 16 are reserved, so only 112 nodes are 
allowed in practice. The bus speed is 100 KHz in standard mode, or up to 400 KHz in 
fast mode. The protocol allows read and write transactions between the master and 
slave of up to 32 bytes. Frequently, the first byte is used to specify a register on the 
peripheral and the remaining bytes are the data read from or written to that register.

There is one device node for each host controller, for example, this SoC has four:

# ls -l /dev/i2c*
crw-rw---- 1 root i2c 89, 0 Jan  1 00:18 /dev/i2c-0
crw-rw---- 1 root i2c 89, 1 Jan  1 00:18 /dev/i2c-1
crw-rw---- 1 root i2c 89, 2 Jan  1 00:18 /dev/i2c-2
crw-rw---- 1 root i2c 89, 3 Jan  1 00:18 /dev/i2c-3

The device interface provides a series of ioctl commands that query the host 
controller and send read and write commands to I2C slaves. There is a package 
named i2c-tools which uses this interface to provide basic command-line tools  
to interact with I2C devices. The tools are as follows:

• i2cdetect: This lists the I2C adapters and probes the bus
• i2cdump: This dumps data from all the registers of an I2C peripheral
• i2cget: This reads data from an I2C slave
• i2cset: This writes data to an I2C slave

The i2c-tools package is available in Buildroot and the Yocto Project, as well as 
most mainstream distributions. So long as you know the address and protocol of  
the slave, writing a user space program to talk to the device is straightforward:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
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#include <i2c-dev.h>
#include <sys/ioctl.h>
#define I2C_ADDRESS 0x5d
#define CHIP_REVISION_REG 0x10

void main (void)
{
  int f_i2c;
  int val;

  /* Open the adapter and set the address of the I2C device */
  f_i2c = open ("/dev/i2c-1", O_RDWR);
  ioctl (f_i2c, I2C_SLAVE, I2C_ADDRESS);

  /* Read 16-bits of data from a register */
  val = i2c_smbus_read_word_data(f, CHIP_REVISION_REG);
  printf ("Sensor chip revision %d\n", val);
  close (f_i2c);
}

Note that the header i2c-dev.h is the one from the i2c-tools package, not the 
one from the Linux kernel headers. The i2c_smbus_read_word_data() function is 
written inline in i2c-dev.h.

There is more information about the Linux implementation of I2C in 
Documentation/i2c/dev-interface. The host controller drivers are in drivers/
i2c/busses.

SPI
The serial peripheral interface bus is similar to I2C, but is a lot faster, up to the low 
MHz. The interface uses four wires with separate send and receive lines which 
allows it to operate in full duplex. Each chip on the bus is selected with a dedicated 
chip select line. It is commonly used to connect to touchscreen sensors, display 
controllers, and serial NOR flash devices.

As with I2C, it is a master-slave protocol, with most SoCs implementing one or more 
master host controllers. There is a generic SPI device driver which you can enable 
through the kernel configuration CONFIG_SPI_SPIDEV. It creates a device node for 
each SPI controller which allows you to access SPI chips from user space. The device 
nodes are named spidev[bus].[chip select]:

# ls -l /dev/spi*
crw-rw---- 1 root root 153, 0 Jan  1 00:29 /dev/spidev1.0

For examples of using the spidev interface, refer to the example code in 
Documentation/spi.
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Writing a kernel device driver
Eventually, when you have exhausted all the user-space options above, you will 
find yourself having to write a device driver to access a piece of hardware attached 
to your device. While this is not the time or place to delve into details, it is worth 
considering the options. Character drivers are the most flexible and should cover 
90% of all your needs; network devices apply if you are working with a network 
interface, and block devices are for mass storage. The task of writing a kernel driver 
is complex and beyond the scope of this book. There are some references at the end 
that will help you on your way. In this section, I want to outline the options available 
for interacting with a driver—a topic not normally covered—and show you the basic 
bones of a driver.

Designing a character device interface
The main character device interface is based on a stream of bytes, as you would have 
with a serial port. However, many devices don't fit this description: a controller for a 
robot arm needs functions to move and rotate each joint, for example. Luckily, there 
are other ways to communicate with device drivers that just read(2) and write(2):

• ioctl: The ioctl function allows you to pass two arguments to your driver 
which can have any meaning you like. By convention, the first argument is a 
command which selects one of several functions in your driver, and the second 
is a pointer to a structure which serves as a container for the input and output 
parameters. This is a blank canvas that allows you to design any program 
interface you like and it is pretty common when the driver and application are 
closely linked and written by the same team. However, ioctl is deprecated in 
the kernel and you will find it hard to get any drivers with new uses of ioctl 
accepted upstream. The kernel maintainers dislike ioctl because it makes 
kernel code and application code too interdependent, and it is hard to keep 
both of them in step across kernel versions and architectures.

• sysfs: This is the preferred way now, a good example being the GPIO 
interface described earlier. The advantages are that it is self-documenting, so 
long as you choose descriptive names for the files. It is also scriptable because 
the file contents are ASCII strings. On the other hand, the requirement for each 
file to contain a single value makes it hard to achieve atomicity if you need 
to change more than one value at a time. For example, if you want to set two 
values and then initiate an action, you would need to write to three files: two 
for the inputs and a third to trigger the action. Even then, there is no guarantee 
that the other two files have not been changed by someone else. Conversely, 
ioctl passes all its arguments in a structure in a single function call.
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• mmap: You can get direct access to kernel buffers and hardware registers by 
mapping kernel memory into user-space, bypassing the kernel. You may still 
need some kernel code to handle interrupts and DMA. There is a subsystem 
that encapsulates this idea, known as uio, short for user I/O. There is more 
documentation in Documentation/DocBook/uio-howto, and there are 
example drivers in drivers/uio.

• sigio: You can send a signal from a driver using the kernel function  
kill_fasync() to notify applications of an event such as input becoming 
ready or an interrupt being received. By convention, signal SIGIO is used,  
but it could be anyone. You can see some examples in the UIO driver, 
drivers/uio/uio.c, and in the RTC driver, drivers/char/rtc.c. The  
main problem is that it is difficult to write reliable signal handlers and so  
it remains a little-used facility.

• debugfs: This is another pseudo filesystem that represents kernel data as 
files and directories, similar to proc and sysfs. The main distinction is 
that debugfs must not contain information that is needed for the normal 
operation of the system; it is for debug and trace information only. It is 
mounted as mount -t debugfs debug /sys/kernel/debug.
There is a good description of debugfs in the kernel documentation, 
Documentation/filesystems/debugfs.txt.

• proc: The proc filesystem is deprecated for all new code unless it relates 
to processes, which was the original intended purpose for the filesystem. 
However, you can use proc to publish any information you choose.  
And, unlike sysfs and debugfs, it is available to non-GPL modules.

• netlink: This is a socket protocol family. AF_NETLINK creates a socket that 
links kernel space to user-space. It was originally created so that network 
tools could communicate with the Linux network code to access the routing 
tables and other details. It is also used by udev to pass events from the kernel 
to the udev daemon. It is very rarely used in general device drivers.

There are many examples of all of the preceding filesystem in the kernel source 
code and you can design really interesting interfaces to your driver code. The only 
universal rule is the principle of least astonishment. In other words, application writers 
using your driver should find that everything works in a logical way with no quirks 
or oddities.
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Anatomy of a device driver
It's time to draw some threads together by looking at the code for a simple  
device driver.

The source code is provided for a device driver named dummy which creates four 
devices that are accessed through /dev/dummy0 to /dev/dummy3. This is the complete 
code for the driver:

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/device.h>
#define DEVICE_NAME "dummy"
#define MAJOR_NUM 42
#define NUM_DEVICES 4

static struct class *dummy_class;
static int dummy_open(struct inode *inode, struct file *file)
{
  pr_info("%s\n", __func__);
  return 0;
}

static int dummy_release(struct inode *inode, struct file *file)
{
  pr_info("%s\n", __func__);
  return 0;
}

static ssize_t dummy_read(struct file *file,
  char *buffer, size_t length, loff_t * offset)
{
  pr_info("%s %u\n", __func__, length);
  return 0;
}

static ssize_t dummy_write(struct file *file,
  const char *buffer, size_t length, loff_t * offset)
{
  pr_info("%s %u\n", __func__, length);
  return length;
}
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struct file_operations dummy_fops = {
  .owner = THIS_MODULE,
  .open = dummy_open,
  .release = dummy_release,
  .read = dummy_read,
  .write = dummy_write,
};

int __init dummy_init(void)
{
  int ret;
  int i;
  printk("Dummy loaded\n");
  ret = register_chrdev(MAJOR_NUM, DEVICE_NAME, &dummy_fops);
  if (ret != 0)
    return ret;
  dummy_class = class_create(THIS_MODULE, DEVICE_NAME);
  for (i = 0; i < NUM_DEVICES; i++) {
    device_create(dummy_class, NULL,
    MKDEV(MAJOR_NUM, i), NULL, "dummy%d", i);
  }
  return 0;
}

void __exit dummy_exit(void)
{
  int i;
  for (i = 0; i < NUM_DEVICES; i++) {
    device_destroy(dummy_class, MKDEV(MAJOR_NUM, i));
  }
  class_destroy(dummy_class);
  unregister_chrdev(MAJOR_NUM, DEVICE_NAME);
  printk("Dummy unloaded\n");
}

module_init(dummy_init);
module_exit(dummy_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Chris Simmonds");
MODULE_DESCRIPTION("A dummy driver");
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At the end of the code, the macros module_init and module_exit specify the 
functions to be called when the module is loaded and unloaded. The other three  
add some basic information about the module which can be retrieved from the 
compiled kernel module using the modinfo command.

When the module is loaded, the dummy_init() function is called.

You can see the point at which it becomes a character device by calling register_
chrdev, passing a pointer to struct file_operations containing pointers to the 
four functions that the driver implements. While register_chrdev tells the kernel 
that there is a driver with a major number of 42, it doesn't say anything about the 
type of driver, and so it will not create an entry in /sys/class. Without an entry in 
/sys/class, the device manager cannot create device nodes. So, the next few lines 
of code create a device class, dummy, and four devices of that class called dummy0 
to dummy3. The result is the /sys/class/dummy directory, containing the dummy0 
to dummy3 subdirectories, each containing a file, dev, with the major and minor 
numbers of the device. This is all that a device manager needs to create device  
nodes, /dev/dummy0 to /dev/dummy3.

The exit function has to release the resources claimed by the init function which, 
here, means freeing up the device class and major number.

The file operation for this driver are implemented by dummy_open(), dummy_read(), 
dummy_write(), and dummy_release(), and are called when a user space program 
calls open(2), read(2), write(2), and close(2). They just print a kernel message 
so that you can see that they were called. You can demonstrate this from the 
command line using the echo command:

# echo hello > /dev/dummy0

[ 6479.741192] dummy_open
[ 6479.742505] dummy_write 6
[ 6479.743008] dummy_release

In this case, the messages appear because I was logged on to the console, and kernel 
messages are printed to the console by default.

The full source code for this driver is less than 100 lines, but it is enough to illustrate 
how the linkage between a device node and driver code works, how the device class 
is created, allowing a device manager to create device nodes automatically when the 
driver is loaded, and how data is moved between user and kernel spaces. Next, you 
need to build it.
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Compile and load
At this point you have some driver code that you want to compile and test on your 
target system. You can copy it into the kernel source tree and modify makefiles to 
build it, or you can compile it as a module out of tree. Let's start by building out  
of tree.

You need a simple makefile which uses the kernel build system to do the hard work:

LINUXDIR := $(HOME)/MELP/build/linux

obj-m := dummy.o
all:
        make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \
          -C $(LINUXDIR) M=$(shell pwd)
clean:
        make -C $(LINUXDIR) M=$(shell pwd) clean

Set LINUXDIR to the directory of the kernel for your target device that you will 
be running the module on. The code obj-m := dummy.o will invoke the kernel 
build rule to take the source file, dummy.c and create kernel module, dummy.ko. 
Note that kernel modules are not binary compatible between kernel releases and 
configurations, the module will only load on the kernel it was compiled with.

The end result of the build is the kernel dummy.ko which you can copy to the target 
and load as shown in the next section.

If you want to build a driver in the kernel source tree, the procedure is quite simple. 
Choose a directory appropriate to the type of driver you have. The driver is a basic 
character device, so I would put dummy.c in drivers/char. Then, edit the makefile 
in that directory and add a line to build the driver unconditionally as a module,  
as follows:

obj-m  += dummy.o

Or add the following line this to build it unconditionally as a built-in:

obj-y   += dummy.o

If you want to make the driver optional, you can add a menu option to the  
Kconfig file and make the compilation conditional on the configuration option,  
as I described in Chapter 4, Porting and Configuring the Kernel, when describing the 
kernel configuration.
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Loading kernel modules
You can load, unload and list modules using the simple insmod, lsmod, and rmmod 
commands. Here they are shown loading the dummy driver:

# insmod /lib/modules/4.1.10/kernel/drivers/dummy.ko
# lsmod
dummy 1248 0 - Live 0xbf009000 (O)
# rmmod dummy

If the module is placed in a subdirectory in /lib/modules/<kernel release>,  
as in the example, you can create a modules dependency database using the 
command depmod:

# depmod -a
# ls /lib/modules/4.1.10/
kernel               modules.builtin.bin  modules.order
modules.alias        modules.dep          modules.softdep
modules.alias.bin    modules.dep.bin      modules.symbols
modules.builtin      modules.devname      modules.symbols.bin

The information in the module.* files is used by the command modprobe to locate  
a module by name rather than the full path. modprobe has many other features 
which are described in the manual.

The module dependency information is also used by device managers, udev in 
particular. When new hardware is detected, for example a new USB device, the 
udevd daemon is alerted and passed the vendor, and product IDs are read from  
the hardware. udevd scans the module dependency files looking for a module  
that has registered those IDs. If one is found, it is loaded using modprobe.

Discovering hardware configuration
The dummy driver demonstrates the structure of a device driver, but it lacks 
interaction with real hardware since it only manipulates memory structures.  
Device drivers are usually written to interact with hardware and part of that  
is being able to discover the hardware in the first place, bearing in mind that  
it may be at different addresses in different configurations.

In some cases, the hardware provides the information itself. Devices on a 
discoverable bus such as PCI or USB have a query mode which returns resource 
requirements and a unique identifier. The kernel matches the identifier and  
possibly other characteristics with the device drivers, and marries them up.
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However, most of the hardware blocks on an SoC do not have such identifiers.  
You have to provide the information yourself in the form of a device tree or as  
C structures known as platform data.

In the standard driver model for Linux, device drivers register themselves with the 
appropriate subsystem: PCI, USB, open firmware (device tree), platform device, and 
so on. The registration includes an identifier and a callback function called a probe 
function that is called if there is a match between the ID of the hardware and the ID 
of the driver. For PCI and USB, the ID is based on the vendor and the product IDs of 
the devices, for device tree and platform devices, it is a name (an ASCII string).

Device trees
I gave you an introduction to device trees in Chapter 3, All About Bootloaders. Here,  
I want to show you how the Linux device drivers hook up with that information.

As an example, I will use the ARM Versatile board, arch/arm/boot/dts/
versatile-ab.dts, for which the Ethernet adapter is defined here:

net@10010000 {
  compatible = "smsc,lan91c111";
  reg = <0x10010000 0x10000>;
  interrupts = <25>;
};

Platform data
In the absence of device tree support, there is a fallback method of describing 
hardware using C structures, known as platform data.

Each piece of hardware is described by struct platform_device, which has a 
name and a pointer to an array of resources. The type of the resource is determined 
by flags, which include the following:

• IORESOURCE_MEM: The physical address of a region of memory
• IORESOURCE_IO: The physical address or port number of IO registers
• IORESOURCE_IRQ: The interrupt number
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Here is an example of the platform data for an Ethernet controller taken from arch/
arm/mach-versatile/core.c, which has been edited for clarity:

#define VERSATILE_ETH_BASE     0x10010000
#define IRQ_ETH                25
static struct resource smc91x_resources[] = {
  [0] = {
    .start          = VERSATILE_ETH_BASE,
    .end            = VERSATILE_ETH_BASE + SZ_64K - 1,
    .flags          = IORESOURCE_MEM,
  },
  [1] = {
    .start          = IRQ_ETH,
    .end            = IRQ_ETH,
    .flags          = IORESOURCE_IRQ,
  },
};
static struct platform_device smc91x_device = {
  .name           = "smc91x",
  .id             = 0,
  .num_resources  = ARRAY_SIZE(smc91x_resources),
  .resource       = smc91x_resources,
};

It has a memory area of 64 KiB and an interrupt. The platform data has to be 
registered with the kernel, usually when the board is initialized:

void __init versatile_init(void)
{
  platform_device_register(&versatile_flash_device);
  platform_device_register(&versatile_i2c_device);
  platform_device_register(&smc91x_device);
  [ ...]

Linking hardware with device drivers
You have seen in the preceding section how an Ethernet adapter is described using a 
device tree and using platform data. The corresponding driver code is in drivers/
net/ethernet/smsc/smc91x.c and it works with both the device tree and platform 
data. Here is the initialization code, once again edited for clarity:

static const struct of_device_id smc91x_match[] = {
  { .compatible = "smsc,lan91c94", },
  { .compatible = "smsc,lan91c111", },
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  {},
};
MODULE_DEVICE_TABLE(of, smc91x_match);
static struct platform_driver smc_driver = {
  .probe          = smc_drv_probe,
  .remove         = smc_drv_remove,
  .driver         = {
    .name   = "smc91x",
    .of_match_table = of_match_ptr(smc91x_match),
  },
};
static int __init smc_driver_init(void)
{
  return platform_driver_register(&smc_driver);
}
static void __exit smc_driver_exit(void) \
{
  platform_driver_unregister(&smc_driver);
}
module_init(smc_driver_init);
module_exit(smc_driver_exit);

When the driver is initialized, it calls platform_driver_register(), pointing to 
struct platform_driver, in which there is a callback to a probe function, a driver 
name, smc91x, and a pointer to struct of_device_id.

If this driver has been configured by the device tree, the kernel will look for a match 
between the compatible property in the device tree node and the string pointed to 
by the compatible structure element. For each match, it calls the probe function.

On the other hand, if it was configured through platform data, the probe function 
will be called for each match on the string pointed to by driver.name.

The probe function extracts information about the interface:

static int smc_drv_probe(struct platform_device *pdev)
{
  struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
  const struct of_device_id *match = NULL;
  struct resource *res, *ires;
  int irq;

  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  [...]
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  addr = ioremap(res->start, SMC_IO_EXTENT);
  irq = ires->start;
  [...]
}

The calls to platform_get_resource() extract the memory and irq information 
from either the device tree or the platform data. It is up to the driver to map the 
memory and install the interrupt handler. The third parameter, which is zero in  
both of the previous cases, comes into play if there is more than one resource of  
that particular type.

Device trees allow you to configure more than just basic memory ranges  
and interrupts, however. There is a section of code in the probe function that  
extracts optional parameters from the device tree. In this snippet, it gets the 
register-io-width property:

match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
if (match) {
  struct device_node *np = pdev->dev.of_node;
  u32 val;
  [...]
  of_property_read_u32(np, "reg-io-width", &val);
  [...]
}

For most drivers, specific bindings are documented in Documentation/devicetree/
bindings. For this particular driver, the information is in Documentation/
devicetree/bindings/net/smsc911x.txt.

The main thing to remember here is that drivers should register a probe function 
and enough information for the kernel to call the probe as it finds matches with the 
hardware it knows about. The linkage between the hardware described by the device 
tree and the device driver is through the compatible property. The linkage between 
platform data and a driver is through the name.
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Additional reading
The following resources have further information about the topics introduced in  
this chapter:

• Linux Device Drivers, 4th edition, by Jessica McKellar, Alessandro Rubini, 
Jonathan Corbet, and Greg Kroah-Hartman. This is not published at the time 
of writing, but if it is as good as the predecessor, it will be a good choice. 
However, the 3rd edition is too out of date to recommend.

• Linux Kernel Development, 3rd edition by Robert Love, Addison-Wesley 
Professional; (July 2, 2010) ISBN-10: 0672329468

• Linux Weekly News, lwn.net.

Summary
Device drivers have the job of handling devices, usually physical hardware but 
sometimes virtual interfaces, and presenting it to higher levels in a consistent and 
useful way. Linux device drivers fall into three broad categories: the character, the 
block, and the network. Of the three, the character driver interface is the most flexible 
and therefore, the most common. Linux drivers fit into a framework known as the 
driver model, which is exposed through sysfs. Pretty much the entire state of the 
devices and drivers is visible in /sys.

Each embedded system has its own unique set of hardware interfaces and 
requirements. Linux provides drivers for most standard interfaces, and by selecting 
the right kernel configuration, you can get the device operational very quickly. That 
leaves you with the non-standard components for which you will have to add your 
own device support.

In some cases, you can sidestep the issue by using generic drivers for GPIO, I2C, and 
so on, and write user space code to do the work. I recommend this as a starting point 
as it gives you the chance to get familiar with the hardware without writing kernel 
code. Writing kernel drivers is not particularly difficult but, if you do, you need to 
code carefully so as to not compromise the stability of the system.

I have talked about writing kernel driver code: if you go down that route, you will 
inevitably want to know how to check whether or not it is working correctly and 
detect any bugs. I will cover that topic in Chapter 12, Debugging with GDB.

The next chapter is all about user space initialization and the different options you 
have for the init program, from the simple BusyBox to the complex systemd.

lwn.net
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Starting up - the init Program
I looked at how the kernel boots up to the point that it launches the first program, 
init, in Chapter 4, Porting and Configuring the Kernel and in Chapter 5, Building a Root 
Filesystem and Chapter 6, Selecting a Build System, I looked at creating root filesystems 
of varying complexity, all of which contained an init program. Now it is time to 
look at the init program in more detail and discover why it is so important to the  
rest of the system.

There are many possible implementations of init. I will describe the three main 
ones in this chapter: BusyBox init, System V init, and systemd. For each one,  
I will give an overview of how it works and the types of system it suits best.  
Part of that is balancing the trade-off between complexity and flexibility.

After the kernel has booted
We saw in Chapter 4, Porting and Configuring the Kernel, how the kernel bootstrap  
code seeks to find a root filesystem, either initramfs or a filesystem specified by 
root= on the kernel command line, and then to execute a program which, by default, 
is /init for initramfs, and /sbin/init for a regular filesystem. The init program 
has root privilege and since it is the first process to run, it has a process ID (PID) of 1. 
If, for some reason, init cannot be started, the kernel will panic.
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The init program is the ancestor of all other processes, as shown here by the pstree 
command, which is part of the psmisc package in most distrubutions:

# pstree -gn

init(1)-+-syslogd(63)
        |-klogd(66)
        |-dropbear(99)
        `-sh(100)---pstree(109)

The job of the init program is to take control of the system and set it running.  
It may be as simple as a shell command running a shell script – there is an example 
at the start of Chapter 5, Building a Root Filesystem—but, in the majority of cases, you 
will be using a dedicated init daemon. The tasks it has to perform are as follows:

• At boot, it starts daemon programs, configures system parameters and the 
other things needed to get the system into a working state.

• Optionally, it launches daemons, such as getty on terminals which allow a 
login shell.

• It adopts processes that become orphaned as a result of their immediate 
parent terminating and there being no other processes in the thread group.

• It responds to any of init's immediate children terminating by catching the 
signal SIGCHLD and collecting the return value to prevent them becoming 
zombie processes. I will talk more about zombies in Chapter 10, Learning 
About Processes and Threads.

• Optionally, it restarts those daemons that have terminated.
• It handles system shutdown.

In other words, init manages the lifecycle of the system, from boot up to shutdown. 
The current thinking is that init is well placed to handle other runtime events  
such as new hardware and the loading and unloading of modules. This is what 
systemd does.

Introducing the init programs
The three init programs that you are most likely to encounter in embedded devices 
are BusyBox init, System V init, and systemd. Buildroot has options to build 
all three with BusyBox init as the default. The Yocto Project allows you to choose 
between System V init and systemd, with System V init the default.
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The following table gives some metrics to compare the three:

BusyBox init System V init systemd
Complexity Low Medium High
Boot-up speed Fast Slow Medium
Required shell ash ash or bash None
Number of executables 0 4 50(*)
libc Any Any glibc
Size (MiB) 0 0.1 34(*)

(*) Based on the Buildroot configuration of system.

Broadly speaking, there is an increase in flexibility and complexity as you go from 
BusyBox init to systemd.

BusyBox init
BusyBox has a minimal init program that uses a configuration file, /etc/inittab, 
to define rules to start programs at boot up and to stop them at shutdown. Usually, 
the actual work is done by shell scripts which, by convention, are placed in the  
/etc/init.d directory.

init begins by reading the configuration file, /etc/inittab. This contains a list of 
programs to run, one per line, with this format:

<id>::<action>:<program>

The role of these parameters is as follows:

• id: The controlling terminal for the command
• action: The conditions to run this command, as shown in the  

following paragraph
• program: The program to run

The actions are as follows:

• sysinit: Run the program when init starts, before any of the other types  
of actions.

• respawn: Run the program and restart it if it terminates. It is used to run a 
program as a daemon.
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• askfirst: This is the same as respawn, but prints the message Please press 
Enter to activate this console to the console and runs the program after Enter 
has been pressed. It is used to start an interactive shell on a terminal without 
prompting for a user name or password.

• once: Run the program once but do not attempt to restart it if it terminates.
• wait: Run the program and wait for it to complete.
• restart: Run the program when init receives the signal SIGHUP, indicating 

that it should reload the inittab file.
• ctrlaltdel: Run the program when init receives the signal SIGINT, usually 

as a result of pressing Ctrl + Alt + Del on the console.
• shutdown: Run the program when init shuts down.

Here is a small example that mounts proc and sysfs and runs a shell on a  
serial interface:

null::sysinit:/bin/mount -t proc proc /proc
null::sysinit:/bin/mount -t sysfs sysfs /sys
console::askfirst:-/bin/sh

For simple projects in which you want to launch a small number of daemons and 
perhaps start a login shell on a serial terminal, it is easy to write the scripts manually, 
and this is appropriate if you are creating a RYO (roll your own) embedded Linux. 
However, you will find that hand-written init scripts rapidly become unmaintainable 
as the number of things to be configured increases. They tend not to be very modular 
and so need updating each time a new component is added.

Buildroot init scripts
Buildroot has been making effective use of BusyBox init for many years. Buildroot 
has two scripts in /etc/init.d named rcS and rcK. The first one starts at boot-up 
and iterates over all the scripts beginning with a capital S followed by two digits,  
and runs them in numerical order. These are the start scripts. The rcK script is run  
at shutdown and iterates over all the scripts beginning with a capital K followed by 
two digits, and runs them in numerical order. These are the kill scripts.

With this in place, it becomes easy for Buildroot packages to supply their own  
start and kill scripts, using the two digit number to impose the order in which they 
should be run, and so the system becomes extensible. If you are using Buildroot, 
 this is transparent. If not, you could use it as a model for writing your own BusyBox 
init scripts.
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System V init
This init program was inspired by the one from UNIX System V, and so dates back 
to the mid 1980s. The version most often found in Linux distributions was written 
initially by Miquel van Smoorenburg. Until recently, it was considered the way to 
boot Linux, obviously including embedded systems, and BusyBox init is a trimmed 
down version of System V init.

Compared to BusyBox init, System V init has two advantages. Firstly, the boot 
scripts are written in a well-known, modular format, making it easy to add new 
packages at build time or runtime. Secondly, it has the concept of runlevels, which 
allow a collection of programs to be started or stopped in one go, by switching from 
one runlevel to another.

There are 8 runlevels numbered from 0 to 6, plus S:

• S: Single user mode
• 0: Halt the system
• 1 to 5: General use
• 6: Reboot the system

Levels 1 to 5 can be used as you please. On desktop Linux distributions, they are 
conventionally assigned as follows:

• 1: Single user
• 2: Multi-user with no network configuration
• 3: Multi-user with network configuration
• 4: Not used
• 5: Multi-user with graphical login

The init program starts the default runlevel given by the initdefault line  
in /etc/inittab. You can change the runlevel at runtime using the command 
telinit [runlevel] which sends a message to init. You can find the current 
runlevel, and the previous one, by using the runlevel command. Here is an example:

# runlevel
N 5
# telinit 3
INIT: Switching to runlevel: 3
# runlevel
5 3



Starting Up - the init Program

[ 824 ]

On the first line, the output from runlevel is N 5, meaning that there is no previous 
runlevel because the runlevel has not changed since booting, and the current 
runlevel is 5. After changing the runlevel, the output is 5 3 showing that there has 
been a transition from 5 to 3. The halt and reboot commands switch to runlevels of 
0 and 6 respectively. You can override the default runlevel by giving a different one 
on the kernel command line as a single digit from 0 to 6, or S for single user mode. 
For example, to force the runlevel to be for a single user, you would append S to  
the kernel command line and it would look something like this:

console=ttyAMA0 root=/dev/mmcblk1p2 S

Each runlevel has a number of scripts that stop things, called kill scripts, and another 
group that starts things, the start scripts. When entering a new runlevel, init first runs 
the kill scripts and then the start scripts. Running daemons which have neither a start 
script nor a kill script in the new runlevel are sent a SIGTERM signal. In other words, 
the default action on switching runlevel is to terminate the daemons unless told to do 
otherwise.

In truth, runlevels are not used that much in embedded Linux: most devices simply 
boot to the default runlevel and stay there. I have a feeling that it is partly because 
most people are not aware of them.

Runlevels are a simple and convenient way to switch between 
modes, for example, from production to maintenance mode.

System V init is an option in Buildroot and the Yocto Project. In both cases, the 
init scripts have been stripped of any bash specifics, so they work with the BusyBox 
ash shell. However, Buildroot cheats by replacing the BusyBox init program with 
SystemV init and adding inittab that mimics the behavior of BusyBox. Buildroot 
does not implement runlevels except that switching to levels 0 or 6 halts or reboots  
the system.

Next, let's look at some of the details. The following examples are taken from the fido 
version of the Yocto Project. Other distributions may implement the init scripts a 
little differently.

inittab
The init program begins by reading /etc/inttab, which contains entries that 
define what happens at each runlevel. The format is an extended version of the 
BusyBox inittab that I described in the preceding section, which is not surprising 
because BusyBox borrowed it from System V in the first place!
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The format of each line in inittab is as follows:

id:runlevels:action:process

The fields are shown here:

• id: A unique identifier of up to four characters.
• runlevels: The runlevels for which this entry should be executed.  

(This was left blank in the BusyBox inittab)
• action: One of the keywords given as follows.
• process: The command to run.

The actions are the same as for BusyBox init: sysinit, respawn, once, wait, 
restart, ctrlaltdel, and shutdown. However, System V init does not have 
askfirst, which is specific to BusyBox.

As an example, this is the complete inttab supplied by the Yocto Project target core-
image-minimal:

# /etc/inittab: init(8) configuration.
# $Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

# The default runlevel.
id:5:initdefault:

# Boot-time system configuration/initialization script.
# This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.
~~:S:wait:/sbin/sulogin
# /etc/init.d executes the S and K scripts upon change
# of runlevel.
#
# Runlevel 0 is halt.
# Runlevel 1 is single-user.
# Runlevels 2-5 are multi-user.
# Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
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l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
# Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin
AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0
# /sbin/getty invocations for the runlevels.
#
# The "id" field MUST be the same as the last
# characters of the device (after "tty").
#
# Format:
#  <id>:<runlevels>:<action>:<process>
#

1:2345:respawn:/sbin/getty 38400 tty1

The fist entry, id:5:initdefault, sets the default runlevel to 5. The next entry, 
si::sysinit:/etc/init.d/rcS, runs the script rcS at boot up. There will be more 
about this later. A little further on, there is a group of six entries beginning with 
l0:0:wait:/etc/init.d/rc 0. They run the script /etc/init.d/rc each time there 
is a change in the runlevel: this script is responsible for processing the start and kill 
scripts. There is an entry for runlevel S which runs the single-user login program.

Towards the end of inittab, there are two entries that run a getty daemon to 
generate a login prompt on the devices /dev/ttyAMA0 and /dev/tty1 when entering 
runlevels 1 through to 5, thereby allowing you to log on and get an interactive shell:

AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0
1:2345:respawn:/sbin/getty 38400 tty1

The device ttyAMA0 is the serial console on the ARM Versatile board we are emulating 
with QEMU, it will be different for other development boards. Tty1 is a virtual console 
which is often mapped to a graphical screen if you have built your kernel with CONFIG_
FRAMEBUFFER_CONSOLE or VGA_CONSOLE. Desktop Linux usually spawns six getty 
processes on virtual terminals 1 to 6, which you can select with the key combination 
Ctrl + Alt + F1 through Ctrl + Alt + F6, with virtual terminal 7 reserved for the graphical 
screen. Virtual terminals are seldom used on embedded devices.

The script /etc/init.d/rcS that is run by the sysinit entry does little more than 
enter runlevel S:

#!/bin/sh

[...]
exec /etc/init.d/rc S
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Hence, the first run level entered is S, followed by the default runlevel of 5.  
Note that runlevel S is not recorded and is never displayed as a prior runlevel  
by the runlevel command.

The init.d scripts
Each component that needs to respond to a runlevel change has a script in /etc/
init.d to perform that change. The script should expect two parameters: start  
and stop. I will give an example of this later.

The runlevel handling script, /etc/init.d/rc, takes the runlevel it is switching 
to as a parameter. For each runlevel, there is a directory named rc<runlevel>.d:

# ls -d /etc/rc*
/etc/rc0.d  /etc/rc2.d  /etc/rc4.d  /etc/rc6.d
/etc/rc1.d  /etc/rc3.d  /etc/rc5.d  /etc/rcS.d

There you will find a set of scripts beginning with a capital S followed by two digits 
and you may also find scripts beginning with a capital K. These are start and kill 
scripts: Buildroot uses the same idea, borrowed from here:

# ls /etc/rc5.d
S01networking   S20hwclock.sh   S99rmnologin.sh S99stop-bootlogd
S15mountnfs.sh  S20syslog

These are in fact symbolic links back to the appropriate script in init.d. The rc 
script runs all the scripts beginning with a K first, adding the stop parameter , and 
then runs those beginning with an S adding the start parameter . Once again, the 
two digit code is there to impart the order in which the scripts should run.

Adding a new daemon
Imagine that you have a program named simpleserver which is written as a 
traditional Unix daemon, in other words, it forks and runs in the background.  
You will need an init.d script like this:

#! /bin/sh

case "$1" in
  start)
    echo "Starting simpelserver"
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    start-stop-daemon -S -n simpleserver -a /usr/bin/simpleserver
    ;;
  stop)
    echo "Stopping simpleserver"
    start-stop-daemon -K -n simpleserver
    ;;
  *)
    echo "Usage: $0 {start|stop}"
  exit 1
esac

exit 0

Start-stop-daemon is a helper function that makes it easier to manipulate 
background processes such as this. It originally came from the Debian installer 
package, dpkg, but most embedded systems use the one from BusyBox. It starts 
the daemon with the -S parameter, making sure that there is never more than one 
instance running at any one time and it finds the daemon by name with -K and sends 
a signal, SIGTERM, by default. Place this script in /etc/init.d/simpleserver and 
make it executable.

Then, add symlinks from each of the run levels that you want to run this program 
from, in this case, only the default runlevel, 5:

# cd /etc/init.d/rc5.d
# ln -s ../init.d/simpleserver S99simpleserver

The number 99 means that this will be one of the last programs to be started.  
Bear in mind that there may be other links beginning S99, in which case the rc  
script will just run them in lexical order.

It is rare in embedded devices to have to worry too much about shutdown 
operations, but if there is something that needs to be done, add kill symlinks  
to levels 0 and 6:

# cd /etc/init.d/rc0.d
# ln -s ../init.d/simpleserver K01simpleserver
# cd /etc/init.d/rc6.d
# ln -s ../init.d/simpleserver K01simpleserver
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Starting and stopping services
You can interact with the scripts in /etc/init.d by calling them directly with,  
for example, the syslog script which controls the syslogd and klogd daemons:

# /etc/init.d/syslog --help
Usage: syslog { start | stop | restart }

# /etc/init.d/syslog stop
Stopping syslogd/klogd: stopped syslogd (pid 198)
stopped klogd (pid 201)
done

# /etc/init.d/syslog start
Starting syslogd/klogd: done

All scripts implement start and stop and should implement help. Some implement 
status as well, which will tell you whether the service is running or not. Mainstream 
distributions that still use System V init have a command named service to start and 
stop services and hide the details of calling the scripts directly.

systemd
systemd defines itself as a system and service manager. The project was initiated 
in 2010 by Lennart Poettering and Kay Sievers to create an integrated set of tools 
for managing a Linux system including an init daemon. It also includes device 
management (udev) and logging, among other things. Some would say that it is 
not just an init program, it is a way of life. It is state of the art, and still evolving 
rapidly. systemd is common on desktop and server Linux distributions, and is 
becoming popular on embedded Linux systems too, especially on more complex 
devices. So, how is it better than System V init for embedded systems?

• Configuration is simpler and more logical (once you understand it), rather 
than the sometimes convoluted shell scripts of System V init, systemd has 
unit configuration files to set parameters

• There are explicit dependencies between services rather than a two digit code 
that merely sets the sequence in which the scripts are run

• It is easy to set the permissions and resource limits for each service, which is 
important for security

• systemd can monitor services and restart them if needed
• There are watchdogs for each service and for systemd itself
• Services are started in parallel, reducing boot time
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A complete description of systemd is neither possible nor appropriate here. As with 
System V init, I will focus on embedded use-cases, with examples based on the 
configuration produced by Yocto Fido, which has systemd version 219. I will give  
a quick overview and then show you some specific examples.

Building systemd with the Yocto Project  
and Buildroot
The default init in Yocto Fido is System V. To select systemd, add these lines to 
your configuration, for example, in conf/local.conf:

DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"

Note that the leading space is important! Then rebuild.

Buildroot has systemd as the third init option. It requires glibc as the C library, 
and kernel version 3.7 or later with a particular set of configuration options enabled. 
There is a complete list of dependencies in the README file in the top level of the 
systemd source code.

Introducing targets, services, and units
Before I describe how systemd init works, I need to introduce these three  
key concepts.

Firstly, a target is a group of services, similar to, but more general than, a SystemV 
runlevel. There is a default target which is the group of services that are started at 
boot time.

Secondly, a service is a daemon that can be started and stopped, very much like a 
SystemV service.

Finally, a unit is a configuration file that describes a target, a service, and several 
other things. Units are text files that contain properties and values.

You can change states and find out what is going on by using the systemctl 
command.
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Units
The basic item of configuration is the unit file. Unit files are found in three  
different places:

• /etc/systemd/system: Local configuration
• /run/systemd/system: Runtime configuration
• /lib/systemd/system: Distribution-wide configuration

When looking for a unit, systemd searches the directories in that order, stopping as 
soon as it finds a match, allowing you to override the behavior of a distribution-wide 
unit by placing a unit of the same name in /etc/systemd/system. You can disable a 
unit completely by creating a local file that is empty or linked to /dev/null.

All unit files begin with a section marked [Unit] which contains basic information 
and dependencies, for example:

[Unit]
Description=D-Bus System Message Bus
Documentation=man:dbus-daemon(1)
Requires=dbus.socket

Unit dependencies are expressed though Requires, Wants, and Conflicts:

• Requires: A list of units that this unit depends on, which is started when  
this unit is started

• Wants: A weaker form of Requires: the units listed are started but the 
current unit is not stopped if any of them fail

• Conflicts: A negative dependency: the units listed are stopped when this 
one is started and, conversely, if one of them is started, this one is stopped

Processing the dependencies produces a list of units that should be started  
(or stopped). The keywords Before and After determine the order in which  
they are started. The order of stopping is just the reverse of the start order:

• Before: This unit should be started before the units listed
• After: This unit should be started after the units listed

In the following example, the After directive makes sure that the web server is 
started after the network:

[Unit]
Description=Lighttpd Web Server
After=network.target
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In the absence of Before or After directives, the units will be started or stopped in 
parallel with no particular ordering.

Services
A service is a daemon that can be started and stopped, equivalent to a System  
V service. A service is a type of unit file with a name ending in .service,  
for example, lighttpd.service.

A service unit has a [Service] section that describes how it should be run.  
Here is the relevant section from lighttpd.service:

[Service]
ExecStart=/usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf -D
ExecReload=/bin/kill -HUP $MAINPID

These are the commands to run when starting the service and restarting it. There are 
many more configuration points you can add in here, so refer to the man page for 
systemd.service.

Targets
A target is another type of unit which groups services (or other types of unit). It is  
a type of unit that only has dependencies. Targets have names ending in .target, 
for example, multi-user.target. A target is a desired state, which performs the 
same role as System V runlevels.

How systemd boots the system
Now we can see how systemd implements the bootstrap. systemd is run by the 
kernel as a result of /sbin/init being symbolically linked to /lib/systemd/
systemd. It runs the default target, default.target, which is always a link to a 
desired target such as multi-user.target for a text login or graphical.target for 
a graphical environment. For example, if the default target is multi-user.target, 
you will find this symbolic link:

/etc/systemd/system/default.target -> /lib/systemd/system/multi- 
user.target

The default target may be overridden by passing system.unit=<new target>  
on the kernel command line. You can use systemctl to find out the default target,  
as shown here:

# systemctl get-default
multi-user.target
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Starting a target such as multi-user.target creates a tree of dependencies that 
bring the system into a working state. In a typical system, multi-user.target 
depends on basic.target, which depends on sysinit.target, which depends on 
the services that need to be started early. You can print a graph using systemctl  
list-dependencies.

You can also list all the services and their current state using systemctl list-
units --type service, and the same for targets using systemctl list-units 
--type target.

Adding your own service
Using the same simpleserver example as before, here is a service unit:

[Unit]
Description=Simple server

[Service]
Type=forking
ExecStart=/usr/bin/simpleserver

[Install]
WantedBy=multi-user.target

The [Unit] section only contains a description so that it shows up correctly when  
listed using systemctl and other commands. There are no dependencies; as I said,  
it is very simple.

The [Service] section points to the executable, and has a flag to indicate that it 
forks. If it were even simpler and ran in the foreground, systemd would do the 
daemonizing for us and Type=forking would not be needed.

The [Install] section makes it dependent on multi-user.target so that our 
server is started when the system goes into multi-user mode.

Once the unit is saved in /etc/systemd/system/simpleserver.service, you can 
start and stop it using the systemctl start simpleserver and systemctl stop 
simpleserver commands. You can use this command to find its current status:

# systemctl status simpleserver
  simpleserver.service - Simple server
  Loaded: loaded (/etc/systemd/system/simpleserver.service;  
  disabled)
  Active: active (running) since Thu 1970-01-01 02:20:50 UTC; 8s  
  ago
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  Main PID: 180 (simpleserver)
  CGroup: /system.slice/simpleserver.service
           └─180 /usr/bin/simpleserver -n

Jan 01 02:20:50 qemuarm systemd[1]: Started Simple server.

At this point, it will only start and stop on command, as shown. To make it 
persistent, you need to add a permanent dependency to a target. That is the purpose 
of the [Install] section in the unit, it says that when this service is enabled it will 
become dependent on multi-user.target, and so will be started at boot time.  
You enable it using systemctl enable, like this:

# systemctl enable simpleserver
Created symlink from /etc/systemd/system/multi- 
user.target.wants/simpleserver.service to  
/etc/systemd/system/simpleserver.service.

Now you can see how dependencies are added at runtime without having to edit 
any unit files. A target can have a directory named <target_name>.target.wants 
which can contain links to services. This is exactly the same as adding the dependent 
unit to the [Wants] list in the target. In this case, you will find that this link has been 
created:

/etc/systemd/system/multi-user.target.wants/simpleserver.service
/etc/systemd/system/simpleserver.service

If this were an important service you might want to restart if it failed. You can 
accomplish that by adding this flag to the [Service] section:

Restart=on-abort

Other options for Restart are on-success, on-failure, on-abnormal, on-
watchdog, on-abort, or always.

Adding a watchdog
Watchdogs are a common requirement in embedded devices: you need to take action 
if a critical service stops working, usually by resetting the system. On most embedded 
SoCs, there is a hardware watchdog which can be accessed via the /dev/watchdog 
device node. The watchdog is initialized with a timeout at boot and then must be  
reset within that period, otherwise the watchdog will be triggered and the system  
will reboot. The interface with the watchdog driver is described in the kernel source  
in Documentation/watchdog, and the code for the drivers is in drivers/watchdog.
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A problem arises if there are two or more critical services that need to be protected 
by a watchdog. systemd has a useful feature that distributes the watchdog between 
multiple services.

systemd can be configured to expect a regular keepalive call from a service and  
take action if it is not received, in other words, a per-service software watchdog. For 
this to work, you have to add code to the daemon to send the keepalive messages.  
It needs to check for a non-zero value in the WATCHDOG_USEC environment variable 
and then call sd_notify(false, "WATCHDOG=1") within that time (a period of 
half of the watchdog timeout is recommended). There are examples in the systemd 
source code.

To enable the watchdog in the service unit, add something like this to the  
[Service] section:

WatchdogSec=30s
Restart=on-watchdog
StartLimitInterval=5min
StartLimitBurst=4
StartLimitAction=reboot-force

In this example, the service expects a keepalive every 30 seconds. If it fails to be 
delivered, the service will be restarted, but if it is restarted more than four times  
in five minutes, systemd will force an immediate reboot. Once again, there is a  
full description of these settings in the systemd manual.

A watchdog like this takes care of individual services, but what if systemd itself  
fails, or the kernel crashes, or the hardware locks up. In those cases, we need to  
tell systemd to use the watchdog driver: just add RuntimeWatchdogSec=NN to  
/etc/systemd/system.conf. systemd will reset the watchdog within that period, 
and so the system will reset if systemd fails for some reason.

Implications for embedded Linux
systemd has a lot of features that are useful in embedded Linux, including many that 
I have not mentioned in this brief description such as resource control using slices 
(see the man page for systemd.slice(5) and systemd.resource-control(5)), 
device management (udev(7)) and system logging facilities (journald(5)).

You have to balance that with its size: even with a minimal build of just the core 
components, systemd, udevd, and journald, it is approaching 10 MiB of storage, 
including the shared libraries.

You also have to keep in mind that systemd development follows the kernel closely, so 
it will not work on a kernel more than a year or two older than the release of systemd.
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Further reading
The following resource has further information about topics introduced in this chapter:

• systemd system and Service Manager: http://www.freedesktop.org/wiki/
Software/systemd/ (there are a lot of useful links at the bottom of that page)

Summary
Every Linux device needs an init program of some kind. If you are designing a 
system which only has to launch a small number of daemons at startup and remains 
fairly static after that, then BusyBox init is sufficient for your needs. It is usually a 
good choice if you are using Buildroot as the build system.

If, on the other hand, you have a system that has complex dependencies between 
services at boot time or runtime, and you have the storage space, then systemd 
would be the best choice. Even without the complexity, systemd has some useful 
features in the way it handles watchdogs, remote logging, and so on, so you should 
certainly give it a serious thought.

It is hard to make a case for System V init on its own merits, since it has few 
advantages over the simple BusyBox init. It will live on for a long time nevertheless, 
just because it is there. For example, if you are building using the Yocto Project and 
you decide against systemd then System V init is the alternative.

In terms of reducing boot time, systemd is faster than System V init for a similar 
workload. However, if you are looking for a very fast boot, nothing can beat a simple 
BusyBox init with minimal boot scripts.

This chapter is about one very important process, init. In the next chapter, I will 
describe what a process really is, how it relates to threads, how they cooperate, and 
how they are scheduled. Understanding these things is important if you want to 
create a robust and maintainable embedded system.



[ 837 ]

Learning About Processes 
and Threads

In the preceding chapters, we have considered the various aspects of creating an 
embedded Linux platform. Now it is time to start looking at how you can use the 
platform to create a working device. In this chapter, I will talk about the implications 
of the Linux process model and how it encompasses multi-threaded programs. I will 
look at the pros and cons of using single-threaded and multi-threaded processes. 
I will also look at scheduling and differentiate between timeshare and real-time 
scheduling policies.

While these topics are not specific to embedded computing, it is important for  
a designer of an embedded device to have an overview of these topics. There  
are many good reference works on the subject, some of which I reference at the  
end of the chapter, but in general, they do not consider the embedded use cases.  
In consequence, I will be concentrating on the concepts and design decisions rather 
than on the function calls and code.

Process or thread?
Many embedded developers who are familiar with real-time operating systems 
(RTOS) consider the Unix process model to be cumbersome. On the other hand,  
they see a similarity between an RTOS task and a Linux thread and they have a 
tendency to transfer an existing design using a one-to-one mapping of RTOS tasks  
to threads. I have, on several occasions, seen designs in which the entire application 
is implemented with one process containing 40 or more threads. I want to spend 
some time considering if this is a good idea or not. Let's begin with some definitions.
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A process is a memory address space and a thread of execution, as shown in the 
following diagram. The address space is private to the process and so threads 
running in different processes. cannot access it. This memory separation is created 
by the memory management subsystem in the kernel, which keeps a memory page 
mapping for each process and re-programs the memory management unit on each 
context switch. I will describe how this works in detail in Chapter 11, Managing 
Memory. Part of the address space is mapped to a file which contains the code  
and static data that the program is running:

As the program runs, it will allocate resources such as stack space, heap memory, 
references to files, and so on. When the process terminates, these resources are 
reclaimed by the system: all the memory is freed up and all the file descriptors  
are closed.

Processes can communicate with each other using inter process communication 
(IPC) such as local sockets. I will talk about IPC later on.

A thread is a thread of execution within a process. All processes begin with one 
thread that runs the main() function and is called the main thread. You can 
create additional threads using the POSIX threads function pthread_create(3), 
causing additional threads to execute in the same address space, as shown in the 
following diagram. Being in the same process, they share resources with each 
other. They can read and write the same memory and use the same file descriptors, 
and so communication between threads is easy, so long as you take care of the 
synchronization and locking issues:
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So, based on these brief details, you could imagine two extreme designs for a 
hypothetical system with 40 RTOS tasks being ported to Linux.

You could map tasks to processes, and have 40 individual programs communicating 
through IPC, for example with messages sent through sockets. You would greatly 
reduce memory corruption problems since the main thread running in each 
process is protected from the others, and you would reduce resource leakage since 
each process is cleaned up after it exits. However, the message interface between 
processes is quite complex and, where there is tight cooperation between a group of 
processes, the number of messages might be large and so become a limiting factor 
in the performance of the system. Furthermore, any one of the 40 processes may 
terminate, perhaps because of a bug causing it to crash, leaving the other 39 to carry 
on. Each process would have to handle the case that its neighbors are no longer 
running and recover gracefully.

At the other extreme, you could map tasks to threads and implement the system as a 
single process containing 40 threads. Cooperation becomes much easier because they 
share the same address space and file descriptors. The overhead of sending messages 
is reduced or eliminated and context switches between threads are faster than 
between processes. The downside is that you have introduced the possibility of one 
task corrupting the heap or the stack of another. If any one of the threads encounters 
a fatal bug, the whole process will terminate, taking all the threads with it. Finally, 
debugging a complex multi-threaded process can be a nightmare.

The conclusion you should draw is that neither design is ideal, and that there is a 
better way. But before we get to that point, I will delve a little more deeply into the 
APIs and the behavior of processes and threads.

Processes
A process holds the environment in which threads can run: it holds the memory 
mappings, the file descriptors, the user and group IDs, and more. The first process 
is the init process, which is created by the kernel during boot and has a PID of one. 
Thereafter, processes are created by duplication in an operation known as forking.
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Creating a new process
The POSIX function to create a process is fork(2). It is an odd function because, 
for each successful call, there are two returns: one in the process that made the call, 
known as the parent, and one in the newly created process, known as the child as 
shown in the following diagram:

Immediately after the call, the child is an exact copy of the parent, it has the same 
stack, the same heap, the same file descriptors, and executes the same line of code, 
the one following fork(2). The only way the programmer can tell them apart is 
by looking at the return value of fork: it is zero for the child and greater than zero 
for the parent. Actually, the value returned in the parent is the PID of the newly 
created child process. There is a third possibility, which is that the return is negative, 
meaning that the fork call failed and there is still only one process.

Although the two processes are initially identical, they are in separate address spaces. 
Changes made to a variable by one will not be seen by the other. Under the hood, the 
kernel does not make a physical copy of the parent's memory, which would be quite 
a slow operation and consume memory unnecessarily. Instead, the memory is shared 
but marked with a copy-on-write (CoW) flag. If either parent or child modifies this 
memory, the kernel first makes a copy and then writes to the copy. This has the benefit 
of an efficient fork function while retaining the logical separation of process address 
spaces. I will discuss CoW in Chapter 11, Managing Memory.
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Terminating a process
A process may be stopped voluntarily by calling the exit(3) function or, 
involuntarily, by receiving a signal that is not handled. One signal in particular, 
SIGKILL, cannot be handled and so will always kill a process. In all cases, terminating 
the process will stop all threads, close all file descriptors, and release all memory. The 
system sends a signal, SIGCHLD, to the parent so that it knows this has happened.

Processes have a return value which is composed of either the argument to exit(3), 
if it terminated normally, or the signal number if it was killed. The chief use for this 
is in shell scripts: it allows you to test the return from a program. By convention, 0 
indicates success and other values indicate a failure of some sort.

The parent can collect the return value with the wait(2) or waitpid(2) functions. 
This causes a problem: there will be a delay between a child terminating and its 
parent collecting the return value. In that period, the return value must be stored 
somewhere, and the PID number of the now dead process cannot be reused. A 
process in this state is a zombie, state Z in ps or top. So long as the parent calls 
wait(2) or waitpid(2), whenever it is notified of a child's termination (by means 
of the SIGCHLD signal, see Linux System Programming, by Robert Love, O'Reilly Media 
or The Linux Programming Interface, by Michael Kerrisk, No Starch Press for details of 
handling signals), zombies exist for too short a time to show up in process listings. 
They will become a problem if the parent fails to collect the return value because  
you will not be able to create any more processes.

Here is a simple example, showing process creation and termination:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main(void)
{
  int pid;
  int status;
  pid = fork();
  if (pid == 0) {
    printf("I am the child, PID %d\n", getpid());
    sleep(10);
    exit(42);
  } else if (pid > 0) {
    printf("I am the parent, PID %d\n", getpid());
    wait(&status);
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    printf("Child terminated, status %d\n",
    WEXITSTATUS(status));
  } else
    perror("fork:");
  return 0;
}

The wait(2) function blocks until a child process exits and stores the exit status. 
When you run it, you see something like this:

I am the parent, PID 13851
I am the child, PID 13852
Child terminated with status 42

The child process inherits most of the attributes of the parent, including the  
user and group IDs (UID and GID), all open file descriptors, signal handling,  
and scheduling characteristics.

Running a different program
The fork function creates a copy of a running program, but it does not run a 
different program. For that, you need one of the exec functions:

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg,
           ..., char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],
           char *const envp[]);

Each takes a path to the program file to load and run. If the function succeeds,  
the kernel discards all the resources of the current process, including memory and 
file descriptors, and allocates memory to the new program being loaded. When 
the thread that called exec* returns, it returns not to the line of code after the call, 
but to the main() function of the new program. Here is an example of a command 
launcher: it prompts for a command, for example, /bin/ls, and forks and executes 
the string you enter:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
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#include <sys/wait.h>
int main(int argc, char *argv[])
{
  char command_str[128];
  int pid;
  int child_status;
  int wait_for = 1;
  while (1) {
    printf("sh> ");
    scanf("%s", command_str);
    pid = fork();
    if (pid == 0) {
      /* child */
      printf("cmd '%s'\n", command_str);
      execl(command_str, command_str, (char *)NULL);
      /* We should not return from execl, so only get  
      to this line if it failed */
      perror("exec");
      exit(1);
    }
    if (wait_for) {
      waitpid(pid, &child_status, 0);
      printf("Done, status %d\n", child_status);
    }
  }
  return 0;
}

It might seem odd to have one function that duplicates an existing process and 
another that discards its resources and loads a different program into memory, 
especially since it is common for a fork to be followed almost immediately by  
exec. Most operating systems combine the two actions into a single call.

There are distinct advantages, however. For example, it makes it very easy to 
implement redirection and pipes in the shell. Imagine that you want to get a 
directory listing, this is the sequence of events:

1. You type ls at the shell prompt.
2. The shell forks a copy of itself.
3. The child execs /bin/ls.
4. The ls program prints the directory listing to stdout (file descriptor 1) 

which is attached to the terminal. You see the directory listing.
5. The ls program terminates and the shell regains control.
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Now, imagine that you want the directory listing to be written to a file by redirecting 
the output using the > character. The sequence is now as follows:

1. You type ls > listing.txt.
2. The shell forks a copy of itself.
3. The child opens and truncates the file listing.txt, and uses dup2(2)  

to copy the file descriptor of the file over file descriptor 1 (stdout).
4. The child execs /bin/ls.
5. The program prints the listing as before, but this time it is writing to 

listing.txt.
6. The ls program terminates and the shell regains control.

Note that there is an opportunity at step three to modify the environment of the child 
process before executing the program. The ls program does not need to know that it 
is writing to a file rather than a terminal. Instead of a file, stdout could be connected 
to a pipe and so the ls program, still unchanged, can send output to another program. 
This is part of the Unix philosophy of combining many small components that each do 
a job well, as described in The Art of Unix Programming, by Eric Steven Raymond, Addison 
Wesley; (23 Sept. 2003) ISBN 978-0131429017, especially in the section Pipes, Redirection, 
and Filters.

Daemons
We have encountered daemons in several places already. A daemon is a process  
that runs in the background, owned by the init process, PID1, and not connected  
to a controlling terminal. The steps to create a daemon are as follows:

1. Call fork() to create a new process, after which the parent should exit,  
thus creating an orphan which will be re-parented to init.

2. The child process calls setsid(2), creating a new session and process  
group of which it is the sole member. The exact details do not matter here, 
you can simply consider this as a way of isolating the process from any 
controlling terminal.

3. Change the working directory to the root.
4. Close all file descriptors and redirect stdin, stdout, and sterr (descriptors 

0, 1, and 2) to /dev/null so that there is no input and all output is hidden.

Thankfully, all of the preceding steps can be achieved with a single function call, 
daemon(3).
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Inter-process communication
Each process is an island of memory. You can pass information from one to another 
in two ways. Firstly, you can copy it from one address space to the other. Secondly, 
you can create an area of memory that both can access and so share the data.

The first is usually combined with a queue or buffer so that there is a sequence of 
messages passing between processes. This implies copying the message twice: first to 
a holding area and then to the destination. Some examples of this are sockets, pipes, 
and POSIX message queues.

The second way requires not only a method of creating memory that is mapped  
into two (or more) address spaces at once, but also a means of synchronizing access 
to that memory, for example, by using semaphores or mutexes. POSIX has functions 
for all of these.

There is an older set of APIs known as System V IPC, which provides message queues, 
shared memory, and semaphores, but it is not as flexible as the POSIX equivalents so I 
will not describe it here. The man page on svipc(7) gives an overview of the facilities 
and there is more detail in The Linux Programming Interface, by Michael Kerrisk, No Starch 
Press and Unix Network Programming, Volume 2, by W. Richard Stevens.

Message-based protocols are usually easier to program and debug than shared 
memory, but are slow if the messages are large.

Message-based IPC
There are several options which I will summarize as follows. The attributes that 
differentiate between them are:

• Whether the message flow is uni- or bi-directorial.
• Whether the data flow is a byte stream, with no message boundary, 

or discrete messages with boundaries preserved. In the latter case, the 
maximum size of a message is important.

• Whether messages are tagged with a priority.

The following table summarizes these properties for FIFOs, sockets, and  
message queues:

Property FIFO Unix socket: 
stream

Unix socket: 
datagram

POSIX message 
queue

Message 
boundary

Byte stream Byte stream Discrete Discrete
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Property FIFO Unix socket: 
stream

Unix socket: 
datagram

POSIX message 
queue

Uni/bi-
directional

Uni Bi Uni Uni

Max message 
size

Unlimited Unlimited In the range 100 
KiB to 250 KiB

Default: 8 
KiB, absolute 
maximum: 1 
MiB

Priority levels None None None 0 to 32767

Unix (or local) sockets
Unix sockets fulfill most requirements and, coupled with the familiarity of the sockets 
API, they are by far the most common mechanism.

Unix sockets are created with the address family AF_UNIX and bound to a path name. 
Access to the socket is determined by the access permission of the socket file. As with 
Internet sockets, the socket type can be SOCK_STREAM or SOCK_DGRAM, the former 
giving a bi-directional byte stream, and the latter providing discrete messages with 
preserved boundaries. Unix socket datagrams are reliable, meaning that they will not 
be dropped or reordered. The maximum size for a datagram is system-dependent 
and is available via /proc/sys/net/core/wmem_max. It is typically 100 KiB or more.

Unix sockets do not have a mechanism for indicating the priority of a message.

FIFOs and named pipes
FIFO and named pipe are just different terms for the same thing. They are an 
extension of the anonymous pipe that is used to communicate between parent  
and child and are used to implement piping in the shell.

A FIFO is a special sort of file, created by the command mkfifo(1). As with Unix 
sockets, the file access permissions determine who can read and write. They are  
uni-directional, meaning that there is one reader and usually one writer, though there 
may be several. The data is a pure byte stream but with a guarantee of atomicity of 
messages that are smaller than the buffer associated with the pipe. In other words, 
writes less than this size will not be split into several smaller writes and so the reader 
will read the whole message in one go, so long as the size of the buffer at the reader 
end is large enough. The default size of the FIFO buffer is 64 KiB on modern kernels 
and can be increased using fcntl(2) with F_SETPIPE_SZ up to the value in /proc/
sys/fs/pipe-max-size, typically 1 MiB.

There is no concept of priority.
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POSIX message queues
Message queues are identified by a name, which must begin with a forward slash 
/ and contain only one / character: message queues are actually kept in a pseudo 
filesystem of the type mqueue. You create a queue and get a reference to an existing 
queue through mq_open(3), which returns a file. Each message has a priority and 
messages are read from the queue in priority and then age order. Messages can be 
up to /proc/sys/kernel/msgmax bytes long. The default value is 8 KiB, but you can 
set it to be any size in the range 128 bytes to 1 MiB by writing the value to /proc/
sys/kernel/msgmax bytes. Each message has a priority. They are read from the 
queue in priority then age order. Since the reference is a file descriptor, you can use 
select(2), poll(2), and other similar functions to wait for activity on the queue.

See the Linux man page mq_overview(7).

Summary of message-based IPC
Unix sockets are the most often used because they offer all that is needed, except 
perhaps message priority. They are implemented on most operating systems,  
and so they confer maximum portability.

FIFOs are less used, mostly because they lack an equivalent to a datagram. On the 
other hand, the API is very simple, being the normal open(2), close(2), read(2), 
and write(2) file calls.

Message queues are the least commonly used of this group. The code paths in the 
kernel are not optimized in the way that socket (network) and FIFO (filesystem)  
calls are.

There are also higher level abstractions, in particular dbus, which are moving from 
mainstream Linux into embedded devices. Dbus uses Unix sockets and shared 
memory under the surface.

Shared memory-based IPC
Sharing memory removes the need for copying data between address spaces but 
introduces the problem of synchronizing accesses to it. Synchronization between 
processes is commonly achieved using semaphores.
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POSIX shared memory
To share memory between processes, you first have to create a new area of memory 
and then map it into the address space of each process that wants access to it, as in 
the following diagram:

POSIX shared memory follows the pattern we encountered with message queues. 
The segments are identified by names that begin with a / character and have exactly 
one such character. The function shm_open(3) takes the name and returns a file 
descriptor for it. If it does not exist already and the O_CREAT flag is set, then a new 
segment is created. Initially it has a size of zero. Use the (misleadingly named) 
ftruncate(2) to expand it to the desired size.

Once you have a descriptor for the shared memory, you map it into the address 
space of the process using mmap(2), and so threads in different processes can access 
the memory.

Here is an example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>  /* For mode constants */
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
#include <semaphore.h>
#define SHM_SEGMENT_SIZE 65536
#define SHM_SEGMENT_NAME "/demo-shm"
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#define SEMA_NAME "/demo-sem"

static sem_t *demo_sem;
/*
 * If the shared memory segment does not exist already, create it
 * Returns a pointer to the segment or NULL if there is an error
 */

static void *get_shared_memory(void)
{
  int shm_fd;
  struct shared_data *shm_p;
  /* Attempt to create the shared memory segment */
  shm_fd = shm_open(SHM_SEGMENT_NAME, O_CREAT | O_EXCL | O_RDWR,  
    0666);

  if (shm_fd > 0) {
    /* succeeded: expand it to the desired size (Note: dont't do  
    "this every time because ftruncate fills it with zeros) */
    printf ("Creating shared memory and setting size=%d\n",
    SHM_SEGMENT_SIZE);

    if (ftruncate(shm_fd, SHM_SEGMENT_SIZE) < 0) {
      perror("ftruncate");
      exit(1);
    }
    /* Create a semaphore as well */
    demo_sem = sem_open(SEMA_NAME, O_RDWR | O_CREAT, 0666, 1);

    if (demo_sem == SEM_FAILED)
      perror("sem_open failed\n");
  }
  else if (shm_fd == -1 && errno == EEXIST) {
    /* Already exists: open again without O_CREAT */
    shm_fd = shm_open(SHM_SEGMENT_NAME, O_RDWR, 0);
    demo_sem = sem_open(SEMA_NAME, O_RDWR);

    if (demo_sem == SEM_FAILED)
      perror("sem_open failed\n");
  }

  if (shm_fd == -1) {
    perror("shm_open " SHM_SEGMENT_NAME);
    exit(1);



Learning About Processes and Threads

[ 850 ]

  }
  /* Map the shared memory */
  shm_p = mmap(NULL, SHM_SEGMENT_SIZE, PROT_READ | PROT_WRITE,
    MAP_SHARED, shm_fd, 0);

  if (shm_p == NULL) {
    perror("mmap");
    exit(1);
  }
  return shm_p;
}
int main(int argc, char *argv[])
{
  char *shm_p;
  printf("%s PID=%d\n", argv[0], getpid());
  shm_p = get_shared_memory();

  while (1) {
    printf("Press enter to see the current contents of shm\n");
    getchar();
    sem_wait(demo_sem);
    printf("%s\n", shm_p);
    /* Write our signature to the shared memory */
    sprintf(shm_p, "Hello from process %d\n", getpid());
    sem_post(demo_sem);
  }
  return 0;
}

The memory in Linux is taken from a tmpfs filesystem mounted in /dev/shm or  
/run/shm.

Threads
Now it is time to look at multi-threaded processes. The programming interface for 
threads is the POSIX threads API, which was first defined in IEEE POSIX 1003.1c 
standard (1995), commonly known as Pthreads. It was implemented as an additional 
part of the C library, libpthread.so. There have been two versions of Pthreads over 
the last 15 years or so, Linux Threads and the Native POSIX Thread Library (NPTL). 
The latter is much more compliant with the specification, particularly with regard 
to the handling of signals and process IDs. It is pretty dominant now, but you may 
come across some older versions of uClibc that use Linux Threads.
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Creating a new thread
The function to create a thread is pthread_create(3):

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,  
  void *(*start_routine) (void *), void *arg);

It creates a new thread of execution which begins at the function start_routine 
and places a descriptor in pthread_t pointed to by thread. It inherits the scheduling 
parameters of the calling thread but these can be overridden by passing a pointer to 
the thread attributes in attr. The thread will begin to execute immediately.

pthread_t is the main way to refer to the thread within the program but the thread 
can also be seen from outside using a command like ps -eLf:

UID    PID  PPID   LWP  C  NLWP  STIME        TTY           TIME CMD

...

chris  6072  5648  6072  0   3    21:18  pts/0 00:00:00 ./thread-demo

chris  6072  5648  6073  0   3    21:18  pts/0 00:00:00 ./thread-demo

The program thread-demo has two threads. The PID and PPID columns show that 
they all belong to the same process and have the same parent, as you would expect. 
The column marked LWP is interesting, though. LWP stands for Light Weight Process 
which, in this context, is another name for thread. The numbers in that column are  
also known as Thread IDs or TIDs. In the main thread, the TID is the same as the PID, 
but for the others it is a different (higher) value. Some functions will accept a TID in 
places where the documentation states that you must give a PID, but be aware that  
this behavior is specific to Linux and not portable. Here is the code for thread-demo:

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/syscall.h>

static void *thread_fn(void *arg)
{
  printf("New thread started, PID %d TID %d\n",
  getpid(), (pid_t)syscall(SYS_gettid));
  sleep(10);
  printf("New thread terminating\n");
  return NULL;
}
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int main(int argc, char *argv[])
{
  pthread_t t;
  printf("Main thread, PID %d TID %d\n",
  getpid(), (pid_t)syscall(SYS_gettid));
  pthread_create(&t, NULL, thread_fn, NULL);
  pthread_join(t, NULL);
  return 0;
}

There is a man page for getttid(2) which explains that you have to make the  
Linux syscall directly because there isn't a C library wrapper for it, as shown.

There is a limit to the total number of threads that a given kernel can schedule.  
The limit scales according to the size of the system from around 1,000 on small 
devices up to tens of thousands on larger embedded devices. The actual number  
is available in /proc/sys/kernel/threads-max. Once you reach this limit, fork() 
and pthread_create() will fail.

Terminating a thread
A thread terminates when:

• It reaches the end of its start_routine
• It calls pthread_exit(3)
• It is canceled by another thread calling pthread_cancel(3)
• The process which contains the thread terminates, for example, because of a 

thread calling exit(3), or the process receiving a signal that is not handled, 
masked or ignored

Note that, if a multi threaded program calls fork(2), only the thread that made the 
call will exist in the new child process. Fork does not replicate all threads.

A thread has a return value, which is a void pointer. One thread can wait for another to 
terminate and collect its return value by calling pthread_join(2). There is an example 
in the code for thread-demo mentioned in the preceding section. This produces a 
problem that is very similar to the zombie problem among processes: the resources of 
the thread, for example, the stack, cannot be freed up until another thread has joined 
with it. If threads remain unjoined there is a resource leak in the program.
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Compiling a program with threads
The support for POSIX threads is part of the C library, in the library libpthread.so. 
However, there is more to building programs with threads than linking the library: 
there have to be changes to the way the compiler generates code to make sure that 
certain global variables, such as errno, have one instance per thread rather than one 
for the whole process.

When building a threaded program, you must add the 
switch –pthread at the compile and link stages.

Inter-thread communication
The big advantage of threads is that they share the address space and so can share 
memory variables. This is also a big disadvantage because it requires synchronization 
to preserve data consistency, in a similar way to memory segments shared between 
processes but with the proviso that, with threads, all memory is shared. Threads can 
create private memory using thread local storage (TLS).

The pthreads interface provides the basics necessary to achieve synchronization: 
mutexes and condition variables. If you want more complex structures, you will 
have to build them yourself.

It is worth noting that all of the IPC methods described earlier work equally well 
between threads in the same process.

Mutual exclusion
To write robust programs, you need to protect each shared resource with a mutex 
lock and make sure that every code path that reads or writes the resource has locked 
the mutex first. If you apply this rule consistently, most of the problems should 
be solved. The ones that remain are associated with the fundamental behavior of 
mutexes. I will list them briefly here, but will not go into detail:

• Deadlock: This occurs when mutexes become permanently locked. A classic 
situation is the deadly embrace in which two threads each require two mutexes 
and have managed to lock one of them but not the other. Each block waits  
for the lock the other has and so they remain as they are. One simple rule 
which avoids the deadly embrace problem is to make sure that mutexes are 
always locked in the same order. Other solutions involve timeouts and back  
off periods.
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• Priority inversion: The delays caused by waiting for a mutex can cause a 
real-time thread to miss deadlines. The specific case of priority inversion 
happens when a high priority thread becomes blocked waiting for a mutex 
locked by a low priority thread. If the low priority thread is preempted by 
other threads of intermediate priority, the high priority thread is forced to 
wait for an unbounded length of time. There are mutex protocols called 
priority inheritance and priority ceiling which resolve the problem at the 
expense of greater processing overhead in the kernel for each lock and 
unlock call.

• Poor performance: Mutexes introduce minimal overhead to code as long 
as threads don't have to block on them most of the time. If your design has 
a resource that is needed by a lot of threads, however, the contention ratio 
becomes significant. This is usually a design issue which can be resolved  
by using finer grained locking or a different algorithm.

Changing conditions
Cooperating threads need a method of alerting one another that something has 
changed and needs attention. That thing is called a condition and the alert is sent 
through a condition variable, condvar.

A condition is just something that you can test to give a true or false result. A 
simple example is a buffer that contains either zero or some items. One thread takes 
items from the buffer and sleeps when it is empty. Another thread places items into 
the buffer and signals the other thread that it has done so, because the condition that 
the other thread is waiting on has changed. If it is sleeping, it needs to wake up and 
do something. The only complexity is that the condition is, by definition, a shared 
resource and so has to be protected by a mutex. Here is a simple example which 
follows the producer-consumer relationship described in the preceding section:

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void *consumer(void *arg)
{
  while (1) {
    pthread_mutex_lock(&mutx);
    while (buffer_empty(data))
      pthread_cond_wait(&cv, &mutx);
    /* Got data: take from buffer */
    pthread_mutex_unlock(&mutx);
    /* Process data item */
  }
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  return NULL;
}

void *producer(void *arg)
{
  while (1) {
    /* Produce an item of data */
    pthread_mutex_lock(&mutx);
    add_data(data);
    pthread_mutex_unlock(&mutx);
    pthread_cond_signal(&cv);
  }
  return NULL;
}

Note that, when the consumer thread blocks on the condvar, it does so while holding 
a locked mutex, which would seem to be a recipe for deadlock the next time the 
producer thread tries to update the condition. To avoid this, pthread_condwait(3) 
unlocks the mutex after the thread is blocked and locks it again before waking it and 
returning from the wait.

Partitioning the problem
Now that we have covered the basics of processes and threads and the ways in 
which they communicate, it is time to see what we can do with them.

Here are some of the rules I use when building systems:

• Rule 1: Keep tasks that have a lot of interaction.
Minimize overheads by keeping closely inter-operating threads together in 
one process.

• Rule 2: Don't put all your threads in one basket.
On the other hand, try and keep components with limited interaction in 
separate processes, in the interests of resilience and modularity.

• Rule 3: Don't mix critical and non-critical threads in the same process.
This is an amplification of Rule 2: the critical part of the system, which might 
be the machine control program, should be kept as simple as possible and 
written in a more rigorous way than other parts. It must be able to continue 
even if other processes fail. If you have real-time threads, they, by definition, 
must be critical and should go into a process by themselves.
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• Rule 4: Threads shouldn't get too intimate.
One of the temptations when writing a multi-threaded program is  
to intermingle the code and variables between threads because it  
is all in one program and easy to do. Don't keep threads modular  
with well-defined interactions.

• Rule 5: Don't think that threads are for free.
It is very easy to create additional threads but there is a cost, not least in  
the additional synchronization necessary to coordinate their activities.

• Rule 6: Threads can work in parallel.
Threads can run simultaneously on a multi-core processor, giving higher 
throughput. If you have a large computing job, you can create one thread  
per core and make maximum use of the hardware. There are libraries to  
help you do this, such as OpenMP. You probably shouldn't be coding  
parallel programming algorithms from scratch.

The Android design is a good illustration. Each application is a separate Linux 
process which helps to modularize memory management but especially ensures  
that one app crashing does not affect the whole system. The process model is also 
used for access control: a process can only access the files and resources which its 
UID and GIDs allow it to. There are a group of threads in each process. There is one 
to manage and update the user interface, one for handling signals from the operating 
system, several for managing dynamic memory allocation and the freeing up of Java 
objects and a worker pool of at least two threads for receiving messages from other 
parts of the system using the Binder protocol.

To summarize, processes provide resilience because each process has a protected 
memory space and, when the process terminates, all resources including memory 
and file descriptors are freed up, reducing resource leaks. On the other hand, threads 
share resources and so can communicate easily through shared variables, and can 
cooperate by sharing access to files and other resources. Threads give parallelism 
through worker pools and other abstractions which is useful on multi-core processors.
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Scheduling
The second big topic I want to cover in this chapter is scheduling. The Linux 
scheduler has a queue of threads that are ready to run and its job is to schedule  
them on CPUs as they become available. Each thread has a scheduling policy which 
may be timeshared or real-time. The timeshared threads have a niceness value which 
increases or reduces their entitlement to CPU time. The real-time threads have a 
priority such that a higher priority thread will preempt a lower one. The scheduler 
works with threads, not processes. Each thread is scheduled regardless of which 
process it is running in.

The scheduler runs when:

• A thread blocks by calling sleep() or in a blocking I/O call
• A timeshare thread exhausts its time slice
• An interrupt causes a thread to be unblocked, for example, because of  

I/O completing

For background information on the Linux scheduler, I recommend reading the 
chapter on process scheduling in Linux Kernel Development, 3rd edition by Robert Love, 
Addison-Wesley Professional; (July 2, 2010) ISBN-10: 0672329468.

Fairness versus determinism
I have grouped the scheduling polices into categories of timeshare and real-time. 
Timeshare policies are based on the principal of fairness. They are designed to 
make sure that each thread gets a fair amount of processor time and that no thread 
can hog the system. If a thread runs for too long it is put to the back of the queue 
so that others can have a go. At the same time, a fairness policy needs to adjust to 
threads that are doing a lot of work and give them the resources to get the job done. 
Timeshare scheduling is good because of the way it automatically adjusts to a wide 
range of workloads.

On the other hand, if you have a real-time program, fairness is not helpful. Instead, 
you then want a policy that is deterministic, that will give you at least minimal 
guarantees that your real-time threads will be scheduled at the right time so that 
they don't miss their deadlines. This means that a real-time thread must preempt 
timeshare threads. Real-time threads also have a static priority that the scheduler can 
use to choose between them when there are several of them to run at once. The Linux 
real-time scheduler implements a fairly standard algorithm which runs the highest 
priority real-time thread. Most RTOS schedulers are also written in this way.

Both types of thread can coexist. Those requiring deterministic scheduling are 
scheduled first and the time remaining is divided between the timeshare threads.
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Timeshare policies
Timeshare policies are designed for fairness. From Linux 2.6.23 onwards, the 
scheduler used has been the Completely Fair Scheduler (CFS). It does not use 
timeslices in the normal sense of the word. Instead, it calculates a running tally  
of the length of time a thread would be entitled to run if it had its fair share of  
CPU time, and balances that with the actual amount of time it has run. If it exceeds 
its entitlement, and there are other timeshare threads waiting to run, the scheduler 
will suspend the thread and run a waiting thread instead.

The timeshare policies are:

• SCHED_NORMAL (also known as SCHED_OTHER): This is the default policy.  
The vast majority of Linux threads use this policy.

• SCHED_BATCH: This is similar to SCHED_NORMAL except threads are scheduled 
with a larger granularity; that is they run for longer but have to wait longer 
until scheduled again. The intention is to reduce the number of context 
switches for background processing (batch jobs) and so reduce the amount  
of CPU cache churn.

• SCHED_IDLE: These threads are run only when there are no threads of any 
other policy ready to run. It is the lowest possible priority.

There are two pairs of functions to get and set the policy and priority of a thread.  
The first pair takes a PID as a parameter and affects the main thread in a process:

struct sched_param {
  ...
  int sched_priority;
  ...
};
int sched_setscheduler(pid_t pid, int policy,  
const struct sched_param *param);
int sched_getscheduler(pid_t pid);

The second pair operates on pthread_t and so can change the parameters of the 
other threads in a process:

pthread_setschedparam(pthread_t thread, int policy,  
  const struct sched_param *param);
pthread_getschedparam(pthread_t thread, int *policy,  
  struct sched_param *param);



Chapter 10

[ 859 ]

Niceness
Some timeshare threads are more important than others. You can indicate this with 
the nice value which multiplies a thread's CPU entitlement by a scaling factor. The 
name comes from the function call, nice(2), which has been part of Unix since the 
early days. A thread becomes nice by reducing its load on the system, or moves in 
the opposite direction by increasing it. The range of values is from 19, which is really 
nice, to -20 which is really not nice. The default value is 0, which is averagely nice or 
so-so.

The nice value can be changed for SCHED_NORMAL and SCHED_BATCH threads.  
To reduce niceness, which increases the CPU load, you need the capability  
CAP_SYS_NICE, which is available to the root user.

Almost all the documentation for functions and commands that change the nice 
value (nice(2) and the nice and renice commands) talks in terms of processes. 
However, it really relates to threads. As mentioned in the preceding section, you can 
use a TID in place of a PID to change the nice value of an individual thread. One 
other discrepancy in the standard descriptions of nice: the nice value is referred 
to as the priority of a thread (or sometimes, mistakenly, a process). I believe this is 
misleading and confuses the concept with real-time priority which is a completely 
different thing.

Real-time policies
Real-time policies are intended for determinism. The real-time scheduler will always 
run the highest priority real-time thread that is ready to run. Real-time threads 
always preempt timeshare threads. In essence, by selecting a real-time policy over 
a timeshare policy, you are saying that you have inside knowledge of the expected 
scheduling of this thread and wish to override the scheduler's built-in assumptions.

There are two real-time policies:

• SCHED_FIFO: This is a run to completion algorithm, which means that, once 
the thread starts to run, it will continue until it is preempted by a higher 
priority real-time thread or blocks in a system call or terminates (completes).

• SCHED_RR: This is a round robin algorithm which will cycle between threads 
of the same priority if they exceed their time slice which, by default, is 100 
ms. Since Linux 3.9, it has been possible to control the timeslice value 
through /proc/sys/kernel/sched_rr_timeslice_ms. Apart from this,  
it behaves in the same way as SCHED_FIFO.

Each real-time thread has a priority in the range 1 to 99, with 99 being the highest.
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To give a thread a real-time policy, you need CAP_SYS_NICE which, by default,  
is given only to the root user.

One problem with real-time scheduling, both in Linux and elsewhere, is that of 
a thread that becomes compute bound, often because a bug has caused it to loop 
indefinitely, which prevents real-time threads of lower priority from running as  
well as all the timeshare threads. The system become erratic and may lock up 
completely. There are a couple of ways to guard against this possibility.

First, since Linux 2.6.25, the scheduler has, by default, reserved 5% of CPU time for 
non real-time threads, so that even a runaway real-time thread cannot completely 
halt the system. It is configured via two kernel controls:

• /proc/sys/kernel/sched_rt_period_us

• /proc/sys/kernel/sched_rt_runtime_us

They have default values of 1,000,000 (1 second) and 950,000 (950 ms) respectively, 
which means that out of every second, 50ms is reserved for non real-time processing. 
If you want real-time threads to be able to take 100% then set sched_rt_runtime_us 
to -1.

The second option is to use a watchdog, either hardware or software, to monitor the 
execution of key threads and to take action when they begin to miss deadlines.

Choosing a policy
In practice, timeshare policies satisfy the majority of computing workloads.  
Threads that are I/O bound spend a lot of time blocked and so always have  
some spare entitlement in hand. When they unblock they will be scheduled  
almost immediately. Meanwhile, CPU-bound threads will naturally take up  
any CPU cycles left over. Positive nice values can be applied to the less important 
threads and negative values to the important ones.

Of course, this is only average behavior, there are no guarantees that this will always 
be the case. If more deterministic behavior is needed, then real-time policies will be 
required. The things that mark out a thread as being real-time are:

• It has a deadline by which it must generate an output
• Missing the deadline would compromise the effectiveness of the system
• It is event-driven
• It is not compute bound

Examples of real-time tasks include the classic robot arm servo controller, multimedia 
processing, and communication processing.
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Choosing a real-time priority
Choosing real-time priorities that work for all expected workloads is a tricky 
business and a good reason for avoiding real-time policies in the first place.

The most widely used procedure for choosing priorities is known as Rate Monotonic 
Analysis (RMA), after the 1973 paper by Liu and Layland. It applies to real-time 
systems with periodic threads, which is a very important class. Each thread has a 
period, and a utilization, which is the proportion of the period it will be executing. 
The goal is to balance the load so that all threads can complete their execution phase 
before the next period. RMA states that this can be achieved if:

• The highest priorities are given to the threads with the shortest periods
• The total utilization is less than 69%

The total utilization is the sum of all of the individual utilizations. It also makes 
the assumption that the interaction between threads or the time spent blocked on 
mutexes and the like, is negligible.

Further reading
The following resources have further information about the topics introduced in  
this chapter:

• The Art of Unix Programming, by Eric Steven Raymond, Addison Wesley;  
(23 Sept. 2003) ISBN 978-0131429017

• Linux System Programming, 2nd edition, by Robert Love, O'Reilly Media;  
(8 Jun. 2013) ISBN-10: 1449339530

• Linux Kernel Development, 3rd edition by Robert Love, Addison-Wesley 
Professional; (July 2, 2010) ISBN-10: 0672329468

• The Linux Programming Interface, by Michael Kerrisk, No Starch Press;  
(October 2010) ISBN 978-1-59327-220-3

• UNIX Network Programming: v. 2: Interprocess Communications, 2nd Edition,  
by W. Richard Stevens, Prentice Hall; (25 Aug. 1998) ISBN-10: 0132974290

• Programming with POSIX Threads, by Butenhof, David R, Addison-Wesley, 
Professional

• Scheduling Algorithm for multiprogramming in a Hard-Real-Time Environment,  
by C. L. Liu and James W. Layland, Journal of ACM, 1973, vol 20, no 1, pp. 46-61
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Summary
The long Unix heritage that is built into Linux and the accompanying C libraries 
provides almost everything you need to write stable and resilient embedded 
applications. The issue is that, for every job, there are at least two ways to  
achieve the end you desire.

In this chapter, I have focused on two aspects of system design: the partitioning 
into separate processes, each with one or more threads to get the job done, and the 
scheduling of those threads. I hope that I have shed some light on this, and given 
you the basis for further study into all of them.

In the next chapter, I will examine another important aspect of system design, 
memory management.
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Managing Memory
This chapter covers issues relating to memory management, which is an important 
topic for any Linux system, but especially for embedded Linux where system memory 
is usually in limited supply. After a brief refresher on virtual memory, I will show 
you how to measure memory use, how to detect problems with memory allocation, 
including memory leaks, and what happens when you run out of memory. You will 
have to understand the tools that are available, from simple tools such as free and 
top, to complex tools such as mtrace and Valgrind.

Virtual memory basics
To recap, Linux configures the memory management unit of the CPU to present 
a virtual address space to a running program that begins at zero and ends at the 
highest address, 0xffffffff on a 32-bit processor. That address space is divided 
into pages of 4 KiB (there are rare examples of systems using other page sizes).

Linux divides this virtual address space into an area for applications, called user 
space, and an area for the kernel, called kernel space. The split between the two is 
set by a kernel configuration parameter named PAGE_OFFSET. In a typical 32-bit 
embedded system, PAGE_OFFSET is 0xc0000000, giving the lower three GiB to user 
space and the top one GiB to kernel space. The user address space is allocated per 
process, so that each process runs in a sandbox, separated from the others. The 
kernel address space is the same for all processes: there is only one kernel.

Pages in this virtual address space are mapped to physical addresses by the memory 
management unit (MMU), which uses page tables to perform the mapping.

Each page of virtual memory may be:

• unmapped, in which access will result in a SIGSEGV
• mapped to a page of physical memory that is private to the process
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• mapped to a page of physical memory that is shared with other processes
• mapped and shared with a copy on write flag set: a write is trapped in the 

kernel which makes a copy of the page and maps it to the process in place of 
the original page before allowing the write to take place

• mapped to a page of physical memory that is used by the kernel

The kernel may additionally map pages to reserved memory regions, for example,  
to access registers and buffer memory in device drivers.

An obvious question is, why do we do it this way instead of simply referencing 
physical memory directly, as typical RTOS would?

There are numerous advantages to virtual memory, some of which are described here:

• Invalid memory accesses are trapped and applications alerted by SIGSEGV
• Processes run in their own memory space, isolated from others
• Efficient use of memory through the sharing of common code and data, for 

example, in libraries
• The possibility of increasing the apparent amount of physical memory by 

adding swap files, although swapping on embedded targets is rare

These are powerful arguments, but we have to admit that there are some disadvantages 
as well. It is difficult to determine the actual memory budget of an application, which 
is one of the main concerns of this chapter. The default allocation strategy is to over-
commit, which leads to tricky out-of-memory situations, which I will also discuss 
later on. Finally, the delays introduced by the memory management code in handling 
exceptions – page faults – make the system less deterministic, which is important for 
real-time programs. I will cover this in Chapter 14, Real-time Programming.

Memory management is different for kernel space and user space. The following 
sections describe the essential differences and the things you need to know.

Kernel space memory layout
Kernel memory is managed in a fairly straightforward way. It is not demand-paged, 
meaning that, for every allocation using kmalloc() or similar function, there is real 
physical memory. Kernel memory is never discarded or paged out.
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Some architectures show a summary of the memory mapping at boot time in the kernel 
log messages. This trace is taken from a 32-bit ARM device (a BeagleBone Black):

Memory: 511MB = 511MB total
Memory: 505980k/505980k available, 18308k reserved, 0K highmem
Virtual kernel memory layout:
  vector  : 0xffff0000 - 0xffff1000   (   4 kB)
  fixmap  : 0xfff00000 - 0xfffe0000   ( 896 kB)
  vmalloc : 0xe0800000 - 0xff000000   ( 488 MB)
  lowmem  : 0xc0000000 - 0xe0000000   ( 512 MB)
  pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB)
  modules : 0xbf800000 - 0xbfe00000   (   6 MB)
    .text : 0xc0008000 - 0xc0763c90   (7536 kB)
    .init : 0xc0764000 - 0xc079f700   ( 238 kB)
    .data : 0xc07a0000 - 0xc0827240   ( 541 kB)
     .bss : 0xc0827240 - 0xc089e940   ( 478 kB)

The figure of 505980 KiB available is the amount of free memory the kernel sees 
when it begins execution but before it begins making dynamic allocations.

Consumers of kernel-space memory include the following:

• The kernel itself, in other words, the code and data loaded from the kernel 
image file at boot time. This is shown in the preceding code in the segments 
.text, .init, .data, and .bss. The .init segment is freed once the kernel 
has completed initialization.

• Memory allocated through the slab allocator, which is used for kernel data 
structures of various kinds. This includes allocations made using kmalloc(). 
They come from the region marked lowmem.

• Memory allocated via vmalloc(), usually for larger chunks of memory than 
is available through kmalloc(). These are in the vmalloc area.

• Mapping for device drivers to access registers and memory belonging to 
various bits of hardware, which you can see by reading /proc/iomem. These 
come from the vmalloc area but since they are mapped to physical memory 
that is outside of main system memory, they do not take any real memory.

• Kernel modules, which are loaded into the area marked modules.
• Other low level allocations that are not tracked anywhere else.
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How much memory does the kernel use?
Unfortunately, there isn't a complete answer to that question, but what follows is as 
close as we can get.

Firstly, you can see the memory taken up by the kernel code and data in the kernel 
log shown previously, or you can use the size command, as follows:

$ arm-poky-linux-gnueabi-size vmlinux

text      data     bss       dec       hex       filename

9013448   796868   8428144   18238460  1164bfc   vmlinux

Usually, the size is small when compared to the total amount of memory. If that is 
not the case, you need to look through the kernel configuration and remove those 
components that you don't need. There is an ongoing effort to allow small kernels  
to be built: search for Linux-tiny or Linux Kernel Tinification. There is a project page 
for the latter at https://tiny.wiki.kernel.org/.

You can get more information about memory usage by reading /proc/meminfo:

# cat /proc/meminfo
MemTotal:         509016 kB
MemFree:          410680 kB
Buffers:            1720 kB
Cached:            25132 kB
SwapCached:            0 kB
Active:            74880 kB
Inactive:           3224 kB
Active(anon):      51344 kB
Inactive(anon):     1372 kB
Active(file):      23536 kB
Inactive(file):     1852 kB
Unevictable:           0 kB
Mlocked:               0 kB
HighTotal:             0 kB
HighFree:              0 kB
LowTotal:         509016 kB
LowFree:          410680 kB
SwapTotal:             0 kB
SwapFree:              0 kB
Dirty:                16 kB
Writeback:             0 kB
AnonPages:         51248 kB
Mapped:            24376 kB
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Shmem:              1452 kB
Slab:              11292 kB
SReclaimable:       5164 kB
SUnreclaim:         6128 kB
KernelStack:        1832 kB
PageTables:         1540 kB
NFS_Unstable:          0 kB
Bounce:                0 kB
WritebackTmp:          0 kB
CommitLimit:      254508 kB
Committed_AS:     734936 kB
VmallocTotal:     499712 kB
VmallocUsed:       29576 kB
VmallocChunk:     389116 kB

There is a description of each of these fields in the man page for proc(5). The kernel 
memory usage is the sum of:

• Slab: The total memory allocated by the slab allocator
• KernelStack: The stack space used when executing kernel code
• PageTables: The memory used for storing page tables
• VmallocUsed: The memory allocated by vmalloc()

In the case of slab allocations, you can get more information by reading 
/proc/slabinfo. Similarly, there is a breakdown of allocations in /proc/
vmallocinfo for the vmalloc area. In both cases, you need detailed knowledge  
of the kernel and its subsystems to see exactly which subsystem is making the 
allocations and why, which is beyond the scope of this discussion.

With modules, you can use lsmod to find out the memory space taken up by the  
code and data:

# lsmod
Module            Size  Used by
g_multi          47670  2
libcomposite     14299  1 g_multi
mt7601Usta       601404  0

That leaves the low level allocations of which there is no record, and which prevent 
us from generating an accurate account of kernel space memory usage. This will 
appear as missing memory when we add up all the kernel and user space allocations 
that we know about.
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User space memory layout
Linux employs a lazy allocation strategy for user space, only mapping physical pages 
of memory when the program accesses it. For example, allocating a buffer of 1 MiB 
using malloc(3) returns a pointer to a block of memory addresses but no actual 
physical memory. A flag is set in the page table entries such that any read or write 
access is trapped by the kernel. This is known as a page fault. Only at this point does 
the kernel attempt to find a page of physical memory and add it to the page table 
mapping for the process. It is worthwhile demonstrating this with a simple program 
like this one:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#define BUFFER_SIZE (1024 * 1024)

void print_pgfaults(void)
{
  int ret;
  struct rusage usage;
  ret = getrusage(RUSAGE_SELF, &usage);
  if (ret == -1) {
    perror("getrusage");
  } else {
    printf ("Major page faults %ld\n", usage.ru_majflt);
    printf ("Minor page faults %ld\n", usage.ru_minflt);
  }
}

int main (int argc, char *argv[])
{
  unsigned char *p;
  printf("Initial state\n");
  print_pgfaults();
  p = malloc(BUFFER_SIZE);
  printf("After malloc\n");
  print_pgfaults();
  memset(p, 0x42, BUFFER_SIZE);
  printf("After memset\n");
  print_pgfaults();
  memset(p, 0x42, BUFFER_SIZE);
  printf("After 2nd memset\n");
  print_pgfaults();
  return 0;
}
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When you run it, you will see something like this:

Initial state
Major page faults 0
Minor page faults 172
After malloc
Major page faults 0
Minor page faults 186
After memset
Major page faults 0
Minor page faults 442
After 2nd memset
Major page faults 0
Minor page faults 442

There were 172 minor page faults encountered initializing the program's environment, 
and a further 14 when calling getrusage(2) (these numbers will vary depending on 
the architecture and the version of the C library you are using). The important part is 
the increase when filling the memory with data: 442 – 186 = 256. The buffer is 1 MiB, 
which is 256 pages. The second call to memset(3) makes no difference because all the 
pages are now mapped.

As you can see, a page fault is generated when the kernel traps an access to a page 
that has not been mapped. In fact, there are two kinds of page fault: minor and 
major. With a minor fault, the kernel just has to find a page of physical memory 
and map it into the process address space, as shown in the preceding code. A major 
page fault occurs when the virtual memory is mapped to a file, for example using 
mmap(2), which I will describe shortly. Reading from this memory means that the 
kernel not only has to find a page of memory and map it in, but it also has to be filled 
with data from the file. Consequently, major faults are much more expensive in time 
and system resources.

Process memory map
You can see the memory map for a process through the proc filesystem. As an 
example, here is the map for the init process, PID 1:

# cat /proc/1/maps
00008000-0000e000 r-xp 00000000 00:0b 23281745   /sbin/init
00016000-00017000 rwxp 00006000 00:0b 23281745   /sbin/init
00017000-00038000 rwxp 00000000 00:00 0          [heap]
b6ded000-b6f1d000 r-xp 00000000 00:0b 23281695   /lib/libc-2.19.so
b6f1d000-b6f24000 ---p 00130000 00:0b 23281695   /lib/libc-2.19.so
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b6f24000-b6f26000 r-xp 0012f000 00:0b 23281695   /lib/libc-2.19.so
b6f26000-b6f27000 rwxp 00131000 00:0b 23281695   /lib/libc-2.19.so
b6f27000-b6f2a000 rwxp 00000000 00:00 0
b6f2a000-b6f49000 r-xp 00000000 00:0b 23281359   /lib/ld-2.19.so
b6f4c000-b6f4e000 rwxp 00000000 00:00 0
b6f4f000-b6f50000 r-xp 00000000 00:00 0          [sigpage]
b6f50000-b6f51000 r-xp 0001e000 00:0b 23281359   /lib/ld-2.19.so
b6f51000-b6f52000 rwxp 0001f000 00:0b 23281359   /lib/ld-2.19.so
beea1000-beec2000 rw-p 00000000 00:00 0          [stack]
ffff0000-ffff1000 r-xp 00000000 00:00 0          [vectors]

The first three columns show the start and end virtual addresses and the permissions 
for each mapping. The permissions are shown here:

• r = read
• w = write
• x = execute
• s = shared
• p = private (copy on write)

If the mapping is associated with a file, the filename appears in the final column, 
and columns four, five, and six contain the offset from the start of the file, the block 
device number and the inode of the file. Most of the mappings are to the program 
itself and the libraries it is linked with. There are two areas where the program can 
allocate memory, marked [heap] and [stack]. Memory allocated using malloc(3) 
comes from the former (except for very large allocations, which we will come to 
later) ; allocations on the stack come from the latter. The maximum size of both  
areas is controlled by the process's ulimit:

• heap: ulimit -d, default unlimited
• stack: ulimit -s, default 8 MiB

Allocations that exceed the limit are rejected by SIGSEGV.

When running out of memory, the kernel may decide to discard pages that are 
mapped to a file and are read-only. If that page is accessed again, it will cause a 
major page fault and be read back in from the file.
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Swap
The idea of swapping is to reserve some storage where the kernel can place pages 
of memory that are not mapped to a file, so that it can free up the memory for other 
uses. It increases the effective size of physical memory by the size of the swap file. 
It is not a panacea: there is a cost to copying pages to and from a swap file which 
becomes apparent on a system that has too little real memory for the workload it  
is carrying and begins disk thrashing.

Swap is seldom used on embedded devices because it does not work well with flash 
storage where constant writing would wear it out quickly. However, you may want 
to consider swapping to compressed RAM (zram).

Swap to compressed memory (zram)
The zram driver creates RAM-based block devices named /dev/zram0, /dev/zram1, 
and so on. Pages written to these devices are compressed before being stored. With 
compression ratios in the range of 30% to 50%, you can expect an overall increase in 
free memory of about 10%, at the expense of more processing and a corresponding 
increase in power usage. It is used in some low memory Android devices.

To enable zram, configure the kernel with these options:

CONFIG_SWAP
CONFIG_CGROUP_MEM_RES_CTLR
CONFIG_CGROUP_MEM_RES_CTLR_SWAP
CONFIG_ZRAM

Then, mount zram at boot time by adding this to /etc/fstab:

/dev/zram0 none swap defaults zramsize=<size in  
  bytes>,swapprio=<swap partition priority>

You can turn swap on and off by using these commands:

# swapon /dev/zram0
# swapoff /dev/zram0
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Mapping memory with mmap
A process begins life with a certain amount of memory mapped to the text (the 
code) and data segments of the program file, together with the shared libraries that 
it is linked with. It can allocate memory on its heap at runtime using malloc(3) 
and on the stack through locally scoped variables and memory allocated through 
alloca(3). It may also load libraries dynamically at runtime using dlopen(3). 
All of these mappings are taken care of by the kernel. However, a process can also 
manipulate its memory map in an explicit way using mmap(2):

void *mmap(void *addr, size_t length, int prot, int flags,
  int fd, off_t offset);

It maps length bytes of memory from the file with the descriptor fd, starting at 
offset in the file, and returns a pointer to the mapping, assuming it is successful. 
Since the underlying hardware works in pages, the length is rounded up to the 
nearest whole number of pages. The protection parameter, prot, is a combination  
of read, write, and execute permissions and the flags parameter contains at least 
MAP_SHARED or MAP_PRIVATE. There are many other flags, which are described in  
the man page.

There are many things you can do with mmap. Here are a few of them.

Using mmap to allocate private memory
You can use mmap to allocate an area of private memory by setting the  
MAP_ANONYMOUS flag and the fd file descriptor to -1. This is similar to allocating 
memory from the heap using malloc(3) except that the memory is page-aligned 
and in multiples of pages. The memory is allocated in the same area as that used for 
libraries. In fact, that area is referred to by some as the mmap area for this reason.

Anonymous mappings are better for large allocations because they do not pin down 
the heap with chunks of memory, which would make fragmentation more likely. 
Interestingly, you will find that malloc(3) (in glibc at least) stops allocating memory 
from the heap for requests over 128 KiB and uses mmap in this way, so in most cases, 
just using malloc is the right thing to do. The system will choose the best way of 
satisfying the request.
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Using mmap to share memory
As we saw in Chapter 10, Learning About Processes and Threads, POSIX shared memory 
requires mmap to access the memory segment. In this case, you set the MAP_SHARED 
flag and use the file descriptor from shm_open():

int shm_fd;
char *shm_p;

shm_fd = shm_open("/myshm", O_CREAT | O_RDWR, 0666);
ftruncate(shm_fd, 65536);
shm_p = mmap(NULL, 65536, PROT_READ | PROT_WRITE,
  MAP_SHARED, shm_fd, 0);

Using mmap to access device memory
As I mentioned in Chapter 8, Introducing Device Drivers, it is possible for a driver to 
allow its device node to be mmaped and so share some of the device memory with 
an application. The exact implementation is dependent on the driver.

One example is the Linux frame buffer, /dev/fb0. The interface is defined in /usr/
include/linux/fb.h, including an ioctl function to get the size of the display and 
the bits per pixel. You can then use mmap to ask the video driver to share the frame 
buffer with the application and read and write pixels:

int f;
int fb_size;
unsigned char *fb_mem;

f = open("/dev/fb0", O_RDWR);
/* Use ioctl FBIOGET_VSCREENINFO to find the display dimensions
  and calculate fb_size */
fb_mem = mmap(0, fb_size, PROT_READ | PROT_WRITE, MAP_SHARED, f,  
  0);
/* read and write pixels through pointer fb_mem */

A second example is the streaming video interface, Video 4 Linux, version 2, or 
V4L2, which is defined in /usr/include/linux/videodev2.h. Each video device 
has a node named /dev/videoN, starting with /dev/video0. There is an ioctl 
function to ask the driver to allocate a number of video buffers which you can  
mmap into user space. Then, it is just a question of cycling the buffers and filling  
or emptying them with video data, depending on whether you are playing back  
or capturing a video stream.



Managing Memory

[ 874 ]

How much memory does my application 
use?
As with kernel space, the different ways of allocating, mapping and sharing user 
space memory make it quite difficult to answer this seemingly simple question.

To begin with, you can ask the kernel how much memory it thinks is available, which 
you can do by using the free command. Here is a typical example of the output:

             total     used     free   shared  buffers   cached
Mem:        509016   504312     4704        0    26456   363860
-/+ buffers/cache:   113996   395020
Swap:            0        0        0

At first sight, this looks like a system that is almost out of memory 
with only 4704 KiB free out of 509,016 KiB: less than 1%. However, 
note that 26,456 KiB is in buffers and a whopping 363,860 KiB is in 
cache. Linux believes that free memory is wasted memory and so the 
kernel uses free memory for buffers and caches, in the knowledge 
that they can be shrunk when the need arises. Removing buffers and 
cache from the measurement gives the true free memory, which is 
395,020 KiB; 77% of the total. When using free, the numbers on the 
second line marked -/+ buffers/cache are the important ones.

You can force the kernel to free up caches by writing a number between 1 and 3 to  
/proc/sys/vm/drop_caches:

# echo 3 > /proc/sys/vm/drop_caches

The number is actually a bit mask which determines which of the two broad types 
of cache you want to free: 1 for the page cache and 2 for the dentry and inode caches 
combined. The exact roles of those caches is not particularly important here, only that 
there is memory that the kernel is using but which can be reclaimed at short notice.
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Per-process memory usage
There are several metrics to measure the amount of memory a process is using.  
I will begin with the two that are easiest to obtain— the virtual set size (vss) and  
the resident memory size (rss), both of which are available in most implementations 
of the ps and top commands:

• Vss: called VSZ in the ps command and VIRT in top, is the total amount  
of memory mapped by a process. It is the sum of all the regions shown in  
/proc/<PID>/map. This number is of limited interest, since only part of  
the virtual memory is committed to physical memory at any one time.

• Rss: called RSS in ps and RES in top, is the sum of memory that is mapped 
to physical pages of memory. This gets closer to the actual memory budget of 
the process, but there is a problem, if you add up the Rss of all the processes, 
you will get an overestimate the memory in use because some pages will be 
shared.

Using top and ps
The versions of top and ps from BusyBox give very limited information. The examples 
that follow use the full version from the procps pacakge.

The ps command shows Vss (VSZ) and Rss (RSS) with the options, -Aly, and a 
custom format which includes vsz and rss, as shown here:

# ps -eo pid,tid,class,rtprio,stat,vsz,rss,comm

  PID   TID CLS RTPRIO STAT    VSZ   RSS COMMAND
    1     1 TS       - Ss     4496  2652 systemd
  ...
  205   205 TS       - Ss     4076  1296 systemd-journal
  228   228 TS       - Ss     2524  1396 udevd
  581   581 TS       - Ss     2880  1508 avahi-daemon
  584   584 TS       - Ss     2848  1512 dbus-daemon
  590   590 TS       - Ss     1332   680 acpid
  594   594 TS       - Ss     4600  1564 wpa_supplicant
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Likewise, top shows a summary of the free memory and memory usage per process:

top - 21:17:52 up 10:04,  1 user,  load average: 0.00, 0.01, 0.05
Tasks:  96 total,   1 running,  95 sleeping,   0 stopped,   0  
zombie
%Cpu(s):  1.7 us,  2.2 sy,  0.0 ni, 95.9 id,  0.0 wa,  0.0 hi,   
0.2 si,  0.0 st
KiB Mem:    509016 total,   278524 used,   230492 free,    25572  
buffers
KiB Swap:        0 total,        0 used,        0 free,   170920  
cached

PID USER      PR  NI  VIRT  RES  SHR S  %CPU %MEM    TIME+   
  COMMAND
1098 debian    20   0 29076  16m 8312 S   0.0  3.2   0:01.29  
  wicd-client
  595 root      20   0 64920 9.8m 4048 S   0.0  2.0   0:01.09 node
  866 root      20   0 28892 9152 3660 S   0.2  1.8   0:36.38 Xorg

These simple commands give you a feel of the memory usage and give the first 
indication that you have a memory leak when you see that the Rss of a process keeps 
on increasing. However, they are not very accurate in the absolute measurements of 
memory usage.

Using smem
In 2009, Matt Mackall began looking at the problem of accounting for shared pages 
in process memory measurement and added two new metrics called the unique set 
size or Uss, and the proportional set size or Pss:

• Uss: This is the amount of memory that is committed to physical memory 
and is unique to a process; it is not shared with any other. It is the amount  
of memory that would be freed if the process were to terminate.

• Pss: This splits the accounting of shared pages that are committed to physical 
memory between all the processes that have them mapped. For example, if 
an area of library code is 12 pages long and is shared by six processes, each 
will accumulate two pages in Pss. Thus, if you add the Pss numbers for all 
processes, you will get the actual amount of memory being used by those 
processes. In other words, Pss is the number we have been looking for.
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The information is available in /proc/<PID>/smaps, which contains additional 
information for each of the mappings shown in /proc/<PID>/maps. Here is one 
section from such a file which provides information about the mapping for the  
libc code segment:

b6e6d000-b6f45000 r-xp 00000000 b3:02 2444 /lib/libc-2.13.so
Size:                864 kB
Rss:                 264 kB
Pss:                   6 kB
Shared_Clean:        264 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:         0 kB
Referenced:          264 kB
Anonymous:             0 kB
AnonHugePages:         0 kB
Swap:                  0 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB
Locked:                0 kB
VmFlags: rd ex mr mw me

Note that the Rss is 264 KiB but because it is shared between 
many other processes, the Pss is only 6 KiB.

There is a tool named smem that collates the information from the smaps files and 
presents it in various ways, including as pie or bar charts. The project page for smem 
is https://www.selenic.com/smem. It is available as a package in most desktop 
distributions. However, since it is written in Python, installing it on an embedded 
target requires a Python environment, which may be too much trouble for just one 
tool. To help with this, there is a small program named smemcap that captures the state 
from /proc on the target and saves it to a TAR file which can be analyzed later on the 
host computer. It is part of BusyBox, but it can also be compiled from the smem source.

Running smem natively, as root, you will see these results:

# smem -t
 PID User  Command                   Swap      USS     PSS     RSS
 610 0     /sbin/agetty -s ttyO0 11     0      128     149     720
1236 0     /sbin/agetty -s ttyGS0 1     0      128     149     720
 609 0     /sbin/agetty tty1 38400      0      144     163     724
 578 0     /usr/sbin/acpid              0      140     173     680
 819 0     /usr/sbin/cron               0      188     201     704
 634 103   avahi-daemon: chroot hel     0      112     205     500
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 980 0     /usr/sbin/udhcpd -S /etc     0      196     205     568
  ...
 836 0     /usr/bin/X :0 -auth /var     0     7172    7746    9212
 583 0     /usr/bin/node autorun.js     0     8772    9043   10076
1089 1000  /usr/bin/python -O /usr/     0     9600   11264   16388
------------------------------------------------------------------
  53 6                                  0    65820   78251  146544

You can see from the last line of the output that, in this case, the total Pss is about a 
half of the Rss.

If you don't have or don't want to install Python on your target, you can capture the 
state using smemcap, again as root:

# smemcap > smem-bbb-cap.tar

Then, copy the TAR file to the host and read it using smem -S, though this time there 
is no need to run as root:

$ smem -t -S smem-bbb-cap.tar

The output is identical to that when running it natively.

Other tools to consider
Another way to display Pss is via ps_mem (https://github.com/pixelb/ps_mem), 
which prints much the same information but in a simpler format. It is also written  
in Python.

Android also has a tool named procrank, which can be cross compiled for embedded 
Linux with a few small changes. You can get the code from https://github.com/
csimmonds/procrank_linux.

Identifying memory leaks
A memory leak occurs when memory is allocated but not freed when it is no  
longer needed. Memory leakage is by no means unique to embedded systems,  
but it becomes an issue partly because targets don't have much memory in the  
first place, and partly because they often run for long periods of time without 
rebooting, allowing the leaks to become a large puddle.

You will realize that there is a leak when you run free or top and see that free 
memory is continually going down, even if you drop caches, as shown in the 
preceding section. You will be able to identify the culprit (or culprits) by looking  
at the Uss and Rss per process.
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There are several tools for identifying memory leaks in a program. I will look at two: 
mtrace and Valgrind.

mtrace
mtrace is a component of glibc that traces calls to malloc(3), free(3), and related 
functions, and identifies areas of memory not freed when the program exits. You 
need to call the mtrace() function from within the program to begin tracing and 
then at runtime, write a path name to the MALLOC_TRACE environment variable in 
which the trace information is written. If MALLOC_TRACE does not exist or of the file 
cannot be opened, mtrace hooks are not not installed. While the trace information  
is written in ASCII, it is usual to use the mtrace command to view it.

Here is an example:

#include <mcheck.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
  int j;
  mtrace();
  for (j = 0; j < 2; j++)
    malloc(100);  /* Never freed:a memory leak */
  calloc(16, 16);  /* Never freed:a memory leak */
  exit(EXIT_SUCCESS);
}

Here is what you might see when running the program and looking at the trace:

$ export MALLOC_TRACE=mtrace.log
$ ./mtrace-example
$ mtrace mtrace-example mtrace.log

Memory not freed:
-----------------
           Address     Size     Caller
0x0000000001479460     0x64  at /home/chris/mtrace-example.c:11
0x00000000014794d0     0x64  at /home/chris/mtrace-example.c:11
0x0000000001479540    0x100  at /home/chris/mtrace-example.c:15

Unfortunately, mtrace does not tell you about leaked memory while the program 
runs. It has to terminate first.
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Valgrind
Valgrind is a very powerful tool for discovering memory problems including leaks, 
and other things besides. One advantage is that you don't have to recompile the 
programs and libraries that you want to check, although it does work better if they 
have been compiled with the -g option so that they include debug symbol tables. It 
works by running the program in an emulated environment and trapping execution 
at various points. This leads to the big downside of Valgrind, which is that the 
program runs at a fraction of normal speed which makes it less useful for testing 
anything with real-time constraints.

Incidentally, the name is often mispronounced: it says in the 
Valgrind FAQ that the grind is pronounced with a short i -- as 
in grinned (rhymes with tinned) rather than grined (rhymes with 
find). The FAQ, documentation and downloads are available at 
http://valgrind.org.

Valgrind contains several diagnostic tools:

• memcheck: This is the default tool, and detects memory leaks and general 
misuse of memory

• cachegrind: This calculates the processor cache hit rate
• callgrind: This calculates the cost of each function call
• helgrind: This highlights misuse of the Pthread API, potential deadlocks,  

and race conditions
• DRD: This is another Pthread analysis tool
• massif: This profiles usage of the heap and stack

You can select the tool you want with the -tool option. Valgrind runs on the 
major embedded platforms: ARM (Cortex A), PPC, MIPS, and x86 in 32- and 64-bit 
variants. It is available as a package in both the Yocto Project and Buildroot.

To find our memory leak, we need to use the default memcheck tool, with the option 
--leakcheck=full to print out the lines where the leak was found:

$ valgrind --leak-check=full ./mtrace-example
==17235== Memcheck, a memory error detector
==17235== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward  
  et al.
==17235== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for  
  copyright info
==17235== Command: ./mtrace-example
==17235==
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==17235==
==17235== HEAP SUMMARY:
==17235==  in use at exit: 456 bytes in 3 blocks
==17235==  total heap usage: 3 allocs, 0 frees, 456 bytes  
  allocated
==17235==
==17235== 200 bytes in 2 blocks are definitely lost in loss record  
  1 of 2
==17235==    at 0x4C2AB80: malloc (in  
  /usr/lib/valgrind/vgpreload_memcheck-linux.so)
==17235==    by 0x4005FA: main (mtrace-example.c:12)
==17235==
==17235== 256 bytes in 1 blocks are definitely lost in loss record  
  2 of 2
==17235==    at 0x4C2CC70: calloc (in  
  /usr/lib/valgrind/vgpreload_memcheck-linux.so)
==17235==    by 0x400613: main (mtrace-example.c:14)
==17235==
==17235== LEAK SUMMARY:
==17235==    definitely lost: 456 bytes in 3 blocks
==17235==    indirectly lost: 0 bytes in 0 blocks
==17235==      possibly lost: 0 bytes in 0 blocks
==17235==    still reachable: 0 bytes in 0 blocks
==17235==         suppressed: 0 bytes in 0 blocks
==17235==
==17235== For counts of detected and suppressed errors, rerun  
  with: -v
==17235== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0  
  from 0)

Running out of memory
The standard memory allocation policy is to over-commit, meaning that the kernel 
will allow more memory to be allocated by applications than there is physical 
memory. Most of the time, this works fine because it is common for applications to 
request more memory than they really need. It also helps in the implementation of 
fork(2): it is safe to make a copy of a large program because the pages of memory 
are shared with the copy-on-write flag set. In the majority of cases, fork is followed 
by an exec function call, which unshares the memory and then loads a new program.

However, there is always the possibility that a particular workload will cause a 
group of processes to try to cash in on the allocations they have been promised 
simultaneously and so demand more than there really is. This is an out of memory 
situation, or OOM. At this point, there is no other alternative but to kill off processes 
until the problem goes away. This is the job of the out of memory killer.
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Before we get to that, there is a tuning parameter for kernel allocations in  
/proc/sys/vm/overcommit_memory, which you can set to:

• 0: heuristic over-commit (this is the default)
• 1: always over-commit, never check
• 2: always check, never over-commit

Option 1 is only really useful if you run programs that work with large sparse arrays 
and so allocate large areas of memory but write to a small proportion of them. Such 
programs are rare in the context of embedded systems.

Option 2, never over-commit, seems to be a good choice if you are worried about 
running out of memory, perhaps in a mission or safety-critical application. It will 
fail allocations that are greater than the commit limit, which is the size of swap space 
plus total memory multiplied by the over-commit ratio. The over-commit ratio is 
controlled by /proc/sys/vm/overcommit_ratio and has a default value of 50%.

As an example, suppose you have a device with 512 MB of system RAM and you set 
a really conservative ratio of 25%:

# echo 25 > /proc/sys/vm/overcommit_ratio
# grep -e MemTotal -e CommitLimit /proc/meminfo
MemTotal:         509016 kB
CommitLimit:      127252 kB

There is no swap so the commit limit is 25% of MemTotal, as expected.

There is another important variable in /proc/meminfo: Committed_AS. This is  
the total amount of memory that is needed to fulfill all the allocations made so far.  
I found the following on one system:

# grep -e MemTotal -e Committed_AS /proc/meminfo
MemTotal:         509016 kB
Committed_AS:     741364 kB

In other words, the kernel has already promised more memory than the available 
memory. Consequently, setting overcommit_memory to 2 means that all allocations 
fail, regardless of overcommit_ratio. To get to a working system, I would have to 
either install double the amount of RAM or severely reduce the number of running 
processes, of which there are about 40.
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In all cases, the final defense is the OOM killer. It uses a heuristic method to calculate 
a badness score between 0 and 1,000 for each process and then terminates those with 
the highest score until there is enough free memory. You should see something like 
this in the kernel log:

[44510.490320] eatmem invoked oom-killer: gfp_mask=0x200da,  
order=0, oom_score_adj=0
...

You can force an OOM event using echo f > /proc/sysrq-trigger.

You can influence the badness score for a process by writing an adjustment value to 
/proc/<PID>/oom_score_adj. A value of -1000 means that the badness score can 
never be greater than zero and so it will never be killed; a value of +1000 means that 
it will always be greater than 1000 and so will always be killed.

Further reading
The following resources have further information about the topics introduced in  
this chapter:

• Linux Kernel Development, 3rd Edition, by Robert Love, Addison Wesley,   
O'Reilly Media; (Jun. 2010) ISBN-10: 0672329468

• Linux System Programming, 2nd Edition, by Robert Love, O'Reilly Media;  
(8 Jun. 2013) ISBN-10: 1449339530

• Understanding the Linux VM Manager by Mel Gorman: https://www.kernel.
org/doc/gorman/pdf/understand.pdf

• Valgrind 3.3 - Advanced Debugging and Profiling for Gnu/Linux Applications by 
J Seward, N. Nethercote, and J. Weidendorfer, Network Theory Ltd; (1 Mar. 2008) 
ISBN 978-0954612054

Summary
Accounting for every byte of memory used in a virtual memory system is just not 
possible. However, you can find a fairly accurate figure for the total amount of free 
memory, excluding that taken by buffers and cache, by using the free command. 
By monitoring it over a period of time and with different workloads, you should 
become confident that it will remain within a given limit.

When you want to tune memory usage or identify sources of unexpected allocations, 
there are resources that  give more detailed information. For kernel space, the most 
useful information is in /proc: meminfo, slabinfo, and vmallocinfo.
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When it comes to getting accurate measurements for user space, the best metric is 
Pss, as shown by smem and other tools. For memory debugging, you can get help 
from simple tracers such as mtrace, or you have the heavyweight option of the 
Valgrind memcheck tool.

If you have concerns about the consequence of an out of memory situation, you  
can fine-tune the allocation mechanism via /proc/sys/vm/overcommit_memory  
and you can control the likelihood of particular processes being killed though the 
oom_score_adj parameter.

The next chapter is all about debugging user space and kernel code using the GNU 
debugger, and the insights you can gain from watching code as it runs, including the 
memory management functions I have described here.
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Debugging with GDB
Bugs happen. Identifying and fixing them is part of the development process.  
There are many different techniques for finding and characterizing program defects, 
including static and dynamic analysis, code review, tracing, profiling, and interactive 
debugging. I will look at tracers and profilers in the next chapter, but here I want 
to concentrate on the traditional approach of watching code execution through a 
debugger, in our case, the GNU debugger, GDB. GDB is a powerful and flexible 
tool. You can use it to debug applications, examine the postmortem files (core files) 
that are created after a program crash, and even step through kernel code.

In this chapter, I will show you how to use GDB to debug applications, how to look 
at core files and how to debug kernel code, in all cases, emphasizing the aspects that 
are relevant for embedded Linux.

The GNU debugger
GDB is a source-level debugger for the compiled languages, primarily C and C++, 
although there is also support for a variety of other languages such as Go and 
Objective-C. You should read the notes for the version of GDB you are using to 
find out the current status of support for the various languages. The project website 
is http://www.gnu.org/software/gdb and contains a lot of useful information, 
including the GDB manual.

Out of the box, GDB has a command-line user interface which some people  
find off-putting although, in reality, it is easy to use with a little practice.  
If command-line interfaces are not to your liking, there are a lot of front-end  
user interfaces to GDB and I will describe three of them later.
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Preparing to debug
You need to compile the code you want to debug with debug symbols. GCC offers 
two options for this: -g and -ggdb. The latter adds debug information that is specific 
to GDB, whereas the former generates information in an appropriate format for 
whichever target operating system you are using, making it the more portable option. 
In our particular case, the target operating system is always Linux and it makes little 
difference whether you use -g or -ggdb. Of more interest is the fact that both options 
allow you to specify the level of debug information, from 0 to 3:

• 0: This produces no debug information at all and is equivalent to omitting  
the -g or -ggdb switch

• 1: This produces little information but which includes function names and 
external variables which is enough to generate a back trace

• 2: This is the default and includes information about local variables and  
line numbers so that you can do source level debugging and a single step 
through the code

• 3: This includes extra information which, among other things, means that  
GDB handles macro expansions correctly

In most cases, -g suffices but reserve -g3 or -ggdb3 if you are having problems 
stepping through code, especially if it contains macros.

The next issue to consider is the level of code optimization. Compiler optimization 
tends to destroy the relationship between lines of source code and machine code, 
which makes stepping through the source unpredictable. If you experience problems 
like this you will most likely need to compile without optimization, leaving out the 
-O compile switch, or at least reduce it to level 1, using the compile switch -O1.

A related issue is that of stack frame pointers, which are needed by GDB to generate 
a back trace of function calls up to the current one. On some architectures, GCC will 
not generate stack frame pointers with higher levels of optimization (-O2). If you find 
yourself in the situation that you really have to compile with -O2 but still want back 
traces, you can override the default behavior with -fno-omit-frame-pointer. Also 
look out for code that has been hand optimized to leave out frame pointers through 
the addition of -fomit-frame-pointer: you may want to temporarily remove them.
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Debugging applications using GDB
You can use GDB to debug applications in one of two ways. If you are developing code 
to run on desktops and servers, or indeed any environment where you compile and 
run the code on the same machine, it is natural to run GDB natively. However, most 
embedded development is done using a cross toolchain and hence you want to debug 
code running on the device, but control it from the cross-development environment 
where you have the source code and the tools. I will focus on the latter case since it is 
not so well documented and yet it is the most likely scenario for embedded developers. 
I am not going to describe the basics of using GDB here since there are many good 
references on that topic already, including the GDB manual and the suggested further 
reading at the end of the chapter.

I will begin with some details on working with gdbserver and then show you how to 
configure the Yocto Project and Buildroot for remote debug.

Remote debugging using gdbserver
The key component for remote debugging is the debug agent, gdbserver, which runs 
on the target and controls execution of the program being debugged. Gdbserver 
connects to a copy of GDB running on the host machine via a network connection  
or an RS-232 serial interface.

Debugging through gdbserver is almost, but not quite, the same as debugging 
natively. The differences are mostly centered around the fact that there are two 
computers involved and they have to be in the right state for debugging to take 
place. Here are some things to look out for:

• At the start of a debug session you need to load the program you want to 
debug on the target using gdbserver and then separately load GDB from 
your cross toolchain on the host.

• GDB and gdbserver need to connect to each other before a debug session  
can begin.

• GDB, running on the host, needs to be told where to look for debug symbols 
and source code, especially for shared libraries.

• The GDB run command does not work as expected.
• gdbserver will terminate when the debug session ends and you will need to 

restart it if you want another debug session.
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• You need debug symbols and source code for the binaries you want to  
debug on the host, but not necessarily on the target. Often there is not 
enough storage space for them on the target and they will need to be  
stripped before deploying to the target.

• The GDB/gdbserver combination does not have all the features of GDB 
running natively: for example, gdbserver cannot follow the child after 
fork() whereas native GDB can.

• Odd things can happen if GDB and gdbserver are different versions or are 
the same version but configured differently. Ideally they should be built  
from the same source using your favorite build tool.

Debug symbols increase the size of executables dramatically, sometimes by a factor 
of 10. As mentioned in Chapter 5, Building a Root Filesystem, it can be useful to remove 
debug symbols without recompiling everything. The tool for the job is strip from 
your cross toolchain. You can control the aggressiveness of the strip with these 
switches:

• --strip-all: (default) removes all symbols
• --strip-unneeded: removes symbols not needed for relocation processing
• --strip-debug: removes only debug symbols

For applications and shared libraries, --strip-all (the default) 
is fine, but when it comes to kernel modules you will find that it 
will stop the module loading. Use --strip-unneeded instead. 
I am still working on a use case for –strip-debug.

With that in mind, let's look at the specifics involved in debugging with the Yocto 
Project and Buildroot.

Setting up the Yocto Project
The Yocto Project builds a cross GDB for the host as part of the SDK, but you  
will have to make changes to your target configuration to include gdbserver in  
the target image. You can add the package explicitly, for example by adding this  
to conf/local.conf, noting once again that there must be a leading space at the 
start of this string:

IMAGE_INSTALL_append = " gdbserver"

Or, you can add tools-debug to EXTRA_IMAGE_FEATURES, which will add both 
gdbserver and strace to the target image (I will talk about strace in the next chapter):

EXTRA_IMAGE_FEATURES = "debug-tweaks tools-debug"
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Setting up Buildroot
With Buildroot, you need to enable options both to build the cross GDB for the host 
(assuming that you are using the Buildroot internal toolchain) and to build gdbserver 
for the target. Specifically you need to enable:

• BR2_PACKAGE_HOST_GDB, in the menu Toolchain | Build cross gdb for  
the host

• BR2_PACKAGE_GDB, in the menu Target packages | Debugging, profiling 
and benchmark | gdb

• BR2_PACKAGE_GDB_SERVER in the menu Target packages | Debugging, 
profiling and benchmark | gdbserver

Starting to debug
Now that you have gdbserver installed on the target and a cross GDB on the host 
you can start a debug session.

Connecting GDB and gdbserver
The connection between GDB and gdbserver can be through a network or a serial 
interface. In the case of a network connection, you launch gdbserver with the TCP 
port number to listen on and, optionally, an IP address to accept connections from.  
In most cases you don't care which IP address is going to connect, so you can just 
give the port number. In this example gdbserver waits for a connection on port  
10000 from any host:

# gdbserver :10000 ./hello-world

Process hello-world created; pid = 103

Listening on port 10000

Next, start the copy of GDB from your toolchain, giving the same program as an 
argument so that GDB can load the symbol table:

$ arm-poky-linux-gnueabi-gdb hello-world

In GDB, you use the command target remote to make the connection, giving the  
IP address or host name of the target and the port it is waiting on:

(gdb) target remote 192.168.1.101:10000

When gdbserver sees the connection from the host it prints the following:

Remote debugging from host 192.168.1.1
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The procedure is similar for a serial connection. On the target, you tell gdbserver 
which serial port to use:

# gdbserver /dev/ttyO0 ./hello-world

You may need to configure the port baud rate beforehand using stty or a similar 
program. A simple example would be as follows:

# stty -F /dev/ttyO1 115200

There are many other options to stty, please read the man page for more details.  
It is worthwhile noting that the port must not be used for anything else, for example, 
you can't use a port that is being used as the system console. On the host, you make 
the connection to gdbserver using target remote plus the serial device at the host 
end of the cable. In most cases you will want to set the baud rate of the host serial 
port using the GDB command set remotebaud:

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyUSB0

Setting the sysroot
GDB needs to know where to find debug symbols and source code for shared 
libraries. When debugging natively the paths are well known and built in to GDB, 
but when using a cross toolchain, GDB has no way to guess where the root of the 
target filesystem is. You do so by setting the sysroot. The Yocto Project and Buildroot 
have different ways of handling library symbols so the location of the sysroot is quite 
different.

The Yocto Project includes debug information in the target filesystem image,  
so you need to unpack the target image tar file that is generated in build/tmp/
deploy/images, for which you would need to do something like this:

$ mkdir ~/rootfs

$ cd ~/rootfs

$ sudo tar xf ~/poky/build/tmp/deploy/images/beaglebone/core-image-
minimal- 
beaglebone.tar.bz2Then you can point sysroot to the root of the unpacked 
files:

(gdb) set sysroot /home/chris/MELP/rootfs

Buildroot compiles libraries with minimal or full debug symbols, depending on  
BR2_ENABLE_DEBUG, puts them into the staging directory, then strips them as they 
are copied into target image. So, for Buildroot, the sysroot is always the staging  
area regardless of where the root filesystem is extracted.
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GDB command files
There are some things that you need to do each time you run GDB, for example, setting 
the sysroot. It is convenient to put such commands into a command file and run them 
each time GDB is started. GDB reads commands from $HOME/.gdbinit, then from 
.gdbinit in the current directory and then from files specified on the command line 
with the -x parameter. However, recent versions of GDB will refuse to load .gdbinit 
from the current directory for security reasons. You can override that behavior for a 
single directory by adding a line like this to your $HOME/.gdbinit:

add-auto-load-safe-path /home/chris/myprog/.gdbinit

You can also disable the check globally by adding:

set auto-load safe-path /

My personal preference is use the -x parameter to point to the command file, which 
exposes the location of the file so I don't forget about it.

To help you set up GDB, Buildroot creates a GDB command file containing the 
correct sysroot command in output/staging/usr/share/buildroot/gdbinit.  
It will contain a command similar to this one:

set sysroot /home/chris/buildroot/output/host/usr/arm-buildroot-linux- 
gnueabi/sysroot

Overview of GDB commands
GDB has a great many commands, which are described in the online manual and in the 
resources mentioned in the Further Reading section. To help you get going as quickly as 
possible, here is a list of the most commonly used commands. In most cases there is a 
short-hand for the command, which is listed underneath the full command.

Breakpoints
The following table shows the commands for breakpoints:

Commands Use
break <location>

b <location>

Set a breakpoint on a function name, line number or line. 
Examples are: "main", "5", and "sortbug.c:42"

info break

i b

List breakpoints

delete break <N>

d b <N>

Delete breakpoint N
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Running and stepping
The following table shows the commands for running and stepping:

Commands Use
run

r

Load a fresh copy of the program into memory and start it 
running. This does not work for remote debug using gdbserver

continue

c
Continue execution from a breakpoint

Ctrl-C Stop the program being debugged
step

s

Step one line of code, stepping into any function that is called

next

n

Step one line of code, stepping over a function call

finish Run until the current function returns

Information commands
The following table shows the commands for getting information:

Commands Use

backtrace

bt

List the call stack

info threads Display information about threads
info sharedlibrary Display information about shared libraries
print <variable>

p <variable>

Print the value of a variable, e.g. print foo

list List lines of code around the current program 
counter

Running to a breakpoint
Gdbserver loads the program into memory and sets a breakpoint at the first 
instruction, then waits for a connection from GDB. When the connection is made 
you enter into a debug session. However, you will find that if you try to single step 
immediately you will get this message:

Cannot find bounds of current function
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This is because the program is halted in code written in assembly that creates the 
run time environment for C and C++ programs. The first line of C or C++ code is 
the main() function. Supposing that you want to stop at main(), you would set 
a breakpoint there and then use the continue command (abbreviation c) to tell 
gdbserver to continue from the breakpoint at the start of the program and stop  
at main:

(gdb) break main

Breakpoint 1, main (argc=1, argv=0xbefffe24) at helloworld.c:8

8 printf("Hello, world!\n");

If at this point you see the following:

warning: Could not load shared library symbols for 2 libraries,  
e.g. /lib/libc.so.6.

That means that you have forgotten the set sysroot!

This is all very different to starting a program natively, where you just type run.  
In fact, if you try typing run in a remote debug session, you will either see a message 
saying that the remote target does not support run, or in older versions of GDB it 
will just hang without any explanation.

Debugging shared libraries
To debug the libraries that are built by the build tool you will have to make a few 
changes to the build configuration. For libraries built outside the build environment 
you will have to do some extra work.

The Yocto Project
The Yocto Project builds debug variants of binary packages and puts them into 
build/tmp/deploy/<package manager>/<target architecture>. Here is an 
example of the debug package, for the C library in this case:

build/tmp/deploy/rpm/armv5e/libc6-dbg-2.21-r0.armv5e.rpm

You can add these debug packages selectively to your target image by adding 
<package name-dbg> to your target recipe. For glibc, the package is named  
glibc-dbg. Alternatively, you can simply tell the Yocto Project to install all  
debug packages by adding dbg-pkgs to EXTRA_IMAGE_FEATURES. Be warned  
that this will increase the size of the target image dramatically, perhaps by  
several hundred megabytes.
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The Yocto Project places the debug symbols in a hidden directory named .debug in 
both the lib and usr/lib, directories. GDB knows to look for symbol information in 
these locations within the sysroot.

The debug packages also contain a copy of the source code which is installed into 
directory usr/src/debug/<package name> in the target image, which is one of  
the reasons for the increase in size. You can prevent it from happening by adding  
to your recipes:

PACKAGE_DEBUG_SPLIT_STYLE = "debug-without-src"

Remember, though, that when you are debugging remotely with gdbserver, you 
only need the debug symbols and source code on the host, not on the target. There 
is nothing to stop you from deleting the lib/.debug, usr/lib/.debug and usr/src 
directories from the copy of the image that is installed on the target.

Buildroot
Buildroot is characteristically straightforward. You just need to rebuild with  
line-level debug symbols, for which you need to enable the following:

• BR2_ENABLE_DEBUG in the menu Build options | build packages with 
debugging symbols

This will create the libraries with debug symbols in output/host/usr/<arch>/
sysroot, but the copies in the target image are still stripped. If you need debug 
symbols on the target, perhaps to run GDB natively, you can disable stripping by 
setting Build options | strip command for binaries on target to none.

Other libraries
In addition to building with debug symbols you will have to tell GDB where to find 
the source code. GDB has a search path for source files, which you can see using the 
command show directories:

(gdb) show directories

Source directories searched: $cdir:$cwd

These are the default search paths: $cdir is the compile directory, which is the 
directory where the source was compiled; $cwd is the current working directory  
of GDB.
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Normally these are sufficient, but if the source code has been moved you will have  
to use the directory command as shown here:

(gdb) dir /home/chris/MELP/src/lib_mylib

Source directories searched:  
/home/chris/MELP/src/lib_mylib:$cdir:$cwd

Just-in-time debugging
Sometimes a program will start to misbehave after it has been running for a while 
and you would like to know what it is doing. The GDB attach feature does exactly 
that. I call it just-in-time debugging. It is available with both native and remote 
debug sessions.

In the case of remote debugging, you need to find the PID of the process to  
be debugged and pass it to gdbserver with the --attach option. For example,  
if the PID is 109 you would type:

# gdbserver --attach :10000 109

Attached; pid = 109

Listening on port 10000

That forces the process to stop as if it were at a breakpoint, allowing you to start  
your cross GDB in the normal way and connect to gdbserver.

When you are done you can detach, allowing the program to continue running 
without the debugger:

(gdb) detach

Detaching from program: /home/chris/MELP/helloworld/helloworld,  
process 109

Ending remote debugging.

Debugging forks and threads
What happens when the program you are debugging forks? Does the debug session 
follow the parent or the child? The behavior is controlled by follow-fork-mode 
which may be parent or child, with parent being the default. Unfortunately, 
current versions of gdbserver do not support this option, so it only works for native 
debugging. If you really need to debug the child process while using gdbserver, a 
workaround is to modify the code so that the child loops on a variable immediately 
after the fork, giving you the opportunity to attach a new gdbserver session to it and 
then to set the variable so that it drops out of the loop.
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When a thread in a multithreaded process hits a breakpoint, the default behavior 
is for all threads to halt. In most cases this is the best thing to do as it allows you to 
look at static variables without them being changed by the other threads. When you 
recommence execution of the thread, all the stopped threads start up, even if you are 
single stepping, and it is especially this last case that can cause problems. There is a 
way to modify the way GDB handles stopped threads, through a parameter called 
scheduler-locking. Normally it is off, but if you set it to on, only the thread that 
was stopped at the breakpoint is resumed and the others remain stopped, giving you 
a chance to see what the thread alone does without interference. This continues to be 
the case until you turn scheduler-locking off. Gdbserver supports this feature.

Core files
Core files capture the state of a failing program at the point that it terminates.  
You don't even have to be in the room with a debugger when the bug manifests 
itself. So when you see Segmentation fault (core dumped), don't shrug; 
investigate the core file and extract the goldmine of information in there.

The first observation is that core files are not created by default, but only when  
the core file resource limit for the process is non-zero. You can change it for the 
current shell using ulimit -c. To remove all limits on the size of core files,  
type the following:

$ ulimit -c unlimited

By default, the core file is named core and is placed in the current working directory 
of the process, which is the one pointed to by /proc/<PID>/cwd. There are a number 
of problems with this scheme. Firstly, when looking at a device with several files 
named core it is not obvious which program generated each one. Secondly, the 
current working directory of the process may well be in a read-only filesystem, or 
there may not be enough space to store the core file, or the process may not have 
permissions to write to the current working directory.

There are two files that control the naming and placement of core files. The first is  
/proc/sys/kernel/core_uses_pid. Writing a 1 to it causes the PID number of the 
dying process to be appended to the filename, which is somewhat useful as long as 
you can associate the PID number with a program name from log files.

Much more useful is /proc/sys/kernel/core_pattern, which gives you a lot more 
control over core files. The default pattern is core but you can change it to a pattern 
composed of these meta characters:

• %p: the PID
• %u: the real UID of the dumped process
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• %g: the real GID of the dumped process
• %s: number of the signal causing the dump
• %t: the time of dump, expressed as seconds since the Epoch, 1970-01-01 

00:00:00 +0000 (UTC)
• %h: the hostname
• %e: the executable filename
• %E: the pathname of the executable, with slashes (/) replaced by exclamation 

marks (!)
• %c: the core file size soft resource limit of the dumped process

You can also use a pattern that begins with an absolute directory name so that all 
core files are gathered together in one place. As an example, the following pattern 
puts all core files into the /corefiles directory and names them with the program 
name and the time of the crash:

# echo /corefiles/core.%e.%t > /proc/sys/kernel/core_pattern

Following a core dump, you would find something like this:

$ ls /corefiles/

core.sort-debug.1431425613

For more information, refer to the man page core(5).

For more sophisticated processing of core files you can pipe them to a program that 
does some post processing. The core pattern begins with a pipe symbol | followed 
by the program name and parameters. My Ubuntu 14.04, for example, has this core 
pattern:

|/usr/share/apport/apport %p %s %c %P

Apport is the crash reporting tool used by Canonical. A crash reporting tool run 
in this way is run while the process is still in memory, and the kernel passes the 
core image data to it on standard input. Thus, this program can process the image, 
possibly stripping parts of it to reduce the size in the filesystem, or just scanning it at 
the time of the core dump for specific information. The program can look at various 
pieces of system data, for example, reading the /proc filesystem entries for the 
program, and can use ptrace system calls to operate on the program and read data 
from it. However, once the core image data is read from standard in, the kernel does 
various cleanups that make information about the process no longer available.
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Using GDB to look at core files
Here is a sample GDB session looking at a core file:

$ arm-poky-linux-gnueabi-gdb sort-debug  
/home/chris/MELP/rootdirs/rootfs/corefiles/core.sort-debug.1431425613

[...]

Core was generated by `./sort-debug'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0  0x000085c8 in addtree (p=0x0, w=0xbeac4c60 "the") at sort- 
debug.c:41

41     p->word = strdup (w);

That shows that the program stopped at line 43. The list command shows the code 
in the immediate vicinity:

(gdb) list

37    static struct tnode *addtree (struct tnode *p, char *w)

38    {

39        int cond;

40

41        p->word = strdup (w);

42        p->count = 1;

43        p->left = NULL;

44        p->right = NULL;

45

The backtrace command (shortened to bt) shows how we got to this point:

(gdb) bt

#0  0x000085c8 in addtree (p=0x0, w=0xbeac4c60 "the") at sort- 
debug.c:41

#1  0x00008798 in main (argc=1, argv=0xbeac4e24) at sort-debug.c:89

An obvious mistake: addtree() was called with a null pointer.

GDB user interfaces
GDB is controlled at a low level through the GDB machine interface, GDB/MI, 
which is used to wrap GDB in a user interface or as part of a larger program and 
considerably extends the range of options available to you.

I have only mentioned those which have features that are useful in embedded 
development.
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Terminal user interface
Terminal user interface (TUI), is an optional part of the standard GDB package.  
The main feature is a code window which shows the line of code about to be 
executed, together with any breakpoints. It is a definite improvement on the  
list command in command-line mode GDB.

The attraction of TUI is that it just works and doesn't need any extra set-up and, since 
it is in text mode, it is possible to use over an ssh terminal session when running gdb 
natively on a target. Most cross toolchains configure GDB with TUI. Simply add -tui 
to the command line and you will see the following:
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Data display debugger
Data display debugger (DDD), is a simple standalone program that gives you a 
graphical user interface to GDB with minimal fuss and bother and, although the  
UI controls look dated, it does everything that is necessary.

The --debugger option tells DDD to use GDB from your toolchain and you can  
use the -x argument for GDB command files:

$ ddd --debugger arm-poky-linux-gnueabi-gdb -x gdbinit sort-debug

The following screenshot shows off one of the nicest features: the data window which 
contains items in a grid that you can rearrange as you wish. If you double-click on a 
pointer, it is expanded into a new data item and the link is shown with an arrow:
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Eclipse
Eclipse, with the C development toolkit (CDT) plug-in, supports debugging with 
GDB, including remote debugging. If you use Eclipse for all your code development, 
this is the obvious tool to use but, if you are not a regular Eclipse user it is probably not 
worth the effort of setting it up just for this task. It would take me a whole chapter to 
explain adequately how to configure CDT to work with a cross toolchain and connect 
to a remote device, so I will refer you to the references at the end of the chapter for 
more information. The screenshot that follows shows the debug perspective of CDT. In 
the the top right window you see the stack frames for each of the threads in the process, 
and at the top right is the watch window showing variables. In the middle is the code 
window, showing the line of code where the debugger has stopped the program.

Debugging kernel code
Debugging application code helps you gain insight into the way code works and 
what is happening when it misbehaves and you can do the same with the kernel, 
with some limitations.

You can use kgdb for source level debugging, in a manner similar to remote 
debugging with gdbserver. There is also a self-hosted kernel debugger, kdb, that  
is handy for lighter weight tasks such as seeing if an instruction is executed and 
getting the backtrace to find out how it got there. Finally, there are kernel oops 
messages and panics, which tell you a lot about the cause of a kernel exception.
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Debugging kernel code with kgdb
When looking at kernel code using a source debugger, you must remember that  
the kernel is a complex system, with real-time behaviors. Don't expect debugging  
to be as easy as it is for applications. Stepping through code that changes the 
memory mapping or switches context is likely to produce odd results.

kgdb is the name given to the kernel GDB stubs that have been part of mainline 
Linux for many years now. There is a user manual in the kernel DocBook and you 
can find an online version at https://www.kernel.org/doc/htmldocs/kgdb/
index.html.

The widely supported way to connect to kgdb is over the serial interface, which 
is usually shared with the serial console, and so this implementation is called 
kgdboc, meaning kgdb over console. To work, it requires a platform tty driver that 
supports I/O polling instead of interrupts, since kgdb has to disable interrupts when 
communicating with GDB. A few platforms support kgdb over USB and there have 
been versions that work over Ethernet but, unfortunately, none of those have found 
their way into mainline Linux.

The same caveats about optimization and stack frames apply to the kernel, with the 
limitation that the kernel is written to assume an optimization level of at least -O1. 
You can override the kernel compile flags by setting KCGLAGS before running make.

These, then, are the kernel configuration options you will need for kernel debugging:

• CONFIG_DEBUG_INFO is in the Kernel hacking | Compile-time checks and 
compiler options | Compile the kernel with debug info menu

• CONFIG_FRAME_POINTER may be an option for your architecture, and is in the 
Kernel hacking | Compile-time checks and compiler options | Compile 
the kernel with frame pointers menu

• CONFIG_KGDB is in the Kernel hacking | KGDB: kernel debugger menu
• CONFIG_KGDB_SERIAL_CONSOLE is in the Kernel hacking | KGDB: kernel 

debugger | KGDB: use kgdb over the serial console menu

In addition to the uImage or zImage compressed kernel image, you will need the 
kernel image in ELF object format so that GDB can load the symbols into memory. 
That is the file called vmlinux that is generated in the directory where Linux is built. In 
the Yocto Project, you can request that a copy be included in the target image, which 
is convenient for this and other debug tasks. It is built into a package named kernel-
vmlinux, which you can install like any other, for example by adding it to the IMAGE_
INSTALL_append list. The file is put into the boot directory, with a name like this:

boot/vmlinux-3.14.26ltsi-yocto-standard
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In Buildroot, you will find vmlinux in the directory where the kernel was built, 
which is in output/build/linux-<version string>/vmlinux.

A sample debug session
The best way to show you how it works is with a simple example.

You need to tell kgdb which serial port to use, either through the kernel command 
line or at runtime via sysfs. For the first option, add kgdboc=<tty>,<baud rate>  
to the command line, as shown:

kgdboc=ttyO0,115200

For the second option, boot the device up and write the terminal name to the  
/sys/module/kgdboc/parameters/kgdboc file, as shown:

# echo ttyO0 > /sys/module/kgdboc/parameters/kgdboc

Note that you cannot set the baud rate in this way. If it is the same tty as the console 
then it is set already, if not use stty or a similar program.

Now you can start GDB on the host, selecting the vmlinux file that matches the 
running kernel:

$ arm-poky-linux-gnueabi-gdb ~/linux/vmlinux

GDB loads the symbol table from vmlinux and waits for further input.

Next, close any terminal emulator that is attached to the console: you are about to 
use it for GDB and, if both are active at the same time, some of the debug strings 
might get corrupted.

Now, you can return to GDB and attempt to connect to kgdb. However, you will  
find that the response you get from target remote at this time is unhelpful:

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

Bogus trace status reply from target: qTStatus

The problem is that kgdb is not listening for a connection at this point. You need  
to interrupt the kernel before you can enter into an interactive GDB session with it. 
Unfortunately, just typing Ctrl + C in GDB, as you would with an application, does not 
work. You have to force a trap into the kernel by launching another shell on the target, 
via ssh, for example, and writing a g to /proc/sysrq-trigger on the target board:

# echo g > /proc/sysrq-trigger
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The target stops dead at this point. Now you can connect to kgdb via the serial device 
at the host end of the cable:

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

0xc009a59c in arch_kgdb_breakpoint ()

At last, GDB is in charge. You can set breakpoints, examine variables, look at 
backtraces, and so on. As an example, set a break on sys_sync, as follows:

(gdb) break sys_sync

Breakpoint 1 at 0xc0128a88: file fs/sync.c, line 103.

(gdb) c

Continuing.

Now the target comes back to life. Typing sync on the target calls sys_sync and hits 
the breakpoint.

[New Thread 87]

[Switching to Thread 87]

Breakpoint 1, sys_sync () at fs/sync.c:103

If you have finished the debug session and want to disable kgdboc, just set the 
kgdboc terminal to null:

# echo "" >  /sys/module/kgdboc/parameters/kgdboc

Debugging early code
The preceding example works in cases where the code you are interested in is 
executed when the system is fully booted. If you need to get in early, you can tell 
the kernel to wait during boot by adding kgdbwait to the command line, after the 
kgdboc option:

kgdboc=ttyO0,115200 kgdbwait

Now, when you boot, you will see this on the console:

    1.103415] console [ttyO0] enabled
[    1.108216] kgdb: Registered I/O driver kgdboc.
[    1.113071] kgdb: Waiting for connection from remote gdb...

At this point, you can close the console and connect from GDB in the usual way.
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Debugging modules
Debugging kernel modules presents an additional challenge because the code is 
relocated at runtime and so you need to find out at what address it resides. The 
information is presented via sysfs. The relocation addresses for each section of the 
module are stored in /sys/module/<module name>/sections. Note that, since ELF 
sections begin with a dot, '.', they appear as hidden files and you will have to use ls 
-a if you want to list them. The important ones are .text, .data, and .bss.

Take as an example a module named mbx:

# cat /sys/module/mbx/sections/.text

0xbf000000

# cat /sys/module/mbx/sections/.data

0xbf0003e8

# cat /sys/module/mbx/sections/.bss

0xbf0005c0

Now you can use these numbers in GDB to load the symbol table for the module at 
those addresses:

(gdb) add-symbol-file /home/chris/mbx-driver/mbx.ko 0xbf000000 \
-s .data 0xbf0003e8 -s .bss 0xbf0005c0
add symbol table from file "/home/chris/mbx-driver/mbx.ko" at
  .text_addr = 0xbf000000
  .data_addr = 0xbf0003e8
  .bss_addr = 0xbf0005c0

Everything should now work as normal: you can set breakpoints and inspect global 
and local variables in the module just as you can in vmlinux:

(gdb) break mbx_write

Breakpoint 1 at 0xbf00009c: file /home/chris/mbx-driver/mbx.c,  
line 93.

(gdb) c

Continuing.

Then, force the device driver to call mbx_write and it will hit the breakpoint:

Breakpoint 1, mbx_write (file=0xde7a71c0, buffer=0xadf40 "hello\n\n",
    length=6, offset=0xde73df80)
    at /home/chris/mbx-driver/mbx.c:93
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Debugging kernel code with kdb
Although kdb does not have the features of kgdb and GDB, it does have its uses 
and, being self-hosted, there are no external dependencies to worry about. kdb has a 
simple command-line interface which you can use on a serial console. You can use it 
to inspect memory, registers, process lists, dmesg, and even set breakpoints to stop in 
a certain location.

To configure kdb for access via a serial console, enable kgdb as shown previously and 
then enable this additional option:

• CONFIG_KGDB_KDB, which is in the KGDB: Kernel hacking | kernel 
debugger | KGDB_KDB: include kdb frontend for kgdb menu

Now, when you force the kernel to a trap, instead of entering into a GDB session, 
you will see the kdb shell on the console:

# echo g > /proc/sysrq-trigger
[   42.971126] SysRq : DEBUG

Entering kdb (current=0xdf36c080, pid 83) due to Keyboard Entry
kdb>

There are quite a few things you can do in the kdb shell. The help command will print 
all of the options. Here is an overview.

Getting information:

• ps: displays active processes
• ps A: displays all processes
• lsmod: lists modules
• dmesg: displays the kernel log buffer

Breakpoints:

• bp: sets a breakpoint
• bl: lists breakpoints
• bc: clears a breakpoint
• bt: prints a backtrace
• go: continues execution

Inspect memory and registers:

• md: displays memory
• rd: displays registers
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Here is a quick example of setting a break point:

kdb> bp sys_sync

Instruction(i) BP #0 at 0xc01304ec (sys_sync)

  is enabled  addr at 00000000c01304ec, hardtype=0 installed=0

kdb> go

The kernel returns to life and the console shows the normal bash prompt. If you type 
sync, it hits the breakpoint and enters kdb again:

Entering kdb (current=0xdf388a80, pid 88) due to Breakpoint @  
0xc01304ec

kdb is not a source debugger so you can't see the source code, or single step. 
However, you can display a backtrace using the bt command, which is useful  
to get an idea of program flow and call hierarchy.

When the kernel performs an invalid memory access or executes an illegal instruction, 
a kernel oops message is written to the kernel log. The most useful part of this is the 
backtrace, and I want to show you how to use the information there to locate the line of 
code that caused the fault. I will also address the problem of preserving oops messages 
if they cause the system to crash.

Looking at an oops
An oops message looks like this:

[   56.225868] Unable to handle kernel NULL pointer dereference at 
virtual address 00000400[   56.229038] pgd = cb624000[   56.229454] 
[00000400] *pgd=6b715831, *pte=00000000, *ppte=00000000[   56.231768] 
Internal error: Oops: 817 [#1] SMP ARM[   56.232443] Modules linked 
in: mbx(O)[   56.233556] CPU: 0 PID: 98 Comm: sh Tainted: G   O  4.1.10 
#1[   56.234234] Hardware name: ARM-Versatile Express[   56.234810] 
task: cb709c80 ti: cb71a000 task.ti: cb71a000[   56.236801] PC is at 
mbx_write+0x14/0x98 [mbx][   56.237303] LR is at __vfs_write+0x20/0xd8[   
56.237559] pc : [<bf0000a0>]    lr : [<c0307154>]  psr: 800f0013[   
56.237559] sp : cb71bef8  ip : bf00008c  fp : 00000000[   56.238183] r10: 
00000000  r9 : cb71a000  r8 : c02107c4[   56.238485] r7 : cb71bf88  r6 : 
000afb98  r5 : 00000006  r4 : 00000000[   56.238857] r3 : cb71bf88  r2 : 
00000006  r1 : 000afb98  r0 : cb61d600

[   56.239276] Flags: Nzcv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  
Segment user[   56.239685] Control: 10c5387d  Table: 6b624059  DAC: 
00000015[   56.240019] Process sh (pid: 98, stack limit = 0xcb71a220)



Debugging with GDB

[ 908 ]

PC is at mbx_write+0x14/0x98 [mbx] tells you most of what you want to know: 
the last instruction was in the mbx_write function in a kernel module named mbx. 
Furthermore, it was at offset 0x14 bytes from the start of the function, which is 0x98 
bytes long.

Next, take a look at the backtrace:

[   56.240363] Stack: (0xcb71bef8 to 0xcb71c000)[   56.240745] bee0:                                                       
cb71bf88 cb61d600[   56.241331] bf00: 00000006 c0307154 00000000 c020a308 
cb619d88  
00000301 00000000 00000042[   56.241775] bf20: 00000000 cb61d608 cb709c80 
cb709c78 cb71bf60  
c0250a54 00000000 cb709ee0[   56.242190] bf40: 00000003 bef4f658 00000000 
cb61d600 cb61d600  
00000006 000afb98 cb71bf88[   56.242605] bf60: c02107c4 c030794c 00000000 
00000000 cb61d600  
cb61d600 00000006 000afb98[   56.243025] bf80: c02107c4 c0308174 00000000 
00000000 00000000  
000ada10 00000001 000afb98[   56.243493] bfa0: 00000004 c0210640 000ada10 
00000001 00000001  
000afb98 00000006 00000000[   56.243952] bfc0: 000ada10 00000001 000afb98 
00000004 00000001  
00000020 000ae274 00000000[   56.244420] bfe0: 00000000 bef4f49c 0000fcdc 
b6f1aedc 600f0010  
00000001 00000000 00000000[   56.245653] [<bf0000a0>] (mbx_write [mbx]) 
from [<c0307154>]  
(__vfs_write+0x20/0xd8)[   56.246368] [<c0307154>]  
(__vfs_write) from [<c030794c>]  
(vfs_write+0x90/0x164)[   56.246843] [<c030794c>] (vfs_write) from 
[<c0308174>]  
(SyS_write+0x44/0x9c)[   56.247265] [<c0308174>] (SyS_write) from 
[<c0210640>]  
(ret_fast_syscall+0x0/0x3c)[   56.247737] Code: e5904090 e3520b01 
23a02b01 e1a05002 (e5842400)[   56.248372] ---[ end trace 
999c378e4df13d74 ]---

In this case, we don't learn much more, merely that mbx_write is called from the 
virtual filesystem code.

It would be very nice to find the line of code that relates to mbx_write+0x14,  
for which we can use objdump. We can see from objdump -S that mbx_write is at 
offset 0x8c in mbx.ko, so that last instruction executed is at 0x8c + 0x14 = 0xa0. 
Now, we just need to look at that offset and see what is there:
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$ arm-poky-linux-gnueabi-objdump -S mbx.kostatic ssize_t mbx_write(struct 
file *file,const char *buffer, size_t length, loff_t * offset){  8c:   
e92d4038        push    {r3, r4, r5, lr}  struct mbx_data *m = (struct 
mbx_data *)file->private_data;  90:   e5904090        ldr     r4, [r0, 
#144]  ; 0x90  94:   e3520b01        cmp     r2, #1024       ; 0x400  98:   
23a02b01        movcs   r2, #1024       ; 0x400  if (length > MBX_LEN)    
length = MBX_LEN;    m->mbx_len = length;  9c:   e1a05002        mov     
r5, r2  a0:   e5842400        str     r2, [r4, #1024] ; 0x400

This shows the instruction where it stopped. The last line of code is shown here:

m->mbx_len = length;

You can see that m has the type struct mbx_data *. Here is the place where that 
structure is defined:

#define MBX_LEN 1024 struct mbx_data {  char mbx[MBX_LEN];  int mbx_
len;};

So, it looks like the m variable is a null pointer, and that is causing the oops.

Preserving the oops
Decoding an oops is only possible if you can capture it in the first place. If the system 
crashes during boot before the console is enabled, or after a suspend, you won't see 
it. There are mechanisms to log kernel oops and messages to an MTD partition or 
to persistent memory, but here is a simple technique that works in many cases and 
needs little prior thought.

So long as the contents of memory are not corrupted during a reset (and usually they 
are not), you can reboot into the bootloader and use it to display memory. You need 
to know the location of the kernel log buffer, remembering that it is a simple ring 
buffer of text messages. The symbol is __log_buf. Look this up in System.map for 
the kernel:

$ grep __log_buf System.mapc0f72428 b __log_buf

Then, map that kernel logical address into a physical address that U-Boot can 
understand by subtracting PAGE_OFFSET, 0xc0000000, and adding the physical start 
of RAM, 0x80000000 on a BeagleBone, so c0f72428 – 0xc0000000 + 0x80000000 
= 80f72428.
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Then use the U-Boot md command to show the log:

U-Boot# md 80f7242880f72428: 00000000 00000000 00210034 
c6000000    ........4.!.....80f72438: 746f6f42 20676e69 756e694c 
6e6f2078    Booting Linux on80f72448: 79687020 61636973 5043206c 
78302055     physical CPU 0x80f72458: 00000030 00000000 00000000 00730084    
0.............s.80f72468: a6000000 756e694c 65762078 6f697372    ....
Linux versio80f72478: 2e34206e 30312e31 68632820 40736972    n 4.1.10 
(chris@80f72488: 6c697562 29726564 63672820 65762063    builder) 
(gcc ve80f72498: 6f697372 2e34206e 20312e39 6f726328    rsion 4.9.1 
(cro80f724a8: 6f747373 4e2d6c6f 2e312047 302e3032    sstool-NG 
1.20.080f724b8: 20292029 53203123 5720504d 4f206465    ) ) #1 SMP Wed 
O80f724c8: 32207463 37312038 3a31353a 47203335    ct 28 17:51:53 G

From Linux 3.5 onwards, there is a 16-byte binary header for 
each line in the kernel log buffer which encodes a timestamp, 
a log level and other things. There is a discussion about it in 
the Linux Weekly News titled Toward more reliable logging at 
https://lwn.net/Articles/492125/.

Additional reading
The following resources have further information about the topics introduced in  
this chapter:

• The Art of Debugging with GDB, DDD, and Eclipse, by Norman Matloff and Peter 
Jay Salzman, No Starch Press; 1 edition (28 Sept. 2008), ISBN 978-1593271749

• GDB Pocket Reference by Arnold Robbins, O'Reilly Media; 1st edition (12 May 
2005), ISBN 978-0596100278

• Getting to grips with Eclipse: cross compiling, http://2net.co.uk/tutorial/
eclipse-cross-compile

• Getting to grips with Eclipse: remote access and debugging, http://2net.co.uk/
tutorial/eclipse-rse
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Summary
GDB for interactive debugging is a useful tool in the embedded developer's tool 
chest. It is a stable, well-documented and well-known entity. It has the ability to 
debug remotely by placing an agent on the target, be it gdbserver for applications 
or kgdb for kernel code and, although the default command-line user interface takes 
a while to get used to, there are many alternative front-ends. The three I mentioned 
were TUI, DDD, and Eclipse, which should cover most situations, but there are other 
front-ends around that you can try.

A second and equally important way to approach debugging is to collect crash 
reports and analyze them offline. In this category, I have looked at application core 
dumps and kernel oops messages.

However, this is only one way of identifying flaws in programs. In the next chapter,  
I will talk about profiling and tracing as ways of analyzing and optimizing programs.
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Profiling and Tracing
Interactive debugging using a source level debugger, as described in the previous 
chapter, can give you an insight into the way a program works, but it constrains your 
view to a small body of code. In this chapter, I will look at the larger picture to see if 
the system is performing as intended.

Programmers and system designers are notoriously bad at guessing where 
bottlenecks are. So, if your system has performance issues, it is wise to start by 
looking at the full system and then work down, using more sophisticated tools. 
In this chapter I begin with the well-known command, top, as a means of getting 
an overview. Often the problem can be localized to a single program, which you 
can analyze using the Linux profiler, perf. If the problem is not so localized and 
you want to get a broader picture, perf can do that as well. To diagnose problems 
associated with the kernel, I will describe the trace tools, Ftrace and LTTng, as a 
means of gathering detailed information.

I will also cover Valgrind which, because of its sandboxed execution environment, 
can monitor a program and report on code as it runs. I will complete the chapter 
with a description of a simple trace tool, strace, which reveals the execution of a 
program by tracing the system calls it makes.

The observer effect
Before diving into the tools, let's talk about what the tools will show you. As is 
the case in many fields, measuring a certain property affects the observation itself. 
Measuring the electric current in a line requires measuring the voltage drop over  
a small resistor. However, the resistor itself affects the current. The same is true  
for profiling: every system observation has a cost in CPU cycles and that resource 
is no longer spent on the application. Measurement tools also mess up caching 
behavior, eat memory space, and write to disk, which all make it worse. There is  
no measurement without overhead.
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I've often heard engineers say that the results of a profiling job were totally 
misleading. That is usually because they were performing the measurements on 
something not approaching a real situation. Always try to measure on the target, 
using release builds of the software, with a valid data set, using as few extra services  
as possible.

Symbol tables and compile flags
We will hit a problem immediately. While it is important to observe the system in its 
natural state, the tools often need additional information to make sense of the events.

Some tools require special kernel options, specifically from those listed in the 
introduction, perf, Ftrace, and LTTng. Therefore, you will probably have to build 
and deploy a new kernel for these tests.

Debug symbols are very helpful in translating raw program addresses into function 
names and lines of code. Deploying executables with debug symbols does not 
change the execution of the code but it does require that you have copies of the 
binaries and the kernel compiled with debug, at least for the components you want 
to profile. Some tools work best if you have these installed on the target system, 
perf, for example. The techniques are the same as for general debugging, as I 
discussed in Chapter 12, Debugging with GDB.

If you want a tool to generate call graphs, you may have to compile with stack 
frames enabled. If you want the tool to attribute addresses with lines of code 
accurately, you may need to compile with lower levels of optimization.

Finally, some tools require instrumentation to be inserted into the program to 
capture samples, so you will have to recompile those components. This applies to 
gprof for applications, and Ftrace and LTTng for the kernel.

Be aware that, the more you change the system you are observing, the harder it is to 
relate the measurements you make to the production system.

It is best to adopt a wait-and-see approach, making changes only 
when the need is clear, and being mindful that each time you do 
so, you will change what you are measuring.
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Beginning to profile
When looking at the entire system, a good place to start is with a simple tool like top, 
which gives you an overview very quickly. It shows you how much memory is being 
used, which processes are eating CPU cycles, and how this is spread across different 
cores and time.

If top shows that a single application is using up all the CPU cycles in user space 
then you can profile that application using perf.

If two or more processes have a high CPU usage, there is probably something that 
is coupling them together, perhaps data communication. If a lot of cycles are spent 
in system calls or handling interrupts, then there may be an issue with the kernel 
configuration or with a device driver. In either case you need to start by taking a 
profile of the whole system, again using perf.

If you want to find out more about the kernel and the sequencing of events there, 
you would use Ftrace or LTTng.

There could be other problems that top will not help you with. If you have multi-
threaded code and there are problems with lockups, or if you have random data 
corruption then Valgrind plus the Helgrind plug-in might be helpful. Memory 
leaks also fit into this category: I covered memory-related diagnosis in Chapter 11, 
Managing Memory.

Profiling with top
top is a simple tool that doesn't require any special kernel options or symbol tables. 
There is a basic version in BusyBox, and a more functional version in the procps 
package which is available in the Yocto Project and Buildroot. You may also want to 
consider using htop which is functionally similar to top but has a nicer user interface 
(some people think).

To begin with, focus on the summary line of top, which is the second line if you are 
using BusyBox and the third line if using procps top. Here is an example, using 
BusyBox top:

Mem: 57044K used, 446172K free, 40K shrd, 3352K buff, 34452K cached

CPU:  58% usr   4% sys   0% nic   0% idle  37% io   0% irq   0% sirq

Load average: 0.24 0.06 0.02 2/51 105

  PID  PPID USER     STAT   VSZ %VSZ %CPU COMMAND

  105   104 root     R    27912   6%  61% ffmpeg -i track2.wav

  [...]
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The summary line shows the percentage of time spent running in various states, as 
shown in this table:

procps Busybox

us usr User space programs with default nice value

sy sys Kernel code

ni nic User space programs with non-default nice value

id idle Idle

wa io I/O wait

hi irq Hardware interrupts

si sirq Software interrupts

st -- Steal time: only relevant in virtualized environments

In the preceding example, almost all of the time (58%) is spent in user mode, with 
a small amount (4%) in system mode, so this is a system that is CPU-bound in user 
space. The first line after the summary shows that just one application is responsible: 
ffmpeg. Any efforts towards reducing CPU usage should be directed there.

Here is another example:

Mem: 13128K used, 490088K free, 40K shrd, 0K buff, 2788K cached

CPU:   0% usr  99% sys   0% nic   0% idle   0% io   0% irq   0% sirq

Load average: 0.41 0.11 0.04 2/46 97

  PID  PPID USER     STAT   VSZ %VSZ %CPU COMMAND

   92    82 root     R     2152   0% 100% cat /dev/urandom

  [...]

This system is spending almost all of the time in kernel space, as a result of cat 
reading from /dev/urandom. In this artificial, case, profiling cat by itself would not 
help, but profiling the kernel functions that cat calls might be.

The default view of top shows only processes, so the CPU usage is the total of all 
the threads in the process. Press H to see information for each thread. Likewise, it 
aggregates the time across all CPUs. If you are using procps top, you can see a 
summary per CPU by pressing the 1 key.

Imagine that there is a single user space process taking up most of the time and look 
at how to profile that.
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Poor man's profiler
You can profile an application just by using GDB to stop it at arbitrary intervals and 
see what it is doing. This is the poor man's profiler. It is easy to set up and it is one way 
of gathering profile data.

The procedure is simple and explained here:

1. Attach to the process using gdbserver (for a remote debug) or gdb (for a 
native debug). The process stops.

2. Observe the function it stopped in. You can use the backtrace GDB 
command to see the call stack.

3. Type continue so that the program resumes.
4. After a while, type Ctrl + C to stop it again and go back to step 2.

If you repeat steps 2 to 4 several times, you will quickly get an idea of whether it is 
looping or making progress and, if you repeat them often enough, you will get an 
idea of where the hotspots in the code are.

There is a whole web page dedicated to the idea at http://poormansprofiler.org, 
together with scripts which make it a little easier. I have used this technique many 
times over the years with various operating systems and debuggers.

This is an example of statistical profiling, in which you sample the program state 
at intervals. After a number of samples, you begin to learn the statistical likelihood 
of the functions being executed. It is surprising how few you really need. Other 
statistical profilers are perf record, OProfile, and gprof.

Sampling using a debugger is intrusive because the program is stopped for a 
significant period while you collect the sample. Other tools can do that with much 
lower overhead.

I will now consider how to use perf to do statistical profiling.

Introducing perf
perf is an abbreviation of the Linux performance event counter subsystem,  
perf_events, and also the name of the command-line tool for interacting with  
perf_events. Both have been part of the kernel since Linux 2.6.31. There is plenty  
of useful information in the Linux source tree in tools/perf/Documentation,  
and also at https://perf.wiki.kernel.org.
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The initial impetus for developing perf was to provide a unified way to access 
the registers of the performance measurement unit (PMU), which is part of most 
modern processor cores. Once the API was defined and integrated into Linux, it 
became logical to extend it to cover other types of performance counters.

At its heart, perf is a collection of event counters with rules about when they 
actively collect data. By setting the rules, you can capture data from the whole 
system, or just the kernel, or just one process and its children, and do it across  
all CPUs or just one CPU. It is very flexible. With this one tool you can start by 
looking at the whole system, then zero in on a device driver that seems to be  
causing problems, or an application that is running slowly, or a library function  
that seems to being taking longer to execute than you thought.

The code for the perf command-line tool is part of the kernel, in the tools/perf 
directory. The tool and the kernel subsystem are developed hand-in-hand, meaning 
that they must be from the same version of the kernel. perf can do a lot. In this 
chapter, I will examine it only as a profiler. For a description of its other capabilities, 
read the perf man pages and refer to the documentation mentioned in the previous 
paragraph.

Configuring the kernel for perf
You need a kernel that is configured for perf_events and you need the perf 
command cross compiled to run on the target. The relevant kernel configuration is 
CONFIG_PERF_EVENTS present in the menu General setup | Kernel Performance 
Events And Counters.

If you want to profile using tracepoints—more on this subject later—also enable the 
options described in the section about Ftrace. While you are there, it is worthwhile 
enabling CONFIG_DEBUG_INFO as well.

The perf command has many dependencies which makes cross compiling it quite 
messy. However, both the Yocto Project and Buildroot have target packages for it.

You will also need debug symbols on the target for the binaries that you are 
interested in profiling, otherwise perf will not be able to resolve addresses to 
meaningful symbols. Ideally, you want debug symbols for the whole system 
including the kernel. For the latter, remember that the debug symbols for the  
kernel are in the vmlinux file.
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Building perf with the Yocto Project
If you are using the standard linux-yocto kernel, perf_events is enabled already,  
so there is nothing more to do.

To build the perf tool, you can add it explicitly to the target image dependencies, 
or you can add the tools-profile feature which also brings in gprof. As I mentioned 
previously, you will probably want debug symbols on the target image, and also the 
kernel vmlinux image. In total, this is what you will need in conf/local.conf:

EXTRA_IMAGE_FEATURES = "debug-tweaks dbg-pkgs tools-profile"
IMAGE_INSTALL_append = " kernel-vmlinux"

Building perf with Buildroot
Many Buildroot kernel configurations do not include perf_events, so you should 
begin by checking that your kernel includes the options mentioned in the preceding 
section.

To cross compile perf, run the Buildroot menuconfig and select the following:

• BR2_LINUX_KERNEL_TOOL_PERF in Kernel | Linux Kernel Tools. To build 
packages with debug symbols and install them unstripped on the target, 
select these two settings.

• BR2_ENABLE_DEBUG in the menu Build options | build packages with 
debugging symbols menu.

• BR2_STRIP = none in the menu Build options | strip command for binaries 
on target.

Then, run make clean, followed by make.

When you have built everything, you will have to copy vmlinux into the target 
image manually.

Profiling with perf
You can use perf to sample the state of a program using one of the event counters 
and accumulate samples over a period of time to create a profile. This is another 
example of statistical profiling. The default event counter is called cycles, which is a 
generic hardware counter that is mapped to a PMU register representing a count of 
cycles at the core clock frequency.
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Creating a profile using perf is a two stage process: the perf record command 
captures samples and writes them to a file named perf.data (by default) and 
then perf report analyzes the results. Both commands are run on the target. The 
samples being collected are filtered for the process and its children, for a command 
you specify. Here is an example profiling a shell script that searches for the string 
linux:

# perf record sh -c "find /usr/share | xargs grep linux >  
/dev/null"

[ perf record: Woken up 2 times to write data ]

[ perf record: Captured and wrote 0.368 MB perf.data (~16057  
samples) ]

# ls -l perf.data

-rw-------    1 root     root      387360 Aug 25  2015 perf.data

Now you can show the results from perf.data using the command perf report. 
There are three user interfaces which you can select on the command line:

• --stdio: This is a pure text interface with no user interaction. You will  
have to launch perf report and annotate for each view of the trace.

• --tui: This is a simple text-based menu interface with traversal  
between screens.

• --gtk: This is a graphical interface that otherwise acts in the same way  
as --tui.

The default is TUI, as shown in this example:



Chapter 13

[ 921 ]

perf is able to record the kernel functions executed on behalf of the processes 
because it collects samples in kernel space.

The list is ordered with the most active functions first. In this example, all but one 
are captured while grep is running. Some are in a library, libc-2.20, some in a 
program, busybox.nosuid, and some are in the kernel. We have symbol names  
for program and library functions because all the binaries have been installed  
on the target with debug information, and kernel symbols are being read from  
/boot/vmlinux. If you have vmlinux in a different location, add -k <path> to the 
perf report command. Rather than storing samples in perf.data, you can save 
them to a different file using perf record -o <file name> and analyze them 
using perf report -i <file name>.

By default, perf record samples at a frequency of 1000Hz using the cycles counter.

A sampling frequency of 1000Hz may be higher than you really need, 
and may be the cause of an observer effect. Try with lower rates: 
100Hz is enough for most cases, in my experience. You can set the 
sample frequency using the -F option.

Call graphs
This is still not really making life easy; the functions at the top of the list are mostly 
low level memory operations and you can be fairly sure that they have already been 
optimized. It would be nice to step back and see where these functions are being 
called from. You can do that by capturing the backtrace from each sample, which 
you can do with the -g option to perf record.
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Now perf report shows a plus sign (+) where the function is part of a call chain. 
You can expand the trace to see the functions lower down in the chain:

Generating call graphs relies on the ability to extract call frames from 
the stack, just as is necessary for backtraces in GDB. The information 
needed to unwind stacks is encoded in the debug information of the 
executables but not all combinations of architecture and toolchains 
are capable of doing so.

perf annotate
Now that you know which functions to look at, it would be nice to step inside and 
see the code and to have hit counts for each instruction. That is what perf annotate 
does, by calling down to a copy of objdump installed on the target. You just need to 
use perf annotate in place of perf report.

perf annotate requires symbol tables for the executables and vmlinux. Here is an 
example of an annotated function:
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If you want to see the source code interleaved with the assembler, you can copy the 
relevant parts to the target device. If you are using the Yocto Project and build with 
the extra image feature dbg-pkgs, or have installed the individual -dbg package, 
then the source will have been installed for you in /usr/src/debug. Otherwise,  
you can examine the debug information to see the location of the source code:

$ arm-buildroot-linux-gnueabi-objdump --dwarf lib/libc-2.19.so  |  
grep DW_AT_comp_dir

  <3f>   DW_AT_comp_dir : /home/chris/buildroot/output/build/host- 
gcc-initial-4.8.3/build/arm-buildroot-linux-gnueabi/libgcc

The path on the target should be exactly the same as the path you can see in  
DW_AT_comp_dir.

Here is an example of annotation with source and assembler code:
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Other profilers: OProfile and gprof
These two statistical profilers predate perf. They are both subsets of the functionality 
of perf, but they are still quite popular. I will mention them only briefly.

OProfile is a kernel profiler that started out in 2002. Originally, it had its own kernel 
sampling code, but recent versions use the perf_events infrastructure for that 
purpose. There is more information about it at http://oprofile.sourceforge.
net. OProfile consists of a kernel-space component and a user space daemon and 
analysis commands.

OProfile needs these two kernel options to be enabled:

• CONFIG_PROFILING in General setup | Profiling support
• CONFIG_OPROFILE in General setup | OProfile system profiling

If you are using the Yocto Project, the user-space components are installed as part of 
the tools-profile image feature. If you are using Buildroot, the package is enabled 
by BR2_PACKAGE_OPROFILE.

You can collect samples by using this command:

# operf <program>

Wait for your application to finish, or press Ctrl + C, to stop profiling. The profile 
data is stored in <cur-dir>/oprofile_data/samples/current.

Use opreport to generate a profile summary. There are various options which are 
documented in the OProfile manual.

gprof is part of the GNU toolchain and was one of the earliest open source code 
profiling tools. It combines compile-time instrumentation and sampling techniques, 
using a 100 Hz sample rate. It has the advantage that it does not require kernel 
support.

To prepare a program for profiling with gprof, you add -pg to the compile and link 
flags, which injects code that collects information about the call tree into the function 
preamble. When you run the program, samples are collected and stored in a buffer, 
which is written to a file named gmon.out, when the program terminates.

You use the gprof command to read the samples from gmon.out and the debug 
information from a copy of the program.
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As an example, if you wanted to profile the BusyBox grep applet. you would rebuild 
BusyBox with the -pg option, run the command, and view the results:

# busybox grep "linux" *

# ls -l gmon.out

-rw-r--r-- 1 root root   473 Nov 24 14:07 gmon.out

Then, you would analyze the captured samples on either the target or the host, using 
the following:

# gprof busybox

Flat profile:

Each sample counts as 0.01 seconds.

 no time accumulated

  %   cumulative   self              self     total

 time   seconds   seconds    calls  Ts/call  Ts/call  name

 0.00     0.00     0.00      688     0.00     0.00  xrealloc

 0.00     0.00     0.00      345     0.00     0.00  bb_get_chunk_from_file

 0.00     0.00     0.00      345     0.00     0.00  xmalloc_fgetline

 0.00     0.00     0.00       6      0.00     0.00  fclose_if_not_stdin

 0.00     0.00     0.00       6      0.00     0.00  fopen_for_read

 0.00     0.00     0.00       6      0.00     0.00  grep_file

[...]

    Call graph

granularity: each sample hit covers 2 byte(s) no time propagated

index  % time    self  children    called     name

                 0.00    0.00      688/688  bb_get_chunk_from_file [2]

[1]      0.0     0.00    0.00      688         xrealloc [1]

----------------------------------------------------------

                 0.00    0.00      345/345  xmalloc_fgetline [3]
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[2]      0.0     0.00    0.00      345      bb_get_chunk_from_file [2]

                 0.00    0.00      688/688  xrealloc [1]

---------------------------------------------------------

                 0.00    0.00      345/345  grep_file [6]

[3]      0.0     0.00    0.00     345       xmalloc_fgetline [3]

                 0.00    0.00     345/345   bb_get_chunk_from_file  
[2]

--------------------------------------------------------

                 0.00    0.00       6/6     grep_main [12]

[4]      0.0     0.00    0.00       6       fclose_if_not_stdin  
[4]

[...]

Note that the execution times are all shown as zero, because most of the time was 
spent in system calls, which are not traced by gprof.

gprof does not capture samples from threads other than the main 
thread of a multi-threaded process, and it does not sample kernel 
space, all of which limits its usefulness.

Tracing events
The tools we have seen so far all use statistical sampling. You often want to know 
more about the ordering of events so that you can see them and relate them to each 
other. Function tracing involves instrumenting the code with trace points which 
capture information about the event, and may include some or all of the following:

• Timestamp
• Context, such as the current PID
• Function parameters and return value
• Callstack

It is more intrusive than statistical profiling and it can generate a large amount of 
data. The latter can be mitigated by applying filters when the sample is captured, 
and later on when viewing the trace.

I will cover two trace tools here: the kernel function tracers, Ftrace and LTTng.
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Introducing Ftrace
The kernel function tracer, Ftrace, evolved from work done by Steven Rostedt, 
and many others, as they were tracking down the causes of high latency. Ftrace 
appeared in Linux 2.6.27 and has been actively developed since then. There 
are a number of documents describing kernel tracing in the kernel source in 
Documentation/trace.

Ftrace consists of a number of tracers that can log various types of activity in the 
kernel. Here, I am going to talk about the function and function_graph tracers, 
and about the event tracepoints. In Chapter 14, Real-time Programming, I will revisit 
Ftrace and use it to show real-time latencies.

The function tracer instruments each kernel function so that calls can be recorded 
and timestamped. As a matter of interest, it compiles the kernel with the -pg 
switch to inject the instrumentation, but there the resemblance to gprof ends. 
The function_graph tracer goes further and records both the entry and exit of 
functions so that it can create a call graph. The event tracepoints feature also records 
parameters associated with the call.

Ftrace has a very embedded-friendly user interface that is entirely implemented 
through virtual files in the debugfs filesystem, meaning that you do not have to 
install any tools on the target to make it work. Nevertheless, there are other user 
interfaces if you prefer: trace-cmd is a command-line tool which records and views 
traces and is available in Buildroot (BR2_PACKAGE_TRACE_CMD) and the Yocto Project 
(trace-cmd). There is a graphical trace viewer named KernelShark which is available 
as a package for the Yocto Project.

Preparing to use Ftrace
Ftrace and its various options are configured in the kernel configuration menu.  
You will need the following as a minimum:

• CONFIG_FUNCTION_TRACER in the menu Kernel hacking | Tracers | Kernel 
Function Tracer

For reasons that will become clear later, you would be well advised to turn on these 
options as well:

• CONFIG_FUNCTION_GRAPH_TRACER in the menu Kernel hacking | Tracers | 
Kernel Function Graph Tracer

• CONFIG_DYNAMIC_FTRACE in the menu Kernel hacking | Tracers | enable/
disable function tracing dynamically
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Since the whole thing is hosted in the kernel, there is no user space configuration to 
be done.

Using Ftrace 
Before you can use Ftrace, you have to mount the debugfs filesystem which, by 
convention, goes in the /sys/kernel/debug directory:

# mount –t debugfs none /sys/kernel/debug

All the controls for Ftrace are in the /sys/kernel/debug/tracing directory; there 
is even a mini HOWTO in the README file.

This is the list of tracers available in the kernel:

# cat /sys/kernel/debug/tracing/available_tracers

blk function_graph function nop

The active tracer is shown by current_tracer, which, initially, will be the null 
tracer, nop.

To capture a trace, select the tracer by writing the name of one of the  
available_tracers to current_tracer, then enable tracing for a short while,  
as shown here:

# echo function > /sys/kernel/debug/tracing/current_tracer

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# sleep 1

# echo 0 > /sys/kernel/debug/tracing/tracing_on

In that one second, the trace buffer will have been filled with the details of every 
function called by the kernel. The format of the trace buffer is plain text, as described 
in Documentation/trace/ftrace.txt. You can read the trace buffer from the trace 
file:

# cat /sys/kernel/debug/tracing/trace

# tracer: function

#

# entries-in-buffer/entries-written: 40051/40051   #P:1

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth
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#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

              sh-361   [000] ...1   992.990646: mutex_unlock <- 
rb_simple_write

              sh-361   [000] ...1   992.990658: __fsnotify_parent  
<-vfs_write

              sh-361   [000] ...1   992.990661: fsnotify <- 
vfs_write

              sh-361   [000] ...1   992.990663: __srcu_read_lock  
<-fsnotify

              sh-361   [000] ...1   992.990666: preempt_count_add  
<-__srcu_read_lock

              sh-361   [000] ...2   992.990668: preempt_count_sub  
<-__srcu_read_lock

              sh-361   [000] ...1   992.990670: __srcu_read_unlock  
<-fsnotify

              sh-361   [000] ...1   992.990672: __sb_end_write <- 
vfs_write

              sh-361   [000] ...1   992.990674: preempt_count_add  
<-__sb_end_write

[...]

You can capture a large number of data points in just one second.

As with profilers, it is difficult to make sense of a flat function list like this. If you 
select the function_graph tracer, Ftrace captures call graphs like this:

# tracer: function_graph

#

# CPU  DURATION            FUNCTION CALLS

#|     |   |               |   |   |   |

 0) + 63.167 us   |              } /* cpdma_ctlr_int_ctrl */

 0) + 73.417 us   |            } /* cpsw_intr_disable */

 0)               |            disable_irq_nosync() {

 0)               |              __disable_irq_nosync() {

 0)               |                __irq_get_desc_lock() {

 0)   0.541 us    |                  irq_to_desc();

 0)   0.500 us    |                  preempt_count_add();

 0) + 16.000 us   |                }
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 0)               |                __disable_irq() {

 0)   0.500 us    |                  irq_disable();

 0)   8.208 us    |                }

 0)               |                __irq_put_desc_unlock() {

 0)   0.459 us    |                  preempt_count_sub();

 0)   8.000 us    |                }

 0) + 55.625 us   |              }

 0) + 63.375 us   |            }

Now you can see the nesting of the function calls, delimited by parentheses, { and 
}. At the terminating brace, there is a measurement of the time taken in the function, 
annotated with a plus sign, +, if it takes more than 10 µs, and an exclamation mark, !, 
if it takes more than 100 µs.

You are often only interested in the kernel activity caused by a single process or 
thread, in which case you can restrict the trace to the one thread by writing the 
thread ID to set_ftrace_pid.

Dynamic Ftrace and trace filters
Enabling CONFIG_DYNAMIC_FTRACE allows Ftrace to modify the function trace sites 
at runtime, which has a couple of benefits. Firstly, it triggers additional build-time 
processing of the trace function probes which allows the Ftrace subsystem to locate 
them at boot time and overwrite them with NOP instructions, thus reducing the 
overhead of the function trace code to almost nothing. You can then enable Ftrace  
in production or near production kernels with no impact on performance.

The second advantage is that you can selectively enable function trace sites rather 
than trace everything. The list of functions is put into available_filter_functions; 
there are several tens of thousands of them. You can selectively enable function  
traces as you need them by copying the name from available_filter_functions  
to set_ftrace_filter, and then stop tracing that function by writing the name to 
set_ftrace_notrace. You can also use wildcards and append names to the list.  
For example, suppose you are interested in tcp handling:

# cd /sys/kernel/debug/tracing

# echo "tcp*" > set_ftrace_filter

# echo function > current_tracer

# echo 1 > tracing_on
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Run some tests and then look at the trace:

# cat trace

# tracer: function

#

# entries-in-buffer/entries-written: 590/590   #P:1

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth

#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

        dropbear-375   [000] ...1 48545.022235: tcp_poll <-sock_poll

        dropbear-375   [000] ...1 48545.022372: tcp_poll <-sock_poll

        dropbear-375   [000] ...1 48545.022393: tcp_sendmsg <- 
          inet_sendmsg

        dropbear-375   [000] ...1 48545.022398: tcp_send_mss <- 
          tcp_sendmsg

        dropbear-375   [000] ...1 48545.022400: tcp_current_mss <- 
          tcp_send_mss

[...]

set_ ftrace_filter can also contain commands, for example, to start and stop 
tracing when certain functions are executed. There isn't space to go into these details 
here but, if you want to find out more, please read the Filter commands section in 
Documentation/trace/ftrace.txt.

Trace events
The function and function_graph tracers described in the preceding section 
record only the time at which the function was executed. The trace events feature 
also records parameters associated with the call, making the trace more readable 
and informative. For example, instead of just recording that the function kmalloc 
had been called, a trace event will record the number of bytes requested and the 
returned pointer. Trace events are used in perf and LTTng as well as Ftrace, but the 
development of the trace events subsystem was prompted by the LTTng project.
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It takes effort from kernel developers to create trace events since each one is different. 
They are defined in the source code using the TRACE_EVENT macro: there are over a 
thousand of them now. You can see the list of events available at runtime in /sys/
kernel/debug/tracing/available_events. They are named subsystem:function, 
for example, kmem:kmalloc. Each event is also represented by a subdirectory in 
tracing/events/[subsystem]/[function], as demonstrated here:

# ls events/kmem/kmalloc

enable   filter   format   id   trigger

The files are as follows:

• enable: You write a 1 to this file to enable the event.
• filter: This is an expression which must evaluate to true for the event to  

be traced.
• format: This is the format of the event and parameters.
• id: This is a numeric identifier.
• trigger: This is a command that is executed when the event occurs using the 

syntax defined in the Filter commands section of Documentation/trace/
ftrace.txt. I will show you a simple example involving kmalloc and kfree.

Event tracing does not depend on the function tracers, so begin by selecting the  
nop tracer:

# echo nop > current_tracer

Next, select the events to trace by enabling each one individually:

# echo 1 > events/kmem/kmalloc/enable

# echo 1 > events/kmem/kfree/enable

You can also write the event names to set_event, as shown here:

# echo "kmem:kmalloc kmem:kfree" > set_event

Now, when you read the trace, you can see the functions and their parameters:

# tracer: nop

#

# entries-in-buffer/entries-written: 359/359   #P:1

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth
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#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

             cat-382   [000] ...1  2935.586706: kmalloc:  
call_site=c0554644 ptr=de515a00 bytes_req=384 bytes_alloc=512  
gfp_flags=GFP_ATOMIC|GFP_NOWARN|GFP_NOMEMALLOC

             cat-382   [000] ...1  2935.586718: kfree:  
call_site=c059c2d8 ptr=  (null)

Exactly the same trace events are visible in perf as tracepoint events.

Using LTTng
The Linux Trace Toolkit project was started by Karim Yaghmour as a means of 
tracing kernel activity and was one of the first trace tools generally available for the 
Linux kernel. Later, Mathieu Desnoyers took up the idea and re-implemented it 
as the next generation trace tool, LTTng. It was then expanded to cover user space 
traces as well as the kernel. The project website is at http://lttng.org/ and 
contains a comprehensive user manual.

LTTng consists of three components:

• A core session manager
• A kernel tracer implemented as a group of kernel modules
• A user space tracer implemented as a library

In addition to those, you will need a trace viewer such as Babeltrace (http://www.
efficios.com/babeltrace) or the Eclipse Trace Compaas plug-in to display and 
filter the raw trace data on the host or target.

LTTng requires a kernel configured with CONFIG_TRACEPOINTS, which is enabled 
when you select Kernel hacking | Tracers | Kernel Function Tracer.

The description that follows refers to LTTng version 2.5; other versions may  
be different.

LTTng and the Yocto Project
You need to add these packages to the target dependencies, for example, in  
conf/local.conf:

IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"

If you want to run Babeltrace on the target, also append the package babeltrace.
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LTTng and Buildroot
You need to enable the following:

• BR2_PACKAGE_LTTNG_MODULES in the menu Target packages | Debugging, 
profiling and benchmark | lttng-modules.

• BR2_PACKAGE_LTTNG_TOOLS in the menu Target packages | Debugging, 
profiling and benchmark | lttng-tools.

For user space trace tracing, enable this:

• BR2_PACKAGE_LTTNG_LIBUST in the menu Target packages | Libraries | 
Other, enable lttng-libust.

There is a package called lttng-babletrace for the target. Buildroot builds the host 
babeltrace automatically and places in output/host/usr/bin/babeltrace.

Using LTTng for kernel tracing
LTTng can use the set of ftrace events described above as potential trace points. 
Initially, they are disabled.

The control interface for LTTng is the lttng command. You can list the kernel probes 
using the following:

# lttng list --kernel

Kernel events:

-------------

      writeback_nothread (loglevel: TRACE_EMERG (0)) (type:  
tracepoint)

      writeback_queue (loglevel: TRACE_EMERG (0)) (type:  
tracepoint)

      writeback_exec (loglevel: TRACE_EMERG (0)) (type:  
tracepoint)

[...]

Traces are captured in the context of a session which, in this example, is called test:

# lttng create test

Session test created.

Traces will be written in /home/root/lttng-traces/test-20150824- 
140942

# lttng list

Available tracing sessions:
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  1) test (/home/root/lttng-traces/test-20150824-140942)  
[inactive]

Now enable a few events in the current session. You can enable all kernel tracepoints 
using the --all option but remember the warning about generating too much trace 
data. Let's start with a couple of scheduler-related trace events:

# lttng enable-event --kernel sched_switch,sched_process_fork

Check that everything is set up:

# lttng list test

Tracing session test: [inactive]

    Trace path: /home/root/lttng-traces/test-20150824-140942

    Live timer interval (usec): 0

=== Domain: Kernel ===

Channels:

-------------

- channel0: [enabled]

    Attributes:

      overwrite mode: 0

      subbufers size: 26214

      number of subbufers: 4

      switch timer interval: 0

      read timer interval: 200000

      trace file count: 0

      trace file size (bytes): 0

      output: splice()

    Events:

      sched_process_fork (loglevel: TRACE_EMERG (0)) (type:  
tracepoint) [enabled]

      sched_switch (loglevel: TRACE_EMERG (0)) (type: tracepoint)  
[enabled]

Now start tracing:

# lttng start
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Run the test load and then stop tracing:

# lttng stop

Traces for the session are written to the session directory, lttng-traces/<session>/
kernel.

You can use the Babeltrace viewer to dump the raw trace data in text format, in this 
case, I ran it on the host computer:

$ babeltrace  lttng-traces/test-20150824-140942/kernel

The output is too verbose to fit on this page, so I will leave it as an exercise for 
you, the reader, to capture and display a trace in this way. The text output from 
eBabeltrace does have the advantage that it is easy to search for strings using grep 
and similar commands.

A good choice for a graphical trace viewer is the Trace Compass plug-in for Eclipse, 
which is now part of the Eclipse IDE for C/C++ Developers bundle. Importing  
the trace data into Eclipse is characteristically fiddly. Briefly, you need to follow 
these steps:

1. Open the tracing perspective.
2. Create a new project by selecting File | New | Tracing project.
3. Enter a project name and click Finish.
4. Right-click on the New Project option in the Project Explorer menu and 

select Import.
5. Expand Tracing and then select Trace Import.
6. Browse to the directory containing the traces (for example, test-20150824-

140942), tick the box to indicate which sub-directories you want (it might be 
the kernel) and click Finish.

7. Now, expand the project and, within that, expand Traces[1] and, within that, 
double-click on kernel.
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8. You should see the trace data shown in the following screenshot:

In the preceding screenshot, I have zoomed in on the control flow view to show state 
transitions between dropbear and a shell, and also some activity of the lttng daemon.

Using Valgrind for application profiling
I introduced Valgrind in Chapter 11, Managing Memory, as a tool for identifying 
memory problems using the memcheck tool. Valgrind has other useful tools for 
application profiling. The two I am going to look at here are Callgrind and Helgrind. 
Since Valgrind works by running the code in a sandbox, it is able to check the code as 
it runs and report certain behaviors, which native tracers and profilers cannot do.

Callgrind
Callgrind is a call-graph generating profiler that also collects information about 
processor cache hit rate and branch prediction. Callgrind is only useful if your 
bottleneck is CPU-bound. It's not useful if heavy I/O or multiple processes  
are involved.
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Valgrind does not require kernel configuration but it does need debug symbols. It is 
available as a target package in both the Yocto Project and Buildroot (BR2_PACKAGE_
VALGRIND).

You run Callgrind in Valgrind on the target, like so:

# valgrind --tool=callgrind <program>

This produces a file called callgrind.out.<PID> which you can copy to the host 
and analyze with callgrind_annotate.

The default is to capture data for all the threads together in a single file. If you add 
option --separate-threads=yes when capturing, there will be profiles for each 
of the threads in files named callgrind.out.<PID>-<thread id>, for example, 
callgrind.out.122-01, callgrind.out.122-02, and so on.

Callgrind can simulate the processor L1/L2 cache and report on cache misses. 
Capture the trace with the --simulate-cache=yes option. L2 misses are much more 
expensive than L1 misses, so pay attention to code with high D2mr or D2mw counts.

Helgrind
This is a thread error detector for detecting synchronization errors in C, C++, and 
Fortran programs that include POSIX threads.

Helgrind can detect three classes of error. Firstly, it can detect the incorrect use 
of the API. For example, it can unlock a mutex that is already unlocked, unlock a 
mutex that was locked by a different thread, not checking the return value of certain 
Pthread functions. Secondly, it monitors the order in which threads acquire locks 
and thus detects potential deadlocks which could arise from the formation of cycles 
of locks. Finally, it detects data races which can happen when two threads access a 
shared memory location without using suitable locks or other synchronization to 
ensure single-threaded access.

Using Helgrind is simple, you just need this command:

# valgrind --tool=helgrind <program>

It prints problems and potential problems as it finds them. You can direct these 
messages to a file by adding --log-file=<filename>.
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Using strace to show system calls
I started the chapter with the simple and ubiquitous tool, top, and I will finish with 
another: strace. It is a very simple tracer that captures system calls made by a 
program and, optionally, its children. You can use it to do the following:

• Learn which system calls a program makes.
• Find those system calls that fail together with the error code. I find this useful 

if a program fails to start but doesn't print an error message or if the message 
is too general. strace shows the failing syscall.

• Find which files a program opens.
• Find out what syscalls a running program is making, for example to see if it 

is stuck in a loop.

There are many more examples online, just search for strace tips and tricks. 
Everybody has their own favorite story, for example, http://chadfowler.com/
blog/2014/01/26/the-magic-of-strace

strace uses the ptrace(2) function to hook calls from user space to the kernel. If 
you want to know more about how ptrace works, the man page is detailed and 
surprisingly legible.

The simplest way to get a trace is to run the command with strace as shown here 
(the listing has been edited to make it clearer):

# strace ./helloworld
execve("./helloworld", ["./helloworld"], [/* 14 vars */]) = 0
brk(0)                                  = 0x11000
uname({sys="Linux", node="beaglebone", ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, - 
1, 0) = 0xb6f40000
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or  
directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=8100, ...}) = 0
mmap2(NULL, 8100, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb6f3e000
close(3)                                = 0
open("/lib/tls/v7l/neon/vfp/libc.so.6", O_RDONLY|O_CLOEXEC) = -1  
ENOENT (No such file or directory)
[...]
open("/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3,  
"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0$`\1\0004\0\0\0"...,  
512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1291884, ...}) = 0
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mmap2(NULL, 1328520, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE,  
3, 0) = 0xb6df9000

mprotect(0xb6f30000, 32768, PROT_NONE)  = 0

mmap2(0xb6f38000, 12288, PROT_READ|PROT_WRITE,  
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x137000) = 0xb6f38000

mmap2(0xb6f3b000, 9608, PROT_READ|PROT_WRITE,  
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb6f3b000

close(3)

[...]

write(1, "Hello, world!\n", 14Hello, world!

)         = 14

exit_group(0)                           = ?

+++ exited with 0 +++

Most of the trace shows how the runtime environment is created. In particular  
you can see how the library loader hunts for libc.so.6, eventually finding it in  
/lib. Finally, it gets to running the main() function of the program, which prints  
its message and exits.

If you want strace to follow any child processes or threads created by the original 
process, add the -f option.

If you are using strace to trace a program that creates threads,  
you almost certainly want the -f option. Better still, use -ff and  
-o <file name> so that the output for each child process or thread 
is written to a separate file named <filename>.<PID | TID>.

A common use of strace is to discover which files a program tries to open at start 
up. You can restrict the system calls that are traced through the -e option, and you 
can write the trace to a file instead of stdout by using the -o option:

# strace -e open -o ssh-strace.txt ssh localhost

This shows the libraries and configuration files ssh opens when it is setting up  
a connection.

You can even use strace as a basic profile tool: if you use the -c option, it 
accumulates the time spent in system calls and prints out a summary like this:

# strace -c grep linux /usr/lib/* > /dev/null

% time     seconds  usecs/call     calls    errors syscall

------ ----------- ----------- --------- --------- ----------

 78.68    0.012825         1       11098      18    read



Chapter 13

[ 941 ]

 11.03    0.001798         1        3551            write

 10.02    0.001634         8         216      15    open

  0.26    0.000043         0         202            fstat64

  0.00    0.000000         0         201            close

  0.00    0.000000         0          1             execve

  0.00    0.000000         0          1       1     access

  0.00    0.000000         0          3             brk

  0.00    0.000000         0         199            munmap

  0.00    0.000000         0          1             uname

  0.00    0.000000         0          5             mprotect

  0.00    0.000000         0         207            mmap2

  0.00    0.000000         0         15       15    stat64

  0.00    0.000000         0          1             getuid32

  0.00    0.000000         0          1             set_tls

------ ----------- ----------- --------- --------- -----------

100.00    0.016300                 15702      49 total

Summary
Nobody can complain that Linux lacks options to profile and trace. This chapter has 
given you an overview of some of the most common ones.

When faced with a system that is not performing as well as you would like, start 
with top and try to identify the problem. If it proves to be a single application,  
then you can use perf record/report to profile it, bearing in mind that you will 
have to configure the kernel to enable perf and you will need debug symbols for  
the binaries and kernel. OProfile is an alternative to perf record and can tell  
you similar things. gprof is, frankly, outdated but it does have the advantage  
of not requiring kernel support. If the problem is not so well localized, use perf  
(or OProfile) to get a system-wide view.

Ftrace comes into its own when you have specific questions about the behavior of 
the kernel. The function and function_graph tracers give a detailed view of the 
relationship and sequence of function calls. The event tracers allow you to extract 
more information about functions including the parameters and return values. 
LTTng performs a similar role, making use the event trace mechanism, and adds 
high speed ring buffers to extract large quantities of data from the kernel. Valgrind 
has the particular advantage that it runs code in a sandbox and can report on errors 
that are hard to track down in other ways. 
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Using the Callgrind tool, it can generate call graphs and report on processor cache 
usage and, with Helgrind, it can report on thread-related problems. Finally, don't 
forget strace. It is a good standby for finding out what system calls a program is 
making, from tracking file open calls to find file path names to checking for system 
wake ups and incoming signals.

All the while, be aware of, and try to avoid, the observer effect: make sure that the 
measurements you are making are valid for a production system. In the next chapter, 
I will continue the theme as I delve into the latency tracers that help us quantify the 
real-time performance of a target system.
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Real-time Programming
Much of the interaction between a computer system and the real world happens 
in real-time and so this is an important topic for developers of embedded systems. 
I have touched on real-time programming in several places so far: in Chapter 10, 
Learning About Processes and Threads, I looked at scheduling policies and priority 
inversion, and in Chapter 11, Managing Memory, I described the problems with page 
faults and the need for memory locking. Now, it is time to bring these topics together 
and look at real-time programming in some depth.

In this chapter, I will begin with a discussion about the characteristics of real-time 
systems and then consider the implications for system design, both at the application 
and kernel levels. I will describe the real-time kernel patch, PREEMPT_RT, and show 
how to get it and apply it to a mainline kernel. The last sections will describe how to 
characterize system latencies using two tools: cyclictest and Ftrace.

There are other ways to achieve real-time behavior on an embedded Linux device, 
for instance, using a dedicated micro-controller or a separate real-time kernel 
alongside the Linux kernel in the way that Xenomai and RTAI do. I am not going 
to discuss these here because the focus of this book is on using Linux as the core for 
embedded systems.

What is real-time?
The nature of real-time programming is one of the subjects that software engineers 
love to discuss at length, often giving a range of contradictory definitions. I will 
begin by setting out what I think is important about real-time.

A task is a real-time task if it has to complete before a certain point in time, known as 
the deadline. The distinction between real-time and non real-time tasks is shown by 
considering what happens when you play an audio stream on your computer while 
compiling the Linux kernel. 
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The first is a real-time task because there is a constant stream of data arriving at the 
audio driver and blocks of audio samples have to be written to the audio interface  
at the playback rate. Meanwhile, the compilation is not real-time because there is  
no deadline. You simply want it to complete as soon as possible; whether it takes  
10 seconds or 10 minutes does not affect the quality of the kernel.

The other important thing to consider is the consequence of missing the deadline, 
which can range from mild annoyance through to system failure and death.  
Here are some examples:

• Playing an audio stream: There is a deadline in the order of tens of 
milliseconds. If the audio buffer under-runs you will hear a click, which is 
annoying, but you will get over it.

• Moving and clicking a mouse: The deadline is also in the order of tens of 
milliseconds. If it is missed, the mouse moves erratically and button clicks 
will be lost. If the problem persists, the system will become unusable.

• Printing a piece of paper: The deadlines for the paper feed are in the 
millisecond range, which, if missed, may cause the printer to jam and 
somebody will have to go and fix it. Occasional jams are acceptable but 
nobody is going to buy a printer that keeps on jamming.

• Printing sell-by dates on bottles on a production line: If one bottle is not 
printed the whole production line has to be halted, the bottle removed and 
the line restarted, which is expensive.

• Baking a cake: There is a deadline of 30 minutes or so. If you miss it by a  
few minutes, the cake might be ruined. If you miss it by a large amount,  
the house will burn down.

• A power surge detection system: If the system detects a surge, a circuit 
breaker has to be triggered within 2 milliseconds. Failing to do so causes 
damage to the equipment and may injure or kill personnel.

In other words, there are many consequences to missed deadlines. We often talk 
about these different categories:

• soft real-time: The deadline is desirable but is sometimes missed without the 
system being considered a failure. First two examples are like this.

• hard real-time: Here, missing a deadline has a serious effect. We can further 
subdivide hard real-time into mission-critical systems in which there is a cost 
to missing the deadline, such as the fourth example, and safety critical-systems 
in which there is a danger to life and limb, such as the last two examples.  
I put in the baking example to show that not all hard real-time systems  
have deadlines measured in microseconds.
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Software written for safety-critical systems has to conform to various standards 
that seek to ensure that it is capable of performing reliably. It is very difficult for a 
complex operating system such as Linux to meet those requirements.

When it comes to mission-critical systems, it is possible, and common, for Linux to be 
used for a wide range of control systems. The requirements of the software depend 
on the combination of the deadline and the confidence level, which can usually be 
determined through extensive testing.

Therefore, to say that a system is real-time, you have to measure its response times 
under the maximum anticipated load, and show that it meets the deadline for an 
agreed proportion of the time. As a rule of thumb, a well configured Linux system 
using a mainline kernel is good for soft real-time tasks with deadlines down to  
tens of milliseconds and a kernel with the PREEMPT_RT patch is good for soft and 
hard real-time mission-critical systems with deadlines down to several hundreds  
of microseconds.

The key to creating a real-time system is to reduce the variability in response times 
so that you have greater confidence that they will not be missed; in other words, you 
need to make the system more deterministic. Often, this is done at the expense of 
performance. For example, caches make systems run faster by making the average 
time to access an item of data shorter, but the maximum time is longer in the case 
of a cache miss. Caches make a system faster but less deterministic, which is the 
opposite of what we want.

It is a myth of real-time computing that it is fast. This is not so, the 
more deterministic a system is, the lower the maximum throughput.

The remainder of this chapter is concerned with identifying the causes of latency and 
the things you can do to reduce it.
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Identifying the sources of  
non-determinism
Fundamentally, real-time programming is about making sure that the threads 
controlling the output in real-time are scheduled when needed and so can complete 
the job before the deadline. Anything that prevents this is a problem. Here are some 
problem areas:

• Scheduling: Real-time threads must be scheduled before others so they must 
have a real-time policy, SCHED_FIFO, or SCHED_RR. Additionally they should 
have priorities assigned in descending order starting with the one with the 
shortest deadline, according to the theory of Rate Monotonic Analysis that I 
described in Chapter 10, Learning About Processes and Threads.

• Scheduling latency: The kernel must be able to reschedule as soon as an 
event such as an interrupt or timer occurs, and not be subject to unbounded 
delays. Reducing scheduling latency is a key topic later on in this chapter.

• Priority inversion: This is a consequence of priority-based scheduling, which 
leads to unbounded delays when a high priority thread is blocked on a mutex 
held by a low priority thread, as I described in Chapter 10, Learning About 
Processes and Threads. User space has priority inheritance and priority ceiling 
mutexes; in kernel space we have rt-mutexes which implement priority 
inheritance and which I will talk about in the section on the real-time kernel.

• Accurate timers: If you want to manage deadlines in the region of low 
milliseconds or microseconds, you need timers that match. High resolution 
timers are crucial and are a configuration option on almost all kernels.

• Page faults: A page fault while executing a critical section of code will upset 
all timing estimates. You can avoid them by locking memory, as I describe 
later on.

• Interrupts: They occur at unpredictable times and can result in unexpected 
processing overhead if there is a sudden flood of them. There are two ways 
to avoid this. One is to run interrupts as kernel threads, and the other, on 
multi-core devices, is to shield one or more CPUs from interrupt handling. I 
will discuss both possibilities later.

• Processor caches: Provide a buffer between the CPU and the main memory 
and, like all caches, are a source of non-determinism, especially on multi-core 
devices. Unfortunately, this is beyond the scope of this book but, refer to the 
references at the end of the chapter.
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• Memory bus contention: When peripherals access memory directly through 
a DMA channel they use up a slice of memory bus bandwidth, which 
slows down access from the CPU core (or cores) and so contributes to non-
deterministic execution of the program. However, this is a hardware issue 
and is also beyond the scope of this book.

I will expand on the important problems and see what can be done about them in the 
next sections.

One item missing from the list is power management. The needs of real-time and 
power management pull in opposite directions. Power management often leads 
to high latencies when switching between sleep states, since setting up power 
regulators and waking up processors all takes time, as does changing the core  
clock frequency because the clocks take time to settle. But, surely you wouldn't 
expect a device to respond immediately to an interrupt from suspend state?  
I know I can't get going in the morning until after at least one cup of coffee.

Understanding scheduling latency
Real-time threads need to be scheduled as soon as they have something to do. 
However, even if there are no other threads of the same or higher priority, there 
is always a delay from the point at which the wake up event occurs – an interrupt 
or system timer – to the time that the thread starts to run. This is called scheduling 
latency. It can be broken down into several components, as shown in the following 
diagram:
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Firstly, there is the hardware interrupt latency from the point at which an interrupt 
is asserted until the ISR (interrupt service routine) begins to run. A small part of 
this is the delay in the interrupt hardware itself but the biggest problem is interrupts 
disabled in the software. Minimizing this IRQ off time is important.

The next is interrupt latency, which is the length of time until the ISR has serviced 
the interrupt and woken up any threads waiting on this event. It is mostly dependent 
on the way the ISR was written. Normally it should take only a short time, measured 
in micro-seconds.

The final delay is the preemption latency, which is the time from the point that the 
kernel is notified that a thread is ready to run to that at which the scheduler actually 
runs the thread. It is determined by whether the kernel can be preempted or not. If it 
is running code in a critical section then the reschedule will have to wait. The length 
of the delay is dependent on the configuration of kernel preemption.

Kernel preemption
The preemption latency occurs because it is not always safe or desirable to preempt the 
current thread of execution and call the scheduler. Mainline Linux has three settings 
for preemption, selected via the Kernel Features | Preemption Model menu:

• CONFIG_PREEMPT_NONE: no preemption
• CONFIG_PREEMPT_VOLUNTARY: enables additional checks for requests for 

preemption
• CONFIG_PREEMPT: allows the kernel to be preempted

With preemption set to none, kernel code will continue without rescheduling until 
it either returns via a syscall back to user space, where preemption is always 
allowed, or it encounters a sleeping wait which stops the current thread. Since it 
reduces the number of transitions between the kernel and user space and may reduce 
the total number of context switches, this option results in the highest throughput 
at the expense of large preemption latencies. It is the default for servers and some 
desktop kernels where throughput is more important than responsiveness.

The second option enables more explicit preemption points where the scheduler 
is called if the need_resched flag is set, which reduces the worst case preemption 
latencies at the expense of slightly lower throughput. Some distributions set this 
option on desktops.
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The third option makes the kernel preemptible, meaning that an interrupt can result 
in an immediate reschedule so long as the kernel is not executing in an atomic context, 
which I will describe in the following section. This reduces worst case preemption 
latencies and, therefore, overall scheduling latencies, to something in the order of a few 
milliseconds on typical embedded hardware. This is often described as a soft real-time 
option and most embedded kernels are configured in this way. Of course, there is a 
small reduction in overall throughput but that is usually less important than having 
more deterministic scheduling for embedded devices.

The real-time Linux kernel (PREEMPT_RT)
There is a long-standing effort to reduce latencies still further which goes by the 
name of the kernel configuration option for these features, PREEMPT_RT. The project 
was started by Ingo Molnar, Thomas Gleixner, and Steven Rostedt and has had 
contributions from many more developers over the years. The kernel patches are at 
https://www.kernel.org/pub/linux/kernel/projects/rt and there is a wiki, 
including an FAQ (slightly out of date), at https://rt.wiki.kernel.org.

Many parts of the project have been incorporated into mainline Linux over the years, 
including high resolution timers, kernel mutexes, and threaded interrupt handlers. 
However, the core patches remain outside of the mainline because they are rather 
intrusive and (some claim) only benefit a small percentage of the total Linux user 
base. Maybe, one day, the whole patch set will be merged upstream.

The central plan is to reduce the amount of time the kernel spends running in an 
atomic context, which is where it is not safe to call the scheduler and switch to a 
different thread. Typical atomic contexts are when the kernel:

• is running an interrupt or trap handler
• is holding a spin lock or in an RCU critical section. Spin lock and RCU  

are kernel locking primitives, the details of which are not relevant here
• is between calls to preempt_disable() and preempt_enable()
• hardware interrupts are disabled

The changes that are part of PREEMPT_RT fall into two main areas: one is to reduce 
the impact of interrupt handlers by turning them into kernel threads and the other is 
to make locks preemptible so that a thread can sleep while holding one. It is obvious 
that there is a large overhead in these changes, which makes average case interrupt 
handling slower but much more deterministic, which is what we are striving for.
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Threaded interrupt handlers
Not all interrupts are triggers for the real-time tasks but all interrupts steal cycles 
from the real-time task. Threaded interrupt handlers allow a priority to be associated 
with the interrupt and for it to be scheduled at an appropriate time as shown in the 
following diagram:

If the interrupt handler code is run as a kernel thread there is no reason why it 
cannot be preempted by a user space thread of higher priority, and so the interrupt 
handler does not contribute towards scheduling latency of the user space thread. 
Threaded interrupt handlers have been a feature of mainline Linux since 2.6.30. You 
can request that an individual interrupt handler is threaded by registering it with 
request_threaded_irq() in place of the normal request_irq(). You can make 
threaded IRQs the default by configuring the kernel with CONFIG_IRQ_FORCED_
THREADING=y which makes all handlers into threads unless they have explicitly 
prevented this by setting the IRQF_NO_THREAD flag. When you apply the PREEMPT_RT 
patches, interrupts are, by default, configured as threads in this way. Here is an 
example of what you might see:

# ps -Leo pid,tid,class,rtprio,stat,comm,wchan | grep FF

PID     TID     CLS     RTPRIO  STAT    COMMAND          WCHAN

3       3       FF      1       S      ksoftirqd/0      smpboot_th

7       7       FF      99      S      posixcputmr/0    posix_cpu_

19      19      FF      50      S      irq/28-edma      irq_thread

20      20      FF      50      S      irq/30-edma_err  irq_thread

42      42      FF      50      S      irq/91-rtc0      irq_thread
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43      43      FF      50      S      irq/92-rtc0      irq_thread
44      44      FF      50      S      irq/80-mmc0      irq_thread
45      45      FF      50      S      irq/150-mmc0     irq_thread
47      47      FF      50      S      irq/44-mmc1      irq_thread
52      52      FF      50      S      irq/86-44e0b000  irq_thread
59      59      FF      50      S      irq/52-tilcdc    irq_thread
65      65      FF      50      S      irq/56-4a100000  irq_thread
66      66      FF      50      S      irq/57-4a100000  irq_thread
67      67      FF      50      S      irq/58-4a100000  irq_thread
68      68      FF      50      S      irq/59-4a100000  irq_thread
76      76      FF      50      S      irq/88-OMAP UAR  irq_thread

In this case, a BeagleBone running linux-yocto-rt, only the gp_timer interrupt was 
not threaded. It is normal that the timer interrupt handler be run in-line.

Note that the interrupt threads have all been given the default 
policy SCHED_FIFO and a priority of 50. It doesn't make sense to 
leave them with the defaults, however; now is your chance to assign 
priorities according to the importance of the interrupts compared to 
real-time user space threads.

Here is a suggested order of descending thread priorities:

• The POSIX timers thread, posixcputmr, should always have the  
highest priority.

• Hardware interrupts associated with the highest priority real-time thread.
• The highest priority real-time thread.
• Hardware interrupts for the progressively lower priority real-time threads 

followed by the thread itself.
• Hardware interrupts for non-real-time interfaces.
• The soft IRQ daemon, ksoftirqd, which on RT kernels is responsible for 

running delayed interrupt routines and, prior to Linux 3.6, was responsible 
for running the network stack, the block I/O layer, and other things. You 
may need to experiment with different priority levels to get a balance.

You can change the priorities using the chrt command as part of the boot script, 
using a command like this:

# chrt -f -p 90 `pgrep irq/28-edma`

The pgrep command is part of the procps package.
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Preemptible kernel locks
Making the majority of kernel locks preemptible is the most intrusive change that 
PREEMPT_RT makes and this code remains outside of the mainline kernel.

The problem occurs with spinlocks, which are used for much of the kernel locking. 
A spinlock is a busy-wait mutex which does not require a context switch in the 
contended case and so is very efficient as long as the lock is held for a short time. 
Ideally, they should be locked for less than the time it would take to reschedule twice. 
The following diagram shows threads running on two different CPUs contending the 
same spinlock. CPU0 gets it first, forcing CPU1 to spin, waiting until it is unlocked:

The thread that holds the spinlock cannot be preempted since doing so may make 
the new thread enter the same code and deadlock when it tries to lock the same 
spinlock. Consequently, in mainline Linux, locking a spinlock disables kernel 
preemption, creating an atomic context. This means that a low priority thread that 
holds a spinlock can prevent a high priority thread from being scheduled.

The solution adopted by PREEMPT_RT is to replace almost all 
spinlocks with rt-mutexes. A mutex is slower than a spinlock but 
it is fully preemptible. Not only that, but rt-mutexes implement 
priority inheritance and so are not susceptible to priority inversion.

Getting the PREEMPT_RT patches
The RT developers do not create patch sets for every kernel version because of the 
amount of effort involved. On average, they create patches for every other kernel. 
The most recent kernels that are supported at the time of writing are as follows:

• 4.1-rt
• 4.0-rt
• 3.18-rt
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• 3.14-rt
• 3.12-rt
• 3.10-rt

The patches are available at https://www.kernel.org/pub/linux/kernel/
projects/rt.

If you are using the Yocto Project, there is an rt version of the kernel already. 
Otherwise, it is possible that the place you got your kernel from already has the 
PREEMPT_RT patch applied. Otherwise, you will have to apply the patch yourself. 
Firstly, make sure that the PREEMPT_RT patch version and your kernel version match 
exactly, otherwise you will not be able to apply the patches cleanly. Then you apply 
it in the normal way, as shown here:

$ cd linux-4.1.10

$ zcat patch-4.1.10-rt11.patch.gz | patch -p1

You will then be able to configure the kernel with CONFIG_PREEMPT_RT_FULL.

There is a problem in the last paragraph. The RT patch will only apply if you are 
using a compatible mainline kernel. You are probably not because that is the nature 
of embedded Linux kernels and so you will have to spend some time looking at failed 
patches and fixing them, and then analyzing the board support for your target and 
adding any real-time support that is missing. These details are, once again, outside 
the scope of this book. If you are not sure what to do, you should inquire of the 
developers of the kernel you are using and on kernel developer's forums.

The Yocto Project and PREEMPT_RT
The Yocto Project supplies two standard kernel recipes: linux-yocto and linux-
yocto-rt, the latter having the real-time patches already applied. Assuming that  
your target is supported by these kernels, then you just need to select linux-yocto-rt 
as your preferred kernel and declare that your machine is compatible, for example,  
by adding lines similar to these to your conf/local.conf:

PREFERRED_PROVIDER_virtual/kernel = "linux-yocto-rt"
COMPATIBLE_MACHINE_beaglebone = "beaglebone"
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High resolution timers
Timer resolution is important if you have precise timing requirements which is 
typical for real-time applications. The default timer in Linux is a clock that runs at 
a configurable rate, typically 100 Hz for embedded systems and 250 Hz for servers 
and desktops. The interval between two timer ticks is known as a jiffy and, in the 
examples given above, is 10 milliseconds on an embedded SoC and four milliseconds 
on a server.

Linux gained more accurate timers from the real-time kernel project in version 2.6.18 
and now they are available on all platforms, providing that there is a high resolution 
timer source and device driver for it – which is almost always the case. You need to 
configure the kernel with CONFIG_HIGH_RES_TIMERS=y.

With this enabled, all the kernel and user space clocks will be accurate down to 
the granularity of the underlying hardware. Finding the actual clock granularity 
is difficult. The obvious answer is the value provided by clock_getres(2) but 
that always claims a resolution of one nanosecond. The cyclictest tool that I will 
describe later has an option to analyze the times reported by the clock to guess the 
resolution:

# cyclictest -R

# /dev/cpu_dma_latency set to 0us

WARN: reported clock resolution: 1 nsec

WARN: measured clock resolution approximately: 708 nsec

You can also look at the kernel log messages for strings like this:

# dmesg | grep clock

OMAP clockevent source: timer2 at 24000000 Hz

sched_clock: 32 bits at 24MHz, resolution 41ns, wraps every  
178956969942ns

OMAP clocksource: timer1 at 24000000 Hz

Switched to clocksource timer1

The two methods give rather different numbers, for which I have no good 
explanation but, since both are below one microsecond, I am happy.

Avoiding page faults in a real-time 
application
A page fault occurs when an application reads or writes memory that is not 
committed to physical memory. It is impossible (or very hard) to predict when a 
page fault will happen so they are another source of non-determinism in computers.
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Fortunately, there is a function that allows you to commit all memory for a process  
and lock it down so that it cannot cause a page fault. It is mlockall(2). These are its 
two flags:

• MCL_CURRENT: locks all pages currently mapped
• MCL_FUTURE: locks pages that are mapped in later

You usually call mlockall(2) during the start up of the application with both flags 
set to lock all current and future memory mappings.

Note that MCL_FUTURE is not magic in that there will still  be 
non-deterministic delay when allocating or freeing heap memory 
using malloc()/free() or mmap(). Such operations are best 
done at start up and not in the main control loops.

Memory allocated on the stack is trickier because it is done automatically and if you 
call a function that makes the stack deeper than before, you will encounter more 
memory management delays. A simple fix is to grow the stack to a size larger than 
you think you will ever need at start up. The code would look like this:

#define MAX_STACK (512*1024)
static void stack_grow (void)
{
  char dummy[MAX_STACK];
  memset(dummy, 0, MAX_STACK);
  return;
}

int main(int argc, char* argv[])
{
  [...]
  stack_grow ();
  mlockall(MCL_CURRENT | MCL_FUTURE);
  [...]

The stack_grow() function allocates a large variable on the stack and then zeroes it 
to force those pages of memory to be committed to this process.
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Interrupt shielding
Using threaded interrupt handlers helps mitigate interrupt overhead by running 
some threads at a higher priority than interrupt handlers that do not impact the real-
time tasks. If you are using a multi-core processor, you can take a different approach 
and shield one or more cores from processing interrupts completely, allowing them 
to be dedicated to real-time tasks instead. This works either with a normal Linux 
kernel or a PREEMPT_RT kernel.

Achieving this is a question of pinning the real-time threads to one CPU and  
the interrupt handlers to a different one. You can set the CPU affinity off a  
thread or process using the command line tool taskset, or you can use the  
sched_setaffinity(2) and pthread_setaffinity_np(3) functions.

To set the affinity of an interrupt, first note that there is a subdirectory for each 
interrupt number in /proc/irq/<IRQ number>. The control files for the interrupt  
are in there, including a CPU mask in smp_affinity. Write a bitmask to that file 
with a bit set for each CPU that is allowed to handle that IRQ.

Measuring scheduling latencies
All the configuration and tuning you may do will be pointless if you cannot show 
that your device meets the deadlines. You will need your own benchmarks for the 
final testing but I will describe here two important measurement tools: cyclictest 
and Ftrace.

cyclictest
cyclictest was originally written by Thomas Gleixner and is now available on most 
platforms in a package named rt-tests. If you are using the Yocto Project, you can 
create a target image that includes rt-tests by building the real-time image recipe 
like this:

$ bitbake core-image-rt

If you are using Buildroot, you need to add the package, BR2_PACKAGE_RT_TESTS in 
the menu Target packages | Debugging, profiling and benchmark | rt-tests.

cyclictest measures scheduling latencies by comparing the actual time taken for a 
sleep to the requested time. If there was no latency they would be the same and the 
reported latency would be zero. cyclictest assumes a timer resolution of less than 
one microsecond.
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It has a large number of command-line options. To start with, you might try running 
this command as root on the target:

# cyclictest -l 100000 -m -n -p 99

# /dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 1.14 1.06 1.00 1/49 320

T: 0 (  320) P:99 I:1000 C: 100000 Min:  9 Act:  13 Avg:  15  
Max:  134

The options selected are as follows:

• -l N: loop N times: the default is unlimited
• -m: lock memory with mlockall
• -n: use clock_nanosleep(2) instead of nanosleep(2)
• -p N: use the real-time priority N

The result line shows the following, reading from left to right:

• T: 0: this was thread 0, the only thread in this run. You can set the number 
of threads with parameter -t.

• (320): this was PID 320.
• P:99: the priority was 99.
• I:1000: the interval between loops was 1,000 microseconds. You can set the 

interval with parameter -i N.
• C:100000: the final loop count for this thread was 100,000.
• Min: 9: the minimum latency was 9 microseconds.
• Act:13: the actual latency was 13 microseconds. The actual latency is 

the most recent latency measurement, which only makes sense if you are 
watching cyclictest run.

• Avg:15: the average latency was 15 microseconds.
• Max:134: the maximum latency was 134 microseconds.

This was obtained on an idle system running an unmodified linux-yocto kernel  
as a quick demonstration of the tool. To be of real use, you would run tests over  
a 24 hour period or more while running a load representative of the maximum  
you expect.
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Of the numbers produced by cyclictest, the maximum latency is the most 
interesting, but it would be nice to get an idea of the spread of the values. You 
can get that by adding -h <N> to obtain a histogram of samples that are up to N 
microseconds late. Using this technique, I obtained three traces for the same target 
board running kernels with no preemption, with standard preemption, and with 
RT preemption while being loaded with Ethernet traffic from a flood ping. The 
command line was as shown here:

# cyclictest -p 99 -m -n -l 100000 -q -h 500 > cyclictest.data

The following is the output generated with no preemption:

Without preemption, most samples are within 100 microseconds of the deadline,  
but there are some outliers of up to 500 microseconds, which is pretty much what 
you would expect.
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This is the output generated with standard preemption:

With preemption, the samples are spread out at the lower end but there is nothing 
beyond 120 microseconds.

Here is the output generated with RT preemption:
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The RT kernel is a clear winner because everything is tightly bunched around the 20 
microsecond mark and there is nothing later than 35 microseconds.

cyclictest, then, is a standard metric for scheduling latencies. However, it cannot 
help you identify and resolve specific problems with kernel latency. To do that, you 
need Ftrace.

Using Ftrace
The kernel function tracer has tracers to help track down kernel latencies—that is 
what it was originally written for, after all. These tracers capture the trace for the 
worst case latency detected during a run, showing the functions that caused the 
delay. The tracers of interest, together with the kernel configuration parameters,  
are as follows:

• irqsoff: CONFIG_IRQSOFF_TRACER traces code that disables interrupts, 
recording the worst case

• preemptoff: CONFIG_PREEMPT_TRACER is similar to irqsoff, but traces 
the longest time that kernel preemeption is disabled (only available on 
preemptible kernels)

• preemptirqsoff: it combines the previous two traces to record the largest 
time either irqs and/or preemption is disabled

• wakeup: traces and records the maximum latency that it takes for the highest 
priority task to get scheduled after it has been woken up

• wakeup_rt: the same as wake up but only for real-time threads with the 
SCHED_FIFO, SCHED_RR, or SCHED_DEADLINE policies

• wakeup_dl: the same but only for deadline-scheduled threads with the 
SCHED_DEADLINE policy

Be aware that running Ftrace adds a lot of latency, in the order of tens of milliseconds, 
every time it captures a new maximum which Ftrace itself can ignore. However, it 
skews the results of user-space tracers such as cyclictest. In other words, ignore the 
results of cyclictest if you run it while capturing traces.

Selecting the tracer is the same as for the function tracer we looked at in Chapter 13, 
Profiling and Tracing. Here is an example of capturing a trace for the maximum period 
with preemption disabled for a period of 60 seconds:

# echo preemptoff > /sys/kernel/debug/tracing/current_tracer

# echo 0 > /sys/kernel/debug/tracing/tracing_max_latency

# echo 1  > /sys/kernel/debug/tracing/tracing_on

# sleep 60

# echo 0  > /sys/kernel/debug/tracing/tracing_on
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The resulting trace, heavily edited, looks like this:

# cat /sys/kernel/debug/tracing/trace

# tracer: preemptoff

#

# preemptoff latency trace v1.1.5 on 3.14.19-yocto-standard

# --------------------------------------------------------------------

# latency: 1160 us, #384/384, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0)

#    -----------------

#    | task: init-1 (uid:0 nice:0 policy:0 rt_prio:0)

#    -----------------

#  => started at: ip_finish_output

#  => ended at:   __local_bh_enable_ip

#

#

#                  _------=> CPU#

#                 / _-----=> irqs-off

#                | / _----=> need-resched

#                || / _---=> hardirq/softirq

#                ||| / _--=> preempt-depth

#                |||| /     delay

#  cmd     pid   ||||| time  |   caller

#     \   /      |||||  \    |   /

    init-1       0..s.    1us+: ip_finish_output

    init-1       0d.s2   27us+: preempt_count_add <-cpdma_chan_submit

    init-1       0d.s3   30us+: preempt_count_add <-cpdma_chan_submit

    init-1       0d.s4   37us+: preempt_count_sub <-cpdma_chan_submit

[...]

    init-1       0d.s2 1152us+: preempt_count_sub <-__local_bh_enable

    init-1       0d..2 1155us+: preempt_count_sub <-__local_bh_enable_ip

    init-1       0d..1 1158us+: __local_bh_enable_ip

    init-1       0d..1 1162us!: trace_preempt_on <-__local_bh_enable_ip

    init-1       0d..1 1340us : <stack trace>



Real-time Programming

[ 962 ]

Here, you can see that the longest period with kernel preemption disabled while 
running the trace was 1,160 microseconds. This simple fact is available by reading 
/sys/kernel/debug/tracing/tracing_max_latency, but the trace above goes 
further and gives you the sequence of kernel function calls that lead up to that 
measurement. The column marked delay shows the point on the trail where each 
function was called, ending with the call to trace_preempt_on() at 1162us, at 
which point kernel preemption is once again enabled. With this information, you can 
look back through the call chain and (hopefully) work out if this is a problem or not.

The other tracers mentioned work in the same way.

Combining cyclictest and Ftrace
If cyclictest reports unexpectedly long latencies you can use the breaktrace 
option to abort the program and trigger Ftrace to obtain more information.

You invoke breaktrace using -b<N> or --breaktrace=<N> where N is the number of 
microseconds of latency that will trigger the trace. You select the Ftrace tracer using 
-T[tracer name] or one of the following:

• -C: context switch
• -E: event
• -f: function
• -w: wakeup
• -W: wakeup-rt

For example, this will trigger the Ftrace function tracer when a latency greater than 
100 microseconds is measured:

# cyclictest -a -t -n -p99 -f -b100

Further reading
The following resources have further information about the topics introduced in  
this chapter:

• Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and 
Applications by Buttazzo, Giorgio, Springer, 2011

• Multicore Application Programming by Darryl Gove, Addison Wesley, 2011
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Summary
The term real-time is meaningless unless you qualify it with a deadline and an 
acceptable miss rate. When you know that you can determine whether or not Linux 
is a suitable candidate for the operating system and, if so, begin to tune your system 
to meet the requirements. Tuning Linux and your application to handle real-time 
events means making it more deterministic so that it can process data reliably inside 
deadlines. Determinism usually comes at the price of total throughput so a real-time 
system is not going to be able to process as much data as a non-real-time system.

It is not possible to provide mathematical proof that a complex operating system like 
Linux will always meet a given deadline, so the only approach is through extensive 
testing using tools such as cyclictest and Ftrace, and, more importantly, using 
your own benchmarks for your own application.

To improve determinism, you need to consider both the application and the kernel. 
When writing real-time applications, you should follow the guidelines given in this 
chapter about scheduling, locking, and memory.

The kernel has a large impact on the determinism of your system. Thankfully, there 
has been a lot of work on this over the years. Enabling kernel preemption is a good 
first step. If you still find that it is missing deadlines more often than you would like, 
then you might want to consider the PREEMPT_RT kernel patches. They can certainly 
produce low latencies but the fact that they are not in mainline yet means that you 
may have problems integrating them with the vendor kernel for your particular 
board. You may instead, or in addition, need to embark on the exercise of finding  
the cause of the latencies using Ftrace and similar tools.

That brings me to the end of this dissection of embedded Linux. Being an engineer 
of embedded systems requires a very wide range of skills, which range from a low 
level knowledge of hardware, how the system bootstrap works and how the kernel 
interacts with it, to being an excellent system engineer who is able to configure 
user applications and tune them to work in an efficient manner. All of this has to 
be done with hardware that is, almost always, only just capable of the task. There 
is a quotation that sums this up, An engineer can do for a dollar what anyone else can 
do for two. I hope that you will be able to achieve that with the information I have 
presented during the course of this book.
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