
SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

PA
N

TO
N

E
2955

C
PA

N
TO

N
E

O
range

021
C

C
M

Y
K

100,45,0,37
C

M
Y

K
O

,53,100,0

B
lack 100%

B
lack 50%

#
-
9
+
�

0AN
TO
N
E�

'
REY�SCALE

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

#-9+�

0ANTONE�

'REY�SCALE

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95

WEB PROGRAMMING

CAD $51.95

ISBN: 978-0-9758419-9-0

SAVE TIME AND FRUSTRATION WITH
THIS COMPREHENSIVE COLLECTION OF
READY-TO-USE PHP 5 SOLUTIONS!

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

The PHP Anthology: 101 Essential Tips, Tricks & Hacks,
2nd Edition is a collection of powerful PHP 5 solutions to
the most common programming problems.

Five world-class developers guide you through the
capabilities of PHP using countless examples of best-
practice programming. All solutions are fully explained and
the ready-to-use code is available for download.

This is a must-have companion for any PHP coder looking to
dive into more complex PHP 5 solutions.

Manage errors gracefully.�

Build functional forms, tables, and SEO-friendly URLs.�

Reduce load time with client- and server-side caching.�

Produce and utilize web services with XML.�

Secure your site using access control systems.�

Easily work with files, emails, and images.�

And much more…

P
H

P
TH

E
 P

H
P

 A
N

TH
O

LO
G

Y
101 E

S
S

E
N

TIA
L TIP

S
, TR

IC
K

S
 &

 H
A

C
K

S

SHAFIK, FUECKS
ET AL.

benbalbo.com

BEN
BALBO

PHP ‘ALL STAR TEAM’

phppatterns.com

HARRY
FUECKS

weierophinney.net/matthew/

MATTHEW
WEIER
O’PHINNEY

pixelated-dreams.com

DAVEY
SHAFIK

khankennels.com/blog/

LIGAYA
TURMELLE

phppatterns.com

DAVEY
SHAFIK

coverphpant2.indd 1 6/27/2008 1:45:25 PM

THE PHP
ANTHOLOGY

101 ESSENTIAL TIPS, TRICKS & HACKS

BY DAVEY SHAFIK

MATTHEW WEIER O’PHINNEY
LIGAYA TURMELLE

HARRY FUECKS
BEN BALBO

2ND EDITION

SOLUTIONS TO THE MOST COMMON PROGRAMMING PROBLEMS

Summary of Contents

Preface . xv

1. Introduction . 1

2. Using Databases with PDO . 39

3. Strings . 77

4. Dates and Times . 95

5. Forms, Tables, and Pretty URLs . 115

6. Working with Files . 147

7. Email . 179

8. Images . 197

9. Error Handling . 237

10. Access Control . 269

11. Caching . 363

12. XML and Web Services . 395

13. Best Practices . 435

A. PHP Configuration . 473

B. Hosting Provider Checklist . 483

C. Security Checklist . 489

D. Working with PEAR . 497

Index . 505

THE PHP
ANTHOLOGY

101 ESSENTIAL TIPS, TRICKS & HACKS
BY DAVEY SHAFIK

MATTHEW WEIER O’PHINNEY
LIGAYA TURMELLE
HARRY FUECKS

BEN BALBO
2ND EDITION

iv

The PHP Anthology: 101 Essential Tips, Tricks & Hacks
by Davey Shafik, Matthew Weier O’Phinney, Ligaya Turmelle, Harry Fuecks, and Ben

Balbo

Copyright © 2007 SitePoint Pty. Ltd.

Expert Reviewer: Jason Sweat Editor: Georgina Laidlaw

Managing Editor: Simon Mackie Editor: Hilary Reynolds

Technical Editor: Andrew Tetlaw Index Editor: Fred Brown

Technical Director: Kevin Yank Cover Design: Alex Walker

Printing History: Latest Update: February 2008

First Edition: December, 2003

Second Edition: October, 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9758419-9-0

Printed and bound in the United States of America

mailto:business@sitepoint.com

v

Ben Balbo

Ben Balbo was born in Germany, grew up in the UK, lives in Melbourne, and likes Guinness.

While he isn’t drinking Guinness (which is most of the time in Melbourne, as it just doesn’t

taste the same), he earns a living as a PHP developer and trainer, security consultant, and

Open Source developer. He has been known to talk in public about web development-related

topics, which comes as part of the package of being on the committees of both the Melbourne

PHP User Group and Open Source Developers’ Club. Although he wouldn’t admit this, he

participates at this level only in order to go to restaurants or pubs after the meetings.

Harry Fuecks

Harry Fuecks1 is a technical writer, programmer, and system engineer. He has worked in

corporate IT since 1994, having completed a Bachelor’s degree in Physics. He first came

across PHP in 1999, while putting together a small intranet. Today, he’s the lead developer

of a corporate extranet, where PHP plays an important role in delivering a unified platform

for numerous back office systems. In his off hours he writes technical articles for SitePoint

and runs phpPatterns,2 a site exploring PHP application design. Originally from the United

Kingdom, he now lives in Switzerland. Harry is the proud father of a beautiful baby girl who

keeps him busy all day (and night!).

Davey Shafik

Davey Shafik is a full-time PHP developer with ten years’ experience in PHP and related

technologies. An avid magazine writer, book author, and speaker, Davey keeps his mind

sharp by trying to tackle problems from a unique perspective from his home in Central

Florida where he lives with five cats and more computers.

Ligaya Turmelle

Ligaya Turmelle is a full-time goddess, occasional PHP programmer, and obsessive world

traveler. Actively involved with the PHP community as a founding Principal of phpwomen.org,

administrator at codewalkers.com, roving reporter for the Developer Zone on Zend.com, and

PHP blogger and long-time busybody of #phpc on freenode, she hopes to one day actually

meet the people she talks to. When not sitting at her computer staring at the screen, Ligaya

can usually be found either playing golf, scuba diving, snorkeling, kayaking, hiking, or just

playing with the dogs outside. Ligaya Turmelle is a Zend Certified Engineer.

1 Harry Fuecks photo credit: Bruno Gerber http://www.flickr.com/photos/beegee74/231137320/
2 http://www.phppatterns.com/

http://www.phppatterns.com/
http:phpwomen.org
http:codewalkers.com
http:Zend.com
http://www.flickr.com/photos/beegee74/231137320/
http://www.phppatterns.com/

vi

Matthew Weier O’Phinney

Matthew Weier O’Phinney is a full-time father of two and spends his free time developing

in PHP. He is a PEAR developer, core contributor to Zend Framework, and all-around PHP

5 proponent—though PHP 6 cannot come soon enough for him.

About the Expert Reviewer

Jason Sweat has used PHP since 2001, where he was searching for a free—as in beer—substi­

tute for IIS/ASP to create an accounting system for a home business. His Unix administrator

pointed him towards Linux, Apache, and PHP. He has since adopted PHP as an intranet de­

velopment standard at work, as well as using PHP in a Unix shell scripting environment. He

is the author of php|architect's Guide to PHP Design Patterns (Toronto: Marco Tabini & As­

sociates, 2005), and was a co-author of PHP Graphics Handbook (Birmingham: Wrox 2003),

has published several articles for the Zend web site and for php|architect magazine, and has

presented numerous talks on PHP at various conferences. Jason is a Zend Certified Engineer,

and maintains a blog at http://blog.casey-sweat.us/.

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997 and has

also worked as a high school English teacher, an English teacher in Japan, a window cleaner,

a car washer, a kitchen hand, and a furniture salesman. At SitePoint he is dedicated to making

the world a better place through the technical editing of SitePoint books and kits. He is also

a busy father of five, enjoys coffee, and often neglects his blog at http://tetlaw.id.au/.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica­

tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,

but is best known for his book, Build Your Own Database Driven Website Using PHP &

MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy

theatre and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

http://blog.casey-sweat.us/
http://tetlaw.id.au/
http://www.sitepoint.com/

Table of Contents

Preface . xv

The Book’s Web Site . xx

The SitePoint Forums . xxi

The SitePoint Newsletters . xxi

Your Feedback . xxi

Conventions Used in this Book . xxi

Who Should Read this Book? . xvi

What’s Covered in this Book? . xvii

Running the Code Examples . xix

Chapter 1 Introduction . 1

Where do I get help? . 2

What is OOP? . 9

How do I write portable PHP code? . 33

Summary . 38

Chapter 2 Using Databases with PDO 39

What is PDO? . 40

How do I access a database? . 41

How do I fetch data from a table? . 44

How do I resolve errors in my SQL queries? . 49

How do I add data to, or modify data in, my database? 53

How do I protect my web site from an SQL injection attack? 55

How do I create flexible SQL statements? . 57

How do I find out how many rows I’ve touched? 59

viii

How do I find out a new INSERT’s row number in an autoincrementing

field? . 62

How do I search my table? . 63

How do I work with transactions? . 65

How do I use stored procedures with PDO? . 67

How do I back up my database? . 69

Summary . 75

Chapter 3 Strings . 77

How do I output strings safely? . 79

How do I preserve formatting? . 81

How do I strip HTML tags from text? . 82

How do I force text to wrap after a certain number of characters? 84

How do I perform advanced search and replace operations? 84

How do I break up text into an array of lines? . 86

How do I trim whitespace from text? . 88

How do I output formatted text? . 88

How do I validate submitted data? . 90

Summary . 94

Chapter 4 Dates and Times . 95

How do I use Unix timestamps? . 96

How do I obtain the current date? . 98

How do I find a day of the week? . 101

How do I find the number of days in a month? 101

How do I create a calendar? . 102

How do I store dates in MySQL? . 107

How do I format MySQL timestamps? . 109

How do I perform date calculations using MySQL? 111

Summary . 112

ix

Chapter 5 Forms, Tables, and Pretty URLs . . . 115

How do I build HTML forms with PHP? . 116

How do I display data in a table? . 127

How do I display data in a sortable table? . 130

How do I create a customized data grid? . 134

How do I make “pretty” URLs in PHP? . 139

Summary . 145

Chapter 6 Working with Files . 147

How do I read a local file? . 148

How do I use file handles? . 153

How do I modify a local file? . 155

How do I access information about a local file? 157

How do I examine directories with PHP? . 160

How do I display PHP source code online? . 161

How do I store configuration information in a file? 163

How do I access a file on a remote server? . 166

How do I use FTP from PHP? . 167

How do I manage file downloads with PHP? . 170

How do I create compressed ZIP/TAR files with PHP? 172

How do I work with files using the Standard PHP Library in PHP

5? . 174

Summary . 177

Chapter 7 Email . 179

How do I send a simple email? . 179

How do I simplify the generation of complex emails? 182

How do I add attachments to messages? . 184

How do I send HTML email? . 186

x

How do I mail a message to a group of people? 188

How do I handle incoming mail with PHP? . 191

How can I protect my site against email injection attacks? 193

Summary . 195

Chapter 8 Images . 197

How do I specify the correct image MIME type? 198

How do I create thumbnail images? . 199

How do I resize images without stretching them? 202

How can I put together a simple thumbnail gallery? 214

How do I extract EXIF information from images? 217

How do I add a watermark to an image? . 220

How do I display charts and graphs with PHP? . 223

How do I prevent the hotlinking of images? . 230

How do I create images that can be verified by humans only? 234

Summary . 235

Chapter 9 Error Handling . 237

What error levels does PHP report? . 238

What built-in settings does PHP offer for error handling? 239

How can I trigger PHP errors? . 241

How do I implement a custom error handler with PHP? 242

How do I log and report errors? . 247

How can I use PHP exceptions for error handling? 248

How do I create a custom Exception class? . 252

How do I implement a custom exception handler with PHP? 257

How can I handle PHP errors as if they were exceptions? 260

How do I display errors and exceptions gracefully? 261

How do I redirect users to another page following an error

condition? . 265

xi

Summary . 267

Chapter 10 Access Control . 269

How do I use HTTP authentication? . 271

How do I use sessions? . 277

How do I create a session class? . 281

How do I create a class to control access to a section of the site? 283

How do I build a registration system? . 297

How do I deal with members who forget their passwords? 318

How do I let users change their passwords? . 330

How to do I build a permissions system? . 339

How do I store sessions in a database? . 353

Summary . 362

Chapter 11 Caching . 363

How do I prevent web browsers from caching a page? 365

How do I control client-side caching? . 367

How do I examine HTTP headers in my browser? 371

How do I cache file downloads with Internet Explorer? 372

How do I use output buffering for server-side caching? 373

How do I cache just the parts of a page that change infrequently? . . 377

How do I use PEAR::Cache_Lite for server-side caching? 382

What configuration options does Cache_Lite support? 385

How do I purge the Cache_Lite cache? . 389

How do I cache function calls? . 390

Summary . 392

Chapter 12 XML and Web Services 395

Which XML technologies are available in PHP 5? 396

xii

Why should I use PHP’s XML extensions instead of PHP string

functions? . 396

How do I parse an RSS feed? . 398

How do I generate an RSS feed? . 405

How do I search for a node or content in XML? 409

How can I consume XML-RPC web services? . 412

How do I serve my own XML-RPC web services? 416

How can I consume SOAP web services? . 420

How do I serve SOAP web services? . 423

How can I consume REST services? . 425

How can I serve REST services? . 431

Summary . 433

Chapter 13 Best Practices . 435

How can I document my code for later reference by myself or

How can I ensure future changes to my code won’t break current

I’ve reviewed some of my old code, and it’s horrible. How can I make

How do I track revisions to my project’s code? . 436

How can I maintain multiple versions of a single codebase? 438

How can I write distributable code? . 441

others? . 448

functionality? . 454

How can I determine what remains to be tested? 463

it better? . 467

How can I deploy code safely? . 468

Summary . 471

Appendix A PHP Configuration . 473

Configuration Mechanisms . 473

Key Security and Portability Settings . 475

xiii

Includes and Execution Settings . 475

Error-related Settings . 480

Miscellaneous Settings . 481

Appendix B Hosting Provider Checklist 483

General Issues . 483

PHP-related Issues . 485

Appendix C Security Checklist . 489

Top Security Vulnerabilities . 489

Appendix D Working with PEAR 497

Installing PEAR . 498

The PEAR Package Manager . 501

Installing Packages Manually . 503

Alternatives to PEAR . 504

Index . 505

Preface

One of the great things about PHP is its vibrant and active community. Developers

enjoy many online meeting points, including the SitePoint Forums,1 where de­

velopers get together to help each other out with problems they face on a daily basis,

from the basics of how PHP works, to solving design problems like “How do I val­

idate a form?” As a way to get help, these communities are excellent—they’re replete

with all sorts of vital fragments you’ll need to make your projects successful. But

putting all that knowledge together into a solution that applies to your particular

situation can be a challenge. Often, community members assume other posters have

some degree of knowledge; frequently, you might spend a considerable amount of

time pulling together snippets from various posts, threads, and users (each of whom

has a different programming style) to gain a complete picture.

The PHP Anthology: 101 Essential Tips, Tricks & Hacks, 2nd Edition is, first and

foremost, a compilation of the best solutions provided to common PHP questions

that turn up at the SitePoint Forums on a regular basis, combined with the experi­

ences and insights our authors have gained from their many years of work with

PHP.

What makes this book a little different from others on PHP is that it steps away from

a tutorial style, and instead focuses on the achievement of practical goals with a

minimum of effort. To that extent, you should be able to use many of the solutions

provided here in a plug-and-play manner, without having to read this book from

cover to cover. To aid you in your endeavours, each section follows a consistent

question-and-solution format. You should be able to scan the table of contents and

flip straight to the solution to your problem.

That said, threaded throughout these discussions is a hidden agenda. As well as

solutions, this book aims to introduce you to techniques that can save you effort,

and help you reduce the time it takes to complete and maintain your web-based

PHP applications.

Although it was originally conceived as a procedural programming language, in

recent years PHP has proven increasingly successful as a language for the develop­

1 http://www.sitepoint.com/forums/forumdisplay.php?f=34

http://www.sitepoint.com/forums/forumdisplay.php?f=34
http://www.sitepoint.com/forums/forumdisplay.php?f=34

xvi

ment of object oriented solutions. With the release of PHP 5, PHP gained a completely

rewritten and more capable object model. This has been further reinforced by the

fact that on July 13, 2007 the PHP development team made the end-of-life announce­

ment for PHP 4.

The object oriented paradigm seems to scare many PHP developers, and is often

regarded as being off limits to all but the PHP gurus. What this book will show you

is that you don’t need a computer science degree to take advantage of the object

oriented features and class libraries available in PHP 5 today.

The PHP Extension and Application Repository, known as PEAR,2 provides a

growing collection of reusable and well-maintained solutions for architectural

problems (such as web form generation and validation) regularly encountered by

PHP developers around the world. Wherever possible in the development of the

solutions provided in this book, we’ve made use of freely available libraries that

our authors have personally found handy, and which have saved them many hours

of development.

The emphasis this book places on taking advantage of reusable components to build

your PHP web applications reflects another step away from the focus of many current

PHP-related books. Although you won’t find extensive discussions of object oriented

application design, reading The PHP Anthology: 101 Essential Tips, Tricks & Hacks,

2nd Edition from cover to cover will, through a process of osmosis, help you take

your PHP coding skills to the next level, setting you well on your way to constructing

applications that can stand the test of time.

The PHP Anthology: 101 Essential Tips, Tricks & Hacks, 2nd Edition will equip

you with the essentials with which you need to be confident when working the

PHP engine, including a fast-paced primer on object oriented programming with

PHP (see “What is OOP?” in Chapter 1). With that preparation out of the way, the

book looks at solutions that could be applied to almost all PHP-based web applica­

tions, the essentials of which you may already know, but have yet to fully grasp.

Who Should Read this Book?
If you’ve already gotten your feet wet with PHP, perhaps having read Kevin Yank’s

Build Your Own Database Driven Website Using PHP & MySQL, 3rd Edition (Site­

2 http://pear.php.net/

http://pear.php.net/
http://pear.php.net/

xvii

Point, Melbourne, ISBN 0-9752402-1-8), and completed your first project or two

with PHP, then this is the book for you.

If you’ve been asking questions like "How do I validate a web page form?”, “How

do I add a watermark to my photos?”, or “How do I send automated email messages

from my web application?”, you’ll find the answers to those questions in this book.

If you have the drive to progress your skills or improve your web application through

concepts such as reusable components, caching performance, or web services, then

you will find this book to be an excellent primer.

What’s Covered in this Book?
Here’s what you’ll find in each of the chapters of this book:

Chapter 1: Introduction

This chapter provides a useful guide to finding help through the PHP manual

and other resources. It includes an introduction object oriented programming:

a run-down of PHP’s class syntax, as well as a primer that explains how all the

key elements of the object oriented paradigm apply to PHP. It’s essential prepar­

atory reading for later chapters in this anthology. This chapter also provides

tips for writing portable code, and gives us the chance to take a look at some of

the main PHP configuration pitfalls.

Chapter 2: Using Databases with PDO

This chapter provides you with everything you’ll need to get up to speed with

the PHP Data Objects (PDO) extension. We start with the basics, covering im­

portant topics such as how to write flexible SQL statements and avoid SQL in­

jection attacks. We then delve into many lesser-known aspects, such as searching,

working with transactions and stored procedures, and how to back up your

database.

Chapter 3: Strings

This chapter explores the details of handling content on your site. We’ll discuss

string functions you can’t live without, along with the process for validating

and filtering user-submitted content.

xviii

Chapter 4: Dates and Times

Here, you’ll learn how to how to use PHP’s date functions, and implement an

online calendar. You’ll also obtain a solid grounding in the storage and manip­

ulation of dates in MySQL.

Chapter 5: Forms, Tables, and Pretty URLs

The essentials of web page forms and tables are covered here. We’ll discuss the

development of forms with PEAR::HTML_QuickForm, and you’ll see how to

use PEAR::HTML_Table to implement data grids and paged result sets. We’ll

also take a look at some tricks you can use with Apache to generate search engine

friendly URLs.

Chapter 6: Working with Files

This chapter is a survival guide to working with files in PHP. Here, we’ll cover

everything from gaining access to the local file system, to fetching files over a

network using PHP’s FTP client. We’ll go on to learn how to create your own

zipped archives with PEAR::Archive_Tar, and touch on the use of the Standard

PHP Library.

Chapter 7: Email

In this chapter, we deal specifically with email-related solutions, showing you

how to take full advantage of email with PHP. We’ll learn to successfully send

HTML emails and attachments with help from PEAR::Mail and

PEAR::Mail_Mime, and to use PHP to easily handle incoming mails delivered

to your web server.

Chapter 8: Images

This chapter explores the creation of thumbnails and explains how to watermark

images on your site. We’ll also discuss how you can prevent hotlinking from

other sites, create an image gallery complete with Exif data, and produce a few

professional charts and graphs—as well as CAPTCHA images—with JpGraph.

Chapter 9: Error Handling

Understand PHP’s error reporting mechanism, how to take advantage of PHP’s

custom error handling features, and how to handle errors gracefully—with a

focus on exception handling and custom exceptions—in this action-packed

chapter.

xix

Chapter 10: Access Control

Beginning with basic HTTP authentication, then moving on to application-level

authentication, this chapter looks at the ways in which you can control access

to your site. Later solutions look at implementing a user registration system,

and creating a fine-grained access control system with users, groups, and per­

missions.

Chapter 11: Caching

This chapter takes the fundamental view that HTML is fastest, and shows you

how you can take advantage of caching on both the client and server sides to

reduce bandwidth usage and dramatically improve performance. It covers HTTP

headers, output buffering, and using PEAR:Cache_Lite.

Chapter 12: XML and Web Services

With XML rapidly becoming a crucial part of almost all web-based applications,

this chapter explores the rich XML capabilities of PHP 5. Here, you’ll discover

how easy it is to produce and consume web services based on RSS, XML-RPC,

SOAP, and REST.

Chapter 13: Best Practices

The goal of this chapter is to examine some of the techniques that have proven

themselves in helping development projects succeed. The discussion covers

code versioning, how to write distributable code, how to add API documentation

to your work, how to reduce bugs with unit testing, and how to deploy code

safely.

Running the Code Examples
To run the code examples in this book you will need to ensure you have all the re­

quired software, libraries, and extensions. Some of the examples make use of addi­

tional packages that will need to be installed separately. Where solutions requiring

additional packages are introduced you will find a link to the relevant web page;

be sure to read the documentation, including the installation instructions.

xx

The following packages are used in the examples in this book:

■	 PHP 5.21 (including the GD, EXIF, and XML-RPC extensions)
■	 PEAR: http://pear.php.net/ (including Archive_Tar, Cache_Lite, HTML_Table,

HTML_QuickForm, Mail, Net_FTP, Structures_DataGrid, and Validate)
■	 Zend Framework: http://framework.zend.com/
■	 JpGraph: http://www.aditus.nu/jpgraph/

To run all the examples you will also need a web server, database server, email

server and FTP server, although instructions for their installation and configuration

are out of scope for this book. If you want to setup a software environment for

learning PHP you can’t go past the XAMPP

(http://www.apachefriends.org/en/xampp.html) server package for ease of installation

and use. It is also available for a variety of operating systems.

The Windows version of XAMPP has all of the following components (and more)

wrapped up in a single package with a convenient web interface for management:

■	 PHP 5 and PEAR
■	 Apache HTTP Server: http://httpd.apache.org/
■	 MySQL Database Server: http://mysql.org/
■	 Mercury Mail Transport System: http://www.pmail.com/
■	 Filezilla FTP server: http://filezilla-project.org/

Some examples in the book make specific use of the Apache HTTP Server and

MySQL Database Server.

The Book’s Web Site
Located at http://www.sitepoint.com/books/phpant2/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

http://pear.php.net/
http://framework.zend.com/
http://www.aditus.nu/jpgraph/
(http://www.apachefriends.org/en/xampp.html)
http://httpd.apache.org/
http://mysql.org/
http://www.pmail.com/
http://filezilla-project.org/
http://www.sitepoint.com/books/phpant2/

xxi

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site3 will

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.

The SitePoint Forums
If you’d like to communicate with other web developers about this book, you should

join SitePoint’s online community.4 The PHP forum,5 in particular, offers an

abundance of information above and beyond the solutions in this book, and a lot

of fun and experienced PHP developers hang out there. It’s a good way to learn new

tricks, get questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ­

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading them will keep you up to date on the latest news, product releases,

trends, tips, and techniques for all aspects of web development. Sign up to one or

more SitePoint newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have an email

support system set up to track your inquiries, and friendly support staff members

who can answer your questions. Suggestions for improvements as well as notices

of any mistakes you may find are especially welcome.

Conventions Used in this Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

3 http://www.sitepoint.com/books/phpant2/errata.php
4 http://www.sitepoint.com/forums/
5 http://www.sitepoint.com/forums/forumdisplay.php?f=34

http://www.sitepoint.com/books/phpant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=34
http://www.sitepoint.com/newsletter/
http:books@sitepoint.com
http://www.sitepoint.com/books/phpant2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=34

xxii

Code Samples
Code in this book will be displayed using a fixed-width font like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

xxiii

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure you Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Chapter1
Introduction
PHP is a programming language that’s designed specifically for building web sites,

and is both blessed and cursed with being remarkably easy to learn and use. Getting

started is extremely simple. Before long, the typical beginner can put together a

simple web site and experiment with the wealth of open source projects available

through resources like SourceForge.1

Unfortunately, the ease with which PHP-based sites can be developed also means

that you can quickly get yourself into trouble. As traffic to your site increases—along

with the demand for more features and greater complexity—it’s important to gain

a more intimate understanding of PHP, and to research application designs and

techniques that have proved successful on large web sites. Of course, you can’t leap

into programming and expect to know it all straight away. And even if you could,

where would be the fun in that?

In this first chapter, I’ll assume you’ve had a basic grounding in PHP, such as that

provided in the first few chapters of SitePoint’s introductory PHP title Build Your

1 http://sourceforge.net/

http://sourceforge.net/
http://www.sitepoint.com/books/phpmysql1/
http://sourceforge.net/

2 The PHP Anthology

Own Database Driven Website Using PHP & MySQL, 2 and instead concentrate on

the essentials of “getting around” in PHP.

In this chapter, you’ll find out where to get help—a defense against those that bark

“Read the manual!” at you—and take a quick tour of PHP 5 object oriented syntax

and concepts. Not everything here fits under the heading of “basic”—there may also

be a few surprises in store for the more experienced PHP developers, so keep your

eyes peeled!

Be warned, though, that although the discussion of PHP syntax isn’t the most invig­

orating of subjects, it is essential to prepare for later chapters. If you start to struggle,

remember the lesson from The Karate Kid: you must learn “wax on, wax off” before

you can perform the crane kick.

Where do I get help?
PHP is the most widely-used web scripting language, running on over 20 million

web sites. For an open source technology that lacks any corporate funding whatso­

ever, its popularity may seem inexplicable. Yet PHP’s success is no mystery; it has

one of the most active and helpful online communities of any technology. Recent

estimates place the number of PHP developers worldwide at around 500,000 and,

given the nature of the medium, it’s fair to assume that a large proportion are active

online. In other words, for developers of PHP-based web sites, help is only ever a

few clicks away.

Solution
There are numerous PHP resources available on the Web today, not the least of

which is the official PHP Manual.3

RTFM: Read the Fine Manual
There’s a well-known, four-letter acronym, RTFM, which tends to be used to harass

beginners in all areas of computing. While I can understand veterans might be un­

willing to repeat endlessly the same, well-documented instructions, I think the basic

assumption should be that we all know how to read the manual in the first place.

2 http://www.sitepoint.com/books/phpmysql1/
3 http://www.php.net/

http://www.sitepoint.com/books/phpmysql1/
http://www.php.net/
http://www.sitepoint.com/books/phpmysql1/
http://www.php.net/

3 Introduction

The documentation for PHP is excellent, and is maintained by volunteers who

dedicate themselves to keeping it up to date, understandable, and relevant. The

online version is extremely easy to navigate and contains further know-how in the

form of annotations from developers across the globe. The manual is one of the

areas in which PHP is truly exceptional; software houses like Sun and Microsoft

still have a long way to go to provide this quality of material to developers working

on their platforms.

The manual is also available in twenty-four different languages but as you’re reading

this book I’ll assume you’re happy with the English version of the manual. It’s

broken into five main sections plus appendices. It’s worth knowing what kinds of

information can be found where—at least within the first five sections, which are

the most relevant to the typical PHP developer.

I. Getting Started and II. Installation and Configuration

■ http://www.php.net/getting-started/
■ http://www.php.net/install/

These sections are where a true beginner starts. Section I has a basic introduction

to PHP, explaining what PHP is and what it can do, as well as providing a simple

tutorial to show how PHP works. Section II shows how to perform a basic installation

of PHP on various operating systems in detail.

III. Language Reference

■ http://www.php.net/langref/

This section covers the fundamentals of PHP as a programming language. Some of

these are essential to your ability to achieve anything with PHP, while others become

useful as you look for ways to improve your technique. Reading the whole lot in

one sitting may well be like reading a dictionary. Fortunately, it’s possible to absorb

much of the information contained in the language reference by reading the wealth

of tutorials available online, and examining the code that’s used in open source

PHP applications. Certainly, as you read this book, I hope you’ll pick up a thing or

two about getting the most out of PHP. However, it’s worth familiarizing yourself

with the subjects contained in this section of the manual, and keeping them in the

back of your mind for future reference.

http://www.php.net/getting-started/
http://www.php.net/install/
http://www.php.net/langref/

4 The PHP Anthology

IV. Security

■ http://www.php.net/security/

This is a very important chapter for beginners and experienced coders alike. Con­

taining information on configuration settings, file system and database security,

and general “good practices,” it’s a must for all coders. Most security problems stem

from the code, not PHP itself, so being paranoid is a good thing for any coder! The

earlier in your PHP coding experience you become familiar with this section of the

documentation, the better. After all, it’s easier to learn a good habit than to break a

bad one.

V. Features

■ http://www.php.net/features/

Covered in this section are the core elements of PHP that are generally focused on

solving specific web-related problems. Much of the Features section reads like an

“executive summary” and, from a developer’s point of view, the information con­

tained here may be easier to understand when you see it in action—for instance, in

the examples we’ll see throughout this book.

VI. Function Reference

■ http://www.php.net/funcref/

This section makes up the real body of the manual, covering all aspects of the

functionality available within PHP. This is where you’ll spend most of your time

as you progress with PHP, so you’ll be glad to hear that the PHP group has made a

concerted effort to make this section easy to use. It’s even fun, in an idle moment,

just to trawl the manual and be amazed by all the things you can do with PHP. Yes,

I did just describe reading a manual as “fun!”

The function reference is broken into subsections that cover various categories of

functions, each category corresponding to a PHP extension. Apart from the core

language syntax, most parts of PHP are grouped into extensions representing discrete

functionality.

http://www.php.net/security/
http://www.php.net/features/
http://www.php.net/funcref/

5 Introduction

PHP Extensions

The notion of an extension can be a little confusing to start with, as many are dis­

tributed with the standard PHP installation. The String functions, which we’d be

hard-pressed to live without, are a case in point. In general, the PHP group distributes

as part of the default PHP installation all the extensions it regards as being essential

to developers.

Extensions that are regarded as nonessential functionality (that is, they’ll be required

by some, but not all developers) must be added separately. The important information

about each installation appears under the Installation heading on the extension’s

main page. Core extensions require no installation, as they’re included with the

PHP core; the documentation clearly indicates whenever this is the case with the

sentence, “There is no installation needed to use these functions; they are part of

the PHP core.” Nonstandard extensions are found in the PECL Repository. 4 PECL,

the PHP Extension Community Library, is a directory of all known PHP extensions.

The process for finding and installing PECL extensions is explained in the Installa­

tion and Configuration section of the manual.

Access to information within the Function Reference is available through the Search

field (at the manual’s top right) and by searching within the Function List.

Note that searching within the Function List examines only the Function Reference

section of the manual. To search the entire manual, you need to search within Online

Documentation.

Another handy way to move around the manual is to take short cuts directly to

functions by submitting the name of the topic you’re interested in via the URL. For

example, try entering the following in your browser’s address field:

http://www.php.net/strings/. This will take you to

http://www.php.net/manual/en/ref.strings.php, which is the main page for the

Strings extension. At the bottom of the page, you’ll see a list of all the functions

that the extension makes available.

Taking the strpos function as an example, enter the URL

http://www.php.net/strpos/ (which takes you to

4 http://pecl.php.net/

http://pecl.php.net/
http://www.php.net/strings/
http://www.php.net/manual/en/ref.strings.php
http://www.php.net/strpos/
http://pecl.php.net/

6 The PHP Anthology

http://www.php.net/manual/en/function.strpos.php). You’ll see the information

shown in Figure 1.1.

Figure 1.1. The documentation page for strpos on php.net

The first line contains the name of the function, while the second line lists the PHP

versions in which the function is available. The third line tells us what the function

actually does. In this case, it’s a fairly terse explanation, but strpos really isn’t a

subject that many can get excited about.

Under the Description heading is perhaps the most important line of all—the func­

tion’s signature. The signature describes the parameters—the required and optional

values this function accepts—and the return value, which is the value we receive

after the function has run. Reading from left to right, we have int, which tells us

that the value returned by the function is an integer (in this case, the position of

one piece of text within another). Next comes the name of the function itself, and

then, in parentheses, the parameters this function takes, separated by commas.

Let’s look at the parameter string $haystack. This says that the first argument—the

value supplied to a parameter—should be a string value, while $haystack simply

names the argument so that it can be referred to in the detailed description. Note

http://www.php.net/manual/en/function.strpos.php)

7 Introduction

that the third argument is placed inside square brackets, which means it’s optional

(that is, you don’t have to supply this argument). Here’s a simple example that

shows this function at work:

helloworld.php

<?php
$haystack = 'Hello World!';
$needle = 'orld';
$position = strpos($haystack, $needle);
echo 'The substring "' . $needle . '" in "' .

 $haystack . '" begins at character ' . $position;
?>

Notice that here, I’ve used strpos similarly to the way it appears in the manual. I

used the variable names $haystack and $needle to make clear the way each relates

to the explanation in the manual, but you can use whatever variable names you

like.

The function signature convention is used consistently throughout the manual, so

once you’re used to it, you’ll quickly be able to grasp how to use functions you

haven’t tried before.

User Comments

You’ll find user-submitted comments at the bottom of each page in the manual.

Usually, at the very least, you’ll see an example that shows how the function is

used—information which may solve the particular dilemma you’ve run into. In

many cases, you’ll also find alternative explanations and uses for a function, which

help to broaden your understanding. Just keep in mind that the user comments are

not part of the official documentation, so some of the comments may not be entirely

truthful. Usually, any that are factually dubious are later corrected and clarified.

Other Resources
Outside the manual, there are literally thousands of online resources from which

you can get further help. I would dare to say that 99% of all the common problems

you’ll encounter with PHP have already been faced by someone, somewhere, and

their resolutions are available online. This means that the most obvious (but some­

times forgotten) place to begin looking is Google, where a quick search for PHP

strpos problem will give you an idea of what I mean.

8 The PHP Anthology

There are also some excellent sites where you can get answers directly from other

PHP developers (for free, of course—it’s part of the PHP ethic). Perhaps the three

biggest English-language resources are:

■ SitePoint Forums, at http://www.sitepointforums.com/
■ Dev Shed Forums, at http://forums.devshed.com/
■ phpBuilder, at http://www.phpbuilder.com/board/

Each of these sites hosts online discussions and, as such, has a very friendly, easy-

to-use interface. All have very active memberships and you should find most of

your questions answered within 24 hours. Before you post a question or use one of

the other methods listed later to find help, be sure to read How To Ask Questions

The Smart Way to help you do the homework for your question.5

Note that when you ask for help on forums, the principle of helping others to help

yourself comes to the fore. One of the most common mistakes that beginners make

when posting a question is to post a message that says, “This script has a problem,”

and paste your entire PHP script below. Instead, it’s much better to narrow the

problem down—identify the area where you’re having problems, and paste in this

code snippet, along with other relevant information such as error messages, the

purpose of the code, your operating system, and so on. The people who offer help

generally don’t want to spend more than a few minutes on your problem (they’re

doing it for free, after all), so saving them time will improve your chances of receiving

a helpful answer.

Also available to those with an IRC (Internet Relay Chat) client are numerous IRC

channels dedicated to PHP development. Two of the more popular channels are

#php on efnet.org,6 and ##php on freenode.net.7 These resources can provide imme­

diate assistance for your problem but, like the forums, the channels’ users will expect

you to have done your homework beforehand.

Less convenient, but perhaps the most effective last resorts are the PHP mailing

lists,8 where beginners are encouraged to use the PHP General User list.9 The lists

5 http://www.catb.org/~esr/faqs/smart-questions.html
6 http://efnet.org/
7 http://freenode.net/
8 http://www.php.net/mailing-lists.php
9 http://news.php.net/group.php?group=php.general

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://efnet.org/
http://freenode.net/
http://www.php.net/mailing-lists.php
http://www.php.net/mailing-lists.php
http://news.php.net/group.php?group=php.general
http://www.sitepointforums.com/
http://forums.devshed.com/
http://www.phpbuilder.com/board/
http://www.catb.org/~esr/faqs/smart-questions.html
http://efnet.org/
http://freenode.net/
http://www.php.net/mailing-lists.php
http://news.php.net/group.php?group=php.general

9 Introduction

are available for limited browsing, though it’s possible to search some of them using

the Search tool on the PHP web site, and selecting the list of your choice from the

search results.

Zend,10 the company developing the core of the PHP engine, also hosts a fairly

active forum for general PHP questions.11 Of course, if you want a guaranteed answer,

it’s worth investigating paid support options. More information can be found on

the Zend Network web site.12

What is OOP?
Just tackling the basics of object oriented programming, or OOP, could easily con­

stitute a whole book—and there are plenty of those out there to prove it! A vast

range of information is likely to be covered in any discussion of object oriented

programming, so this section will provide a quick overview to help you to understand

the basic concepts and to prepare you for the rest of the book. It’s not meant to be

a comprehensive primer, but rather is intended to initiate you into the world of

OOP.

Solution
The object oriented programming paradigm is an approach to programming that’s

intended to encourage the development of well-structured and maintainable applic­

ations. Many PHP coders regard object oriented programming as some kind of

mystical art, given that examples of PHP frequently use only a procedural ap­

proach.13

This is a shame, as there is much to be gained from adopting an object oriented

approach to developing PHP applications, perhaps the most important benefit of

which is code reuse. A well-written piece of object oriented code can easily be

employed to solve the same problem in other projects; we can simply slot it in

whenever we need it. There’s a growing number of object oriented code repositor­

10 http://www.zend.com/

11 http://www.zend.com/forums/

12 http://www.zend.com/core/network/

13 Procedural programming is the name given to non-object-oriented programming approaches to problem

solving that aim to break a programming task into a collection of subroutines.

http://www.zend.com/
http://www.zend.com/forums/
http://www.zend.com/core/network/
http://www.zend.com/
http://www.zend.com/forums/
http://www.zend.com/core/network/

10 The PHP Anthology

ies—such as PEAR14 and PHP Classes15—that can save you hours of slaving over

well-charted problems, and leave you free to focus on the specifics of your applica­

tion.

With the release of PHP 5, we’ve gained a greatly enhanced object model that

provides improved performance and features that weren’t available in PHP 4. In

practice, learning to use the object model provided by PHP requires us to achieve

two goals, which usually have to be undertaken simultaneously:

■ You’ll need to learn the PHP class syntax and object oriented terminology.
■ You must make the mental leap from procedural to object oriented code.

The first step is easy; after all, it’s just a matter of memorization. The second

step—the mental leap—is both easy and challenging. Once you take the leap, you’ll

no longer think about long lists of tasks that a single script should accomplish; in­

stead, you’ll see programming as putting together a set of tools to which your script

will delegate work.

Classes Explained
A class is a generic blueprint of something. “Of what?” you ask. Well, of just about

anything: a car, a customer, a product, a button; any object that’s relevant to the

application. A class is not actually an object. Instead, it defines the methods (or

behaviors) and properties (or attributes, or state) of the object. A class is a plan that’s

used to create an object just as the blueprint of a car is used to build a car—it’s

simply a plan to achieve the desired product.

The PHP Manual contains a wealth of information on OOP,16 but if you have no

knowledge of OOP, the best place to start trying to understand it is with the basic

PHP class syntax.17 Let’s take a closer look at classes by creating one ourselves.

Let’s create a very simple class called HTMLParagraph that outputs an HTML para­

graph element. Now, you may be wondering, “What use is a class that does so little?”

But please bear with me through this gentle introduction—I promise it’s building

to something useful!

14 http://pear.php.net/

15 http://www.phpclasses.org/

16 http://www.php.net/oop5/

17 http://www.php.net/manual/en/language.oop5.basic.php

http://pear.php.net/
http://www.phpclasses.org/
http://www.php.net/oop5/
http://www.php.net/manual/en/language.oop5.basic.php
http://www.php.net/manual/en/language.oop5.basic.php
http://pear.php.net/
http://www.phpclasses.org/
http://www.php.net/oop5/
http://www.php.net/manual/en/language.oop5.basic.php

Introduction 11

To begin with, we start with the keyword class, followed by the name of the

class—in this case, HTMLParagraph. Then we use opening and closing braces to

delimit where the class begins and ends:

HTMLParagraph.php (excerpt)

<?php
class HTMLParagraph
{

⋮ properties and methods in here
}
?>

We can add properties and methods between these braces. Properties, also known

as member variables, are the attributes that will be available to the objects created

from this class. They hold the data values that the objects will need in order to

function. For example, an object created from the HTMLParagraph class will need a

property to store the contents of the paragraph. We declare this property to be private

using the private modifier, which we’ll discuss further on. By convention, and for

readability, properties are declared at the start of the class:

HTMLParagraph.php (excerpt)

<?php
class HTMLParagraph
{
 private $content;
⋮ methods under here

}
?>

Methods describe the actions the objects will enable us to perform. The methods

of a class contain the instructions that the objects will need in order to function.

Let’s add some methods to our HTMLParagraph class:

HTMLParagraph.php (excerpt)

<?php
class HTMLParagraph
{

12 The PHP Anthology

private $content;

 public function __construct($content = '')

 {

 $this->content = $content;

 }

 public function getSource()

 {

 return '<p>' . $this->content . '</p>';

 }

⋮ possibly more methods under here
}

?>

Here, we’ve added two methods to our class—__construct and getSource.

__construct is a special method that initializes our objects for us, while getSource

is a method that allows our HTMLParagraph objects to fulfill their purpose: to write

a paragraph element in HTML.

Methods can be seen as communication: an object can call a method on another

object and receive an answer in return. For example, an object can call the getSource

method on an object created from our HTMLParagraph class, and receive the HTML

source for the paragraph element in response. The HTMLParagraph object takes care

of all the details for us.

As we’ve seen, methods are the actual workers of the class—its behaviors or actions.

For example, our HTMLParagraph class has a getSource method to assemble the

content into a valid HTML paragraph element. A method’s job is to do one thing

and one thing only—and to do it well.

The syntax for a method is straightforward (note that brackets indicate optional

syntax):

public|protected|private [static] function methodName([$param1[,

➥ $param2]]){…}

Introduction 13

Encapsulation and Visibility

Encapsulation is a basic concept of object oriented programming that dictates that

a class should have a public interface and a private implementation. The public

interface is the appearance—put simply, the methods and properties—possessed

by an object created from the class, which all other objects can see and use. The

private implementation refers to the inner workings of the class, which only the

objects created from that class need to know about. The separation of the class’s

inner workings from its outer appearance is essential for the production of quality

object oriented code.

Users of your class should be able to use the class’s public interface, or API (Applic­

ation Programming Interface), without caring what’s inside, and with confidence

that they’ll obtain the desired output. Hiding the inner workings of a class from the

user ensures that we can change those internals as required over time—to fix bugs,

improve performance, or completely change how the method is implemen­

ted—without causing interference or disruption to users. Think of a class as a black

box: users just plug their data into the object and receive the results they want.

We indicate the public interface and private implementation of our class by describ­

ing the visibility of its properties and methods—in short, describing who can see

and access them. PHP 5 has three levels of visibility: public, protected, and private.

The public visibility level allows any object or script to see and use the attribute or

method.18 Protected visibility means that only those classes which inherit (we’ll

discuss the concept of inheritance in the pages to come) from the class, as well as

the class itself, can see the attribute or method. The private visibility level describes

cases in which only the class itself can see the method or attribute. Note that in our

example class the properties are private and the methods are public.

When you’re beginning to learn object oriented programming, there’s often some

degree of temptation to make all your classes public and to avoid thinking about

encapsulation at all. However, it’s important for other users of your class to know

how your class should be used, and what behavior they can expect—they’ll assume

that everything that’s public is safe for them to use. Obviously, if you then change

those public classes, you can cause a lot of problems! So, to meet the objective of

18 Technically speaking, a method doesn’t need a visibility level. If none is provided, the method is

automatically public.

14 The PHP Anthology

encapsulation we must reduce the visibility of all our properties and methods to

the lowest possible levels.

Constructors and Destructors

A constructor is a special method that’s used when we first instantiate or create

the object. The constructor method is named __construct no matter what the class’s

name is. Since the constructor is called when we create an object from a class, it’s

in this method that we set any default values for the object’s properties—also referred

to as instance variables, the properties of a specific instance of a class—or anything

else that’s needed to initialize the object. In our example class, we initialized the

various properties that we needed in order to create the paragraph element. Another

common example is an order class for a shopping cart—the cart is initialized in the

__construct method, where the customer number is set, the number of items in

the cart is set to zero, and the cart balance is set to zero dollars.

A destructor is the constructor’s complement. Like the constructor, the destructor

has a special name, __destruct, that’s used no matter what the class’s name is.

__destruct is also a special method that runs immediately before an object is des­

troyed. It’s in the destructor that we tie up any loose ends we may have, for instance,

closing a database connection or a file handler.

Magic Methods

__construct and __destruct are examples of what are known as magic methods.

Magic methods are a collection of methods that perform special internal PHP class

functions. They all begin with __ (double underscore) and you can read more about

them in The PHP Manual.19 For example, the __toString method is called when

an object created from the class is converted to a string. This comes in very handy,

as you will see.

Creating Objects
Now that we know what a class is, it’s time to talk about objects. As we saw earlier

in this chapter, an object is the item that’s created or, in object oriented terminology,

instantiated, using the class as the blueprint. Thus the object is the actual imple­

mentation of the class. Because of this, we can instantiate multiple objects of the

same class, each with its own individual characteristics and states—just as a single

19 http://www.php.net/manual/en/language.oop5.magic.php

http://www.php.net/manual/en/language.oop5.magic.php
http://www.php.net/manual/en/language.oop5.magic.php

Introduction 15

blueprint can be used to build multiple cars. The cars may all be the same make

and model, but they’re all driving at different speeds, and have different mileage

totals.

Let’s look at some code that will help clarify the concept of objects:

HTMLParagraph.php (excerpt)

$para = new HTMLParagraph('Hello world!');
echo $para->getSource();

In the first line above, I instantiate the object with the new keyword, being sure to

pass along any data that the constructor will need. Basically, that line of code in­

structs PHP to use the HTMLParagraph class to make a new object, and place that

object in the $para variable.

Since the object in $para is an implementation of the HTMLParagraph class, it has

all the functionality and properties of that class. The output of the above code listing

will be:

<p>Hello world!</p>

The $this Variable

Now that we understand the difference between an object and class, I want to back

up a bit. In the HTMLParagraph class file, you’ll find that the $this variable appears

in the class methods—the getSource method, for example:

HTMLParagraph.php (excerpt)

public function getSource()
{
 return '<p>' . $this->content . '</p>';
}

Within any method, including the constructor, the $this variable points to the object

in which the method is running, and allows the method to access other methods

and variables that belong to that particular object. So even though we may have two

HTMLParagraph objects running the same class function code, when we call the

16 The PHP Anthology

getSource function on one of them, $this will point to the object that owns the

function we called—the one in which we’re retrieving the HTML source. The other

object’s connection will remain open.

The -> (arrow) operator is the syntax we use to access an attribute or method that’s

named within the object. You can use this operator to access an object’s own prop­

erties and methods within the script, as well as within the object itself.

Treating an Object Like a String

If you recall, the __toString method is called when an object created from the class

is converted to a string. This will be very handy for our HTMLParagraph as it’ll allow

our paragraph objects to be used in string concatenation. Here’s our __toString

method:

HTMLParagraph.php (excerpt)

public function __toString()
{
 return $this->getSource();
}

Our __toString method calls the getSource method, which returns the HTML

source for our paragraph. So now it’s possible to use it in this way:

HTMLParagraph.php (excerpt)

<?php
$para2 = new HTMLParagraph('The __toString method makes life' .

 ' easy!');
echo "<h1>The Magic __toString Method</h1>\n";
echo $para2;
?>

The output from the above code listing will be:

<h1>The Magic __toString Method</h1>

<p>The __toString method makes life easy!</p>

Introduction 17

Inheritance
Inheritance is another of the fundamental pieces of the object oriented paradigm

and is an important aspect of its expressive power. The term refers to a relationship

in which one class is defined as being a child or subclass of another. The child class

inherits the methods and properties defined in the parent class, and can change

them or add more of its own. Inheritance allows you to define the common methods

and properties of a class that you’d like all the child classes to share.

Our HTMLParagraph class creates an adequate HTML paragraph element, but there

are a lot more HTML elements besides paragraphs and they all share some common

features. Let’s create a parent class called HTMLElement and add all the common

methods and properties:

HTMLElement.class.php (excerpt)

<?php
class HTMLElement
{
 protected $content;
 protected $tagname;
 protected $attributes;

Thinking about the common properties of HTML elements, we add two new prop­

erties $tagname and $attributes to store the tag name and attributes of the

HTMLElement respectively. Notice that I’ve declared the properties protected. This

allows child classes to have access in order to redefine them. If we’d declared the

properties private, the child classes wouldn’t be able to access them.

The __construct method now takes a second argument for the element attributes:

HTMLElement.class.php (excerpt)

 public function __construct($content, $attributes = array())
 {
 $this->content = $content;
 $this->attributes = $attributes;

 }

18 The PHP Anthology

Our new getSource method now has all the smarts to create the source for any

HTML element as long as the $tagname property is defined:

HTMLElement.class.php (excerpt)

 public function getSource()
 {
 return '<' . $this->tagname . $this->getAttributeSource() . '>'.

 $this->content .
'</' . $this->tagname . '>';

 }

The getSource method will also loop through the attributes array and assemble the

HTML source string for the element’s attributes. It does this by calling the

getAttributeSource method.

The getAttributeSourcemethod builds and returns the source string for the HTML

element’s attributes, if any are present:

HTMLElement.class.php (excerpt)

 public function getAttributeSource()
 {
 $attributes = '';
if (count($this->attributes)) {
 foreach ($this->attributes as $attrnme => $attrval)
 {
 $attributes .= ' ' . $attrnme . '="' . $attrval . '"';

 }
 }
 return $attributes;

 }

Finally, the __toStringmagic method remains the same as the previous version—it

already does what we need it to, and it can be used for any HTML element:

Introduction 19

HTMLElement.class.php (excerpt)

 public function __toString()
 {
 return $this->getSource();

 }
}
?>

You can see that marking our HTMLParagraph class as a child of HTMLElement will

be far easier than building the HTMLParagraph class from scratch—most of the work

has already been done for us. We use the extends keyword to indicate the relation­

ship:

HTMLParagraph.class.php (excerpt)

<?php
require_once 'HTMLElement.class.php';
class HTMLParagraph extends HTMLElement
{
 protected $tagname = 'p';
 public function __construct($content, $attributes = array())
 {
 parent::__construct($content, $attributes);

 }
}
?>

HTMLParagraph is now a child of HTMLElement. Alternatively, we could say that

HTMLElement is the parent or superclass of HTMLParagraph. We’ve redefined the

$tagname property and changed the constructor method. Just ignore the

parent::__construct($content, $attributes); part for now, I’ll explain it very

soon.

Now we can instantiate the child class, gain access to the getSource method,

and—because we’ve redefined the $tagname property—the HTML source is output

appropriately for an HTML paragraph element:

20 The PHP Anthology

childClass.php (excerpt)

<?php
require 'HTMLParagraph.class.php';

$para = new HTMLParagraph("The object oriented programming\n" .
 " paradigm is an approach to programming that's intended\n" .
 " to encourage the development of well-structured and\n" .
 " maintainable applications.",
 array(
 'id' => 'oop_intro',
 'class' => 'introduction'

)
);
echo "<h1>OOP in PHP 5</h1>\n";
echo $para;
?>

The output for the above code will be:

<h1>OOP in PHP 5</h1>

<p id="oop_intro" class="introduction">The object oriented

➥	 programming

 paradigm is an approach to programming that's intended

 to encourage the development of well-structured and

 maintainable applications.</p>

This example shows the basics of how inheritance works, but the real power of this

capability cannot be demonstrated without discussing overriding—the mechanism

by which a child class can alter the methods and properties of its parent class.

Overriding Methods and Properties

It’s perfectly acceptable to give a method or property in the child class the same

name as a method or property in the parent class, or to override the method or

property. In our HTMLParagraph class we override the $tagname property of the

parent HTMLElement class. When we call HTMLParagraph->getSource and it grabs

the $tagname value, it retrieves the overridden value p.

To demonstrate, let’s create another child class; I give you the HTMLImage class.

HTML image tags are constructed slightly differently—they have no end tag—so

we’ll need to override the getSource method to handle this unique situation:

Introduction 21

HTMLImage.class.php (excerpt)

<?php
class HTMLImage extends HTMLElement
{

⋮ the usual properties and constructor function

 public function getSource()
 {
 return '<'. $this->tagname . $this->getAttributeSource() .' />';

 }

Overriding a Method? Watch your Arguments!

When a child class overrides a method, PHP prefers (though it doesn’t require)

the child class method to have the same number of arguments as the parent class

method. If the number of arguments differs between the child and parent class

versions of the method, your code will remain perfectly legal in terms of object

oriented programming, and it’ll still run perfectly. However, it will cause an

E_STRICT error to appear if E_STRICT warnings are enabled in php.ini. 20

You can also have the child class make use of the parent class’s method or property

internally, even while overriding it. To ensure our classes produce quality HTML

I want to make sure all image elements have an alt attribute, even if it’s only to

alert the developer that it’s missing. We’ll override the getAttributeSourcemethod:

HTMLImage.class.php (excerpt)

 public function getAttributeSource()
 {
 if (!array_key_exists('alt',$this->attributes)) {
 $this->attributes['alt'] = 'This image needs alt text';

 }
 return parent::getAttributeSource();

 }
}
?>

20 E_STRICTwarnings are defined by The PHP Manual as “Run-time notices. Enable [these notices]

to have PHP suggest changes … which will ensure the best interoperability and forward-compatib­

ility of your code.” [http://www.php.net/errorfunc/]

http://www.php.net/errorfunc/
[http://www.php.net/errorfunc/]

22 The PHP Anthology

We can use the parent keyword and the :: operator to call the parent class’s

method. This trick saves us from duplicating functionality already contained in the

parent class. Note that we can call the parent class by name to achieve exactly the

same result. For example, the above parent method call could have also been written

like this:

return HTMLElement::getAttributeSource();

Here, we’ve replaced the parent keyword with the name of the HTMLElement class.

Although the output is exactly the same, using parent saves us from having to re­

member the name of the parent class while working in the child, and is the recom­

mended syntax.21

Overriding Constructors

Most object-oriented languages—Java, for example—will run the constructor of a

given parent class automatically, before running an overriding constructor in a

child class. This behavior is known as cascading constructors.

PHP doesn’t have this feature. If you create a constructor in a child class in PHP,

be aware that you’re completely overriding the parent class’s constructor. You

must call that constructor explicitly from your new constructor, for example, using

parent::__construct(), if you want the parent class to handle its share of the

object’s initialization.

We can see overriding in action in this example:

overriding.php (excerpt)

<?php
require 'HTMLImage.class.php';
$logo = new HTMLImage('',

 array(
 'id' => 'logo',
 'src' => 'php.gif'

)

21 PHP’s double colon operator (::) is called the scope resolution operator, or Paamayim Nekudotayim.

This may seem like a strange choice for naming a double-colon, but while writing the Zend Engine 0.5

(which powers PHP 3), that’s what the Zend team decided to call it. It actually does mean double-

colon—in Hebrew!

Introduction 23

);

echo $logo;

?>

The above code will output the following:

If you examine the output, you can see that the HTMLImage->getAttributeSource

method has outputted the appropriate attributes as per our intention.

Object Aggregation and Composition
In addition to inheritance, objects can interact in other ways; for example, one object

can use another object to perform a function either by creating the object to be used

to perform the function or by receiving it through a method’s arguments. Such in­

teractions demonstrate the expressive power of the object oriented paradigm.

There are two ways in which one object can use another: aggregation and composi­

tion.

Aggregation

Aggregation occurs when one object is given another object on a “temporary loan.”

The second object will usually be passed to the first through one of the first object’s

methods—for instance, the constructor. The first object is then able to call methods

in the second, which means it can use the functionality stored in the second object

for its own purposes.

Let’s look at an example of aggregation in action. We’ll build an HTMLUnorderedList

class that can hold an array of HTMLListItem objects. The HTMLListItem class is a

simple extension of the parent HTMLElement class:

HTMLListItem.class.php (excerpt)

<?php
require_once 'HTMLElement.class.php';
class HTMLListItem extends HTMLElement
{
 protected $tagname = 'li';

24 The PHP Anthology

public function __construct($content, $attributes = array())

 {

 parent::__construct($content, $attributes);

 }

}

?>

The HTMLUnorderedList class, however, has a new property and method:

HTMLUnorderdList.class.php (excerpt)

<?php
require_once 'HTMLListItem.class.php';
class HTMLUnorderedList extends HTMLElement
{

⋮ other properties…
 private $items = array();

⋮ constructor method…

 public function addListItem(HTMLListItem $item)
 {
 $this->items[] = $item;

 }

 public function getSource()
 {
 if (count($this->items)) {
 $this->content = '';
foreach ($this->items as $item)
 {
 $this->content .= $item->getSource();

 }
 }
 return parent::getSource();

 }
}
?>

The addListItem method takes an HTMLListItem object as an argument and adds

it to the array of list items stored in the $items property. The getSource method

Introduction 25

has also been overridden to be able to construct the HTML list element using the

list items.

Type Hinting Demystified

As you can see, I used type hinting in the addListItem method. A type hint is

a specification that an argument for a method must be an object of a specified

class. If the script doesn’t pass the constructor an object of the specified type, it

will cause a fatal error (or, as of PHP 5.2, a recoverable error) to be raised. In the

example function addListItem(HTMLListItem $item) will require the

script to pass the constructor an HTMLListItem object.

Type hinting can also be applied to object interfaces, which we discuss in the

section called “Object Interfaces”. The convention in PHP programming is, in fact,

to only type hint interfaces, not concrete class implementations. However, we can

be forgiven for doing so in our simple OOP introduction.

Composition

Composition describes the style of object oriented programming where one object

completely owns another object—that is, the first object was responsible for instan­

tiating the second object. There are many cases in which composition can be useful,

although it’s most commonly used when it’s likely that the first object will be the

only one that needs to use the second.

For example, let’s create a class to represent a web site logo graphic. We want the

class to be able to output the HTML for the logo image, and to do that, it uses our

HTMLImage class like so:

WebsiteLogo.class.php (excerpt)

<?php
require_once 'HTMLImage.class.php';
class WebsiteLogo
{
 private $img;
 public function __construct($imagesrc, $title, $alt)
 {
 $this->img = new HTMLImage('',array('src' => $imagesrc,

 'title' => $title,
 'alt' => $alt,
 'class' => 'sitelogo'));

26 The PHP Anthology

}

 public function getSource()

 {

 return $this->img->getSource();

 }

 public function __toString()

 {

 return $this->getSource();

 }

}

?>

Since the HTMLImage class already knows how to write the HTML for the image tag,

we can use an instance of HTMLImage and just supply the correct image source, title,

and alternative text for our web site logo graphic. We are also able to enforce the

output of a specific class name in our web site logo tag. When the

WebsiteLogo->getSource method is called, it just calls the getSource method for

the HTMLImage object.

Using Aggregation and Composition: Benefits and Pitfalls

In terms of practical development, it’s important to know when to apply aggregation

or composition. How can you tell when object A should aggregate or compose object

B? Ask yourself, “What happens if object A dies? Will object B still be alive?” If

object B is required to outlive the death of object A, object A should aggregate object

B. But if it’s better that object B dies when object A dies, then object A should

compose object B.

Aggregation offers the advantage of lower overhead than composition, because a

single object will be shared by many other objects. It’s certainly a good idea to ag­

gregate your database connection class; composing it with every object that wants

to make a query may result in multiple connections to your database, which will

cause your application to grind to a halt whenever it attracts high levels of traffic.

Composition makes classes easier to work with because they’re self-contained. The

code that uses the class doesn’t have to worry about passing it the other objects it

needs, which, in a complex application, can often become so tricky as to require us

to develop a design workaround. Another advantage of composition is that, when

Introduction 27

working with code that uses it, we know exactly which class has access to the

composed object.

One of the problems with aggregation is that an object which shares the aggregated

object may do something to its state that makes the object unusable by the other

classes that are supposed to be able to use it.

Composition produces tighter coupling—that is, greater dependency—between the

two objects involved, making it more difficult to reuse one without the other.

Polymorphism
Another powerful aspect of object oriented programming is polymorphism—the

ability of different objects to share an interface and thus become interchangeable.

An interface is the name given to one or more methods that let you use a class for

a particular purpose. For example, imagine you have two database connection

classes—one for MySQL, and one for PostgreSQL. As long as both of them offered

a querymethod, you could use them interchangeably for running queries on different

databases—of course, your SQL would have to be valid in both databases. In this

case, the query method would represent a simple interface that the two classes

shared.

Classes sharing the same interface are often inherited from a parent class that makes

the common methods available, or implements a common interface. This concept

is best illustrated by the following examples.

Abstract Classes and Methods

Our parent class, HTMLElement contains all the common functionality for all our

child classes. However, we don’t really want to be able to instantiate an object from

the HTMLElement class—it has no tag name information and wouldn’t output any

useful HTML. So we use the abstract keyword to make this an abstract base class,

which provides an outline of the minimum functionality required for an HTMLElement

object: the common getSource and getAttributeSource methods. We extend the

HTMLElement class to define concrete child classes, each of which creates a specific

approach to building an HTML element:

28 The PHP Anthology

AbstractHTMLElement.class.php (excerpt)

<?php
abstract class HTMLElement
{

⋮ common properties and methods…
}
?>

The terms abstract and concrete refer to class usage—in particular, whether a class

is intended to be used directly or not.

An abstract class is one that has some functionality or structure that’s to be shared

by all subclasses, though the class itself can’t be used directly. In other words, we’re

not supposed to create objects from an abstract class. If we try to do so, we’ll raise

a fatal error. A concrete class is a subclass of the abstract class from which we can

create objects.

There are more ways to use the abstract keyword than just at the class level.

Typically, an abstract class also has one or more empty methods that don’t do any­

thing other than demand that given child classes implement them. For example,

we could add a hypothetical method called addContent; we only include the

method name and parameters:

AbstractHTMLElement.class.php (excerpt)

<?php
abstract class HTMLElement
{

⋮ common properties and methods…
abstract public function addContent(HTMLElement $element);

}
?>

Defining abstract method in this way allows the author of the abstract class to indic­

ate the intention of the class without dictating the implementation. In this example

the abstract addContent method must accept a single argument containing a

HTMLElement object. The inclusion of this abstract method makes it compulsory for

any child classes to implement the method. While the intention of this abstract

method may be to force any HTMLElement object to add a child HTML element to

Introduction 29

its inner content, each HTML element achieves this in different ways. For example,

some HTML elements can only contain child elements of a certain type; others can’t

contain any child elements at all. If you’re curious to learn some more about abstrac­

tion, check out the manual page.22

Object Interfaces

An object interface is the equivalent of an agreement to implement certain methods.

It differs from an abstract class in that it contains no implementation at all. Interfaces

are defined by the interface keyword; they’re written in the same way as classes,

except that the methods have no contents at all. Here’s an example of an interface:

HTMLSource.interface.php (excerpt)

<?php
interface HTMLSource
{
 public function getSource();
}
?>

This is a very simple interface but it’ll do for an example. Here, we’ve defined one

method: getSource. Any class that implements this interface must implement this

method; failure to do so will raise a fatal error. As the intention of interfaces is to

define a public interface, all methods must be declared public. Our intention with

the interface above is to indicate which objects can output an HTML source string.

To indicate that a class implements a specific interface, you use the implements

keyword. Here’s an example of this usage in a modification of our previously defined

WebsiteLogo class:

WebsiteLogo2.class.php (excerpt)

<?php
require_once 'HTMLImage.class.php';
require_once 'HTMLSource.interface.php';

class WebsiteLogo implements HTMLSource
{

22 http://www.php.net/manual/en/language.oop5.abstract.php

http://www.php.net/manual/en/language.oop5.abstract.php
http://www.php.net/manual/en/language.oop5.abstract.php

30 The PHP Anthology

⋮ class properties and methods…

 public function getSource()

 {

 return $this->img->getSource();

 }

}

?>

You may be wondering, “So what’s the big deal?” Well, let’s finish off our explana­

tion of object interfaces by examining a situation where interfaces will come in

handy. Let’s say for the purposes of this demonstration that the abstract HTMLElement

class also implements the HTMLSource interface. It already does so by virtue of the

fact that it has a method called getSource, but indicating the fact in code allows

us to test it for sure. We’d indicate the implementation like this:

AbstractHTMLElement2.class.php (excerpt)

<?php
require_once 'HTMLSource.interface.php';
abstract class HTMLElement implements HTMLSource
{

⋮ common properties and methods…
}
?>

To make use of this new feature of our codebase, let’s change the base class imple­

mentation of the getSource method:

AbstractHTMLElement2.class.php (excerpt)

 public function getSource()
 {
 if ($this->content instanceof HTMLSource)
 {
 $html = $this->content->getSource();

 }
 else
 {
 $html = $this->content;

 }

Introduction 31

return '<' . $this->tagname .

$this->getAttributeSource() . '>' .

 $html .

'</' . $this->tagname . '>';

 }

With this modified function, any object based on the HTMLElement class can now

have as its content any object that implements the HTMLSource interface. This could

be an object based on any one of our HTMLElement classes previously defined, or

even an object based on the WebsiteLogo class. When getSource is called, the in­

stanceof type operator is used to check the type of the content property—if it’s an

object that implements the interface, we call its getSource method; otherwise, we

assume it’s a string value and use that. The operator allows us to check that an object

implements the interface, allowing us to make use of it without having to know

exactly what kind of object it is.23

Static Properties and Methods
Static properties and methods are different than object properties and methods in

the way that they allow a property or method to be accessed without the instantiation

of an object. This feature is particularly handy at times when you want to use a

method of a class without having to instantiate an object to do so.

Let’s take a closer look at how static properties work. Since having to type in new

HTMLParagraph(…) whenever we wish to create a paragraph is slightly tedious, we’ll

want to make it easier. Let’s make a class called HTML—which we can use without

having to instantiate any objects—to create our objects for us.24 We use the static

keyword to indicate that the methods are static:

23 You can read more about interfaces here: http://www.php.net/manual/en/language.oop5.interfaces.php

and more about the instanceof operator here:

http://www.php.net/manual/en/language.operators.type.php
24 This is an example of the Factory design pattern. Read more about patterns on the manual page at

http://www.php.net/manual/en/language.oop5.patterns.php.

http://www.php.net/manual/en/language.oop5.interfaces.php
http://www.php.net/manual/en/language.operators.type.php
http://www.php.net/manual/en/language.oop5.patterns.php

32 The PHP Anthology

HTML.class.php

<?php
require_once 'HTMLParagraph.class.php';

class HTML
{
 public static function p($content, $attributes = array()) {
 return new HTMLParagraph($content, $attributes);

 }
}
?>

Here’s an example of how the HTML class could be used:

echo HTML::p('This is a static method!');

This example would output as follows:

<p>This is a static method!</p>

Notice that when we use a static method, we use the :: operator, rather than the

object -> operator, to access the method. You may have noticed that this is the same

operator used to call a method of the parent class of the current object, as in

parent::method(). The parent class usage is a special case where inheritance is

concerned, as the parent class method retains access to the object’s instance data,

and therefore isn’t static.

$this Can’t be Used in Static Methods

As static methods are used without the instantiation of an object, the $this

variable can’t be used in static methods.

Now to extend this example a bit—and possibly to excite your interest in OOP in

PHP 5 into the bargain—imagine for a moment that we’ve added a static method

and a corresponding class for each possible HTML element to our HTML class. Re­

membering that one HTMLElement object can be passed to the constructor of another

HTMLElement object as its content, we can now create methods for all HTML elements

that we can use as demonstrated in the following example:

Introduction 33

echo HTML::div(HTML::h1('Welcome to my web site!'),

 array('id' => 'header'));

This example would output the following HTML:

<div id="header"><h1>Welcome to my web site!</h1></div>

Taking the above example as your goal, I’ll leave the implementation of such an

API up to you. Come on—with this introduction to OOP under your belt, it should

be easy!

How do I write portable PHP code?
Not all PHP installations are the same. Depending on version and configuration

settings in your php.ini file, your script may or may not run correctly on another

server on which PHP is installed. However, you should consider adopting a number

of generally accepted best practices to make life easier and minimize the need to

rewrite code for other servers.

Solution
The list of generally accepted best practices include, keeping your configuration

central, writing your code to be reusable, always using the full PHP tags, always

using supergobal variables and never using register_globals and always checking

for magic quotes.

Keeping Configuration Central
For most PHP applications, it will be necessary to write configuration information

describing the environment in which the script will run, including database user-

names and passwords, directory locations, and so on. As a general rule, try to keep

the majority of this information in a single place—maybe even a single file—so that

when you need to modify the information, you can make all the necessary changes

in one place. That said, when you’re building modular applications, you may want

to store local elements of the configuration to a specific module within the module

itself, rather than in a central location.

The way each of us chooses to store this information is a matter of personal choice.

In some cases, it may be worth considering the use of an XML file, or storing some

34 The PHP Anthology

of the information in a database. It’s also worth being aware of the parse_ini_file

function.25

A simple but effective storage mechanism is to place all the settings into a single

file as PHP constants, which makes them available from any function or class in

your application. Here’s an example:

<?php

// Configuration settings

define('DOMAIN', 'sitepoint.com');

// In another script

echo 'The domain is ' . DOMAIN;

?>

Constants need to be used with caution, though. In order for your functions and

classes to be reusable in other applications, they shouldn’t depend on constants of

a fixed name; rather, they should accept configuration information as arguments—an

approach that will allow for greater code reuse. In such cases, it’s best to use PHP

variables in your central configuration file, which you can then pass to functions

and classes as required.

For example, when we’re connecting to database, we can identify a number of

variables that we need to have stored in a central location: the server hostname, the

username, and the password. We can use the require_once function to create a file

called, for instance, config.php, and place it outside the public web directories.

This approach helps to ensure that users don’t accidentally browse to the file con­

taining this critical information—a situation that would place the site’s security at

risk.

Recycling and Reuse
It’s easy to say, but if you find yourself writing any more than one PHP script in

your life, you need to start thinking about ways to make your code reusable before

you suffer premature hair loss!

If you end up working on other sites or applications, you’ll appreciate having ready

code that you can simply plug into your new project. Also, if you’re writing code

25 http://www.php.net/manual/en/function.parse-ini-file.php

http://www.php.net/manual/en/function.parse-ini-file.php
http://www.php.net/manual/en/function.parse-ini-file.php
http://www.php.net/manual/en/function.parse-ini-file.php

Introduction 35

that other people will integrate with existing applications on their web sites, you

need to package it in a form that doesn’t place requirements on the code they’re

already using. For example, if your application has some kind of user authentication

system, you’ll want to ask yourself if it can be integrated with the systems that site

owners are already using—systems with which large databases of users are likely

already associated.

The best approach is to write object oriented code with a mind to creating reusable

components, or pieces of functionality. Some people argue that creating PHP applic­

ations using object oriented code results in slower-running applications and should

be avoided at all costs. What they forget to mention is that object oriented program­

ming delivers a drastic increase in your code’s performance. After all, fast program­

mers cost more than fast microprocessors!

A number of important points must be considered when you’re measuring the po­

tential of your code for reuse:

■	 What happens when the project’s requirements change?
■	 How easy is it to add new features to your code?
■	 Are you still able to understand the code after a long period of time?
■	 Can your code be integrated easily with other applications?
■	 Will the assumptions you’ve made in your code apply to your work on other

sites?

This book will provide many hints and suggestions to help you to write reusable

code, although an in-depth analysis of PHP applications design as a whole is beyond

its scope. As you read this book, you should be able to identify some of the critical

factors as subjects for further investigation. You have one main responsibility to

yourself as an experienced PHP developer: to keep expanding your knowledge of

the more esoteric aspects of software development, such as design patterns and

enterprise application architecture, as a means to improve your development tech­

nique and, more importantly, save yourself time. The broader your knowledge, the

lower the risk of failure when you land the next big project.

Portability Essentials
Here are three steps you should take to ensure the portability of your PHP code.

36 The PHP Anthology

Using the Full <?php ?> Tags

PHP supports a variety of tag styles to mark up sections of your code, including the

short tags (<? ?>), and ASP-style tags (<% %>). Tag style support is controlled from

php.ini with the settings short_open_tag and asp_tags. Be aware, though, that

while you may have these settings switched on, other server administrators may

not, which can be problematic. The short tag style, for example, causes issues when

the PHP is mixed with XML documents that use processing instructions like this:

<?xml version="1.0"?>

If you have a document that contains PHP and XML, and you have the

short_open_tag setting turned on, PHP will mistake the XML processing instruction

<?xml for a PHP opening tag.

It’s possible that your code will need to run in environments where short_open_tags

and asp_tags are both turned off. The best way to ensure that these settings are

disabled is to get into the habit of always using the <?php ?> tag style—otherwise,

you may have a lot of code rewriting to do in the future.

Turning register_globals Off

Make sure the following code is in place in your php.ini file:

register_globals = off

This will force you to access incoming data via the special predefined superglobal

variables (e.g. $_GET['username']), ensuring there won’t be a conflict with variables

you’ve created in your script.

The same result can be achieved by placing the following code in your Apache

.htaccess file:

php_flag register_globals off

Further information can be found in The PHP Manual,26 and in Kevin Yank’s article,

Write Secure Scripts with PHP 4.2! on SitePoint.27

26 http://www.php.net/manual/en/security.globals.php
27 http://www.sitepoint.com/article/write-secure-scripts-php-4-2/

http://www.php.net/manual/en/security.globals.php
http://www.sitepoint.com/article/write-secure-scripts-php-4-2/
http://www.php.net/manual/en/security.globals.php
http://www.sitepoint.com/article/write-secure-scripts-php-4-2/

Introduction 37

Checking for Magic Quotes

Magic quotes is a feature of PHP that’s intended to help prevent security breaches

in sites developed by PHP beginners.

The magic quotes feature adds escape characters —backslashes that indicate that

quotation marks should be included in the string, rather than marking the end of

the string—to incoming URL query strings, form posts, and cookie data automatically,

before your script is able to access any of these values. Should you insert the data

directly into your database, there’s no risk that a malicious user might be able to

tamper with the database provided magic quotes functionality is switched on.

For beginners, this is certainly a useful way to prevent disasters. However, once

you understand what SQL injection attacks are, and have developed the habit of

writing code to avoid them,28 the magic quotes functionality can become more of

a problem than it’s worth.

Magic quotes functionality is controlled by a PHP configuration setting

magic_quotes_gpc , which can be set to be either on or off.

My own preference is always to have magic quotes switched off, and to deal with

the task of escaping data for SQL statements myself. Unfortunately, this means that

the code I write won’t port well to PHP installations where magic quotes is switched

on—I’ll end up with backslashes in my content. Thankfully, to deal with this

problem, PHP provides the function get_magic_quotes_gpc , which can be used

to find out whether the magic quotes functionality is switched on. To keep the code

in this book portable, we’ll use a simple file that strips out magic quotes, should

this functionality be enabled:

28 See “How do I protect my web site from an SQL injection attack?” in Chapter 2 for more on SQL in­

jection attacks.

38 The PHP Anthology

<?php

/**

 * Checks for magic_quotes_gpc = On and strips them from incoming

 * requests if necessary

 */

if (get_magic_quotes_gpc()) {

 $_GET = array_map('stripslashes', $_GET);

 $_POST = array_map('stripslashes', $_POST);

 $_COOKIE = array_map('stripslashes', $_COOKIE);

}

?>

If we include this code at the start of any file in which we accept data from a query

string, a form post, or a cookie, we’ll remove any slashes added by magic quotes,

should this functionality be switched on.

Summary
Are you ready to jump in and try the PHP 5 waters? This chapter has showed you

how to keep your head up and tread water. You may not be a professional swimmer

yet, but with The PHP Manual by your side—as well as this book—we’ll keep you

afloat, introduce you to some of the beauty of the PHP ocean, and eventually show

you how to glide through the waters with grace!

Chapter2
Using Databases with PDO
In the “old days” of the Internet, most web pages were nothing more than text files

containing HTML. When people visited your site, your web server simply made the

file available to their browsers. This approach started out fine, but as web sites grew,

and issues such as design and navigation became more important, developers found

that maintaining consistency across hundreds of HTML files was becoming a massive

headache. To solve this problem, it became popular to separate variable content

(articles, news items, and so on) from the static elements of the site—its design and

layout.

If a database is used as a repository to store variable content, a server-side language

such as PHP performs the task of fetching that data and placing it within a uniform

layout template. This means that modifying the look and feel of a site can be handled

as a separate task from the maintenance of content. And maintaining consistency

across all the pages in a web site no longer consumes a developer’s every waking

hour.

PHP supports all the relational databases worth mentioning, including those that

are commonly used in large companies: Oracle, IBM’s DB2, and Microsoft’s SQL

Server, to name a few. The three most noteworthy open source alternatives are

40 The PHP Anthology

SQLite, PostgreSQL, and MySQL. PostgreSQL is arguably the best database of the

three, in that it supports more of the features that are common to relational databases.

SQLite is the perfect choice for smaller applications that still require database cap­

ability. MySQL is a popular choice among web hosts that provide support for PHP,

and for this reason is typically easier to find than PostgreSQL.

This chapter covers all the common operations that PHP developers perform when

working with databases: retrieving and modifying data, and searching and backing

up the database. To achieve these tasks, we’ll use the built-in PDO extension, rather

than database-specific extensions. The examples we’ll work with will use a single

table, so no discussion is made of table relationships here. For a full discussion of

that topic, see Kevin Yank’s Build Your Own Database Driven Website Using PHP

& MySQL, 3rd Edition (SitePoint, Melbourne, 2006)1 .

The examples included here work with the MySQL sample database called “world,”

though all the interactions we’ll work through can be undertaken with any database

supported by PDO. The SQL file for the world database is available at

http://dev.mysql.com/doc/#sampledb and the instructions explaining its use can

be found at http://dev.mysql.com/doc/world-setup/en/world-setup.html.

What is PDO?
PDO, the PHP Data Objects extension, is a data-access abstraction layer. But what

the heck is that? Basically, it’s a consistent interface for multiple databases. No

longer will you have to use the mysql_* functions, the sqlite_* functions, or the

pg_* functions, or write wrappers for them to work with your database. Instead,

you can simply use the PDO interface to work with all three functions using the

same methods. And, if you change databases, you’ll only have to change the DSN

(or Data Source Name) of the PDO to make your code work.2

PDO uses specific database drivers to interact with various databases, so you can’t

use PDO by itself. You’ll need to enable the drivers you’ll use with PDO, so be sure

1 http://www.sitepoint.com/books/phpmysql1/

2 That’s all you’ll have to do so long as you write your SQL in a way that’s not database specific. If you

try to stick to the ANSI 92 standard [http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt],

you should generally be okay—most databases support that syntax.

http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/books/phpmysql1/
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://dev.mysql.com/doc/#sampledb
http://dev.mysql.com/doc/world-setup/en/world-setup.html
http://www.sitepoint.com/books/phpmysql1/
[http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt]

Using Databases with PDO 41

to research how to do it for your specific host operating system on the PDO manual
3page.

PDO is shipped with PHP 5.1 and is available from PECL for PHP 5.0. Unfortunately,

as PDO requires the new PHP 5 object oriented features, it’s not available for PHP

4. In this book, all of our interactions with the database will use PDO to interact

with the MySQL back end.

How do I access a database?
Before we can do anything with a database, we need to talk to it. And to talk to it,

we must make a database connection. Logical, isn’t it?

Solution
Here’s how we connect to a MySQL database on the localhost:

mysqlConnect.php (excerpt)

<?php
$dsn = 'mysql:host=localhost;dbname=world;';
$user = 'user';
$password = 'secret';
try
{
 $dbh = new PDO($dsn, $user, $password);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}
?>

We’d use this code to connect to a SQLite database on the localhost:

3 http://www.php.net/pdo/

http://www.php.net/pdo/
http://www.php.net/pdo/
http://www.php.net/pdo/

42 The PHP Anthology

sqliteConnect.php (excerpt)

<?php
$dsn = 'sqlite2:"C:\sqlite\world.db"';
try
{
 $dbh = new PDO($dsn);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}
?>

And this code will let us connect to a PostgreSQL database on the localhost:

postgreConnect.php (excerpt)

<?php
$dsn = 'pgsql:host=localhost port=5432 dbname=world user=user ';
$dsn .= 'password=secret';
try
{
 $dbh = new PDO($dsn);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}
?>

Discussion
Notice that in all three examples above, we simply create a new PDO object. Only

the connection data for the PDO constructor differs in each case: for the SQLite and

PostgreSQL connections, we need just the DSN; the MySQL connection also requires

username and password arguments in order to connect to the database.4

4 We could have put the username and password information in the MySQL DSN, providing a full DSN,

but the average user has no cause to do this when using MySQL. It just adds unnecessary complexity to

the DSN.

Using Databases with PDO 43

The DSN in Detail
As we saw above, DSN is an acronym for Data Source Name. The DSN provides the

information we need in order to connect to a database. The DSN for PDO has three

basic parts: the PDO driver name (such as mysql, sqlite, or pgsql), a colon, and

the driver-specific syntax. The only aspect that may be a bit confusing here is the

driver-specific syntax, as each driver requires different information. But have no

fear—the trusty manual is here, of course!

The manual describes the database driver-specific syntax that’s required in the DSN

for each of the PDO drivers. All you need to do is to go to the database driver page,5

select your database driver, and follow the link to the DSN information. For example,

the MySQL DSN page in the manual is found at

http://www.php.net/manual/en/ref.pdo-mysql.connection.php; it’s shown in Fig­

ure 2.1.

Figure 2.1. The PDO_MySQL DSN manual page

5 http://www.php.net/manual/en/ref.pdo.php#pdo.drivers

http://www.php.net/manual/en/ref.pdo.php#pdo.drivers
http://www.php.net/manual/en/ref.pdo-mysql.connection.php;
http://www.php.net/manual/en/ref.pdo.php#pdo.drivers

44 The PHP Anthology

DSN examples are also provided on each manual page to get you started.

Do Not Pass Credentials in the DSN

In the database connection examples we just saw, I included my access credentials

within the DSN, or in the $user and $pass variables, but I did so for illustration

purposes only. This is not standard—or appropriate—practice, since this inform­

ation can by misused by malicious parties to access your database.

Other Concepts
There are several concepts that you should understand when working with a data­

base. First, you need to remember that the database server is a completely separate

entity from PHP. While in these examples the database server and the web server

are the same machine, this is not always the case. So, if your database is on a different

machine from your PHP, you’ll need to change the host name in the DSN to point

to it.

To make things more interesting, database servers only listen for your connection

on a specific port number. Each database server has a default port number (MySQL’s

is 3306, PostgreSQL’s is 5432), but that may not be the port that the database admin­

istrator chose to set, or the one that PHP knows to look at. When in doubt, include

your port number in the DSN.

You also need to be aware that a database server can have more than one database

on it, so yours may not be the only one. This is why the database name is commonly

included in the DSN—to help you get to your data, not some other person’s!

Finally, make sure you understand what you’ll receive from your PDO connection.

Your connection will return a PDO object—not a reference to the database, or any

data. It is through the PDO object that we interact with the database, bending it to

our will.

How do I fetch data from a table?
Here we are, connected to the database. Woo hoo! But what good is that if we can’t

get anything out of the database?

Using Databases with PDO 45

Solutions
PDO provides a couple of ways for us to interact with the database. Here, we’ll ex­

plore both possible solutions.

Using the Query Method
First, let’s look at the faster, but not necessarily better, way—using the query

method:

pdoQuery.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'Select * from city where CountryCode =' .

 $dbh->quote($country);
 foreach ($dbh->query($sql) as $row)
{
 print $row['Name'] . "\t";
 print $row['CountryCode'] . "\t";
 print $row['Population'] . "\n";

 }
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

An excerpt of this code’s output can be seen in Figure 2.2.

46 The PHP Anthology

Figure 2.2. Output produced using the PDO query method

Using the Prepare and Execute Methods
Using the prepare and execute methods is generally considered the better way to

handle a query to the database. First, we call PDO->prepare with our SQL statement

as an argument. In return, we receive a PDOStatement object, on which we call the

execute method. Then, within a while loop, we repeatedly call the

PDOStatement->fetch method to retrieve the data we’ve selected from our database:

pdoPrepEx.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $sql = 'Select * from city where CountryCode =:country';
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);

Using Databases with PDO 47

$stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

 print $row['Name'] . "\t";

 print $row['CountryCode'] . "\t";

 print $row['Population'] . "\n";

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

An excerpt of the output of this code can be seen in Figure 2.3.

Figure 2.3. Output using the PDO prepare and execute methods

48 The PHP Anthology

Discussion
You’ll have noticed that both these solutions give you the same data, which is as it

should be. But there are very specific reasons for choosing one solution over the

other.

PDO->query is great when you’re only executing a query once. While it doesn’t

automatically escape any data you send it, it does have the very handy ability to

iterate over the result set of a successful SELECT statement. However, you should

take care when using this method. If you don’t fetch all the data in the result set,

your next call to PDO->query might fail.6 If you’re going to use the SQL statement

more than once, your best bet is to use prepare and execute—the preferred solution.

Using prepare and execute has a couple of advantages over query. First, it will

help to prevent SQL injection attacks by automatically escaping any argument you

give it (this approach is often considered the better practice for this reason alone).

Granted, if you build any other part of your query from user input, that will negate

this advantage, but you wouldn’t ever do that, would you? Second, prepared state­

ments that are used multiple times (for example, to perform multiple inserts or

updates to a database) use fewer resources and will run faster than repeated calls

to the query method.

There are a couple of other ways we can use prepare and execute on a query, but

I feel that the example we discussed here will be the clearest. I used named para­

meters in this solution, but be aware that PDO also supports question mark (?)

parameter markers. In the example we saw here, you could have chosen not to use

the paramBindmethod—instead, you could have given the parameters to the execute

command. See The PHP Manual if you have any questions about the alternative

syntaxes.

Using Fetch Choices
When you use prepare and execute, you have the choice of a number of formats

in which data can be returned. The example we saw used the PDO::FETCH_ASSOC

6 For further information, see The PHP Manual page at

http://www.php.net/manual/en/function.PDO-query.php.

http://www.php.net/manual/en/function.PDO-query.php

Using Databases with PDO 49

option with the fetch method, because it returns data in a format that will be very

familiar for PHP4 users: an associative array.7

If you’d rather use only object-oriented code in your application, you could instead

employ the fetchObject method, which, as the name implies, returns the result

set as an object. Here’s how the while loop will look when the fetchObject method

is used:

pdoPrepEx2.php (excerpt)

while ($row = $stmt->fetchObject())
{
 print $row->Name . "\t";
 print $row->CountryCode . "\t";
 print $row->Population . "\n";
}

How do I resolve errors in my SQL queries?
Errors are inevitable. They assail all of us and can, at times, be caused by circum­

stances outside our control—database crashes, database upgrades, downtime for

maintenance, and so on. If something goes wrong when you’re trying to deal with

PHP and SQL together, it’s often difficult to find the cause. The trick is to get PHP

to tell you where the problem is, bearing in mind that you must be able to hide this

information from visitors when the site goes live.

We’re Only Looking for Errors—Not Fixing Them!

I won’t be explaining error handling in depth here—instead, I’ll show you how

to find errors. See Chapter 9 for more information on what to do when you’ve

found an error and want to fix it.

Solutions
PDO provides multiple solutions for catching errors. We’ll go over all three options

in the following examples, where we’ll introduce a typo into the world database

7 For a full listing of the ways in which you can have data returned, see the fetch page of the manual

at http://www.php.net/manual/en/function.pdostatement-fetch.php.

http://www.php.net/manual/en/function.pdostatement-fetch.php

50 The PHP Anthology

table name, so that it reads cities instead of city. If you run this code yourself,

you can also try commenting out the error-handling code to see what may be dis­

played to site visitors.

Using Silent Mode
PDO::ERRMODE_SILENT is the default mode:

pdoError1.php (excerpt)

$country = 'USA';
$dbh = new PDO($dsn, $user, $password);
$sql = 'Select * from cities where CountryCode =:country';
$stmt = $dbh->prepare($sql);
$stmt->bindParam(':country', $country, PDO::PARAM_STR);
$stmt->execute();
$code = $stmt->errorCode();
if (empty($code))
{

⋮ proceed to fetch data
}
else
{
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo '<pre>';
 var_dump($stmt->errorInfo());
 echo '</pre>';
}

The default error mode sets the errorCode property of the PDOStatement object,

but does nothing else. As you can see in this example, you need to check the error

code manually to ascertain whether or not an error was found—otherwise your

script will happily continue on its merry way.

Using Warning Mode
PDO::ERRMODE_WARNING generates a PHP warning as well as setting the errorCode

property:

Using Databases with PDO 51

pdoError2.php (excerpt)

$country = 'USA';
$dbh = new PDO($dsn, $user, $password);
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);
$sql = 'Select * from cities where CountryCode =:country';
$stmt = $dbh->prepare($sql);
$stmt->bindParam(':country', $country, PDO::PARAM_STR);
$stmt->execute();
$code = $stmt->errorCode();
if (empty($code))
{

⋮ proceed to fetch data
}
else
{
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo '<pre>';
 var_dump($stmt->errorInfo());
 echo '</pre>';
}

Again, the program will continue on its merry way unless you specifically check

for the error code. So, unless you have the Display Errors functionality turned on,

use a custom error handler, or check your error logs, you may not notice it.

Using Exception Mode
PDO::ERRMODE_EXCEPTION creates a PDOException as well as setting the errorCode

property:

pdoError3.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
$dbh->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);
 $sql = 'Select * from cities where CountryCode =:country';
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);
 $stmt->execute();

52 The PHP Anthology

⋮ proceed to fetch data
}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo '<pre>';

 echo 'Error: ' . $e->getMessage() . '
';

 echo 'Code: ' . $e->getCode() . '
';

 echo 'File: ' . $e->getFile() . '
';

 echo 'Line: ' . $e->getLine() . '
';

 echo 'Trace: ' . $e->getTraceAsString();

 echo '</pre>';

}

PDO::ERRMODE_EXCEPTION allows you to wrap your code in a try {…} catch {…}

block. An uncaught exception will halt the script and display a stack trace to let

you know there’s a problem.

The PDOException is an extension of the general PHP Exception class found in the

Standard PHP Library (or SPL).8

Discussion
Most people will choose to take advantage of PHP’s more powerful object oriented

model, and use the Exception mode to handle errors, since it follows the object

oriented style of error handling—catching and handling different types of excep­

tions—and is easier to work with.

Regardless of the way you choose to handle your errors, it’s a good idea to return

the text of the SQL query itself. This allows you to see exactly which query is

problematic and will assist you in the error’s debugging.

8 You can learn more about the SPL and PHP’s base Exception class in the manual, at

http://www.php.net/spl/ and http://www.php.net/manual/en/language.exceptions.php.

http://www.php.net/spl/
http://www.php.net/manual/en/language.exceptions.php

Using Databases with PDO 53

How do I add data to, or modify
data in, my database?
Being able to fetch data from the database is a start, but how can you put it there in

the first place?

Solution
We add data to the database with the SQL INSERT command, and modify data that’s

already in the database with the SQL UPDATE command. Both commands can be

sent to the database using either the query method or the prepare and execute

methods. I’ll be using the prepare and execute methods in this solution.

INSERT Data into the Database
First up, let’s look at a simple INSERT, using the City table from the world database:

insert.php (excerpt)

$id = '4080';
$name = 'Guam';
$country = 'GU';
$district = 'Guam';
$population = 171018;
try
{
$dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'INSERT INTO city

(ID, Name, CountryCode, District, Population)
VALUES (:id, :name, :country, :district, :pop)';

 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':id', $id);
 $stmt->bindParam(':name', $name);
 $stmt->bindParam(':country', $country);
 $stmt->bindParam(':district', $district);
 $stmt->bindParam(':pop', $population);
 $stmt->execute();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';

54 The PHP Anthology

echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

?>

UPDATE Data in the Database
And here’s a simple UPDATE, using the City table from the world database:

update.php (excerpt)

$id = '4080';
$name = 'Guam';
$country = 'GU';
$district = 'Guam';
$population = 171019; // data provided by the U.S. Census

// Bureau, International Data Base
// Mid year 2006

try
{
$dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'UPDATE city SET Name = :name,

CountryCode = :country, District = :district,
Population = :pop WHERE ID = :id';

 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':id', $id);
 $stmt->bindParam(':name', $name);
 $stmt->bindParam(':country', $country);
 $stmt->bindParam(':district', $district);
 $stmt->bindParam(':pop', $population);
 $stmt->execute();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}
?>

Using Databases with PDO 55

Discussion
Note that other than changing the SQL statement used in the prepare method, the

code in both examples above is exactly the same. We do like to keep things easy in

PHP!

In a practical application, some, if not all of the inputs to the query will be garnered

from user-generated content. Because we’re using the prepare and execute methods,

we don’t have to worry about an SQL injection attack on this query: all the variables

will be escaped automatically.

Be Cautious with UPDATE and DELETE

Be very careful when you use UPDATE or DELETE in your SQL. If you don’t have

a WHERE clause in your SQL statement, you will end up updating or deleting all

the rows in the table. Needless to say, either outcome could cause serious problems!

How do I protect my web site
from an SQL injection attack?
An SQL injection attack occurs when an attacker exploits a legitimate user input

mechanism on your site to send SQL code that your unsuspecting script passes on

to the database for execution. The golden rule for avoiding SQL injection attacks

is: escape all data from external sources before letting it near your database. That

rule doesn’t just apply to INSERT and UPDATE queries, but also to SELECT queries.

As we discussed earlier, using prepared statements for all your queries within a

script almost eliminates the problem of SQL injection attacks, but if you choose to

use the query method, you’ll have no such protection—you’ll have to manually es­

cape any user input that goes into the query. Let’s look at an example:

sqlInject.php (excerpt)

//$city = 'New York';
$city ="' or Name LIKE '%" ;
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

56 The PHP Anthology

PDO::ERRMODE_EXCEPTION);

 $sql = "Select * from city where Name ='". $city ."'";

 foreach ($dbh->query($sql) as $row)

{

 print $row['Name'] . "\t";

 print $row['CountryCode'] . "\t";

 print $row['Population'] . "\n";

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

In this example, we’ll pretend that the $city variable used in the SQL statement

comes from a form submitted by the user. A typical user would submit something

like New York. This would give us the following SQL statement:

Select * from city where Name ='New York'

This would cause no problems within the script. A savvy attacker, however, may

enter ' OR Name LIKE '%, which would give us the following SQL statement:

Select * from city where Name ='' OR Name LIKE '%'

This input opens the entire table to the attacker. “No big deal,” you say. “It’s only

a list of cities.” Yes, but what if instead of our simple city table, this was the author­

ized users table? The attacker would have access to extremely sensitive data!

Solution
Luckily, this issue is fairly easy to avoid, though the solution will mean more work

for you. You can use PDO’s handy quote method to escape any data that you’re

passing to the SQL string. Simply change the SQL code to this:

 $sql = "Select * from city where Name ='".$dbh->quote($city)."'";

Using Databases with PDO 57

Remember that you’ll need to quote each individual piece of data you use in the

SQL query—there aren’t any shortcuts! That is, unless you consider prepare and

execute a shortcut.

Discussion
If you’re using the PDO->query method, always quote your input. Always!

If you choose to use the prepare and execute approach, you won’t have to quote

the values that you bind to the prepared SQL (for example, the values to be inser­

ted)—that’s all done for you by the driver. However, there may be times when you

won’t be able to bind a variable to the prepared SQL. In such cases, you’ll need to

quote any values you use that cannot be bound (for example, a GROUP BY or ORDER

BY clause, or the table name) if you’re building a dynamic SQL statement.

Remember: a strong defense is a good offense.

How do I create flexible SQL statements?
SQL is a powerful language for manipulating data. With PHP, we can construct SQL

statements out of variables—an approach that can be useful for sorting a table by a

single column, or displaying a large result set across multiple pages.

Solution
Until the SQL is prepared and executed, it’s still just a string that you can manipulate

as you’d expect. This solution uses concatenation based on user input to select cities

from the specified country and display them in a specified order:

flexSQLConcat.php (excerpt)

$validCountries = array ('USA', 'CAN', 'GU', 'ISR');
if (isset($_GET['country']) &&

in_array($_GET['country'], $validCountries))
{

 $country = $_GET['country'];
}
else
{

 $country = 'USA';
}

58 The PHP Anthology

$order = (!isset($_GET['order'])) ? FALSE : $_GET['order'];

try

{

 $dbh = new PDO($dsn, $user, $password);

 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 $sql = 'SELECT * FROM city WHERE CountryCode = :country';

 switch ($order) {

 case 'district':

 // Add to the $sql string

 $sql .= " ORDER BY District";

 break;

 case 'pop':

 $sql .= " ORDER BY Population DESC";

 break;

 default:

 // Default sort by title

 $sql .= " ORDER BY Name";

 break;

 }

 $stmt = $dbh->prepare($sql);

 $stmt->bindParam(':country', $country);

 $stmt->execute();

 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

 print $row['Name'] . "\t";

 print $row['CountryCode'] . "\t";

 print $row['Population'] . "\n";

 }

}

catch (Exception $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

In this code, the user input is read either from a web form that has GET as its method,

or a URL with a query string. In the switch statement above, we’re generating dy­

namic SQL using concatenation. The $order value is read, and an ORDER BY clause

is added to the SQL query.

Using Databases with PDO 59

Discussion
An alternative solution involves using sprintf to build your dynamic SQL. This

approach is similar to binding variables to the prepared SQL:

flexSQLSprintf.php (excerpt)

 switch ($order) {
 case 'district':
 $orderby = " District";
 break;

 case 'pop':
 $orderby = " Population DESC";
 break;

 default:
 $orderby = " Name";
 break;

 }
 $format = 'SELECT * FROM city

WHERE CountryCode = :country ORDER BY %s';
 $sql = sprintf($format, $orderby);

It’s a matter of personal style, but either of these approaches can be extended to

columns, table names, WHERE clauses, LIMIT clauses, and anything else you wish to

include in your SQL query.

Remember that until the point at which the SQL is prepared and executed, it’s just

a string that you can manipulate as much as you require.

How do I find out how
many rows I’ve touched?
Often, it’s useful to be able to count the number of rows returned or affected by a

query before you do anything with them. This capability is particularly handy when

you’re splitting results across pages, or producing statistical information.

Solutions
The two solutions that follow will enable you to count the number of rows returned,

and the number of rows affected, by your operations within the database.

60 The PHP Anthology

Counting the Rows Returned
PDO doesn’t have a magic method that counts the number of rows returned from a

SELECT call. You can use the PDOStatement->rowCountmethod to return the number

of rows returned by a SELECT statement with some PDO database drivers. However,

as the behavior of this function isn’t guaranteed to be consistent with every database

driver, I won’t cover it here. Feel free to try it yourself with your database driver,

but keep in mind that if you need to write portable code, this approach is not reliable.

There is, however, a solution that works around this lack of a useful method—it

uses the SQL aggregate function COUNT.

Here’s the code that will count the number of rows returned:

count.php (excerpt)

$country = 'USA';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'SELECT COUNT(*) FROM city

WHERE CountryCode =:country';
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);
 $result = $stmt->execute();
 echo 'There are ', $stmt->fetchColumn(), ' rows returned.';
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

Discussion

COUNT returns the number of rows from a query, or a part of a query, and is commonly

used with the DISTINCT keyword. SQL’s aggregate function COUNT is widely suppor­

ted by the various database systems. For more information on how your database

handles COUNT, see your database’s documentation.

Using Databases with PDO 61

Counting the Rows Affected
We can use the PDOStatement->rowCount method to find out how many rows were

affected by an UPDATE, INSERT or DELETE query. The use of rowCount is not common

in typical PHP applications, but it can be a good way to inform users that “Number

of records deleted from the Customers table: n.”

Here’s the code you’ll need:

affect.php (excerpt)

$country = 'AFG';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'DELETE FROM city WHERE CountryCode = :country';
 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);
 $result = $stmt->execute();
 echo 'Number of records deleted from the city table: ';
 echo $stmt->rowCount();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

After you call PDOStatement->execute, you can call the PDOStatement->rowCount

method to return the number of rows affected.

Make Sure you Add a WHERE Clause

When you’re using the SQL commands UPDATE and DELETE, always make sure

you add a WHERE clause. Without it, you will either be updating an entire column

in the database, or deleting all the data in the table, neither of which is what you

likely meant to do!

62 The PHP Anthology

How do I find out a new INSERT’s row
number in an autoincrementing field?
When you’re dealing with autoincrementing columns in database tables, you’ll often

need to find out the ID of a row you’ve just inserted, so that you can update other

tables with this information. After all, that’s how relationships between tables are

maintained.

Solution
To accomplish this task, PDO provides the lastInsertId method, which returns

the ID generated by the last INSERT operation if this capability is supported by the

driver being used.9 Here’s how it works:

lastId.php (excerpt)

$name = 'Dededo';
$country = 'GU';
$district = 'Guam';
$population = 42980; // according to the 2000 US census
try
{
$dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'INSERT INTO city

(Name, CountryCode, District, Population)
VALUES (:name, :country, :district, :pop)';

 $stmt = $dbh->prepare($sql);
 $stmt->bindParam(':name', $name);
 $stmt->bindParam(':country', $country);
 $stmt->bindParam(':district', $district);
 $stmt->bindParam(':pop', $population);
 $stmt->execute();
 echo 'ID of last insert: ', $dbh->lastInsertId();
}
catch (PDOException $e)
{

9 lastInsertId may not behave consistently when it’s used with different database drivers—some

database drivers do not support autoincrementing fields. Read the manual page at

http://www.php.net/manual/en/function.PDO-lastInsertId.php for more information.

http://www.php.net/manual/en/function.PDO-lastInsertId.php

Using Databases with PDO 63

echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

Discussion
When you’re using the lastInsertId method, be sure to use the PDO object ($dbh

above), not the PDOStatement object (that’s the object you create when you use

prepare—$stmt above). If you don’t, an error will result.

How do I search my table?
Some people are just impatient; rather than exploring your site with the friendly

navigation system you’ve provided, they demand relevant information now! And

obliging PHP developers like you and I happily implement search functionality to

provide visitors with a shortcut to the information they want.

In the bad old days when all content was stored in the form of HTML files, develop­

ing usable search functionality could be quite a problem, but now that we use

databases to store content, performing searches becomes much easier.

Solution
The most basic form of search occurs against a single column, with the database

LIKE operator:

like.php (excerpt)

$country = 'A';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'SELECT * FROM city

WHERE CountryCode LIKE :country';
 $stmt = $dbh->prepare($sql);
 $country = $country.'%';
 $stmt->bindParam(':country', $country, PDO::PARAM_STR);

64 The PHP Anthology

$stmt->execute();

 while ($row = $stmt->fetchObject()) {

 print $row->Name . "\t";

 print $row->CountryCode . "\t";

 print $row->Population . "\n";

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

Discussion
The LIKE search is supported by almost all database systems,10 and is usually used

in conjunction with wildcard characters. The % character I used in the example

above matches any number of characters—even zero characters. The wildcard

character used in the example allows my query to find any city in a country that

starts with the letter A.

The other wildcard character that’s typically available is _, which will match any

single character. So if, in the example above, I wanted to find only cities in countries

that started with A and ended with G, I’d need to change just one line of code:

/* $country = $country.'%'; <- remove this */

$country = $country.'_G'; // <- add this

If you need a more complicated search method, check your database documentation

to see what’s available. For example, MySQL has FULLTEXT search capabilities, as

explained on the MySQL manual site.11

10 You should verify the availability of the LIKE keyword, and the wildcard characters you want to use

with it, in your database system documentation.
11 http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html

http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html
http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html

Using Databases with PDO 65

How do I work with transactions?
Let’s imagine we’re trying to complete a transaction at our local bank—we need to

move some money from our savings account to our checking account (to pay for

that vacation, of course). Now, if a problem arises in the middle of the transaction

(after you withdraw the money from the savings account, but before you deposit it

into the checking account), the money will disappear, and you can forget that vaca­

tion. Or does it?

If you need to run a group of SQL queries as one operation in order to maintain the

integrity of your data, then you need transactions. Almost all databases provide

transaction support in one form or another, and knowing how to use transactions

with PDO can help you secure that well-deserved vacation.

Solution
We start the hypothetical transaction with the PDO->beginTransaction method,

and if all goes well, end it with PDO->commit. If a problem occurs, we use the

PDO->rollback method to undo everything that’s taken place in the transaction:

transaction.php (excerpt)

try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$dbh->beginTransaction();

 $sql = 'INSERT INTO transactions
(acctNo, type, value, adjustment)
 VALUES (:acctNo, :type, :value, :adjust)';

 $stmt = $dbh->prepare($sql);
 $stmt->execute(array(':acctNo'=>$acctFrom, ':type'=>$withdrawal,

 ':value'=>$amount, ':adjust'=>'-'));
 $sql = 'INSERT INTO transactions

 (acctNo, type, value, adjustment)
 VALUES (:acctNo, :type, :value, :adjust)';

 $stmt = $dbh->prepare($sql);
 $stmt->execute(array(':acctNo'=>$acctTo,

 ':type'=>$deposit,
 ':value'=>$amount,
 ':adjust'=>'+'));

66 The PHP Anthology

$dbh->commit();

}

catch (Exception $e)

{

$dbh->rollBack();

⋮ further error handling here

}

Discussion
Before we get into the deeper nuances of PDO’s transaction handling capabilities,

let’s look at the official definition of database transactions from the PDO manual

page12:

“If you’ve never encountered transactions before, they offer 4 major features:

Atomicity, Consistency, Isolation and Durability (ACID). 13 In layman’s terms, any

work carried out in a transaction, even if it is carried out in stages, is guaranteed to

be applied to the database safely, and without interference from other connections,

when it is committed. Transactional work can also be automatically undone at your

request (provided you haven’t already committed it), which makes error handling

in your scripts easier.”

“Transactions are typically implemented by “saving-up” your batch of changes to

be applied all at once; this has the nice side effect of drastically improving the effi­

ciency of those updates. In other words, transactions can make your scripts faster

and potentially more robust (you still need to use them correctly to reap that bene­

fit).”

Unfortunately, not all database systems support transactions. So, by default, PDO

will run in auto-commit mode, where each query is treated as its own transaction.

If the database does not support transactions, the query is issued without one.

If your database supports transactions, rather than using the auto-commit feature,

you can start and stop transactions manually. In the example above, the

PDO->beginTransaction and PDO->commit methods are called in the try block. The

12 http://www.php.net/pdo
13 Emphasis added by the author.

http://www.php.net/pdo
http://www.php.net/pdo
http://www.php.net/pdo

Using Databases with PDO 67

PDO->rollback is used in the catch block to roll the database back in case of a

problem.

How do I use stored procedures with PDO?
Many databases support stored procedures—scripts that are run on your database

typically in a database-specific SQL language.14 Stored procedures allow the manip­

ulation of the data close to the location where the data is held, reducing bandwidth.

They maintain the separation of the data from the script logic, and allow multiple

systems in potentially different languages to access the data in a uniform manner

(saving you valuable coding and debugging time). Finally, stored procedures increase

query speeds using predetermined execution plans, and can prevent any direct in­

teraction with the data, thereby protecting it.

Solution
Using PDO to work with stored procedures is fairly easy. In the example below,

you’ll see the simple stored procedure we’ll be interacting with in our code.15 It

does nothing more than generate the quote, “Out, damned spot!” from Shakespeare’s

Macbeth:

getQuote.sql (excerpt)

DROP PROCEDURE IF EXISTS getQuote;

DELIMITER //
CREATE PROCEDURE getQuote()
BEGIN
DECLARE outStr VARCHAR(45);
SET outStr = "Out, damned spot!";
SELECT outStr;
END//

DELIMITER ;

Here’s the code that uses the stored procedure:

14 Such languages include PL/SQL (Oracle), T-SQL (SQL Server), PL/pgSQL (PostgreSQL), and SQL::2003

(IBM DB2 and MySQL).

15 This procedure is written in SQL::2003 syntax for MySQL.

68 The PHP Anthology

storedProc.php (excerpt)

try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $sql = 'CALL getQuote()';
 $stmt = $dbh->prepare($sql);
$stmt->execute();
 $return_string = $stmt->fetch();
}
catch (PDOException $e)
{
 echo 'PDO Exception Caught. ';
 echo 'Error with the database:
';
 echo 'SQL Query: ', $sql;
 echo 'Error: ' . $e->getMessage();
}

echo 'Called stored procedure. It returned: ', $return_string[0];

The example script will produce this output:

Called stored procedure. It returned: Out, Damned Spot!

Discussion
Each database’s stored procedure language is different, so be sure to check your

system’s documentation to identify the specific syntax you’ll need to create a stored

procedure. To learn more about MySQL’s stored procedures, check out the relevant

manual pages.16

In the example above, which was made for MySQL, you’ll notice that the stored

procedure includes the DECLARE, SET, and SELECT statements. Generally speaking,

these are needed in any MySQL stored procedure to retrieve data. Nothing special

is needed to retrieve the data from the stored procedure—we just use the

PDOStatement->fetch method to grab the value returned from the final SELECT

16 http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html

http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html
http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html
http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html

Using Databases with PDO 69

statement in the stored procedure. (MySQL normally uses an OUT parameter for the

stored procedure, but this is not necessary with PDO.)

How do I back up my database?
The bigger a database becomes, the more nerve-wracking it can be not to have a

backup of the data it contains. It’s truly the stuff of nightmares: what happens if

your server crashes and everything is lost?

It’s common for database software to have some kind of built-in backup utility for

just this reason. In this solution, we’ll work through an example that uses the

mysqldump utility for the MySQL database system.

Solution
You can export the contents of a database from the command line using mysqldump:

mysqldump -uuser -psecret world > world.sql

This command will log in to MySQL as user “user” (-uuser) with the password

“secret” (-psecret) and output the contents of the world database to a file called

world.sql. The contents of world.sql will be a series of queries that can be run against

MySQL. Using the mysql utility, we can perform the reverse operation from the

command line:

mysql -uuser -psecret world < world.sql

You can use PHP’s system function to execute this command from within a PHP

script (though you’ll need to be logged in and able to execute PHP scripts from the

command line). The following example wraps the mysqldump command line utility

in a handy PHP class that you can use to keep regular backups of your site:

MySQLDump.class.php (excerpt)

<?php
class MySQLDump
{
 private $cmd;
 public function __construct($dbUser, $dbPass, $dbName, $dest,

 $zip = 'gz')

70 The PHP Anthology

{

 $zip_util = array('gz'=>'gzip','bz2'=>'bzip2');

 if (array_key_exists($zip, $zip_util))

 {

 $fname = $dbName . '.' . date("w") . '.sql.' . $zip;

$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . '| ' . $zip_util[$zip] . ' >' .

 $dest . '/' . $fname;

 }

 else

 {

 $fname = $dbName . '.' . date("w") . '.sql';

$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . ' >' . $dest . '/' . $fname;

 }

 }

 public function backup()

 {

 system($this->cmd, $error);

 if ($error)

 {

 trigger_error('Backup failed: ' . $error);

 }

 }

}

?>

MySQLDump Assumptions

The MySQLDump class makes some assumptions about your operating system

configuration. It assumes that the mysqldump utility is available in the path of

the user that executes this script. If the gzip or bzip2 utilities are used, they’re

also expected to be present in the user’s path. If you have a choice, use bzip2, as

it provides better compression than gzip, and helps to save disk space.

The following code shows how this class can be used:

backup.php (excerpt)

<?php
require_once 'MySQLDump.class.php';
$dbUser = 'user';

Using Databases with PDO 71

$dbPass = 'secret';

$dbName = 'world';

$dest = '/home/user/backups';

$zip = 'bz2';

$mysqlDump = new MySQLDump($dbUser, $dbPass, $dbName, $dest, $zip);

$mysqlDump->backup();

?>

This code will create a backup of the world database in the /home/user/backups

directory. If you test this example, make sure to change the variables to suit your

setup.

Discussion
The $dest variable specifies the path to the directory in which the backup file

should be placed. The filename that’s created will be in this format:

databaseName.dayOfWeek.sql.zipExtension

Here’s an example:

world.1.sql.bz2

A number from 0 to 6 that represents the day of the week (0 being Sunday and 6

being Saturday) is inserted into the dayOfWeek element. This filename convention

can provide a weekly rolling backup, with the files for the current week overwriting

those from the previous week. Such an approach should provide adequate backups;

it gives you a week to discover any serious problems, and doesn’t require excessive

disk space for file storage.

The use of a ZIP utility is optional. The default value of the $zip parameter is gz,

which indicates the gzip utility should be used. The other option is bz2, which

indicates the bzip2 utility should be used. If neither of these values is used, no

compression will be made; however, for large databases it’s obviously a good idea

to use a compression tool to minimize the amount of disk space required.

This class is intended for use with the crontab utility, which is a Unix feature that

allows you to execute scripts on a regular (for example, daily) basis.

72 The PHP Anthology

Catering to Platform Differences
You may have noticed that the above MySQLDump class will only work on a *nix

server. What if your database server uses a Windows box? I offer the following

solution to circumvent this problem. First we define an abstract MySQLDump class,

then we extend it to create a class for each platform, and finally we create a factory

method to instantiate the correct MySQLDump object needed. Here’s our abstract

MySQLDump class:

AbstractMySQLDump.class.php (excerpt)

require_once 'MySQLDump_ms.class.php';
require_once 'MySQLDump_nix.class.php';

abstract class MySQLDump
{
 public static function factory($dbUser, $dbPass, $dbName, $dest,

 $zip)
 {
 if (strtoupper(substr(PHP_OS, 0, 3)) === 'WIN')
 {
 return new MySQLDump_ms($dbUser, $dbPass, $dbName, $dest,

 $zip);
 }
 else
 {
 return new MySQLDump_nix($dbUser, $dbPass, $dbName, $dest,

 $zip);
 }

 }

 abstract public function __construct($dbUser, $dbPass, $dbName,
 $dest, $zip = 'gz');

 public function backup()
 {
 system($this->cmd, $error);
 if ($error)
 {
 throw new MySQLDumpException(

 'Backup failed: Command = ' . $this->cmd .
 ' Error = ' . $error);

 }
 }

Using Databases with PDO 73

}

class MySQLDumpException extends Exception {}

The backup method represents our backup API. Child classes need to implement a

custom constructor that sets the cmd property. Overriding the backup method is

optional. The static method factory will instantiate a MySQLDump object instance

based on the PHP_OS constant—representing the host platform. We’ve also added a

custom exception class, MySQLDumpException, for error handling.

The *nix version of our backup class will contain an implementation similar to the

solution class above, but we’ll need to change the class definition so that it extends

the abstract MySQLDump class:

MySQLDump_nix.class.php (excerpt)

require_once 'AbstractMySQLDump.class.php';
class MySQLDump_nix extends MySQLDump
{
 protected $cmd;

 public function __construct($dbUser, $dbPass, $dbName, $dest,
 $zip = 'gz')

 {
 $zip_util = array('gz'=>'gzip','bz2'=>'bzip2');
 if (array_key_exists($zip, $zip_util))
 {
 $fname = $dbName . '.' . date("w") . '.sql.' . $zip;
$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . '| ' . $zip_util[$zip] . ' >' .
 $dest . '/' . $fname;

 }
 else
 {
 $fname = $dbName . '.' . date("w") . '.sql';
$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . ' >' . $dest . '/' . $fname;
 }

 }
}

74 The PHP Anthology

We can then make an implementation for the Windows platform:

MySQLDump_ms.class.php (excerpt)

require_once 'AbstractMySQLDump.class.php';
class MySQLDump_ms extends MySQLDump
{
 protected $cmd;

 public function __construct($dbUser, $dbPass, $dbName, $dest,
 $zip = 'none')

 {
 $fname = $dbName . '.' . date("w") . '.sql';
$this->cmd = 'mysqldump -u' . $dbUser . ' -p' . $dbPass .

 ' ' . $dbName . ' >' . $dest . '\\' . $fname;
 }
}

The Windows version above includes changes to suit the Windows path and ignores

the $zip argument due to the lack of gzip and bzip2 on that platform. This class

also assumes that the path to the mysqldump.exe executable file is in the system

PATH environment variable.

Here’s an example of a backup script that makes use of the above classes on a

Windows box:

backup2.php (excerpt)

<?php
require_once 'AbstractMySQLDump.class.php';
try
{
 $dbUser = 'user';
 $dbPass = 'secret';
 $dbName = 'world';
 $dest = 'c:\backups';
 $zip = 'none';
 $mysqlDump = MySQLDump::factory($dbUser, $dbPass, $dbName,

 $dest, $zip);
 $mysqlDump->backup();
}
catch (Exception $e)
{

Using Databases with PDO 75

echo $e->getMessage();

}

?>

Since we’ve used an abstract class to define our API, the use of the class remains

the same no matter what platform it’s used on, as long as it’s one of our supported

platforms.

Summary
There you have it—our whirlwind tour of PDO and databases is done! By now, you

should have a grasp of the basic workings between PHP’s PDO extension and data­

bases. We also covered the topics of searching, stored procedures, protecting your

script from SQL injection attacks, writing flexible code, and making database

backups.

Being able to work comfortably with a database is part of a strong foundation for

PHP, and learning to make the most of PHP’s PDO extension only makes it easier.

Use the examples and solutions presented here to help build on your existing

database skills.

I also hope you’ll take the time to learn more about SQL and your database. Learning

the nuances and capabilities of your chosen database platform can only help make

your code more efficient and elegant over time.

Chapter3
Strings
Strings are arguably the basis, the raison d’etre, nay, the beating heart of PHP. After

all, PHP really boils down to the input and output of strings. So, it’s hardly surprising

that PHP has more string-related functions than almost any other scripting language!

Unlike other languages such as C, strings in PHP are not arrays of characters; they’re

considered to be a simple type, or scalar. In PHP, strings can be defined using either

single (') or double (") quotes. Strings defined using double quotes are interpol­

ated—this means that variables within the string are substituted for their values.

Use single quotes for strings that require no interpolation. Strings themselves are

case sensitive, but a number of string functions allow operations on strings in a

case-insensitive manner. The PHP manual web site’s String Functions page has

links to all the string-related functions available.1

PHP’s variable interpolation is one of the many features that make the language so

quick and easy to use. However, there are limits to its capabilities. First, have a look

at this example:

1 http://www.php.net/strings/

http://www.php.net/strings/
http://www.php.net/strings/
http://www.php.net/strings/

78 The PHP Anthology

<?php

$who = 'world';

echo "Hello $who";

?>

Here, we have a very simple variable, $who, that has a value of 'world'. When we

place the variable name in the string, we end up with an output of “Hello world”.

While this example is very simple, you may run into situations where your data is

contained in an array or a complex object and in these cases, we need to help the

PHP interpreter along. We either enclose the variable in braces ({ and }) or use

concatenation—the . operator. Here’s an example of what I mean:

<?php

$user = array(

 "first_name" => "Davey",

 "last_name" => "Shafik"

);

// Using Braces

echo "Hello {$user['first_name']} {$user['last_name']}";

// Using Concatenation

echo 'Hello ' . $user['first_name'] .' '. $user['last_name'];

?>

In the above example we demonstrate variable interpolation by wrapping our vari­

ables in braces. The final statement shows that we can achieve the same output if

we use simple concatenation.

Even though strings are considered to be scalar values, PHP has the ability to treat

strings as arrays in certain situations. Consider this quick example where we output

a string letter by letter in a for loop:

<?php

$string = 'Hello World!';

$length = strlen($string);

for ($i = 0; $i < $length; $i++) {

 echo $string[$i] . '
';

}

?>

Strings 79

Notice that we output a single letter from the string using array notation. That code

will output the following:

H
e
l
l
o

W
o
r
l

➥
d
!

This ability to treat strings as arrays only goes so far, though. You can’t, for example,

pass a string to one of PHP’s array functions.

How do I output strings safely?
The most common activity you will perform with strings is to output them.

Whether you’re outputting strings to a browser or to a database, you’ll need to be

careful to encode the strings properly. Some string data has special meaning and

may, to take a best-case scenario, obscure the output; in the worst case, outputting

the wrong string data can cause security vulnerabilities.

Solution
When outputting a string to a browser, we must consider several aspects:

■ Are you outputting a URL inside an <a> tag?
■ Are you outputting to an HTML form element?
■ Do you want to show, or remove any HTML?
■ Do you need to preserve formatting?

Let’s look at an example:

<?php

$text = "Ben & Jerrys Ice Cream";

echo 'Buy ' .

 htmlentities($text) . '';

?>

Here, the $text variable string contains an ampersand (&) which we need to escape.

We need to perform two separate actions on the text in order to escape the ampersand

in the two places where it is used. Firstly, we need to use rawurlencode function

to convert the ampersand and spaces to a valid URL string. The second operation

uses the htmlentities to turn the ampersand into a valid HTML entity because “&”

is a special character in HTML (and XML).

80 The PHP Anthology

The resulting HTML looks like this:

➥Buy Ben & Jerrys Ice Cream

In the URL string, the ampersand has been replaced with %26, and spaces by %20,

and the ampersand in the link text has been replaced by &.

More considerations arise when you’re outputting strings as a means to prepopulate

form fields—perhaps you want to display default data, display user input for con­

firmation purposes, or deal with an error. Again, the htmlentities function gets

the job done:

<?php

$quote = '"So long, and thanks for all the fish!"';

?>

<input type="text" name="fave_quote"

 value="<?php echo htmlentities($quote); ?>" />

If we use the htmlentities function, we can ensure that the value will display

without any issues, even though it contains double quotes. Here is the output of

the above code:

<input type="text" name="fave_quote"

 value=""So long, and thanks for all the fish!"" />

The quotes have been transformed to the HTML entity ".

When we’re inserting data into a database, it’s considered best practice to insert the

data without any escaping transformations intended for output, such as those we

just used in transforming strings to HTML. This practice ensures that you can change

the output format at will. However, when we insert data into a database we must

escape certain characters to ensure that the data doesn’t interfere with the query

itself, and to prevent SQL injection attacks. How you escape the data you insert

depends on your choice of database; for MySQL, for example, we use the

mysql_real_escape_string function.

Take a look at this example of some code-escaping string data submitted via a hypo­

thetical form:

Strings 81

<?php

$first_name = mysql_real_escape_string($_POST['first_name']);

$last_name = mysql_real_escape_string($_POST['first_name']);

$fave_quote = mysql_real_escape_string($_POST['fave_quote']);

$sql = "INSERT INTO my_table (first_name, last_name, fave_quote)

➥ VALUES ('$first_name', '$last_name', '$fave_quote')";
⋮ proceed with query: mysql_query($sql);
echo $sql

?>

Use of the mysql_real_escape_string function ensures that no matter what the

user submits through our form, it won’t break the SQL we’re trying to execute—it

neither causes an error nor allows the user to execute unwanted SQL. Other database

management systems have their own specific string escaping functions, too. For

example, if you use PostgreSQL or SQLite, you can use pg_escape_string and

sqlite_escape_string respectively. PDO users can use PDOStatement->bindParam

or the PDO->quote method, which are discussed in “How do I protect my web site

from an SQL injection attack?” in Chapter 2.

How do I preserve formatting?
Imagine you want to output an email to a web page, but in doing so, you want to

preserve the formatting of the email—retaining the line breaks. Does PHP have a

handy string function available?

Solutions
You have a choice of two simple approaches to ensure that text formatting is pre­

served on a web page. Firstly, and most simply, you can enclose your text within

a <pre> tag. Alternatively, if you don’t want to risk breaking the page layout on long

lines, you can convert newline characters to
 tags using the nl2br function.

You may have a piece of HTML like this:

82 The PHP Anthology

<p>Dear Sir or Madam,

This is my nicely formatted letter. I hope that it really impresses

➥ you.

Look! I've started a new paragraph.

Yours faithfully,

Mike Format</p>

As you probably know, your user will see the following result when this HTML is

output:

Dear Sir or Madam, This is my nicely formatted letter. I hope that

➥ it really impresses you. Look! I've started a new paragraph. Yours
➥ faithfully, Mike Format

But by applying the nl2br function, we can ensure users will see the text as it was

formatted:

<p>Dear Sir or Madam,

This is my nicely formatted letter. I hope that it really impresses

➥ you.

Look! I've started a new paragraph.

Yours faithfully,

Mike Format</p>

How do I strip HTML tags from text?
If you allow your site to be updated by the general public, it’s important to prevent

the use of HTML—you want to prevent visitors from posting markup that interferes

with your site’s layout.

Solution
The PHP function strip_tags handles this job almost perfectly. Given some text,

strip_tags will eliminate anything that looks like an HTML tag. To be more exact,

strip_tags removes any block of text that begins with < and ends with >, while

everything other than the tags is left exactly as it was. Here’s a simple example:

Strings 83

<?php

$text = 'This is bold and this is <i>italic</i>. What about

➥ this link?';

echo strip_tags($text);

?>

This results in the following output:

This is bold and this is italic. What about this link?

You can also supply strip_tags with a list of allowed tags that you want it to ignore.

Let’s alter the above example slightly:

echo strip_tags($text, '<i>');

This time, strip_tags will ignore the and <i> tags and strip the rest, producing

the following output:

This is bold and this is <i>italic</i>. What about this link?

Discussion
As you can see, strip_tags leaves the text between opening and closing tags un­

touched. If it finds a < character but fails to find a matching > character, it will re­

move all the text to the end of the string.

Even though it’s the recommended solution, removing HTML with strip_tags does

not guarantee that your site will be safe from potential harm to its layout. By allowing

certain tags that you consider to be safe for visitors to use, you give visitors the po­

tential to use attributes in those tags—such as style—which can cause problems

with your site’s layout. Worse still, the submission of JavaScript contained in a link

can result in a cross-site scripting (XSS) security exploit. For more information on

XSS and how to prevent it, see the solutions on Chris Shiflett’s site,2 as well as

WikiBlog’s page on XSS prevention.3

2 http://shiflett.org/articles/foiling-cross-site-attacks
3 http://wiki.flux-cms.org/display/BLOG/XSS+Prevention

http://shiflett.org/articles/foiling-cross-site-attacks
http://wiki.flux-cms.org/display/BLOG/XSS+Prevention
http://shiflett.org/articles/foiling-cross-site-attacks
http://wiki.flux-cms.org/display/BLOG/XSS+Prevention

84 The PHP Anthology

How do I force text to wrap after
a certain number of characters?
One function that most developers find very handy is wordwrap. If you have a long

string of text that contains no particular formatting, you can use wordwrap to insert

a character, such as newline character (\n), at a specified interval. wordwrap takes

care not to break up words unless you specifically tell it to. This function can be

particularly useful when it comes to constructing well-laid-out email messages.

Solution
To use wordwrap, we simply pass it a string. wordwrap’s default behavior is to wrap

the text as close to 75 characters as possible (it won’t break words), inserting a

newline character (\n) at each breakpoint. In this example, we intend to output

HTML, so we supply two extra arguments to change this default behavior:

<?php

$string = "This is a long sentence that will be cut at sixty

➥ characters automatically. Don't worry,
➥ no words will be broken up.";

echo wordwrap($string, 60, "
");

?>

With this call, wordwrap wraps the text at 60 characters, and inserts
 tags

instead of newline characters. Here’s what it outputs:

This is a long sentence that will be cut at sixty characters

➥automatically. Don't worry, no words will be broken up.

Thus, we’ve wrangled this unwieldy sentence into something far more manage­

able—without breaking any of the words.

How do I perform advanced
search and replace operations?
PHP comes with a powerful collection of string functions that can be used for search

and replace operations. Your first glance at the relevant manual pages on the PHP

web site may suggest that these functions are simple, but with a little cunning,

Strings 85

there’s much you can accomplish with them.4 The functions str_replace, strpos,

and substr_replace are three such examples—they appear simple at first, but we

can use them to accomplish complex tasks. str_replace replaces all occurrences

of one string in another, strpos returns the position of the first occurrence of one

string in another, and substr_replace replaces text within a portion of a string.

Solutions
The easiest way to search and replace text is using the str_replace function. Let’s

consider the following code:

<?php

$word = 'general-purpose';

$text = <<<EOD

PHP (recursive acronym for "PHP: Hypertext Preprocessor")

 is a widely used Open Source general-purpose scripting language.

EOD;

echo str_replace($word, '' . $word . '', $text);

?>

The above example performs a very simple search and replace operation that helps

us add HTML markup to text. In this case, the string “general-purpose” in the text

is wrapped with a tag, and produces the following output:

PHP (recursive acronym for "PHP: Hypertext Preprocessor")

 is a widely used Open Source general-purpose

➥ scripting language.

The substr_replace function provides control over how text is to be replaced, but

to use it, we need to specify the location and length of the replacement. For example,

if we only wanted to find the first instance of the text we wanted to replace, we

could try this:

4 http://www.php.net/strings/

http://www.php.net/strings/
http://www.php.net/strings/

86 The PHP Anthology

<?php

function addTag($text, $word, $tag)

{

 $length = strlen($word);

 $start = strpos($text, $word);

 $word = '<' . $tag . '>' . $word . '</' . $tag . '>';

 return substr_replace($text, $word, $start, $length);

}

$text = <<<EOD

PHP (recursive acronym for "PHP: Hypertext Preprocessor")

 is a widely used Open Source general-purpose scripting language.

EOD;

echo addTag($text, 'general-purpose', 'strong');

?>

Here we’ve created a function, addTag, which wraps an HTML tag around the first

occurrence of a specified word. To perform this task using substr_replace, we

have to find the length of the word, using strlen, and its position within the text,

using strpos.

substr_replace is very flexible. If you specify a negative value for the $start argu­

ment, it will begin the replacement operation counting from the end of the text in­

stead of the beginning. The $length argument, which represents how much of the

original text to replace, is optional. If this argument is omitted, the whole string is

replaced. If it’s set to zero, no text is replaced—the replacement string is inserted

into the text at the location specified by the $start parameter. A negative value

setting represents the number of characters from the end of the text at which it will

stop the replacement operation.

How do I break up text

into an array of lines?

Let’s say that you have information contained within a string value that you’d like

to split up into separate values, such as a list of tags separated by commas, or a list

of items separated by newline characters. What’s the best way to complete this task?

Solution
If we assume that our piece of text contains line feed characters, we can use the

explode function to break it up into an array of lines:

Strings 87

<?php

$text = <<<EOD

This will be row 1

This will be row 2

This will be row 3

This will be row 4

EOD;

$lines = explode(PHP_EOL, $text);

echo '<table border="1">' .PHP_EOL;

foreach ($lines as $line)

{

 echo '<tr>' .PHP_EOL. '<td>' .$line. '</td>' .PHP_EOL. '</tr>' .

 PHP_EOL;

}

echo '</table>' .PHP_EOL;

?>

This script uses explode to break the text at the line feed characters and place the

text into an array. The PHP_EOL constant—the current operating system’s end of line

(EOL) character—is used for the line feed character to make the script more portable.

The array is then used to build an HTML table, which you can see in Figure 3.1.

Figure 3.1. Using explode to output text as a table

Discussion
It’s useful to know that the implode function does exactly the opposite of what

we’ve seen here—it builds a string out of an array. Let’s add the following line to

the above example:

echo implode($lines, PHP_EOL);

Here’s the resulting output of our original string:

88 The PHP Anthology

This will be row 1

This will be row 2

This will be row 3

This will be row 4

How do I trim whitespace from text?
When we’re dealing with form submissions, among other tasks, we often need to

consider whitespace. Sometimes it’s submitted by the user in error—it is hard to

see, after all. It may also be submitted on purpose by users who want to avoid filling

in fields, for example.

The presence of whitespace in submitted data can cause problems for your applic­

ation—the erroneous inclusion of whitespace could result in the storage of incorrect

usernames or email addresses, for instance—so it’s useful to be able to trim the

whitespace from submitted form values.

Solution
The trim function is another handy PHP tool. It removes whitespace characters at

the start and end of strings, and works like this:

<?php

$string = ' This has whitespace at both ends ';

// Remove that whitespace

$string = trim($string);

if (strlen($string) > 0) {

⋮ It's not just spaces…
}

?>

This straightforward function allows us to make sure that a user can’t send us spaces

instead of real data. If we merely want to trim whitespace from the left- or right-

hand side of a string, we can use ltrim or rtrim respectively.

How do I output formatted text?
In certain situations text needs to be formatted in a specific way—when we’re

working with prices, column alignments, and dates, for example.

Strings 89

Solution
The powerful printf and sprintf functions output a formatted string according

to special formatting directives, the former displaying the output to the screen, the

latter to a string. Formatting directives take the form of a % character followed by

one or more directive elements. Here’s an example:

<?php

$fruit = array('banana', 'mango', 'pear');

$price = array('30', '50', '35');

$format = 'A %s costs %d cents.
';

for ($i = 0; $i < 3; $i++)

{

 printf($format, $fruit[$i], $price[$i]);

}

?>

This script produces the following output:

A banana costs 30 cents.

A mango costs 50 cents.

A pear costs 35 cents.

In this example, $format contains special characters, %s and %d, which printf and

sprintf recognize and replace with the values we supply as arguments. The argu­

ments are swapped with values in the same order in which they’re passed to the

function: %s will format a value as a string and %d will format the value as a number.

To vary the order in which the values appear in the output, we can simply change

the format string without having to change the order of the arguments passed to the

printf or sprintf functions. Let’s use the array of values from the first example,

but change the output such that the values appear in a different order:

$format = '%2$d cents will buy you a %1$s.
';

for ($i = 0; $i < 3; $i++)

{

 printf($format, $fruit[$i], $price[$i]);

}

The %2$d format character will format the second argument as a number. If you

need to double-quote your format string for the sake of variable interpolation, you’ll

90 The PHP Anthology

need to escape the $ character. For example, here’s the format string we’d need if

we wanted to add a newline character, \n, at the end:

$format = "%2\$d cents will buy you a %1\$s.
\n";

These examples are very simple, but formatting directives such as padding, align­

ment, or floating point precision can be quite complex. For more details, refer to

the sprintf page in The PHP Manual.5

How do I validate submitted data?
Validating strings is an important part of implementing a web page form. How can

you make sure that the data a user submits through a form is what it’s supposed to

be—a URL or an email address, for example? The submission of invalid data is a

very common problem.

Solution
The typical approach to validation includes using plenty of regular expressions.

Fortunately, PEAR::Validate is here to help, so we don’t need to reinvent the wheel.

PEAR::Validate offers a main class for validating strings and values that are common

to web applications, as well as a growing number of related internationalized classes

for dealing with country-specific requirements like UK postcodes and social security

numbers for residents of the USA. Each class contains a collection of static methods

(methods that can be called without constructing an object from the class) that are

used to validate a particular value.

Here’s how we might use three of the methods available in the main Validate

class—namely string, email, and url—to validate the data received through a

form:

pear_validate.php (excerpt)

error_reporting(E_ALL);
require_once 'strip_quotes.php';
require_once 'Validate.php';

5 http://www.php.net/sprintf/

http://www.php.net/sprintf/
http://www.php.net/sprintf/

Strings 91

$errors = array('name' => '', 'email' => '', 'url' => '');

if (isset($_POST['submit']))

{

 $name_options = array(

 'format' => VALIDATE_ALPHA . VALIDATE_SPACE,

 'min_length' => 5

);

 if (!Validate::string($_POST['name'], $name_options))

 {

 $errors['name'] = ' class="error"';

 }

 if (!Validate::email($_POST['email']))

 {

 $errors['email'] = ' class="error"';

 }

 if (!Validate::url($_POST['url']))

 {

 $errors['url'] = ' class="error"';

 }

}

First, we turn off E_STRICT error reporting with the error_reporting function be­

cause the PEAR::Validate will generate E_STRICT errors. You can read more about

this and other error-handling topics in Chapter 9.

Next, we include strip_quotes.php and the PEAR::Validate package. strip_quotes.php

contains code that handles magic quotes (which you can read more about in the

section called “Checking for Magic Quotes” in Chapter 1). We also create an array

in the $errors variable to store the results of the field validation. Then, having

tested to see that the form was submitted, we call the validate methods statically

to check the fields. The first check ascertains that the data in the name field is a

string containing only letters from the alphabet or space characters, and is at least

five characters long—this validation requirement is a custom requirement, and we

define it with our $name_options array.

Next, we simply need to call the methods Validate::email and Validate::url in

order to check the email and url fields submitted via the form. Note that if we pass

the value true as the second argument, PEAR::Validate checks the existence of

the specified host name against DNS, using PHP’s checkdnsrr function. Note also

92 The PHP Anthology

that this validation causes a time delay as the host communicates with the nearest

DNS server.

In our $errors array, we store an empty string if the validation passes, and ‘

class="error"' if the validation fails. We insert this string into our form’s <label>

tags. The addition of ‘ class="error"' to the label elements allows us to provide

to users some visual feedback via CSS to indicate a validation error.

Here’s the code for the form itself:

pear_validate.php (excerpt)

<form class="userinfo"
 action="<?php echo $_SERVER['SCRIPT_NAME']; ?>" method="post">

 <?php
 $name = isset($_POST['name']) ? $_POST['name'] : '';
 $email = isset($_POST['email']) ? $_POST['email'] : '';
 $url = isset($_POST['url']) ? $_POST['url'] : '';

 ?>
 <legend>Enter your details</legend>
 <div>
 <label<?php echo $errors['name']; ?>>Name:</label>

 <input type="text" name="name"

 value="<?php echo $name; ?>" />

 </div>
 <div>
 <label<?php echo $errors['email']; ?>>Email:</label>

 <input type="text" name="email"

 value="<?php echo $email; ?>" />

 </div>
 <div>
 <label<?php echo $errors['url']; ?>>Website:</label>

 <input type="text" name="url"

 value="<?php echo $url; ?>" />

 </div>
 <div>

 <input type="submit" name="submit" value="send" />

Strings 93

 </div>

</form>

When it’s viewed in a browser, the form will look something like Figure 3.2.

Figure 3.2. The form displaying before validation

When we rebuild the form after submission, we use the $errors array and some

CSS to highlight form labels with red:

pear_validate.php (excerpt)

.error {
 color: red;
 font-weight: bold;
}

This lets users know which part of the input was invalid, as shown in Figure 3.3.

94 The PHP Anthology

Figure 3.3. The form displaying after validation

Of course, merely changing the color of the labels to red is not very informative;

you can improve this example by adding field validation messages to let users know

exactly how to fix the validation problems.

Discussion
Validating user input and communicating errors to the user is one of the most vital

tasks you will perform as a web developer. Of course, if PEAR::Validate is simply

too complex for your needs, you may find the built-in ctype_* functions are more

to your liking.6

Just remember: in the interests of security, it’s imperative that you validate all user

input, and that you escape it before outputting it as HTML or saving it to your

database.

Summary
You should now have a good idea of what can be achieved with PHP’s normal string

functions. If you can get by just using those, do so—they’re fast and easy to use, and

are far less prone to error than are regular expressions.

String manipulation is the core of what we PHP developers do. From user input to

application output—HTML to a browser, SQL to a database—knowing how to handle

strings safely, securely, and efficiently is one of the most important skills a PHP

professional can have.

6 http://www.php.net/c_type/

http://www.php.net/c_type/
http://www.php.net/c_type/
http://www.php.net/c_type/

Chapter4
Dates and Times
Wouldn’t it be nice if we had a ten-day week? How about 100 minutes in an hour?

Ten months each year?

Dates and times are probably something you take for granted. You deal with them

every day and are probably unaware of the clever mathematical algorithms your

brain uses to anticipate how long you have to wait before Friday evening comes

around again. It’s only when you start programming with dates and times that you

realize that what you’ve taken for granted all these years is not so easy to deal with

in code. Blame it on the Romans!

In our day-to-day lives, we’re used to working with decimal (base ten) numbers,

which are optimized for dealing with groups of ten (ten ones in ten, ten tens in a

hundred, ten hundreds in a thousand, and so on). I’ll avoid giving you a math lecture,

but basically the problem with dates and times is that they don’t break down neatly

into groups of ten. Consider this:

■ In one second you have one thousand milliseconds. No problem.
■ In one minute you have 60 seconds.
■ In one hour you have 60 minutes.

96 The PHP Anthology

■	 In one day you have 24 hours.

So, how do you calculate the number of days given a value in milliseconds? That’s

a stack of long division! And that’s just time—what about dates?

■	 In one week, you have seven days (does your week begin on Sunday or Monday?).
■	 In one month you have … er … you don’t know exactly how many days or weeks;

it depends on the month (and let’s not get started on leap years!).
■	 In one year, you have 12 months.

Of course, that’s easy enough. How about making it more difficult? You often need

to be able to express a date in multiple formats such as “Tuesday 18th March, 2003,”

“03/18/03” (USA format), “18/03/03” (European format), “18th Mar 2003,” and

“20030318” (a MySQL-style timestamp), not to forget “1047942000” (a Unix

timestamp)!

How do you plan to display a list of articles fetched from a database and ordered

by date? What if you want to present something more complex, such as an online

calendar?

As you can see, there’s a lot to think about when working with dates and times in

your applications. Fortunately, PHP really helps when it comes to making times

and dates as painless as possible, thanks to powerful functions like date, but it’s

important to develop the right strategy for dealing with dates and times early in

your career as a PHP programmer. Take the right approach from day one, and you’ll

avoid having to go back later and write insanely complex code to fix the mistakes

you made as a newbie. In this chapter, we’ll be looking at the kinds of strategies

you can employ, and solving some of the common problems you’ll face when it

comes to programming dates and times.

How do I use Unix timestamps?
Timestamps are numbers that identify dates and times in a format that can be used

to solve the types of problems you’ll typically encounter in your applications; they

make it easier to perform operations such as ordering a list or comparing two dates.

As a PHP developer, you’re likely to come across two types of timestamps: Unix

timestamps and MySQL (or other database management system) timestamps.

Dates and Times 97

Unix timestamps are generally the most effective format in which to represent and

manipulate date and time values—they’re a simple solution to a tricky problem. A

Unix timestamp reflects the number of seconds that have passed since the epoch:

January 1, 1970, 00:00:00 GMT. Converting dates to their Unix timestamps makes

date- and time-related calculations easy in PHP. Let’s have a look at how they work.

Solution
PHP provides functions such as time and mktime to help us deal with Unix

timestamps. time will return the current time as a Unix timestamp. The global

variable $_SERVER['REQUEST_TIME']will return the timestamp of the current request

from PHP 5.1. mktime will return a timestamp for a specified date. We use mktime

like this:

$timestamp = mktime($hour, $minute, $second, $month, $day, $year);

Discussion
The downside of Unix timestamps is that, unless you’re some kind of savant, they’re

not human-readable. If I was to tell you that 1047994036 was the number of seconds

that had passed since January 1, 1970, how fast could you tell me what the date

was?

The other problem with Unix timestamps is that they can only be used within a

limited date range, depending on your operating system. On Linux-based systems,

you should be able to go back to somewhere around 1902, and forward as far as

2037. On Windows-based operating systems, the oldest date may be as recent as

January 1, 1970. The problem lies in the size of the number used to represent the

time value. Any operating system can easily handle integer numbers up to a certain

size (4,294,967,296 for current 32-bit operating systems), after which it must work

harder to juggle oversized numbers.

For the sake of efficiency, therefore, operating systems usually impose this “maxim­

um” size on important values like dates and times. Linux, at least, allows you to

have negative integer values for dates; it’ll let you work with dates occurring before

January 1, 1970, while PHP on Windows may complain about such dates. Moreover,

on the flip side of this issue, another potentially Y2K-like problem that will affect

all 32-bit operating systems still in existence looms over the date January 19, 2038.

98 The PHP Anthology

Perform a Google search for that date and you’ll see what I mean. Although 2038 is

a long way off and the timestamp issue may influence no more than your choice of

pacemaker, it’s worth bearing this glitch in mind if you’re planning an application

that will need to work with dates from the distant past or future (perhaps on a history

web site). To see the problem in action, try running the following script on as many

different operating systems as you can:

<?php

echo '1st Jan 1899: ' . mktime(0, 0, 0, 1, 1, 1899) . '
';

echo '1st Jan 1902: ' . mktime(0, 0, 0, 1, 1, 1902) . '
';

echo '31st Dec 1969: ' . mktime(0, 0, 0, 12, 31, 1969) . '
';

echo '1st Jan 1790: ' . mktime(0, 0, 0, 1, 1, 1970) . '
';

echo '1st Jan 1937: ' . mktime(0, 0, 0, 1, 1, 2037) . '
';

echo '1st Jan 2038: ' . mktime(0, 0, 0, 1, 1, 2038) . '
';

echo '19th Jan 2038: ' . mktime(0, 0, 0, 1, 19, 2038) . '
';

echo '20th Jan 2038: ' . mktime(0, 0, 0, 1, 20, 2038) . '
';

echo '1st Jan 2039: ' . mktime(0, 0, 0, 1, 19, 2039) . '
';

?>

Depending on your operating system—it’s a particular problem on Windows—this

example may generate a range of different PHP warning errors.

Another aspect to be aware of when you’re dealing with Unix timestamps is that

they vary in length; a timestamp from January 2, 1970 will obviously be shorter

than a contemporary timestamp. In general, a column size of 11 (INT(11)) should

be more than enough to keep your application running for the next few hundred

years (assuming it’s not running on a 32-bit operating system, of course) when you

place Unix timestamps in your database.

How do I obtain the current date?
Simple as it may seem, obtaining the current date can soon become tricky. With a

multitude of possible client and server timezones and daylight-saving time shifts

in action at any given point in time, you can see how this exercise can quickly be­

come more complicated than it first appears.

Dates and Times 99

Solution
The simplest way to obtain the current date according to your server is to use the

time function. time returns a Unix timestamp for the current date. We can use the

date function to format that date for human consumption:

<?php

$timestamp = time();

echo date("F jS, Y", $timestamp); // November 7th, 2006

?>

The first argument to date is a series of placeholders that specify the format for the

date. The most common placeholders can be seen in Table 4.1. If you fail to specify

a timestamp argument, date defaults to the current date.

Discussion
A problem with simply calling the time function is that the time returned is that

of the server’s timezone—not your or your visitor’s timezone. To address this

problem, we can use the date.timezone setting in php.ini or the

date_default_timezone_set function, which will change the timezone for all date-

related functions:

<?php

$timestamp = time();

echo date("F jS, Y", $timestamp) . '
'; // August 24th, 2007

date_default_timezone_set('America/New_York');

echo date("F jS Y H:i:s") . '
'; // August 24th, 2007 03:06:29

date_default_timezone_set('Africa/Cairo');

echo date("F jS Y H:i:s"); // August 24th, 2007 10:06:29

?>

100 The PHP Anthology

Table 4.1. Most Common Placeholders

DescriptionPlaceholder

d day of the month, two digits with leading zeros

D a textual representation of a day, three letters

j day of the month without leading zeros

l (lowercase L) a full textual representation of the day of the week

English ordinal suffix for the day of the month, two charactersS

F a full textual representation of a month, such as January or March

I (capital i) whether or not the date is in daylight saving time

difference to Greenwich time (GMT) in hoursO

difference to Greenwich time (GMT) with colon between hours and minutes

(added in PHP 5.1.3)

P

24-hour format of an hour without leading zerosG

12-hour format of an hour with leading zerosh

24-hour format of an hour with leading zerosH

minutes with leading zerosi

a full numeric representation of a year, four digitsY

a two-digit representation of a yeary

lowercase am or pma

uppercase AM or PMA

numeric representation of a month, with leading zerosm

a short textual representation of a month, three lettersM

numeric representation of a month, without leading zerosn

number of days in the given montht

L whether or not it’s a leap year

g 12-hour format of an hour without leading zeros

s seconds with leading zeros

T timezone setting of this machine

Dates and Times 101

How do I find a day of the week?
We arrange our lives by the days of the week. When we humans talk about dates,

we often use phrases like “next Tuesday” or “last Wednesday.” It’s easier for us to

understand dates this way than, say reading a date and having to work out that it

means next Tuesday. So, given any date, say “May 31st 1984,” in an arbitrary format,

how can we easily determine the day of the week this date represents?

Solution
Rather than trying to write a complex parser to convert our date to a timestamp,

and then performing complex mathematics to subtract the number of seconds that

have occurred since the date and so forth, we simply pass the date to the strtotime

function. The strtotime function has a seemingly limitless ability to understand

dates and convert them automatically to a Unix timestamp, which we can then use

with the date function and the l (lowercase L) placeholder. Here’s strtotime in

action:

<?php

$timestamp = strtotime("May 31st 1984");

$weekday = date("l", $timestamp);

echo $weekday; // Thursday

?>

How do I find the number
of days in a month?
A common task, especially when writing date-based applications such as calendars,

is to find the number of days in a month. And don’t forget that tricky month—Feb­

ruary! Fortunately, it’s easy to obtain the number of days in a month using PHP.

Solution
We use the strtotime function and the date function, with the t placeholder, to

gain this information easily:

102 The PHP Anthology

<?php

$timestamp = strtotime("October");

$days = date("t", $timestamp);

echo $days; // 31

?>

How do I create a calendar?
There comes a time in the lives of all developers when they encounter the intimid­

ating task of creating a calendar of some description. Knowing where to begin is

often the first hurdle.

Solution
As you’re probably beginning to discern from our previous discussion, strtotime

is a very powerful function. In fact, you’ve seen only a small portion of its abilities

so far. As well as calendar dates, strtotime allows you to pass in more arbitrary,

human-readable expressions, such as +1 week, next friday, last saturday or

even +1 year 6 months 38 days 15 hours 26 minutes 12 seconds. By utilizing

strtotime’s impressive capabilities, and with a little help from PEAR’s

HTML_Table_Matrix class, we can create a simple calendar with remarkable ease.1

Let’s get started:

calendar.php (excerpt)

error_reporting(E_ALL);
require_once "HTML/Table/Matrix.php";
define("EMPTY_COLUMN", "");

First, we turn off E_STRICT error reporting with the error_reporting function be­

cause PEAR::HTML_Table_Matrixwill generate E_STRICT errors—you can read more

about this and other error-handling topics in Chapter 9. Next, we include the

HTML_Table_Matrix package, and define a constant, EMPTY_COLUMN, in order to make

our code more readable.

Next, we perform validation on the month-and-year values:

1 You can read all about HTML_Table_Matrix at

http://pear.php.net/package/HTML_Table_Matrix/docs/1.0.5/HTML_Table_Matrix/HTML_Table_Matrix.html.

http://pear.php.net/package/HTML_Table_Matrix/docs/1.0.5/HTML_Table_Matrix/HTML_Table_Matrix.html

Dates and Times 103

calendar.php (excerpt)

$months = array("January", "February", "March",
 "April", "May", "June", "July",
 "August", "September", "October",
 "November", "December");

if (isset($_GET['month']) && in_array($_GET['month'], $months))
{
 $month = $_GET['month'];
}
else
{
 $month = date("F");
}
if (isset($_GET['year']) &&

 is_numeric($_GET['year']) &&
 $_GET['year'] >= 1970 &&
 $_GET['year'] <= 2038)

{
 $year = $_GET['year'];
}
else
{
 $year = date("Y");
}

Above, we defined an array of allowed values for the $month variable. This is our

whitelist, which is used to make sure a valid month is passed. If no value, or an

invalid value is passed, we use the current month. To complete our input validation,

we make sure that the $_GET['year'] value is between 1970 and 2038. Again, if

no value or an invalid value is passed, we use the current year.

The next step is to get the timestamps for the first day and the last day of the given

month in the given year:

calendar.php (excerpt)

$start_date = strtotime("$month 1st $year");
$end_date = strtotime("$month " .date("t", $start_date). " $year");

We then create an array of numbers that represent the first to the last day of the

month:

104 The PHP Anthology

calendar.php (excerpt)

$date_range = range(1, date("t", $start_date));

Here, we use the -1 month and +1 month modifiers to create timestamps for the

previous and next months, and do the same for the previous and next years:

calendar.php (excerpt)

$previous_month = strtotime("-1 month", $start_date);
$next_month = strtotime("+1 month", $start_date);
$previous_year = strtotime("-1 year", $start_date);
$next_year = strtotime("+1 year", $start_date);

To make life simpler and to avoid duplication, we use sprintf and the following

string formatter to create the links that will allow users to move backward and for­

ward by one year or one month:

calendar.php (excerpt)

$html = "<a href='" . $_SERVER['SCRIPT_NAME'] .
 "?month=%s&year=%s'>%s";

Next, we start to create an array that represents our calendar. Here we construct our

first table row, which consists of a link to show the previous year. This is followed

by text that represents the current year being viewed, and finally, a link to show

the next year. We use the EMPTY_COLUMN constant to denote columns that should be

left empty:

calendar.php (excerpt)

if (date("Y", $previous_year) >= 1970)
{
 $calendar_data[] = sprintf($html, date("F", $start_date),

 date("Y", $previous_year), date("Y", $previous_year));
}
else
{
 $calendar_data[] = EMPTY_COLUMN;
}

Dates and Times 105

$calendar_data[] = EMPTY_COLUMN;

$calendar_data[] = EMPTY_COLUMN;

$calendar_data[] = date("Y", $start_date);

$calendar_data[] = EMPTY_COLUMN;

$calendar_data[] = EMPTY_COLUMN;

if (date("Y", $next_year) < 2038 && date("Y", $next_year) != 1969)

{

 $calendar_data[] = sprintf($html, date("F", $start_date),

 date("Y", $next_year), date("Y", $next_year));

}

else

{

 $calendar_data[] = EMPTY_COLUMN;

}

The next row is similar to the previous one, except that it shows links for the previ­

ous month, followed by the currently viewed month and the link for the next month,

in that order:

calendar.php (excerpt)

$calendar_data[] = sprintf($html, date("F", $previous_month),
 date("Y", $previous_month), date("M", $previous_month));

$calendar_data[] = EMPTY_COLUMN;
$calendar_data[] = EMPTY_COLUMN;
$calendar_data[] = date("M", $start_date);
$calendar_data[] = EMPTY_COLUMN;
$calendar_data[] = EMPTY_COLUMN;
$calendar_data[] = sprintf($html, date("F", $next_month),

 date("Y", $next_month), date("M", $next_month));

The third row simply consists of the days of the week, starting from Monday:

calendar.php (excerpt)

$calendar_data[] = "Mon";
$calendar_data[] = "Tue";
$calendar_data[] = "Wed";
$calendar_data[] = "Thu";

106 The PHP Anthology

$calendar_data[] = "Fri";

$calendar_data[] = "Sat";

$calendar_data[] = "Sun";

To make sure that the numeric dates synchronize to the date of the week, we first

insert a number of blank columns. We use the N placeholder in the date function

so it returns the numeric day of the week on which the first of the month will fall,

and using a for loop, we add the EMPTY_COLUMN constant for the remaining days:

calendar.php (excerpt)

$blank_days = date("N", $start_date);

for ($i = 1; (int) $blank_days > $i; $i++)
{
 $calendar_data[] = EMPTY_COLUMN;
}

We then add the numeric days of the current month to the calendar data array. Next,

we instantiate our HTML_Table_Matrix object and pass our array to the setData

method. And finally, we create a left-to-right, top-to-bottom

HTML_Table_Matrix_Filler object so that our HTML_Table_Matrix can work out

the rows and columns required for the final output:

calendar.php (excerpt)

foreach ($date_range as $day)
{
 $calendar_data[] = $day;
}

$calendar = new HTML_Table_Matrix();
$calendar->setTableSize(8,7);
$calendar->setData($calendar_data);
$filler = HTML_Table_Matrix_Filler::factory("LRTB", $calendar);
$calendar->accept($filler);

We use the toHTML method to display our results:

Dates and Times 107

calendar.php (excerpt)

<h1>PHP Calendar</h1>
<div id="cal">
<?php echo $calendar->toHTML(); ?>
</div>

The finished product can be seen in Figure 4.1.

Figure 4.1. A calendar generated using PEAR::HTML_Table_Matrix

And there you have it. Be intimidated no more! Keep this solution handy in your

PHP toolkit and you’ll be able to whip up a calendar in no time at all, no matter

what the application.

How do I store dates in MySQL?
Human-readable dates come in a variety of formats that can suit many situations.

However, these formats are not the best way to store dates.

At first glance, the easiest way to store dates in MySQL may appear to be to simply

drop them in exactly as they’d appear on a web page; for example, “8th March

2003”. Be warned—taking this route is the first step on the path to serious hair loss

and ulcers. For example, the WHERE clause in an SQL statement run against MySQL

will not allow you to do things like this:

108 The PHP Anthology

SELECT * FROM table WHERE date > '14th February 2007'

'14th February 2007' is not a date value—it’s only a date represented by a string.

It can’t be manipulated or compared as a date value until it is converted into such

a value. If you store your dates as strings you’ll be forever converting them to and

from date value data types. And who needs that kind of headache?

Solution
A far better way to store date information is to use a MySQL timestamp.

To get the current time, in the current server’s local timezone, we can use the NOW

or CURRENT_TIMESTAMP functions. We can also use the UTC_TIMESTAMP to obtain the

UTC timezone timestamp:

mysql> SELECT CURRENT_TIMESTAMP();

+---------------------+

| CURRENT_TIMESTAMP() |

+---------------------+

| 2007-11-05 21:18:28 |

+---------------------+

mysql> SELECT NOW();

+---------------------+

| NOW() |

+---------------------+

| 2007-11-05 21:18:32 |

+---------------------+

mysql> SELECT UTC_TIMESTAMP();

+---------------------+

| UTC_TIMESTAMP() |

+---------------------+

| 2007-11-06 02:18:44 |

+---------------------+

Discussion
MySQL timestamps are simpler than Unix timestamps. The generalized form is

YYYY-MM-DD HH:MM:SS and is typically stored in a column of type DATETIME (not to

be confused with the column types DATE and TIME, which store only YYYY-MM-DD

and HH:MM:SS respectively).

Dates and Times 109

Timestamps in this form are perfect for simple sorting and comparison operations,

and they have the advantage of being human-readable. They also have a predictable

length (until we get to the year 9999), which makes them easier to validate.

You can take advantage of the many native MySQL date and time functions via the

native MySQL DATETIME column type, which is also easy to convert to a Unix

timestamp if required.

How do I format MySQL timestamps?
MySQL timestamps, while human-readable, are not exactly human-friendly—you

probably wouldn’t use them on your birthday party invitations, for example. Instead

of 2008-02-14 13:00:00 I’m sure you’d much prefer to write “February 14th, 2008

at 1 p.m.” Lucky for us, making MySQL timestamps human-friendly is extremely

easy—your party invitations will look great. I promise!

Solution
MySQL, like PHP, has a date formatting function which, aptly, is named the

DATE_FORMAT function. To use this function, we simply pass a format string and a

timestamp as follows:

mysql> SELECT DATE_FORMAT(NOW(), "%W %M %D, %Y");

+------------------------------------+

| DATE_FORMAT(NOW(), "%W %M %D, %Y") |

+------------------------------------+

| Monday October 8th, 2007 |

+------------------------------------+

110 The PHP Anthology

Table 4.2. DATE_FORMAT Specifiers

DescriptionSpecifier

abbreviated weekday name (Sun … Sat)%a

%b

%c month, numeric (0 … 12)

%d day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%D day of the month, numeric (00 … 31)

abbreviated month name (Jan … Dec)

%e day of the month, numeric (0 … 31)

year, numeric, four digits%Y

year, numeric (two digits)%y

a literal % character%%

%W weekday name (Sunday … Saturday)

%S or %s seconds (00 … 59)

time, 24-hour (hh:mm:ss)%T

%p a.m. or p.m.

month name (January..December)%M

month, numeric (00..12)%m

%h, %I, or %l hour (01 … 12)

microseconds (000000 … 999999)%f

hour (00 … 23)%H or %k

%i minutes, numeric (00..59)

%r time, 12-hour (hh:mm:ss followed by a.m. or p.m.)

%w day of the week (0=Sunday … 6=Saturday)

Much like the PHP date function, the DATE_FORMAT function uses a format string

containing specifiers to define the formatting. A list of commonly used specifiers

can be seen in Table 4.2.

Dates and Times 111

How do I perform date
calculations using MySQL?
When performing queries, it’s not uncommon to find the need for date range spe­

cification. You may, for example, need to retrieve all blog posts created within the

last 30 days. Date calculations are a breeze in MySQL; let’s have a look at them.

Solution
You can perform complex date math using the MySQL date functions. We can add

and subtract time intervals that are identified using the INTERVAL keyword via the

DATE_ADD and DATE_SUB functions. Thus, we use DATE_ADD to add one day:

mysql> SELECT DATE_ADD(NOW(), INTERVAL 1 DAY);

+---------------------------------+

| DATE_ADD(NOW(), INTERVAL 1 DAY) |

+---------------------------------+

| 2007-10-09 21:32:20 |

+---------------------------------+

Likewise, we use DATE_SUB to subtract one day:

mysql> SELECT DATE_SUB(NOW(), INTERVAL 1 DAY);

+---------------------------------+

| DATE_SUB(NOW(), INTERVAL 1 DAY) |

+---------------------------------+

| 2007-10-07 21:32:26 |

+---------------------------------+

We can also add or subtract months and years:

mysql> SELECT DATE_ADD(NOW(), INTERVAL 1 MONTH);

+-----------------------------------+

| DATE_ADD(NOW(), INTERVAL 1 MONTH) |

+-----------------------------------+

| 2007-11-08 21:31:05 |

+-----------------------------------+

mysql> SELECT DATE_SUB(NOW(), INTERVAL 1 MONTH);

+-----------------------------------+

| DATE_SUB(NOW(), INTERVAL 1 MONTH) |

112 The PHP Anthology

+-----------------------------------+

| 2007-09-08 21:31:55 |

+-----------------------------------+

mysql> SELECT DATE_ADD(NOW(), INTERVAL 1 YEAR);

+----------------------------------+

| DATE_ADD(NOW(), INTERVAL 1 YEAR) |

+----------------------------------+

| 2008-10-08 21:32:31 |

+----------------------------------+

mysql> SELECT DATE_SUB(NOW(), INTERVAL 1 YEAR);

+----------------------------------+

| DATE_SUB(NOW(), INTERVAL 1 YEAR) |

+----------------------------------+

| 2006-10-08 21:32:37 |

+----------------------------------+

We can use more human-friendly terms when writing SQL queries in MySQL—such

as 1 DAY, 1 MONTH, and 1 YEAR—than when we deal with Unix timestamps, which

are measured in milliseconds. With MySQL, we can use the DATE_SUB and DATE_ADD

functions to retrieve database records within a certain date range. Here, we get all

the data with an updated_date within the last 30 days:

SELECT * FROM my_table WHERE

➥ DATE_SUB(NOW(), INTERVAL 30 DAY) >= updated_date;

Similarly, the following will yield the rows with an updated_date that’s more than

one week old, but no more than 14 days old:

SELECT * FROM my_table WHERE

➥ updated_date BETWEEN(DATE_SUB(NOW(), INTERVAL 14 DAYS),
➥ DATE_SUB(NOW(), INTERVAL 7 DAY);

As you can see, MySQL date functions make it incredibly easy to calculate dates,

thanks to the use of human-friendly terms.

Summary
In this chapter, we’ve investigated the use of Unix timestamps and the flexibility

of the PHP strtotime and date functions, so that we can complete almost any job

Dates and Times 113

involving dates and times without raising a sweat. We’ve also seen that MySQL offers

a range of date functions, which offer similar capabilities to those available in PHP,

by combining DATE_SUB or DATE_ADD with the INTERVAL keyword.

You may be wondering which approach you should take in making your own date

calculations—should you use the PHP functions or try the MySQL functions? The

decision is an easy one: when the timestamps are stored in a database, it’s quicker

to use the MySQL method. However, as we saw in the calendar example in this

chapter, when the timestamps don’t originate in the database, it’s quicker to use

the PHP approach.

None of us can escape the relentless march of time, but when we harness the power

of the PHP date functions we can, at least, master time calculations and presentation.

Functions like strtotime and date may seem simplistic at first glance, but can be

used with great sophistication in your web applications.

Chapter5
Forms, Tables, and Pretty URLs
Creating interactive web pages is what PHP is all about. As you use PHP to build

web sites and applications, you’ll quickly notice that you’re called upon to develop

the same web page elements over and over.

When you’re working on your first PHP web site, writing a script to generate an

HTML table may not seem like a huge problem, but give it time: after you’ve put

together a few sites and have had to go back to modify your past efforts again and

again, working on tables won’t seem so rosy. Eventually, the mere mention of the

word “maintenance” may well have you gasping “Not another table!” as you weep

quietly into your keyboard.

Fear not—help is at hand! Not all HTML is the same, yet there are obvious common­

alities between HTML elements. These commonalities make the perfect targets for

PHP’s classes, which allow you to eliminate repetitive work and concentrate on the

creative aspects of programming that you enjoy.

In this chapter, we’ll provide solutions for some of the most common tasks: building

forms, building tables, and creating pretty URLs. In the process, we’ll make extensive

116 The PHP Anthology

use of some of PEAR’s HTML packages—as a step up from hand coding your own

HTML forms and tables, PEAR represents excellent value.

Some of the examples we’ll discuss here will use the following database tables.

First up, a table for users:

chapter_05.sql (excerpt)

CREATE TABLE user (
 id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 first_name VARCHAR(50) DEFAULT NULL,
 last_name VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (id),
 UNIQUE KEY user_login (login)
);

We’ll also use this table to store images:

chapter_05.sql (excerpt)

CREATE TABLE user_images (
 image_id INT(11) NOT NULL AUTO_INCREMENT,
 user_id INT(11) NOT NULL,
 type VARCHAR(50) NOT NULL DEFAULT '',
 filename VARCHAR(32) NOT NULL,
 PRIMARY KEY (image_id)
);

How do I build HTML forms with PHP?

HTML forms are the key input mechanism for user data on a web site. As web de­

velopers, we must handle several facets of HTML forms:

■ form generation
■ form validation
■ retrieving valid form data
■ repopulating invalid forms with submitted data

Forms, Tables, and Pretty URLs 117

Solution
Thankfully, PEAR comes to the rescue with HTML_QuickForm, 1 which aims to do

exactly as its name states—make forms quickly. HTML_QuickForm can help to auto­

mate all the tasks associated with form building.

Using HTML_QuickForm2

At the time of writing, PEAR had released an alpha version of the

HTML_QuickForm2 class.2 This new version is written specifically for PHP 5 and

is compatible with the E_STRICT level of error reporting.

Our first example demonstrates how easy it is to build a registration form using the

HTML_QuickForm class. We begin our form by including the HTML/QuickForm.php

file and instantiating our HTML_QuickForm object:

htmlForm.php (excerpt)

<?php
 require_once 'HTML/QuickForm.php';
 $form = new HTML_QuickForm('Create', 'post', basename(__FILE__));

The arguments supplied to the constructor represent the form’s name, method, and

action HTML attributes.

Next, we start to add the required form elements using the addElement method:

htmlForm.php (excerpt)

 $opts = array('size' => 20, 'maxlength' => 255);
 $form->addElement('static', 'header', null,

'<h1>Register</h1>'
);
 $form->addElement('text', 'first_name', 'First Name', $opts);
 $form->addElement('text', 'last_name', 'Last Name', $opts);
 $form->addElement('text', 'login', 'Login Name', $opts);
 $form->addElement('password', 'password', 'Password', $opts);
 $form->addElement('text', 'email', 'E-Mail', $opts);

1 http://pear.php.net/package/HTML_QuickForm/
2 http://pear.php.net/package/HTML_QuickForm2/

http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/HTML_QuickForm2/
http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/HTML_QuickForm2/

118 The PHP Anthology

$form->addElement('static', 'valid', null,

'E-Mail address must be valid, and will only be'.

 ' used for account verification.'

);

 $form->addElement('textarea', 'signature', 'Signature',

array('rows' => 10, 'cols' => 20));

 $form->addElement('file', 'avatar', 'Avatar Image');

 $form->addElement('static', 'reqs', null,

'Image must be no more than 64x64 pixels' .

 ' in size.'

);

 $form->addElement('submit', 'register', "Register Now!");

The first argument passed to the addElement method represents the element type.

Many element types are possible, and each is represented by a PHP class—the full

list is available on the “QuickForm element types” PEAR documentation page.3

The element types we’ve used above include static, which represents static HTML

content that’s not submitted with the form. We’ve used static elements for the

heading and form help text. The other types we’ve used include text, password,

textarea, file, and submit; each represents its respective HTML form element

equivalent.

The remaining arguments, which we’ve passed to the addElement method, are

subsequently passed to the constructor methods of the appropriate type classes and,

as such, are specific to those classes. The “QuickForm element types” PEAR docu­

mentation page has all the details you’ll need to use these classes.4

After we’ve added the form elements, we can obtain the form HTML source using

the toHTML method:

htmlForm.php (excerpt)

 $formsource = $form->toHtml();
?>

The only thing that’s left to do is add the form source to a web page:

3 http://pear.php.net/manual/en/package.html.html-quickform.intro-elements.php
4 http://pear.php.net/manual/en/package.html.html-quickform.intro-elements.php

http://pear.php.net/manual/en/package.html.html-quickform.intro-elements.php
http://pear.php.net/manual/en/package.html.html-quickform.intro-elements.php
http://pear.php.net/manual/en/package.html.html-quickform.intro-elements.php
http://pear.php.net/manual/en/package.html.html-quickform.intro-elements.php

Forms, Tables, and Pretty URLs 119

htmlForm.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>
 <?php echo $formsource; ?>

 </body>
</html>

That code above will render as shown in Figure 5.1.

Figure 5.1. Our first registration form

120 The PHP Anthology

As you can see, this form really doesn’t do much, and apart from that fact that it

was slightly easier to build this form than to hand-code the HTML, you might be

forgiven for asking, “What’s all the fuss about?” Well, as you’ll see in the next ex­

ample, we can add complex validation rules to the form with a minimum of fuss

and bother.

We use the addRule method to add validation rules to the form:5

htmlFormValidation.php (excerpt)

$form->addRule('first_name',
'You must enter your first name',
'required', null, 'client'

);
$form->addRule('first_name',

'Your first name must be at least 3 letters',
'minlength', '3', 'client'

);

The first argument to the addRule method is the form element name, which is fol­

lowed by the error message. The next argument indicates the type of validation re­

quired, and includes an extra, optional argument for the validation type, and an

optional indication of where the validation should occur; this setting can specify

client or server. If it specifies client, JavaScript validation is added to the form

to support the rule.

You may have noticed in the code above that you can add multiple rules for a single

form element. We can see that the first rule in the code above is a required rule,

which indicates that the field cannot be blank. As no arguments are required for

this rule, the next argument is null. The final argument indicates the validation is

to occur on the client, that is, the browser. The second rule is a minlength rule

and the optional argument indicates that the first_name field value has a minimum

length of 3 characters.

We’re not limited to only those rules, however. Many other validation types are

available, and they’re all handily documented on the PEAR web site.6 Let’s go ahead

and add more rules for the remaining elements:

5 http://pear.php.net/manual/en/package.html.html-quickform.html-quickform.addrule.php
6 http://pear.php.net/manual/en/package.html.html-quickform.intro-validation.php

http://pear.php.net/manual/en/package.html.html-quickform.html-quickform.addrule.php
http://pear.php.net/manual/en/package.html.html-quickform.intro-validation.php
http://pear.php.net/manual/en/package.html.html-quickform.html-quickform.addrule.php
http://pear.php.net/manual/en/package.html.html-quickform.intro-validation.php

Forms, Tables, and Pretty URLs 121

htmlFormValidation.php (excerpt)

 $form->addRule('last_name',
'You must enter your last name',
'required', null, 'client'

);
 $form->addRule('last_name',

'Your last name must be at least 3 letters',
'minlength', '3', 'client'

);
 $form->addRule('email',

'You must enter your email address',
'required', null, 'client'

);
 $form->addRule('email',

'Please enter a valid email address',
 'email', FALSE, 'client'

);
 $form->addRule('login',

'You must enter a login name',
'required', null, 'client'

);
 $form->addRule('login',

'Your login name must be between 6-20 characters long',
'rangelength', array(6, 20), 'client'

);
 $form->addRule('password',

'You must enter a password',
'required', null, 'client'

);
 $form->addRule('password',

'Your Password must be at least 6 characters long.',
'minlength', '6', 'client'

);

Now that we’ve added these rules, we can add some form handling code:

122 The PHP Anthology

htmlFormValidation.php (excerpt)

 if ($form->validate())
 {
 $form->removeElement('validemail');
 $form->removeElement('reqs');
 $form->removeElement('avatar');
 $form->removeElement('register');
 $form->freeze();
 $formsource = $form->toHtml();

 }
else
{
 $formsource = $form->toHtml();

 }
?>

The validate method allows us to check to see whether or not the form has been

submitted, and passed all the validation requirements. If the form validates, you

can add code at this step to manipulate the form data in some way—to save it to a

database, for example. For the purposes of our example solution, we freeze the form

and display it again. Elements that are frozen only display their values—not the

editable form element. Of course, this makes no difference to static elements and

buttons, so we remove those elements from the form before we freeze it. Using the

freeze method to freeze the form allows us to add a confirmation step to the form

submission process, which gives users a chance to review their information before

they submit it.

If the form has not passed validation, we simply display its HTML source. This step

is also taken if the form has not yet been submitted. If validation errors have been

detected, the validation rule error messages will be added to the form’s HTML

source.

You can see the rendered form in Figure 5.2. Notice how the presence of the valid­

ation rules has automatically inserted required field indicators. That image also

shows the error message that was added by the server-side validation mechan­

ism—you’ll have to disable JavaScript in your browser to see this message yourself.

Figure 5.3 shows the frozen form.

Forms, Tables, and Pretty URLs 123

Figure 5.2. The registration form with validation mechanisms

124 The PHP Anthology

Figure 5.3. The frozen registration form

Now that we’ve validated the data submitted by our users, we need to accept and

store it. Let’s look at an alternative to the above example, in which we extract the

form data and insert it into our database. To extract the submitted data from the

form, we simply use the exportValues method:

htmlFormExport.php (excerpt)

if ($form->validate())
 {
 $values = $form->exportValues();

Now that we have our form data, we can make a database connection and insert it

into the database:

htmlFormExport.php (excerpt)

 require 'dbcred.php';
 try
 {
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 $sql = 'INSERT INTO user ' .
 '(login, password, email, first_name, last_name,' .

Forms, Tables, and Pretty URLs 125

' signature) VALUES (:login, :password, :email,' .

 ' :firstname, :lastname, :sig)';

 $stmt = $db->prepare($sql);

 $stmt->bindParam(':login', $values['login']);

 $stmt->bindParam(':password', $values['password']);

 $stmt->bindParam(':email', $values['email']);

 $stmt->bindParam(':firstname', $values['first_name']);

 $stmt->bindParam(':lastname', $values['last_name']);

 $stmt->bindParam(':sig', $values['signature']);

 $stmt->execute();

First, we insert the registration information into the user table. Using PDO and the

prepare and execute methods with bound parameters allows us to safely use the

form data in our SQL query. For more information about this technique, have a look

at “How do I add data to, or modify data in, my database?” in Chapter 2.

Next, we obtain the insert ID from the previous database insert operation; we’ll need

this in a moment. The $form->_submitFiles property contains an array of files that

were submitted with the form. We can use this information to gain access to the

avatar image file, and move it to the avatar directory, applying a unique filename

to it at the same time:

htmlFormExport.php (excerpt)

 $id = $db->lastInsertId();
 $type = $form->_submitFiles['avatar']['type'];
 $file = 'images/avatars/' . md5(microtime()) .

 basename($form->_submitFiles['avatar']['name']);

 move_uploaded_file(
 $form->_submitFiles['avatar']['tmp_name'],
 $file

);

We also need to insert this image file information into the user_image table. This

is a great opportunity to use that insert ID we saved in the previous operation:

126 The PHP Anthology

htmlFormExport.php (excerpt)

 $sql = 'INSERT INTO user_images' .
 ' (user_id, type, filename) VALUES' .
 ' (:id, :type, :file)';

 $stmt = $db->prepare($sql);
 $stmt->bindParam(':id', $id);
 $stmt->bindParam(':type', $type);
 $stmt->bindParam(':file', $file);
 $stmt->execute();

Our final task is to create the confirmation display:

htmlFormExport.php (excerpt)

 $form->removeElement('validemail');
 $form->removeElement('reqs');
 $form->removeElement('avatar');
 $form->removeElement('register');
 $form->freeze();
 $formsource = $form->toHtml() . '<p>The above information has

➥ been successfully submitted</p>';
 }

If, however, a database exception occurred, we’ll need to log the error and create

the error message display:

htmlFormExport.php (excerpt)

 catch(PDOException $e)
 {
 error_log('Registration form error: '. $e->getMessage());
 $form->removeElement('validemail');
 $form->removeElement('reqs');
 $form->removeElement('avatar');
 $form->removeElement('register');
 $form->freeze();
 $formsource = $form->toHtml() . '<p>An error has occurred. The

➥ above information was not successfully submitted</p>';
 }

 }

Forms, Tables, and Pretty URLs 127

Finally, as usual, if the form hasn’t been submitted, we just display it:

htmlFormExport.php (excerpt)

 else
 {
 $formsource = $form->toHtml();

 }

Using the HTML_QuickForm class allows you to quickly and efficiently add web page

forms to your web site or web application with a minimum of fuss. Make sure you

check out the PEAR documentation to discover all the other functionality available

in the class.7

How do I display data in a table?
Tables are an integral part of data display, which—let’s face it—is an integral part

of most web pages! So how do you easily display your data in a table, in a way that

automates most of the boring, repetitive pieces of table HTML you have to write?

Solution
The answer to this question is to use PEAR’s HTML_Table class.8 In this example,

we’ll use HTML_Table to display the results of a simple SQL query.

First, we need to include the required PHP files:

pearTable.php (excerpt)

<?php
 require 'dbcred.php';
 require 'HTML/Table.php';

dbcred.php contains our database login credentials for use with PDO. The file contains

credentials relevant to our testing environment, so you’ll need to change them

should you wish to try this on your own web server. HTML/Table.php contains the

HTML_Table class.

7 http://pear.php.net/package/HTML_QuickForm/
8 http://pear.php.net/manual/en/package.html.html-table.php

http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/manual/en/package.html.html-table.php
http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/manual/en/package.html.html-table.php

128 The PHP Anthology

Next, we instantiate our PDO object and perform the SQL query. We open a try

block to catch any PDOExceptions that may occur:

pearTable.php (excerpt)

 try
 {
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 $sql = "SELECT * FROM user";

 $stmt = $db->prepare($sql);
 $stmt->execute();

The creation of the table is simple. We instantiate the HTML_Table object and call

the setAutoGrowmethod, which activates a flag instructing HTML_Table to automat­

ically add rows and columns when data is added into a non-existent cell. We then

call the addRow method to add a header row:

pearTable.php (excerpt)

 $table = new HTML_Table;
 $table->setAutoGrow(true);
 $table->addRow(array("","Login","Password","E-Mail",

 "First Name","Last Name","Signature"), null, "th");

That row addition is followed by a while loop in which we call the addRow method

to add the query results. The addRowmethod accepts an indexed array as an argument

for the row content, so we need to call PDOStatement->fetch with the

PDO::FETCH_NUM argument to make PDO return our row data as an indexed array.

Finally, we call toHTML to assign the table HTML source to a variable:

pearTable.php (excerpt)

 while ($row = $stmt->fetch(PDO::FETCH_NUM))
 {

 $table->addRow($row);
 }

Forms, Tables, and Pretty URLs 129

$tablesource = $table->toHTML();

 }

Our catch block simply logs any errors and sets the $tablesource variable to an

empty string, thus avoiding outputting any cryptic error messages to our web page

users:

pearTable.php (excerpt)

 catch (PDOException $e)
 {
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $tablesource = "";

 }
?>

The $tablesource variable can now be used in the web page output:

pearTable.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>
 <h1>PEAR::HTML_Table</h1>
 <?php echo $tablesource ?>

 </body>
</html>

And we’re done! HTML_Table is a great time saver for outputting tabular data.

130 The PHP Anthology

How do I display data in a sortable table?
Usually there’s more to displaying tabular data than just putting it in a table. If you

have large data sets, you might like to add user interface controls like column sorting

or paging to your tables, so that your users can easily digest the content in small

chunks.

Solution
The PEAR Structures_DataGrid class is more than capable of handling the job.9

Structures_DataGrid has more features than I can list here—we’ll only be using

a few of them in our solution, which builds an HTML table with column sorting

and paging controls. This solution also requires several PEAR packages to function

properly. They are: Structures_DataGrid_DataSource_MDB2, 10

MDB2_Driver_mysql, 11 Structures_DataGrid_Renderer_HTMLTable, 12 and

Structures_DataGrid_Renderer_Pager. 13 Once we’ve made sure all those PEAR

packages are installed, we can get started on the solution.

First, we need to include the required PHP files:

pearDataGrid.php (excerpt)

<?php
 require 'dbcred.php';
 require 'Structures/DataGrid.php';

dbcred.php contains our database login credentials, which we’ll use with our

Structures_DataGrid object. The file contains credentials relevant to our testing

environment, so you’ll need to change them to suit should you wish to try this on

your own web server. Structures/DataGrid.php is required to create our

Structures_DataGrid object.

The next step is to instantiate our Structures_DataGrid object and bind it to the

SQL query:

9 http://pear.php.net/package/Structures_DataGrid/
10 http://pear.php.net/package/Structures_DataGrid_DataSource_MDB2/
11 http://pear.php.net/package/MDB2_Driver_mysql/
12 http://pear.php.net/package/Structures_DataGrid_Renderer_HTMLTable/
13 http://pear.php.net/package/Structures_DataGrid_Renderer_Pager/

http://pear.php.net/package/Structures_DataGrid/
http://pear.php.net/package/Structures_DataGrid_DataSource_MDB2/
http://pear.php.net/package/MDB2_Driver_mysql/
http://pear.php.net/package/Structures_DataGrid_Renderer_HTMLTable/
http://pear.php.net/package/Structures_DataGrid_Renderer_Pager/
http://pear.php.net/package/Structures_DataGrid/
http://pear.php.net/package/Structures_DataGrid_DataSource_MDB2/
http://pear.php.net/package/MDB2_Driver_mysql/
http://pear.php.net/package/Structures_DataGrid_Renderer_HTMLTable/
http://pear.php.net/package/Structures_DataGrid_Renderer_Pager/

Forms, Tables, and Pretty URLs 131

pearDataGrid.php (excerpt)

 $datagrid = new Structures_DataGrid(2);
 $options = array(

 'dsn' => "mysql://$user:$password@$db_host/$db_name");

 $sql = "SELECT * FROM user";
 $bind = $datagrid->bind($sql, $options);

 if (PEAR::isError($bind))
 {
 error_log('DataGrid Error: '. $bind->getMessage());
 $gridsource = '';

 }

We instantiate the grid, specifying that each page should display two rows. We then

bind the grid to the SQL query using the bind method. We pass database information

in the $options array to enable our Structures_DataGrid object to automatically

choose the correct database driver to use, and make a connection. We check for errors

that may have been generated from the bind method call using the PEAR::isError

method, and if we detect an error, we make sure to log it and set our $gridsource

variable to an empty string. This will ensure that the displayed web page will not

contain any cryptic error messages.

If no errors are reported, we can proceed to build our grid. We start by defining the

columns and setting rendering options for the grid:

pearDataGrid.php (excerpt)

 else
 {
 $columns = array(

 'first_name' => 'First Name',
 'last_name' => 'Last Name',
 'email' => 'E-Mail',
 'login' => 'Login Name',
 'signature' => 'Signature',

);
 $datagrid->generateColumns($columns);
 $renderer_options = array(

 'sortIconASC' => '⇑',
 'sortIconDESC' => '⇓',

132 The PHP Anthology

'headerAttributes' => array('bgcolor' => '#E3E3E3'),

 'evenRowAttributes' => array('bgcolor' => '#A6A6A6'),

);

 $datagrid->setRendererOptions($renderer_options);

 $renderer = $datagrid->getRenderer();

 $renderer->setTableAttribute('cellspacing', 0);

 $renderer->setTableAttribute('cellpadding', 5);

 $renderer->setTableAttribute('border', 1);

To generate the columns of our grid, we call the convenient generateColumns

method. All we have to do is supply an array that maps our SQL field names to

column labels—Structures_DataGrid will do the rest.

Next, we retrieve the HTML source of our grid and pager using the getOutput

method, and store it in the $gridsource variable:

pearDataGrid.php (excerpt)

 $gridbody = $datagrid->getOutput();
 if (PEAR::isError($gridbody))
 {
 error_log('DataGrid render error: ' .

 $gridbody->getMessage());
 $gridbody = '';

 }

 $gridpager = $datagrid->getOutput(DATAGRID_RENDER_PAGER);
 if (PEAR::isError($gridpager))
 {
 error_log('DataGrid render error: ' .

 $gridpager->getMessage());
 $gridpager = '';

 }
 $gridsource = $gridbody . $gridpager;

 }
?>

When we call the getOutput method, we make sure to test the return value for errors

and take appropriate action.

Finally, our grid can be output to a web page:

Forms, Tables, and Pretty URLs 133

pearDataGrid.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>
 <h1>PEAR::Structures_DataGrid</h1>
 <?php echo $gridsource ?>

 </body>
</html>

With these scant few lines of code, we can generate a dynamic table that will auto­

matically allow users to order the data by clicking on each column’s header, and

will automatically implement dynamic paging. The resulting output can be seen in

Figure 5.4.

Figure 5.4. Structures_DataGrid in action

As we can see, Structures_DataGrid handles a huge amount of the work necessary

to generate a very feature-rich table, including modifying the SQL query to incor­

porate ordering and paging, and making sure that the icon to denote ordering direc­

tion is shown correctly.

134 The PHP Anthology

How do I create a customized data grid?
Showing tabular data in a table seems fairly straightforward, but when the tables

are part of a web application, customization is often required. For example, you

might want to display a list of member information in a tabular format, customizing

one column to display members’ avatar thumbnails.

Solution
The Structures_DataGrid class allows you to specify formatter function callbacks

to customize the data shown in a table. In this solution, we’ll add customized

columns for the members’ names and avatars. Make sure you check out “How do I

display data in a sortable table?” in this chapter to make sure you have everything

on the list of required PEAR packages.

The first step is to include the required PHP files:

pearDataGridCustom.php (excerpt)

<?php
 require 'dbcred.php';
 require 'Structures/DataGrid.php';

dbcred.php contains the database login credentials for use with our

Structures_DataGrid object. The file contains credentials relevant to our testing

environment, so be sure to change them should you wish to try this on your own

web server. Structures/DataGrid.php is required to create our Structures_DataGrid

object.

Next, we define some custom callback functions, getName, and getThumbnail:

pearDataGridCustom.php (excerpt)

 function getName($data)
 {
 return $data['record']['first_name'] .' '.

 $data['record']['last_name'];
 }

 function getThumbnail($data)

Forms, Tables, and Pretty URLs 135

{

 if (strlen($data['record']['filename']) > 0)

 {

 return '<img src="images/avatars/'

 .$data['record']['filename']. '" />';

 }

 else

{

 return '';

 }

 }

The first function, getName, simply concatenates the first_name and last_name

columns. getThumbnail returns an HTML tag using the filename column.

When a callback function is called, it’s passed as an argument to an array that con­

tains the database row as well as some information about the column in question:

the current ordering and the row number. Callback functions must return the string

to be displayed in the column.

We then instantiate our Structures_DataGrid object and create a series of Struc­

tures_DataGrid_Column objects, each of which represents a display column. We

add them to our grid object using the addColumn method:

pearDataGridCustom.php (excerpt)

 $datagrid = new Structures_DataGrid(2);

 $thumb = new Structures_DataGrid_Column("", "thumb", "thumb",
null, null, "getThumbnail()");

 $datagrid->addColumn($thumb);

 $name = new Structures_DataGrid_Column("Name", "name",
"first_name", null, null, "getName()");

 $datagrid->addColumn($name);

 $email = new Structures_DataGrid_Column("E-Mail", "email",
 "email");

 $datagrid->addColumn($email);

 $login = new Structures_DataGrid_Column("Login Name", "login",
 "login");

 $datagrid->addColumn($login);

136 The PHP Anthology

$sig = new Structures_DataGrid_Column("Signature", "signature",

 "signature");

 $datagrid->addColumn($sig);

 $datagrid->setDefaultSort(array('first_name' => 'ASC'));

We also set the default ordering of the data so that it’s arranged by first name, in

ascending (alphabetical) order. The code skeleton for the Structures_DataG­

rid_Column constructor is shown below:

Structures_DataGrid_Column(

 string $label,

 [string $field = null],

 [string $orderBy = null],

 [array $attributes = array()],

 [string $autoFillValue = null],

 [mixed $formatter = null],

 [array $formatterArgs = array()]

);

Our custom column code above displays two important code features: the custom

formatter functions for the $thumb and $name columns (specified in their last argu­

ments), and the orderBy argument for the $name column. In the case of the $name

column, the orderBy argument is important because when we concatenate the two

names together, we can no longer sort by one or the other. As such, we have to

supply either a column name or an expression on which to sort. In our solution,

we’ve chosen to sort by the first name.

Next, we bind the grid to the SQL query using the bind method:

pearDataGridCustom.php (excerpt)

 $options = array(
 'dsn' => "mysql://$user:$password@$db_host/$db_name");

 $sql = "SELECT DISTINCT * FROM user".
 " LEFT JOIN user_images".
 " ON user.id = user_images.user_id";

 $bind = $datagrid->bind($sql, $options);
 if (PEAR::isError($bind))

Forms, Tables, and Pretty URLs 137

{

 error_log('DataGrid Error: '. $bind->getMessage());

 $gridsource = '';

 }

We pass database information in the $options array so that our

Structures_DataGrid object will be able to automatically choose the correct database

driver to use and make a connection. We check for errors generated from the bind

method call using the PEAR::isError method, and if we detect an error, we make

sure to log it and set our $gridsource variable to an empty string. This ensures that

the displayed web page will not contain any cryptic error messages.

If no errors arise, we can proceed to customize the appearance our grid. We add

new icons to show the ordering direction, set custom colors for the header row and

the alternate row color, and specify some custom table attributes:

pearDataGridCustom.php (excerpt)

 else
 {
 $renderer_options = array(

 'sortIconASC' => '',
 'sortIconDESC' => '',
 'headerAttributes' => array('bgcolor' => '#E3E3E3'),
 'evenRowAttributes' => array('bgcolor' => '#A6A6A6'),

);
 $datagrid->setRendererOptions($renderer_options);

 $renderer = $datagrid->getRenderer();
 $renderer->setTableAttribute('cellspacing', 0);
 $renderer->setTableAttribute('cellpadding', 5);
 $renderer->setTableAttribute('border', 1);

We then retrieve the HTML source of our grid and pager using the getOutput

method, and store it in the $gridsource variable:

138 The PHP Anthology

pearDataGridCustom.php (excerpt)

 $gridbody = $datagrid->getOutput();
 if (PEAR::isError($gridbody))
 {
 error_log('DataGrid render error: ' .

 $gridbody->getMessage());
 $gridbody = '';

 }
 // Finally, render the pager, again checking for errors
 $gridpager = $datagrid->getOutput(DATAGRID_RENDER_PAGER);
 if (PEAR::isError($gridpager))
 {
 error_log('DataGrid render error: ' .

 $gridpager->getMessage());
 $gridpager = '';

 }
 $gridsource = $gridbody . $gridpager;

 }
?>

When we call the getOutput method, we make sure to test the return value for errors

and take appropriate action.

Finally, our grid can be output in a web page:

pearDataGridCustom.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>
 <h1>PEAR::Structures_DataGrid, Customized!</h1>
 <?php echo $gridsource ?>

 </body>
</html>

We can see the resulting output in Figure 5.5.

Forms, Tables, and Pretty URLs 139

Figure 5.5. The customized data grid

How do I make “pretty” URLs in PHP?
One of the first things every PHP developer learns is the concept of GET, or query

string, arguments—the variables attached to the end of a URL, which allow the

sending of arbitrary data to your PHP script. However, it quickly becomes apparent

that URLs with lots of query string arguments are quite ugly. In years past there has

been much talk about the importance of creating search engine friendly URLs, but

in reality, this is a myth—any modern spider (Google or Yahoo! for example) will

index URLs that make use of query string arguments. The most compelling argument

for the practice now is “pretty” URLs—URLs that are both human-readable and

easily memorable.

What would you prefer to see:

http://example.org/index.php?action=edit&item=163&what=trackbacks

Or:

http://example.org/edit/trackbacks/for/163-My-Example-Page

Pretty URLs most often consist of three types of elements: the action (/edit), the

type of action (/trackbacks), and one or more key-value pairs

(/for/163-My-Example-Page).

http://example.org/index.php?action=edit&item=163&what=trackbacks
http://example.org/edit/trackbacks/for/163-My-Example-Page

140 The PHP Anthology

Solutions
Apache provides us with several options for creating pretty URLs: AcceptPathInfo,

MultiViews and mod_rewrite.

Pretty URLs with AcceptPathInfo
AcceptPathInfo is an Apache2 Directive that controls whether requests that have

a path appended to a filename will be accepted or rejected.14 If it’s enabled, the

path information is made available to PHP in the $_SERVER['PATH_INFO'] variable.

This facility is usually available to PHP because Apache allows the PHP interpreter

module to specify that this option is turned on.

AcceptPathInfo lets us create URLs like this:

http://example.org/index.php/edit/trackbacks/for/163-My-Example-Page

This is an improvement on the URL we saw above, but it’s still not entirely pretty,

as it contains a filename that people must remember, and which is superfluous to

the URL.

Pretty URLs with MultiViews
We can go part of the way to remedying the problem of URLs containing filenames

using AcceptPathInfo in conjunction with the the MultiViews option.15 MultiViews

is used for content negotiation, which means that it can be used to send a French

translation of a resource to browser clients set to prefer reading French, or a GIF

version of an image to browser clients set to prefer GIF over the JPEG format (or

cannot render JPEG format images, for example).

MultiViews offers the side-effect of allowing us to reference files without their ex­

tensions. We enable it using the following in an .htaccess file or in the httpd.conf:

Options MultiViews

We can now use the following URL:

http://example.org/index/edit/trackbacks/for/163-My-Example-Page

14 http://httpd.apache.org/docs/2.0/mod/core.html#acceptpathinfo
15 http://httpd.apache.org/docs/2.0/content-negotiation.html

http://httpd.apache.org/docs/2.0/mod/core.html#acceptpathinfo
http://httpd.apache.org/docs/2.0/content-negotiation.html
http://example.org/index.php/edit/trackbacks/for/163-My-Example-Page
http://example.org/index/edit/trackbacks/for/163-My-Example-Page
http://httpd.apache.org/docs/2.0/mod/core.html#acceptpathinfo
http://httpd.apache.org/docs/2.0/content-negotiation.html

Forms, Tables, and Pretty URLs 141

Now we’re getting something close to our ideal URL. We can obviously rename our

PHP file from index.php to something a little more intuitive; for example, by naming

it admin.php, we end up with this URL:

http://example.org/admin/edit/trackbacks/for/163-My-Example-Page

Both of these options are supported by Apache by default, but your ability to set

MultiViews in your .htaccess file will depend on your host. Even in this best-case

scenario, though, we still end up with an unwanted element in our URL: the real

filename, which makes this URL longer and harder to remember than one that

doesn’t contain this element.

Pretty URLs with mod_rewrite
mod_rewrite provides us with a very powerful (and complex) system for getting the

exact results we want. However, mod_rewrite is not part of the core Apache server,

and while it’s enabled by default on most distributions (and included with the

Apache Win32 binary), it may not be available on your server. That’s why this is

not the be-all and end-all solution to the problem. The two solutions above are more

portable than this one; however, the code we will use to deal with the paths in this

solution will work with all three solutions.

To use mod_rewrite, we must place something like the following code in an

.htaccess file in your web server’s root directory:

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule !\.(js|ico|gif|jpg|css)$ /index.php [L]

The first two RewriteCond statements check that the incoming request doesn’t refer

to an existing file or directory. If that’s true, the RewriteRule statement will rewrite

the incoming request to a request for /index.php as long as the request does not

contain one of the listed filename extensions.

Once this code is in place, we can create our ideal URL:

http://example.org/edit/trackbacks/for/163-My-Example-Page

http://example.org/admin/edit/trackbacks/for/163-My-Example-Page
http://example.org/edit/trackbacks/for/163-My-Example-Page

142 The PHP Anthology

Handling Pretty URLs
PHP makes the path information available in the $_SERVER['PATH_INFO'] for the

AcceptPathInfo or MultiViews solutions, and in $_SERVER['REQUEST_URI'] when

using mod_rewrite. We can handle those paths using a simple PHP class that will

extract the path information from the incoming request.

We’ll call the class RequestPath and give it a single private property, $parts, to

hold all the parts of our request URLs:

RequestPath.class.php (excerpt)

class RequestPath
{
 private $parts = array();

The actual path parsing happens in the __constructmethod, which simply explodes

the path on the forward slash (/) character and then proceeds to handle the first

two path elements as special cases before dealing with the key-value pairs that follow

them. The first thing we do is grab the path and trim the trailing / character if there

is one:

RequestPath.class.php (excerpt)

 public function __construct()
 {
 if (isset($_SERVER['PATH_INFO']))
 {
 $path = (substr($_SERVER['PATH_INFO'], -1) == "/") ?

 substr($_SERVER['PATH_INFO'], 0, -1) :
 $_SERVER['PATH_INFO'];

 }
 else
 {
 $path = (substr($_SERVER['REQUEST_URI'], -1) == "/") ?

 substr($_SERVER['REQUEST_URI'], 0, -1) :
 $_SERVER['REQUEST_URI'];

 }

Next, we split the path into an array on the / character. The first element we’ll

consider to be the action, the second we’ll consider to be the type:

Forms, Tables, and Pretty URLs 143

RequestPath.class.php (excerpt)

 $bits = explode("/", substr($path, 1));

 $parsed['action'] = array_shift($bits);
 $parsed[] = $parsed['action'];

 $parsed['type'] = array_shift($bits);
 $parsed[] = $parsed['type'];

The remaining elements we group into key-value pairs. If an odd number of elements

remains, we simply place the last element on the end of our key-value array:

RequestPath.class.php (excerpt)

 $parts_size = sizeof($bits);
 if ($parts_size % 2 != 0) {
 $parts_size -= 1;

 }

 for ($i = 0; $i < $parts_size; $i+=2) {
 $parsed[$bits[$i]] = $bits[$i+1];
 $parsed[] = $bits[$i+1];

 }

 if (sizeof($bits) % 2 != 0) {
 $parsed[] = array_pop($bits);

 }

Finally, as the last step of our constructor method, we assign our assembled array

of path elements to our class’s private $parts array:

RequestPath.class.php (excerpt)

 $this->parts = $parsed;
 }

We can make use of the __get, __set, and __isset magic methods in our

RequestPath class, enabling users of the class to get, set, and test the path element

values by using the key as if it were a class property, and keeping our class nice

and simple:

144 The PHP Anthology

RequestPath.class.php (excerpt)

 public function __get($key)
 {
 return $this->parts[$key];

 }
 public function __set($key, $value)
 {
 $this->_parts[$key] = $value;

 }
 public function __isset($key)
 {
 return isset($this->_parts[$key]);

 }
}
?>

Using the code is even simpler. Imagine that the incoming request is:

http://yourhostname/edit/trackbacks/for/163-My-Example-Page

We can access the path information by creating a new RequestPath object:

<?php

 require_once 'RequestPath.class.php';

 $request = new RequestPath();

 echo "Request action: {$request->action}</br>";

 echo "Request type: {$request->type}</br>";

 echo "Request for: {$request->for}</br>";

?>

That code should output the following:

Request action: edit</br>

Request type: trackbacks</br>

Request for: 163-My-Example-Page</br>

Discussion
Once we have pretty URLs set up and functioning, we can start to implement pro­

fessional solution architectures such as the Model-View-Controller architecture, or

http://en.wikipedia.org/wiki/Model-view-controller
http://yourhostname/edit/trackbacks/for/163-My-Example-Page

Forms, Tables, and Pretty URLs 145

MVC.16 Pretty URLs are fast becoming an essential requirement for popular sites

and it’s important to think about your URLs carefully, and make them as memor­

able—or as “guessable”—as possible.

Summary
In this chapter, we’ve explored a number of ways to make building web forms and

tables a whole lot easier, in order to free up our time to focus on the aspects of web

development that matter. There’s some degree of commonality between every table

and every form, yet our roles as developers involve handling the differences—we

can automate the common ground, but we need to learn to handle the aspects that

make each case unique. This chapter also gave us a chance to experiment with using

the Apache web server and some simple PHP to apply pretty URLs in our web ap­

plications.

Together, tables, forms, and pretty URLs are common tasks in the working experience

of any web developer. The goal of this chapter has been to highlight the aspects of

development that we can automate, and to make it easier to handle the parts we

can’t. Unfortunately, nothing but experience can make the job easy all the time!

16 http://en.wikipedia.org/wiki/Model-view-controller

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller

Chapter6
Working with Files
Databases make great tools for storing information because they’re fast and, with

the help of SQL, easy to navigate. Sometimes, though, you need to be able to access

the data stored in a file—be it an image, configuration information, or even a web

page on a remote server. PHP makes such work easy with its powerful collection

of file functions. The only hard part is choosing the right tool for the job!

For the sake of demonstration, I’ve saved a copy of the printable version of Pax

Dickinson’s article “Top 7 PHP Security Blunders!,”1 which we’ll manipulate with

PHP’s file functions. The file is saved as writeSecureScripts.html in this book’s code

archive.

1 http://www.sitepoint.com/article/php-security-blunders

http://www.sitepoint.com/article/php-security-blunders
http://www.sitepoint.com/article/php-security-blunders
http://www.sitepoint.com/article/php-security-blunders

148 The PHP Anthology

A Word on Security

Before you run riot with PHP’s file functions, think carefully about what you’re

doing: you will be making files from your operating system available on a web

page that will be exposed to the Internet. Check and double-check the code that

accesses files—look for holes in your logic that might allow unwanted access to

those files.

Be particularly careful when allowing files and directories to be identified via

URLs, or to be uploaded or downloaded from your site. This warning also extends

to PHP’s include commands, which can be used to execute scripts included from

a remote web server, for example: include

'http://www.hacker.com/bad_script.txt';.

Because of the potential for danger, php.ini settings are available to turn off this

functionality. allow_url_fopen = Off is used to disable support for the

opening of remote files via URLs to the URL-aware fopenwrappers. As of version

5.2, there’s also the allow_url_include setting, which does the same thing for

the include, include_once, require, and require_once functions. If

allow_url_fopen is turned off, allow_url_include is automatically turned

off as well.

I’ll be highlighting the potential dangers with each solution so that, with care,

you can learn to write secure code.

How do I read a local file?
There are as many ways to read a local file as you can think of. In this solution,

we’ll discuss a couple of the most popular approaches, but if you wish to continue

investigating, check out the relevant manual page.2

Solutions
This section covers three options: reading a file as an array, reading a file as a string,

and reading a file directly to the screen.

2 http://www.php.net/filesystem/

http://www.php.net/filesystem/
'http://www.hacker.com/bad_script.txt';
http://www.php.net/filesystem/

Working with Files 149

Reading a File as an Array
First up is PHP’s file function, which reads a file into an array, using the new line

character to indicate where a new array element should begin:

fileFunc.php (excerpt)

<?php
$file = file('writeSecureScripts.html');
$lines = count($file);
$alt = '';
for ($i=0; $i<$lines; $i++) {
 $alt = ($alt == 'even') ? 'odd' : 'even';
 echo '<div class="' . $alt . '">';
 echo $i . ': ' . htmlspecialchars($file[$i]);
 echo "</div>\n";
}
?>

Hey, presto! Up pops the file in a nicely formatted page so you can examine it line

by line. We simply loop over the $file variable—an array—with our for loop, and

display it as we wish.

One thing you may have noticed in the above code is that we used a ternary oper­

ator for the alternate row colors in the line after the for loop. A ternary operator

takes three arguments and is a shortcut approach to writing a simple if statement.

The basic syntax is as follows:

(condition) ? true : false

The output of our work can be seen in Figure 6.1.

150 The PHP Anthology

Figure 6.1. Reading a local file as an array

Reading a File as a String
As of PHP 4.3, the function called file_get_contents reads a file straight into a

string without breaking it up:

fileGetFunc.php (excerpt)

<?php
$file = file_get_contents('writeSecureScripts.html');
$file = strip_tags($file);
?>
<form>
 <textarea>
<?php
echo htmlspecialchars($file);

Working with Files 151

?>

 </textarea>

</form>

The content of the file is now displayed in an HTML textarea stripped of all its

HTML tags. The output is depicted in Figure 6.2.

Figure 6.2. Reading a local file as a string

Reading a File Directly to the Screen
Another way to read a local file is to use the readfile function, which fetches the

content of the file and displays it directly on the screen:

readFileFunc.php (excerpt)

<?php
readfile('writeSecureScripts.html');
?>

152 The PHP Anthology

This one line of code displays the file exactly as it was found—do not stop at go,

do not collect $200. The output is shown in Figure 6.3.

Figure 6.3. Reading a local file directly to the screen

Discussion
readfile is a handy way to safeguard your files and bandwidth. By linking all the

files on your web site through a script using the readfile function, you can prevent

others from linking directly to them and potentially sapping your web site’s band­

width.3 This approach uses what’s commonly referred to as an “anti-leaching”

script. If you bring an authentication system and/or HTTP referrer check into the

mix, you’ll have a secure system that ensures that only legitimate visitors to your

site can access your files.

3 For an example of how to prevent this kind of pilfering, see “How do I manage file downloads with

PHP?”

Working with Files 153

How do I use file handles?
To use the file functions we saw in the previous solution, you simply need to point

them at the file they have to read, using a path that’s relative to the PHP script that

executes the function. However, the majority of PHP’s file functions use a slightly

different mechanism to access a file—a mechanism that’s very similar to that used

to connect to a database. The process uses the fopen function to “connect” and

fclose to “disconnect.” The value returned from the fopen function is a PHP file

pointer, also known as the handle of the file. Once we have a handle on a file, we

can use it to perform a variety of operations on the file, including reading it, append­

ing to it, modifying it, and so on.

Solutions
This simple example demonstrates how to open and close that “connection” to the

file:

fileHandle.php (excerpt)

<?php
$location = 'writeSecureScripts.html';
$fp = fopen($location, 'rb');
⋮ the file handle $fp is now available
fclose($fp);
echo $file;
?>

When you use fopen to connect to a file, you must specify the path to the file and

a mode in which the file is to be accessed (such as r for read-only). The b mode in­

dicator indicates that the file is to be opened in binary mode. As is noted on the

manual page for fopen, 4 binary mode should always be specified to ensure the

portability of your code between operating systems. For more information on the

various modes that are available, read the manual page.

Handling Small Files
Now that we have a file handle, let’s use it to read the file:

4 http://www.php.net/fopen/

http://www.php.net/fopen/
http://www.php.net/fopen/
http://www.php.net/fopen/

154 The PHP Anthology

fileHandle.php (excerpt)

<?php
$location = 'writeSecureScripts.html';
$fp = fopen($location, 'rb');
$file_contents = fread($fp, filesize($location));
fclose($fp);
echo $file_contents;
?>

This example merely demonstrates file handles in action. Notice that when we use

fread, the second argument reflects the amount of data, in bytes, that will be read

from the start of the file. For this argument, I’ve used the filesize function, which

tells me the total size of the file.

Handling Larger Files
The previous solution is fine for small files. However, when it’s reading all the

contents of a large file, PHP will be forced to fill a lot of memory with those contents,

possibly causing a performance issue. To alleviate the potential for this problem,

we take a different approach to reading the contents of a large file—we read the file

in chunks, and operate on each chunk as we go:

fileHandle2.php (excerpt)

<?php
$fp = fopen('writeSecureScripts.html', 'rb');
while (!feof($fp)) {
 $chunk = fgets($fp);
 echo $chunk;
}
fclose($fp);
?>

In our example, the file is opened as normal. Next, to read the contents of the file,

we use a while loop, which continues so long as the feof function returns FALSE.

feof returns TRUE if the end of the file has been reached, or if there’s an error with

the file handle (such as a loss of connection, which can occur with remote files).

Working with Files 155

Next, we use fgets to fetch a “chunk” of the file, beginning at the current location

and running to the next line-feed character. We get the string back, and fgets moves

the internal PHP file pointer for the file handle forward accordingly.

Discussion
Many more functions are available for reading a file using a file handle. One is

fgetss (note the double s), which is almost the same as fgets but strips out any

HTML tags it finds in the same way the strip_tags function would. Another is

fscanf, which formats the output from the file in the same way printf does. And

let’s not forget fgetcsv, which makes handling csv (comma separated values) files

a piece of cake. In an idle moment, it’s well worth browsing the file system functions

for goodies.5

But if all you wish to do is read the entire contents of a file into a variable, the file

and file_get_contents functions are easier to use, and offer potentially better

performance.

How do I modify a local file?
Now that you’ve seen how to read the contents of a file and you’re acquainted with

file handles, how about updating files? Again, it’s easy with PHP.

Solution
Take a look at this code:

write.php (excerpt)

<?php
$lines = file('writeSecureScripts.html');
$fp = fopen('writeSecureScripts.txt', 'w');
foreach ($lines as $line) {
 $line = strip_tags($line);
fwrite($fp, $line);

}
fclose($fp);
echo '<pre>';

5 http://www.php.net/manual/en/ref.filesystem.php

http://www.php.net/manual/en/ref.filesystem.php
http://www.php.net/manual/en/ref.filesystem.php
http://www.php.net/manual/en/ref.filesystem.php

156 The PHP Anthology

echo file_get_contents('writeSecureScripts.txt');

echo '</pre>';

?>

We use the fwrite function to write a string to a file. Take note of the mode we

used when we opened the new file with fopen. The mode w will open the file for

writing, beginning at the very start of the file and overwriting anything that already

exists. If we’d used a instead, the new contents would have been appended to the

file, preserving the original contents. In either case, the file will be created if it

doesn’t already exist.

For a fast, no-nonsense method for writing to a file, investigate the

file_put_contents function.6 It’s identical to calling fopen, fwrite, and fclose,

as we saw in “How do I use file handles?”.

Discussion
Be aware that on a Unix-based web server, PHP will usually run as a user such as

www or nobody—an account that has very limited permissions and isn’t owned spe­

cifically by you. Files that are created by PHP will need to be placed in a directory

to which that user has write permissions.

To make a file or directory readable and writable, use this command:

chmod o=rw <directory | file>

If you need to execute the file as well (for instance, it’s a PHP script), use the follow­

ing command:

chmod o=rwx <directory | file>

Protecting Sensitive Files

If you use a shared server, making directories readable and writable like this means

that other people with accounts on the server will be able to read and modify the

contents of those directories. Be careful about the type of information you place

in them! Your web host should be able to help you address any security concerns.

6 http://www.php.net/file_put_contents/

http://www.php.net/file_put_contents/
http://www.php.net/file_put_contents/

Working with Files 157

How do I access

information about a local file?

PHP comes with a range of functions to help you obtain information about a file.

Solution
In the following example, we use a number of handy functions:

■ file_exists, to check whether the file exists
■ is_file, to check the file is indeed a file and not a directory
■ is_readable, to check whether the file can be read
■ is_writable to check whether the file can be written to
■ filemtime to check the date and time at which the file the file was last modified
■ fileatime to find the date and time the file at which was last accessed
■ filesize to check the file’s size

We also wrap the result in some custom code to make it more readable:

fileInfo.php (excerpt)

<?php
// Function to convert a size to bytes to large units
function fileSizeUnit($size)
{
 if ($size >= 1073741824)
 {
 $size = number_format(($size / 1073741824), 2);
 $unit = 'GB';

 }
 else if ($size >= 1048576)
 {
 $size = number_format(($size / 1048576), 2);
 $unit = 'MB';

 }
 else if ($size >= 1024)
 {
 $size = number_format(($size / 1024), 2);
 $unit = 'KB';

 }
 else if ($size >= 0)
 {

158 The PHP Anthology

$unit = 'B';

 }

 else

 {

 $size = '0';

 $unit = 'B';

 }

 return array('size' => $size, 'unit' => $unit);

}

$file = 'writeSecureScripts.html';

// set the default timezone to use. Available since PHP 5.1

// needed otherwise date() throws an E_STRICT error in v5.2

date_default_timezone_set('UTC');

// Does the file exist

if (file_exists($file))

{

 echo 'Yep: ' . $file . ' exists.
';

}

else

{

 die('Where has: ' . $file . ' gone!
');

}

// Is it a file? Could be is_dir() for directory

if (is_file($file))

{

 echo $file . ' is a file
';

}

// Is it readable

if (is_readable($file))

{

 echo $file . ' can be read
';

}

// Is it writable

if (is_writable($file))

{

 echo $file . ' can be written to
';

}

// When was it last modified?

Working with Files 159

$modified = date("D d M g:i:s", filemtime($file));

echo $file . ' last modifed at ' . $modified . '
';

// When was it last accessed?

$accessed = date("D d M g:i:s", fileatime($file));

echo $file . ' last accessed at ' . $accessed . '
';

// Use a more convenient file size

$size = fileSizeUnit(filesize($file));

// Display the file size

echo 'It\'s ' . $size['size'] . ' ' . $size['unit'] .

 ' in size.
';

?>

Discussion
The fileSizeUnit function we used at the start of this code helps to make the result

of PHP’s filesize function more readable.

PHP keeps a cache of the results of file information functions to improve perform­

ance. Sometimes, though, it will be necessary to clear that cache; we do so using

the clearstatcache function. The output of the code above can be seen in Figure 6.4.

Figure 6.4. Retrieving file information

160 The PHP Anthology

How do I examine directories with PHP?
When you’re creating web-based file managers in PHP, it’s handy to be able to explore

the contents of directories.

Solutions
There are two basic approaches to examining directories with PHP—you should

use whichever method you prefer.7

Using the readdir Function
The first approach, which uses the opendir, readdir, and closedir functions, is

similar to the process of using fopen , fread, and fclose to read a file:

readdir.php (excerpt)

<?php
$location = './';
$dp = opendir($location);
while ($entry = readdir($dp))
{
 if (is_dir($location . $entry))
 {
 echo '[Dir] ' . $entry . '
';

 }
 else if (is_file($location . $entry))
 {
 echo '[File] ' . $entry . '
';

 }
}
closedir($dp);
?>

7 We’ll discuss a third option later in “How do I work with files using the Standard PHP Library in PHP

5?”

Working with Files 161

Using the dir Pseudo-Class
The alternative approach is to use the dir pseudo-class.8 dir is used in a very

similar way to readdir:

readdir2.php (excerpt)

<?php
$location = './';
$dir = dir($location);
while ($entry = $dir->read())
{
 if (is_dir($location . $entry))
 {
 echo '[Dir] ' . $entry . '
';

 }
 else if (is_file($location . $entry))
 {
 echo '[File] ' . $entry . '
';

 }
}
$dir->close();
?>

How do I display PHP
source code online?
Sometimes, you might want to display the source of a file. Maybe you’re making

the code publicly available, but you don’t want to handle downloads. Or you don’t

want to continually update the display page so it remains synchronized with the

actual code (after all, you may be continually improving it). As it turns out, being

a bit lazy isn’t a crime after all.

Solution
PHP provides a very handy function for displaying code: highlight_string, which

displays PHP code in a presentable manner using the formatting defined in php.ini.

8 dir defines the Directory class—one of the predefined classes that are built into PHP. You can

read more about predefined classes on the manual page at

http://www.php.net/manual/en/reserved.classes.php.

http://www.php.net/manual/en/reserved.classes.php

162 The PHP Anthology

Displaying code is even easier with the partner to this function, highlight_file,

which can simply be passed the name of the file you want to display:

highlight.php (excerpt)

<?php
// Define an array of allowed files - VERY IMPORTANT!
$allowed = array('fileInfo.php',

'fileGetFunc.php',
'fileHandle.php',
'fileHandle2.php');

if (isset($_GET['view']) && in_array($_GET['view'], $allowed))
{
highlight_file($_GET['view']);

}
else
{
 $location = './';
 $dir = dir($location);
 while ($entry = $dir->read())
 {
 if (in_array($entry, $allowed))
 {
 echo '<a href="' . $_SERVER['PHP_SELF'] .

 '?view=' . $entry . '">' . $entry . "
\n";
 }

 }
 $dir->close();
}
?>

In PHP 4.2.0 or later, if you pass a second argument of TRUE to highlight_string

or highlight_file, the function will return the results as a string rather than dis­

playing the file directly.

The output from highlight.php is shown in Figure 6.5.

Working with Files 163

Figure 6.5. Displaying PHP source code

Discussion
I take care to allow access only to specified files when I’m displaying either directory

contents, or individual file sources. It’s important to be extremely cautious about

the way you display your source code, or you may find yourself giving away more

than you expected, such as the usernames and passwords used to access a database.

Note that hiding code in the interests of security is not what I’m advocating here.

Code should be written to be secure in the first place. Hiding code so that no one

discovers the holes in it is a recipe for disaster. Eventually someone will find out

what you’ve been hiding and—worse still—you’ll probably be ignorant of the fact

that they’re exploiting your lax security.

How do I store configuration
information in a file?
Certain information that’s used repeatedly throughout your site (such as passwords,

paths, and variables) is best stored in a single file. That way, should you need to

move your code to another site, you’ll be able to modify the settings once, rather

than hundreds of times throughout your code.

164 The PHP Anthology

Solution
The easiest way to store configuration information is to create the variables in an

.ini file, then include this file in your code using the parse_ini_file function,

which parses files that use the same format as php.ini. Here’s an example .ini file:

example.ini (excerpt)

; Settings to connect to MySQL
[Database_Settings]
host=localhost
user=littleme
pass=secret
dbname=world

; Default locations of various files
[Locations]
css=/home/littleme/myinc/css
javascript=/home/littleme/myinc
images=/home/littleme/image

This script uses the parse_ini_file function to retrieve values from your .ini file:

parseini.php (excerpt)

<?php
$iniVars = parse_ini_file('example.ini', TRUE);
echo '<pre>';
print_r($iniVars);
echo $iniVars['Locations']['css'];
echo '</pre>';
?>

And here’s the output of the script:

Array

(

 [Database_Settings] => Array

 (

 [host] => localhost

 [user] => littleme

 [pass] => secret

Working with Files 165

[dbname] => world

)

 [Locations] => Array

 (

 [css] => /home/littleme/myinc/css

 [javascript] => /home/littleme/myinc

 [images] => /home/littleme/image

)

)

/home/littleme/myinc/css

Discussion
Using an .ini file to store your configuration information offers some advantages

over keeping the information in your PHP files. Sometimes, editing PHP files will

make your users nervous—it may be hard for them to see which settings are editable,

and it may be possible for them to break your script if they change something they

shouldn’t. Also, as the .ini file extension differs from those of your script files, it’s

relatively easy to secure all .ini files with a .htaccess that contains a simple directive.9

Configuration File Security

Generally speaking, it’s best to not store your configuration file in the web root

directory—especially because it usually contains user and password information.

Since you can include a file from anywhere within your file system, you might

as well play it safe: leave it out of hackers’—and Google’s—reach by placing it

outside the web root directory on your server.

If you absolutely must store the configuration files in the web root directory, be

sure to protect them by including a file directive in your .htaccess file to restrict

who may access the files. To make your configuration information absolutely se­

cure, you can always encrypt the sensitive data (perhaps using a tool such as

mcrypt).10

9 See http://httpd.apache.org/docs/2.0/mod/core.html#files for more information about file directives.
10 http://www.php.net/mcrypt/

http://www.php.net/mcrypt/
http://httpd.apache.org/docs/2.0/mod/core.html#files
http://www.php.net/mcrypt/

166 The PHP Anthology

How do I access a file on a remote server?
For the most part, PHP can access files on a remote server over the Internet in almost

exactly the same way as it does local files.

Solution
The fopen function can take a URL instead of a file path as its first argument. In

this example, we open a web page as if we’re opening a file:

urlFopen.php (excerpt)

<?php
$fp = fopen('http://www.sitepoint.com/print/758', 'r');
while (!feof($fp))
{
 $chunk = fgets($fp);
 echo $chunk;
}
fclose($fp);
?>

Discussion
PHP implemented the use of streams in version 4.3.0 as a way to unify file, network,

data compression, and other operations into a common set of functions.11 Basically,

if you can read the data in a linear fashion, you’re using streams.

The ability to handle both remote and local files as streams is built into the various

file functions, which certainly makes life easier. The downside is that by allowing

the handling of remote files as if they’re local, PHP makes it very easy for you to

unwittingly open your site up to security risks.12

11 Learn more about streams at http://www.php.net/stream/.

12 You can set the php.ini file setting allow_url_fopen = Off to disable PHP’s ability to open remote

files if you prefer.

http://www.php.net/stream/

Working with Files 167

If you choose to not use fopen to open remote files, there are alternatives, including

using cURL13 or sockets.14 Neither option is as simple as using fopen, though they

achieve the same end.

How do I use FTP from PHP?
One of the great things about PHP is the sheer amount of functionality that’s either

built into it, or is only an extension away. File Transfer Protocol (FTP) is a great

example of such functionality.

Solutions
Here are two popular approaches that you can take to using FTP from PHP.

Using PHP’s Built-in FTP Functions
You can use PHP’s FTP functionality to have PHP scripts act as clients to an FTP

server. This can be useful for countless tasks, whether you’re building a web interface

for an FTP file repository, or developing a tool to update your site from your PHP

development environment. In order to use the FTP functions, you’ll need to make

sure your host has enabled PHP’s FTP functionality.

In this example, we use PHP’s FTP functionality to connect to an FTP server and

list the files in a directory:

ftp.php (excerpt)

<?php
set_time_limit(0);
$ftpServer = 'localhost';
$targetDir = '/';
if (!$fp = ftp_connect($ftpServer, 21, 30))
{
 die('Connection failed');
}
if (!ftp_login($fp, 'anonymous', 'user@domain.com'))
{
 die('Login failed');
}

13 http://www.php.net/curl/
14 http://www.php.net/sockets/

http://www.php.net/curl/
http://www.php.net/sockets/
http://www.php.net/curl/
http://www.php.net/sockets/

168 The PHP Anthology

if (!ftp_chdir($fp, $targetDir))

{

 die ('Unable to change directory to: ' . $targetDir);

}

echo "<pre>Current Directory:" . ftp_pwd($fp) .

 "\n\n";

echo "Files Available:\n";

$files = ftp_nlist($fp, '/');

foreach ($files as $file)

{

 echo $file . "\n";

}

echo '</pre>';

?>

Using the PEAR::Net_FTP Class
PEAR::NET_FTP is a handy class that ensures data is transferred in the correct mode

(that is, ASCII or binary), and solves issues relating to recursive uploads and

downloads where we need to transfer a directory and its subdirectories from one

system to another.

This example uses PEAR::NET_FTP to achieve the same outcome as the previous

example:

pearftp.php (excerpt)

<?php
set_time_limit(0);
require_once 'NET/FTP.php';
$ftpServer = 'localhost';
$ftpUser = 'anonymous';
$ftpPass = 'user@domain.com';
$localDir = 'import/';
$remoteDir = '/';
$ftp = new Net_FTP();
$ftp->setHostname($ftpServer);
$ftp->setUsername($ftpUser);
$ftp->setPassword($ftpPass);
$ftp->connect();
$ftp->login();
$ftp->getExtensionsFile('extensions.ini');
if ($ftp->getRecursive($remoteDir, $localDir))

Working with Files 169

{

 echo 'Files transfered successfully';

}

else

{

 echo 'Transfer failed';

}

?>

Note that the getExtensionsFile method of Net_FTP allows you to specify a file

that defines particular file extensions, such as .gif and .jpg, as binary or ASCII,

ensuring that they will be transferred in the correct manner. The getRecursive

method fetches the contents of the specified remote directory, including its subdir­

ectories.

Assuming you have permission to place files on the server, you can easily apply

the operation in reverse using the putRecursive method. This can be a helpful tool

for transferring whole projects between your local development system and your

web site, particularly if you’re using PHP from the command line.

With the ability to transfer files correctly based on their extension, Net_FTP also

makes an excellent choice for individual put and get file operations, as it eliminates

the need for you to get the file transfer mode correct.

For more information on this PEAR package, see its documentation.15

Discussion
When you connect to a normal FTP server by any means, the username and password

you provide are sent in clear text to the server. This information can easily be read

by malicious parties using a packet sniffer that’s plugged in anywhere between you

and the server you’re connecting to. Be sure to change your passwords regularly

and, in general, try to avoid FTP when a better alternative is available.

If you have SSH access to your site, there are many free SFTP, or SSH File Transfer

Protocol, clients that you can use to interact with it.16

15 http://pear.php.net/package/Net_FTP/docs/

16 Wikipedia provides a list of SFTP clients that makes a good starting point for your research, at

http://en.wikipedia.org/wiki/Comparison_of_FTP_clients#Protocol_support.

http://pear.php.net/package/Net_FTP/docs/
http://pear.php.net/package/Net_FTP/docs/
http://en.wikipedia.org/wiki/Comparison_of_FTP_clients#Protocol_support

170 The PHP Anthology

How do I manage file downloads with PHP?
A fairly common problem faced by developers building sites that will publish files

for download is the management of those files. Perhaps some of the files should not

be publicly available. Perhaps you only want to deliver the file after visitors have

provided their details through a web form. Dealing with downloads may involve

more than simply storing your file in a public directory and linking to it from your

site.

Solution
The trick to handling downloads with PHP is to use a few special HTTP headers

and the readfile function:

download.php (excerpt)

<?php
$fileName = 'example.ini';
$mimeType = 'application/zip';
if (strpos($_SERVER['HTTP_USER_AGENT'], 'MSIE 5') or

 strpos($_SERVER['HTTP_USER_AGENT'], 'Opera 7'))
{
 $mimeType = 'application/x-download';
}
header('Content-Disposition: attachment; filename=' . $fileName);
header('Content-Type: ' . $mimeType);
header('Content-Length: ' . filesize($fileName));
readfile($fileName);
?>

The Content-Disposition header tells the browser to treat the file as a download

(that is, not to display it in the browser window), and gives it the name of the file.

The Content-Type header also tells the browser what type of file we’re sending it.

In most cases, the Content-Type should match the type of file you’re sending;

however, Internet Explorer 5 and Opera browsers have a bad habit of displaying

files of recognized types in the browser regardless of the content-disposition

header, so we set the MIME type to the made-up value application/x-download

for those browsers.

Working with Files 171

Finally, the content-length header tells the browser the size of the file, so that it’s

able to display a download progress bar.

Send HTTP Headers First!

Remember that headers must be delivered before any other content is sent to the

browser.

Be aware that PHP’s output control functions can be helpful here,17 as they let

you send pieces of content to the browser in the correct order: you can hold content

already sent for output by PHP while letting the headers pass through to the

browser.

Discussion
There’s no perfect solution to this type of problem. Imagine, for example, that people

decide to make copies of the images they bought from you and redistribute those

copies without your knowing. It’s almost impossible to prevent customers from

doing so unless you provide files that have been modified especially for the purpose

of distribution—with the addition of watermarks, for example.

Though there’s no ideal solution to this problem, it’s important to be aware of some

of the different strategies for file distribution:

■	 Send the file via email. This is a good option for small files, but email systems

can place a limit on the size of files a user can receive, block certain types of

files, and operate spam filters that can trap your emails.

■	 Provide customers with a unique link that they can use to download the file for

a limited time, such as a week. If an attempted download fails (for example, the

customers lose their Internet connection during the download), this strategy al­

lows them to try again. A unique, random number can be generated and used in

the URL for the download. This number corresponds with an entry in a database,

which expires after a specified time. Such an approach will at least limit the

number of times the file is downloaded, and should help prevent redistribution

of the file via the same URL.

17 http://www.php.net/outcontrol/

http://www.php.net/outcontrol/
http://www.php.net/outcontrol/

172 The PHP Anthology

■	 Provide customers with username and password combinations that they can use

to log in to the site and download their own files. This approach has proven

particularly effective for SitePoint’s online library, where it’s used to distribute

SitePoint books in Adobe’s PDF format. The PDF files are secured with the cus­

tomer’s email address. This obviously discourages customers from redistributing

the PDF, as it would be obvious which account was used to redistribute the file.

As I said, there’s no perfect solution to this problem. However, greater protection

can be achieved if some form of security is built into the file that’s being downloaded,

such as a password for a document download, a watermark on an image, or a license

key for a software package.

How do I create compressed
ZIP/TAR files with PHP?
Perhaps you have a directory that contains many files, or different types of files, as

well as subdirectories. There may well be situations in which you need to create a

download of the whole directory that preserves its original structure. The typical

command-line approach to creating such a download on Unix-based systems is first

to create an “archive” file such as a .tar file (.tar files are “Tape Archives” and

were originally conceived to help back up a file system onto tape), then compress

that file with the gzip or bzip2 utilities.

Solutions
On a *nix-based system, you’d usually use the tar functionality available through

the command line to create these files. Using PHP’s system function, you could

execute these commands from a PHP script, assuming your web server had permis­

sion to use the tar and gzip or bzip2 executables. However, your server probably

won’t have these permissions, so in this solution, we chose to use the

PEAR::Archive_Tar package instead. This package allows you to create archives

from data stored in your database, or from nodes in an XML document, as well as

to handle basic files.

Working with Files 173

Watch Out for E_STRICT Errors

The PEAR::Archive_Tar package was originally developed with PHP 4. If you

use it in PHP 5 with E_STRICT errors turned on, you’ll receive E_STRICT errors

for the deprecated use of references when passing objects.

Compressing Simple Files
In this example, we create an archive file using the Archive_Tar class and add files

to it. Then we do the reverse—extract all the files we added:

tar.php (excerpt)

<?php
require_once 'Archive/Tar.php' ;
$tar = new Archive_Tar('demo.tar.gz', 'gz');
$files = array(
 'example.ini',
 'writeSecureScripts.html'
);
$tar->create($files);
echo 'Archive created';

$tar2 = new Archive_Tar('demo.tar.gz');
$tar2->extract('demo');
echo 'Archive extracted';
?>

This code is fairly straightforward. When we’re instantiating the class, the second

argument to the constructor function tells Archive_Tar which type of compression

to use (the alternative to gz, which is used for gzip compression, is bz2, used for

bzip2 compression). Simply omit the second argument if you don’t require compres­

sion. The array of filenames needs to be specified when you use the createmethod,

keeping the file paths relative to the location at which the script is executed. And

that’s it for file compression!

The process of extraction is actually easier. We call the extractmethod, and provide

a path (again, one that’s relative to the location of the script) to indicate the location

to which the method should extract the archive—in this case, the subdirectory demo.

It’s nice and easy!

174 The PHP Anthology

Compressing Database Data
Archive_Tar is particularly interesting in that it allows strings to be added to the

archive as files. This hypothetical example demonstrates the archiving of a web

site’s database of articles—all the articles are retrieved from the database and the

body text of each article is stored in a text file with a filename that matches the

article’s ID:

tar2.php (excerpt)

$db = new PDO(DBHOST, DBUSER, DBPASS, DBNAME);
$tar = new Archive_Tar('demo/articles.tar.gz', 'gz');
$sql = "SELECT article_id, body FROM articles";
foreach($db->query($sql) as $row)
{
 $tar->addString('articles/' . $row['article_id'] . '.txt',

 $row['body']);
}
echo 'Article archive created';

Here, we’ve queried a database using the PDO class available in PHP 5, and used the

addString method to add to the archive as files some of the data we fetched.

The first argument represents the path and filename under which the string should

be stored; the second is the string itself. That should give you a general idea of when

Archive_Tar can be useful to you.

How do I work with files using the Standard
PHP Library in PHP 5?
With the release of PHP 5, we were given access to the SPL (Standard PHP Library).

The SPL is a library of classes and interfaces designed to solve a variety of standard

problems. As you may have guessed, reading directories and getting information

about the files they contain is one such problem.

The DirectoryIterator class is part of the SPL and is a convenient way to read

file directories and retrieve file information. You can also write to the files.

Additionally, the DirectoryIterator class has an openFile method that creates a

SplFileObject instance for your manipulatory pleasure! Working with the

Working with Files 175

SplFileObject is outside what we plan to cover in this solution, though, so be sure

to check out the SPL documentation to learn more.18

Solution
In this example, we use the DirectoryIterator class to iterate over a file directory

and discover everything there is to know about the example.ini file:

dirIterator.php (excerpt)

<?php
try
{
 // handle the various files in the directory like an array
 foreach (new DirectoryIterator('./') as $Item)
 {
 echo $Item."\n";
 // tell me about this one file
 if($Item->getFilename() == 'example.ini')
 {
 echo "\tProperties of example.ini\n";
 echo "\tFile name = " . $Item->getFilename() . "\n";
 echo "\tPath = " . $Item->getPath() . "\n";
 echo "\tPath name = " . $Item->getPathname() . "\n";
 echo "\tPermission = " . $Item->getPerms() . "\n";
 echo "\tInod = " . $Item->getInode() . "\n";
 echo "\tSize = " . $Item->getSize() . "\n";
 echo "\tOwner = " . $Item->getOwner() . "\n";
 echo "\tGroup = " . $Item->getGroup() . "\n";
 echo "\tAtime = " . $Item->getATime() . "\n";
 echo "\tMtime = " . $Item->getMTime() . "\n";
 echo "\tCTime = " . $Item->getCTime() . "\n";
 echo "\tType = " . $Item->getType() . "\n";
 echo "\tWritable = " . $Item->isWritable() . "\n";
 echo "\tReadable = " . $Item->isReadable() . "\n";
 echo "\tExecutable = " . $Item->isExecutable() . "\n";
 echo "\tIs file = " . $Item->isFile() . "\n";
 echo "\tIs directory = " . $Item->isDir() . "\n";
 echo "\tIs link = " . $Item->isLink() . "\n";
 echo "\tIs dot = " . $Item->isDot() . "\n";
 echo "\tTo string = " . $Item->__toString() . "\n";
 echo '--'."\n";

18 http://www.php.net/~helly/php/ext/spl/

http://www.php.net/~helly/php/ext/spl/
http://www.php.net/~helly/php/ext/spl/

176 The PHP Anthology

echo "\tFile contents = \n";

 readfile($Item->getPathName());

 echo '--'."\n";

}

 }

 echo "\n\nAll the class methods\n";

 // give me all the methods available to the Directory Iterator

 foreach(get_class_methods('DirectoryIterator') as $methodName)

 {

 echo $methodName."\n";

 }

}

catch(Exception $e){

 // handle my exception

 echo 'No files Found! Message returned: '.$e->getMessage()."\n";

}

?>

Discussion
We started the code with a simple try {…} catch {…} block to handle any excep­

tions that might occur while we’re working on the directory.19

Next, we meet the DirectoryIterator constructor in a foreach loop. The

DirectoryIterator is an implementation of the Iterator design pattern.20 For a

class to implement the Iterator design pattern, it must provide a way to access the

elements of the instantiated object in a sequential way. The DirectoryIterator

object can be handled like an array and like an object. So we can put it in the foreach

loop to iterate over the various files in the path provided to the constructor, which

is similar to what we did earlier in the section called “How do I examine directories

with PHP?”

We then chose a file (example.ini) and looked at all its properties using the file object’s

methods—and obtained much the same information we obtained earlier in “How

do I examine directories with PHP?” but without all the if statements!

19 Exceptions are generally considered to be the better, object oriented way of handling errors, and are

seen as preferable to the if block statements we saw earlier.
20 If you don’t know what a design pattern is yet, don’t worry! Plenty of information is available on the

Web, for example, at Wikipedia: http://en.wikipedia.org/wiki/Iterator_pattern. The PHP Manual also

has an entry on iteration at http://www.php.net/manual/en/language.oop5.iterations.php.

http://en.wikipedia.org/wiki/Iterator_pattern
http://www.php.net/manual/en/language.oop5.iterations.php

Working with Files 177

Last of all, we wanted to access a full listing of the DirectoryIterator object’s

methods. We used the get_class_methods function in another foreach loop to

echo those methods out for us.

If you want more information on DirectoryIterator, first look at the SPL docu­

mentation and all the method pages,21 paying particular attention to the user com­

ments. You can also review the SPL documentation with UML (Unified Modeling

Language) diagrams,22 which will give you the opportunity to see what else is

available in the SPL.

Summary
As you can see, working with files isn’t that hard! Actually, it’s fairly easy once you

know what to use and how to use it. Plenty of file-related tools are available in the

form of PHP’s built-in file system and streams functionality, numerous PEAR

packages, and the PHP 5 Standard PHP Library (SPL). Each offers something to

make your life easier—just don’t let your boss know how easy it really is!

21 http://www.php.net/spl/
22 http://www.php.net/~helly/php/ext/spl/

http://www.php.net/spl/
http://www.php.net/spl/
http://www.php.net/~helly/php/ext/spl/
http://www.php.net/~helly/php/ext/spl/
http://www.php.net/spl/
http://www.php.net/~helly/php/ext/spl/

Chapter7
Email
Building online applications isn’t just about delivering pages to web browsers—such

applications often involve email functionality as well. Email is used for a variety

of tasks within a web application, including the mailing of regular newsletters as a

means to stay in touch with visitors, and the provision of automated notifications

for user registration systems.

Once you know how to create email efficiently in PHP, it’s much easier to add email

functionality to your web site, and to communicate with your site’s visitors.

How do I send a simple email?
So you need to send a simple text email. It’s nothing fancy—just a brief text message

to pass on some information. Let’s see how it’s done.

Solutions
Two simple approaches are available. The first uses PHP’s built-in mail function,

while the second relies on the PEAR::Mail package.

180 The PHP Anthology

Using the PHP mail Function
Sending simple emails is easy with PHP’s mail function.1 You need only one line

of code to send a message—what could be easier? Here’s how it works:

phpMail.php

<?php
mail('you@yourdomain.com', 'Howdy', 'Glad to meet you.',

 'From: me@mydomain.com');
?>

The arguments supplied to the mail function above contain the following informa­

tion, in the order supplied here:

■ the address to which we’re sending the email
■ the subject of the email
■ the body of the email

The last argument represents any extra header information you’d like to include in

the email. In the example above, we’ve added a from header to set on the email the

address from which the message was sent.

Using the PEAR::Mail Package
In this example, we’re sending the same email using the PEAR::Mail package:

pearMail.php (excerpt)

<?php
error_reporting(E_ALL);
require 'Mail.php';
$mail = Mail::factory('mail');
$headers = array(

 'From' => 'me@mydomain.com',
 'Subject' => 'Howdy'

);
$succ = $mail->send('you@yourdomain.com', $headers,

 'Glad to meet you.');
if (PEAR::isError($succ))

1 http://www.php.net/manual/en/function.mail.php

http://www.php.net/manual/en/function.mail.php
http://www.php.net/manual/en/function.mail.php

Email 181

{

 echo 'Email sending failed: ' . $succ->getMessage();

}

else

{

 echo 'Email sent succesfully';

}

?>

Let’s ignore the first line for a minute, and look instead at the second line, where

we include the PEAR::Mail package. Next, we use the static Mail::factorymethod

to instantiate a Mail object that can send email for us. We supply the argument

'mail' to the factory method to indicate that we wish to use PHP’s built-in mail

function. We then create an array for the header values we wish to include in our

email, and finally call the Mail->send method, supplying the recipient’s email ad­

dress, our array of headers, and the body text of the email.

The Mail->send method will return true if successful, and a PEAR_Error object if

it’s unsuccessful. We can test for the presence of an error using the PEAR::IsError

method and act accordingly.

Watch Out for E_STRICT Errors

The PEAR::Mail package was originally developed with PHP 4. If you use it in

PHP 5 with E_STRICT errors turned on, you’ll receive E_STRICT errors. In our

example above, and in others further on, we use the error_reporting function

to set the level of reported errors to E_ALL, preventing E_STRICT errors from ap­

pearing in PHP 5.

Discussion
The mail function can integrate with the local sendmail client (an email application

widely used on Unix-based systems), or with a remote SMTP (Simple Mail Transfer

Protocol) server if you lack a sendmail-compatible client. Your web host should be

able to supply the relevant SMTP server details for use in your script. However, if

you’re using Windows for your development environment, you’ll need to tell PHP

which SMTP server it should use to send mail by modifying the following settings

in php.ini:

182 The PHP Anthology

[mail function]

; For Win32 only.

SMTP = smtp.yourdomain.com

smtp_port = 25

sendmail_from = you@yourdomain.com

Here, we’ve set the SMTP setting to the domain name of the SMTP server, which, in

the vast majority of cases, will be the SMTP server provided by your ISP. We’ve

also set the smtp_port setting to the appropriate server port number (the default is

25). The sendmail_from setting represents the sending address for your emails.

Most of the emails you’ll want to send are probably not as simple as those we’ve

been dealing with here. Even if you wanted to keep your emails simple and use

only plain text, things could start to get a little complex as you started adding extra

headers, composing longer messages, and including attachments.

The second solution presented here uses more code than the first, which used only

one line of PHP, but in exchange for the extra code we get a lot more flexibility, and

we’ll find the system easier to use when we create more complex emails. For that

reason, the remaining examples will use the various classes available from the PEAR

package.

How do I simplify the generation

of complex emails?

Using the mail function is fine for simple messages, but its limitations become ap­

parent when you attempt to create more complex emails. For instance, you might

decide you want to have your own email address appearing in the From field of a

message, to add people’s names alongside their addresses, to carbon copy (CC) email

to a number of recipients, or to send your emails to a different SMTP server. In any

of these cases, you’ll need something more than mail to get the job done.

Enter: the PEAR::Mail and PEAR::Mail_Mime classes.2 These classes give the mail

function a raft of extra functionality, such as the ability to include attachments,

create HTML and mixed-format emails, bypass the mail function completely, and

2 See the Mail package documentation at http://pear.php.net/manual/en/package.mail.mail.php, and

the Mail_Mime documentation at http://pear.php.net/manual/en/package.mail.mail-mime.php.

mailto:you@yourdomain.com
http://pear.php.net/manual/en/package.mail.mail.php
http://pear.php.net/manual/en/package.mail.mail-mime.php

Email 183

connect to an SMTP server directly. These classes also provide an API that makes

the construction of more complex emails very easy.

Solution
This code uses a specified SMTP server to send email:

pearMailSMTP.php (excerpt)

<?php
error_reporting(E_ALL);
require 'Mail.php';
$mail = Mail::factory('smtp', array('host'=>'smtp.mydomain.com'));
$hdrs = array(

 'From' => 'Me <me@mydomain.com>',
 'CC' => 'Mr Example <example@exampledomain.com>',
 'Subject' => 'Howdy'

);
$body = 'Glad to meet you.';
$succ = $mail->send('you@yourdomain.com', $hdrs, $body);
if (PEAR::isError($succ))
{
 echo 'Email sending failed: ' . $succ->getMessage();
}
else
{
 echo 'Email sent succesfully';
}
?>

Discussion
Thanks to the PEAR::Mail class, we’re no longer limited to using PHP’s mail config­

uration, so we can set up mail as we choose. The Mail::factory method accepts

parameters for the type of mail system you want to use, and for any options you

want to specify for your back-end setup.3 Mail::factory accepts one of the follow­

ing:

3 See http://pear.php.net/manual/en/package.mail.mail.factory.php for more information on the options

available for back-end mail systems.

http://pear.php.net/manual/en/package.mail.mail.factory.php

184 The PHP Anthology

mail	 uses the configured PHP mail settings

sendmail	 allows you to control which sendmail program is used, and which

options are sent to it

smtp	 contacts an SMTP server to send the mail for you

When we work with multipart emails—for example, emails that include text and

HTML parts—we’ll use the PEAR::Mail_Mime class instead. It inherits from the

PEAR::Mail class but provides a number of additional features to the API to make

our lives much easier.

How do I add attachments to messages?
Sending an attachment with your email is incredibly easy with the PEAR::Mail_Mime

class.

Solution
Take a look at this code, which shows the Mail_Mime->addAttachment method in

action:

attachment.php (excerpt)

<?php
error_reporting(E_ALL);
require 'Mail.php';
require 'Mail/mime.php';
$mime = new Mail_Mime("\r\n");
$mime->setTXTBody('See attached text file.');
$mime->addAttachment(

 'test.txt',
'text/plain',
'attached.txt',
TRUE,
 'quoted-printable'

);
$body = $mime->get();
$hdrs = $mime->headers(array(

 'From' => 'me@mydomain.com',
 'Subject' => 'File Attachment'

));
$mail = Mail::factory('smtp', array('host'=>'smtp.mydomain.com'));

Email 185

$succ = $mail->send('you@yourdomain.com', $hdrs, $body);

if (PEAR::isError($succ))

{

 echo 'Email sending failed: ' . $succ->getMessage();

}

else

{

 echo 'Email sent succesfully';

}

?>

First, we instantiate a Mail_Mime object, passing the line endings we wish to use

for the email. The text for the body of the email is then set using the Mail_Mime

object’s setTXTBody method, and we add the attachment using the addAttachment

method. Next, we call the get method to build the email’s body, and the header

method to create any special headers we might need. The getmethod should always

be called before the headers method.

Then, just like the previous examples, we use the Mail::factory method to instan­

tiate our Mail object, and we call the send method to send our email, supplying it

with the body and header parts we built using the Mail_Mime class. This solution’s

simple and powerful—just how we like it!

Discussion
You can transfer more than just text files with the addAttachment method.4 Feel

free to use it for images or application files. Just be sure to specify the correct content

type for the file in the second argument. If you don’t supply any more arguments

to the method, the defaults will be used—and usually, they’re fine. Here’s an ex­

ample:

$mime->addAttachment('php.gif', 'image/gif');

If the defaults aren’t suitable, you can specify precisely how you want the file to be

attached to the email. The third argument represents the filename you want the at­

tachment to display on the email.

4 To view the full documentation for the addAttachment method, see

http://pear.php.net/manual/en/package.mail.mail-mime.addattachment.php.

http://pear.php.net/manual/en/package.mail.mail-mime.addattachment.php

186 The PHP Anthology

Don’t feel like using a text file? Perhaps you’d rather use a variable containing the

text that you want to attach? No problem. Place that variable in the first argument,

and set the fourth to false, like so:

$txt = 'testing testing - 1, 2, 3';

$mime->addAttachment(

 $txt,

'text/plain',

'TestMe.txt',

false,

 'quoted-printable'

);

The fifth argument represents the transfer encoding. While the default encoding,

'base64', is fine for most files, for text-based files, you may wish to use 'quoted­

printable' instead.

Did you See “Notice” Error Messages?

At the time of writing, a number of Notice log messages will be thrown from the

PEAR::Mail_Mime class if you use PHP 5.1.6 for this solution. These notices are

the result of a change to the PHP internals, for which a bug report has been sub­

mitted to the PHP development team, but which doesn’t affect the output of the

script.

If the Notice messages bother you, turn them off with the error_reporting

function, but remember that by doing this, you could also very easily hide a

problem with your script.

How do I send HTML email?
Most email clients are capable of understanding HTML that’s placed in the body of

an email. Using PEAR::Mail_Mime, it’s easy to add HTML to emails, and even to

embed images within the document. This class will automatically determine

whether or not you’ve placed HTML in the body of the message and set the MIME

headers accordingly. You can also add an alternative text version of your email for

use by recipients whose email clients cannot, or choose not, to display HTML emails.

Email 187

Solution
The code below sends a multipart message—one part is HTML, while the other is

plain text—as well as an image that’s embedded in the HTML with an img tag:

htmlEmail.php (excerpt)

<?php
error_reporting(E_ALL);
include('Mail.php');
include('Mail/mime.php');
$text = "Text version of email\nMessage made with PHP";
$html = '<html><body>HTML version of email
';
$html .= 'Message made with </body></html>';
$crlf = "\n";
$hdrs = array(

 'From' => 'me@mydomain.com',
 'Subject' => 'Test HTMl Email with Embedded Image'

);
$mime = new Mail_mime($crlf);
$mime->setTXTBody($text);
$mime->addHTMLImage('php.gif', 'image/gif', '12345', true);
$mime->setHTMLBody($html);
$body = $mime->get();
$hdrs = $mime->headers($hdrs);

$mail = Mail::factory('mail');
$succ = $mail->send('you@yourdomain.com', $hdrs, $body);
if (PEAR::isError($succ))
{
 echo 'Email sending failed: ' . $succ->getMessage();
}
else
{
 echo 'Email sent succesfully';
}
?>

The output of this code can be seen in Figure 7.1.

188 The PHP Anthology

Figure 7.1. Displaying the multipart message

How do I mail a message to
a group of people?
In many cases, it’s useful to be able to mail a message to more than one person at a

time—for example, if you’re sending a newsletter, a message to a group mailing list,

a site update notification to the IT staff, a feature freeze notification to a development

team, and so on. However, in certain circumstances, sending unsolicited email to

a group of people can also be called spamming—something I’m sure you won’t be

doing with PHP!

If you’re using PEAR::Mail_Mime, you have the option to send group email by adding

BCC or CC headers to the email message. This approach may not suit your require­

ments, though—listing all the addresses from an especially large distribution list

in the header of a single email can quickly overwhelm your email server.

A better approach is to send each email individually, reusing the same instance of

the PEAR::Mail_Mime class for each new message.

Email 189

Solution
In this hypothetical example, we’ll retrieve a list of names and email addresses from

a discussion forum’s member database, and reuse one instance of the

PEAR::Mail_Mime class to send an email to each of those addresses:

group.php (excerpt)

<?php
error_reporting(E_ALL);
require 'Mail.php';
require 'Mail/mime.php';

/* create the email */

$mime = new Mail_Mime("\r\n");
$mime->addAttachment('php.gif', 'image/gif');
$header = array(

 'From' => 'me@mydomain.com',
 'Subject' => 'Forum Newsletter'

);
$mail = Mail::factory('smtp', array('host'=>'smtp.mydomain.net'));

/* go to the database to get the member information */

$dsn = 'mysql:host=localhost;dbname=forum;';
$user = 'user';
$password = 'secret';
try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$sql = 'SELECT member_email, firstname, lastname FROM member';

 /* cycle through the list sending the custom emails */

 foreach ($dbh->query($sql) as $row)
{
 $mime->setTXTBody(

 "Howdy {$row['firstname']} {$row['lastname']}");
 $body = $mime->get();
 $hdrs = $mime->headers($header);
 $succ = $mail->send($row['member_email'], $hdrs, $body);
 if (PEAR::isError($succ))

190 The PHP Anthology

{

 error_log("Email not sent to {$row['member_email']}: " .

 $succ->getMessage());

 }

 }

}

catch (PDOException $e)

{

 echo 'PDO Exception Caught. ';

 echo 'Error with the database:
';

 echo 'SQL Query: ', $sql;

 echo 'Error: ' . $e->getMessage();

}

?>

In the above example, we instantiate the PEAR::Mime_Mail object and set up the

message and its sender. We then go to our hypothetical member database and retrieve

each member’s email address, first name, and last name. Then, using that result set,

we add a custom welcome message to the email, build the message, set the headers,

and send the email to that user’s email address.

Discussion
For very large distribution lists, a simple foreach loop won’t quite cut it—you’ll

risk flooding your mail server with messages! Instead, you’ll need to devise a means

of sending the messages at a rate that your server can handle. The simplest way to

achieve this is to use the PHP sleep function to pause your script every ten messages

or so. You’ll also need to use the set_time_limit function to allow your script to

run for more than the default thirty-second limit.

Lastly, don’t forget to contact your hosting service to see if they have set any limit­

ations or restrictions to which you must adhere. Some hosting services place a strict

limit on the number of emails that can be sent per hour, in an effort to protect

themselves from being seen as spammers.

Complying with Anti-spam Legislation

In the United States (at the state and federal level), laws have been passed regarding

unsolicited emails and spam. The USA has the federal CAN_SPAM law of 2003

as well as numerous individual state laws, and these may affect what you include

Email 191

in, and how you send, your emails. The USA is not the only country to pass such

laws, of course—countries in the European Union, Asia, South America, and so

on around the globe have also put anti-spam legislation in place. For more inform­

ation, visit the Spam Laws web site (though it is not a definitive listing),5 and see

your local government web site.

How do I handle incoming mail with PHP?
You’ve already seen that sending mail with PHP is no problem. But what about

dealing with incoming mail using PHP? If your site is hosted on a Linux system,

you’ll be happy to hear that with a little tuning, it’s easy to have PHP to examine

incoming email.

Solution
In this solution, I’ll assume that you have your site hosted on a Linux-based system,

that you have command prompt access to the server and are able to run PHP from

the command prompt, and that you’re using sendmail to handle email on the server.

Phew! It’s a long list of requirements, I know, but this fairly common configuration

greatly simplifies matters.

First things first: you need to place a file called .forward in your home directory.

Use a text editor to write the following to the file (all on one line):

you@yoursite.com "|/home/yourUserName/mailhandler.php"

Now, within the PHP script mailhandler.php, you can process incoming email for

the you@yoursite.com email address in any way you like. Here’s an example script

that detects incoming email from a particular address and sends a second notification

email in response:

mailhandler.php (excerpt)

#!/usr/bin/php
<?php
// Read the email from the stdin file
$fp = fopen('php://stdin', 'r');
$email = fread ($fp, filesize('php://stdin'));

5 http://www.spamlaws.com/

http://www.spamlaws.com/
mailto:you@yoursite.com
mailto:you@yoursite.com
http://www.spamlaws.com/

192 The PHP Anthology

fclose($fp);

// Break the email up by linefeeds

$email = explode("\n", $email);

// Initialize vars

$numLines = count($email);

for ($i = 0; $i < $numLines; $i++) {

 // Watch out for the From header

 if (preg_match("/^From: (.*)/", $email[$i], $matches)) {

 $from = $matches[1];

 break;

 }

}

// Forward the message to the hotline email

if (strstr($from, 'vip@example.com')) {

 mail('you@yourdomain.com', 'Urgent Message!',

 'Check your mail!');

}

?>

Discussion
The .forward file tells the mail system on the server that any email that’s headed for

you@yoursite.com not only needs to be delivered to that address, but must also be

sent to the PHP script at /home/yourUserName/mailhandler.php.

The PHP script that’s given in this solution is intended to be run automatically by

the mail system—not by your web server. The first line of the file must point to the

location of the standalone PHP program on your server (commonly /usr/bin/php)

and is known as the shebang. After that, the code fetches the email from standard

input and manipulates it.

There are a number of ways in which you can manipulate an inbound email. First

of all, you have the simple string functions we used above, which are built into

PHP. The IMAP extension and the MailParse extension are also available. And in

PEAR, you can use the Mail_Mime package (Mail_mimeDecode, to be specific) as

well.6

6 For an example of Mail_mimeDecode in action, see

http://pear.php.net/manual/en/package.mail.mail-mimedecode.example.php.

mailto:you@yoursite.com
http://pear.php.net/manual/en/package.mail.mail-mimedecode.example.php

Email 193

A Solution Looking for a Problem?

The value that being able to handle incoming emails with PHP provides may not

be obvious at first. But if you’ve ever read the SitePoint “TechTimes,”7 you know

the answer—whether you realize it or not! The actions of subscribing to, and un­

subscribing from, that mailing list are handled by PHP. You could also use PHP

to build spam filters, to allow users to submit updates to the versioning system

of your application via emails sent to a special address (with proper authentication

of course), and to create a whole host of other applications.

How can I protect my site
against email injection attacks?
An email injection attack occurs when a cracker uses your web site’s email form

to send email in a way you never intended—either by spoofing your form, or using

a script to fill out the form and submit it. A few nastier examples of this sort of be­

havior include sending spam through your form, mailing mass email using your

bandwidth, or sending emails that pretend to be from you in a phishing attempt.

These kinds of attacks can have consequences—they may as simple as receiving a

warning from your hosting provider, or as problematic as paying higher costs for

bandwidth, suffering the revocation of your email privileges by the hosting company,

or being blacklisted as a known spammer.

By using PHP’s mail function to handle your site’s mail form, you open yourself to

the possibility of an email injection attack not because of a fault in the PHP mail

function, but because of the MIME and SMTP standards. Without getting into the

details of those standards, you should know that all it takes for a cracker to gain

control of your email form is for them to be able to add to or manipulate the mes­

sage’s original header. A craftily added new line character or additional header line

is all it takes.

Luckily, when you get right down to it, basic protection from an email injection

attack is incredibly simple to implement: do not allow new lines in the user input

that’s used in email headers. Despite the ease with which attacks are avoided using

this technique, many developers fail to implement it.

7 http://www.sitepoint.com/newsletter/

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/newsletter/

194 The PHP Anthology

Diving into the Details

If you need more details on the SMTP and MIME protocols, search the Web for

light-weight information, or go straight to the source by reading the relevant RFC’s

(Request for Comments) at the Internet Engineering Task Force web site.

For information on SMTP, see:

■ http://www.ietf.org/rfc/rfc0821.txt

And for information on the MIME protocol, visit:

■ http://www.ietf.org/rfc/rfc2045.txt
■ http://www.ietf.org/rfc/rfc2046.txt
■ http://www.ietf.org/rfc/rfc2047.txt
■ http://www.ietf.org/rfc/rfc2048.txt
■ http://www.ietf.org/rfc/rfc2049.txt

Solution
Here’s an example that shows how to remove new lines from user input:

attack.php (excerpt)

<?php
$error = FALSE;
if (isset($_POST['submit']))
{
 $to = 'me@mydomain.com';
 // replace new lines with a space
 // prevents a user from adding headers
$subject = preg_replace('/[\r|\n]+/', " ", $_POST['subject']);
 $from = preg_replace('/[\r|\n]+/', " ", $_POST['from']);

 // basic validation for subject and email address
 $emailPattern = '/^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$/';
if (preg_match('/^[^\w .!?*%$#]+$/', $subject) ||
!preg_match($emailPattern, $from))

 {
 $error = "Invalid input. Try again.";

 }

 if ($error === FALSE &&

http://www.ietf.org/rfc/rfc0821.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2049.txt

Email 195

mail($to, $subject, $_POST['message'], "FROM: $from"))

 {

 $error = "Message Sent";

 }

else

 {

 $error .= " We could not send your message. Sorry";

 }

}

?>

Discussion
As I mentioned, setting up basic protection from email injection attacks is as simple

as removing any new lines from the user input, but you can gain additional protec­

tion by validating the user input that will be used in the header of the email—that

is, by validating any text that will appear in the to, from or subject headers.

In the solution provided here, I used the basic string function str_replace to search

for a new line (\r or \n), and replace it with an empty space. I also validated the

From address and the email Subject line to ensure that they contain legitimate values.

The validation aspect is more difficult to explain, since it uses Perl-compatible

regular expressions (also known as “pcre”) and is unfortunately beyond the scope

of this section of the book. Luckily, there are plenty of resources available online

to help you.8

Sites that provide additional information on email injection attacks include:

■ http://www.securephpwiki.com/index.php/Email_Injection
■ http://www.mailinjection.com/
■ http://www.nyphp.org/phundamentals/email_header_injection.php

Summary
Email is a critical element of any business or web site. It provides a simple, easy

way to communicate with your customers, visitors, coworkers, and even your

server. Hopefully, this chapter has thrown a little light on some of the ways you

8 For more information on PHP’s implementation of pcre go to http://www.php.net/pcre/. For additional

general information on regular expressions, check out http://www.regular-expressions.info/ on the Web.

http://www.securephpwiki.com/index.php/Email_Injection
http://www.mailinjection.com/
http://www.nyphp.org/phundamentals/email_header_injection.php
http://www.php.net/pcre/
http://www.regular-expressions.info/

196 The PHP Anthology

can harness the power of PHP, and the flexibility of the PEAR::Mail and

PEAR::Mail_Mime classes, to easily create and receive emails.

Now go forth and use that power—to send newsletters, server updates, information,

and visitor feedback—for good and not evil!

Chapter8
Images
Building a web site can extend your creativity far beyond a display of (X)HTML

formatted text, if you so choose. The umbrella term multimedia describes the delivery

of many forms of content to your desktop, including sound, text, images, animation,

and movies. Where images are concerned, PHP has great capabilities—you can use

it to do a whole lot more than simply add static images to your HTML.

Would you like to be able to add a watermark to your images, create appropriately

sized thumbnails for your web page, or build a graph based on figures stored in

your database? Would you like to do all that automatically and on the fly, using

nothing but PHP? We’ll cover all this and more in the following pages.

To use the examples here, you’ll need the GD image library for PHP. I’ll assume you

have GD version 2.0 or higher (bundled with the latest versions of PHP) with Free-

type, JPEG, GIF, and PNG support built in. The PHP functions that use the GD library

are documented in The PHP Manual.1 The year 2004 saw the end of patent issues

with GIF images, and support for this format in the GD library has been re-enabled

since version 2.0.28, which was released with version 4.3.9 of PHP.

1 http://www.php.net/gd/

http://www.php.net/gd/
http://www.php.net/gd/

198 The PHP Anthology

Although the GD library supports GIF images again, it’s worth noting that PNG is

capable of supporting alpha channel transparency and full 64-bit images, compared

with GIF’s 8 bits. In addition, PNG uses a more efficient compression algorithm,

reducing the amount of bandwidth required.

While this chapter focuses on the technical details of creating, manipulating, and

using images and related libraries, you might also like to brush up on the basics.

Mike Doughty has a great introduction to working with images and graphics on his

web site.2

How do I specify the
correct image MIME type?
MIME stands for Multipurpose Internet Mail Extensions, a standard originally

conceived to help identify different email content types. MIME has since become

the de facto standard for the description of content types on the Internet. When you

work with images in PHP, it’s important to have a grasp of the different content

types, or you may end up struggling for hours with what’s actually a simple problem.

Solution
Generally speaking, your web server must announce content type by way of a special

Content-Type header before it sends requested content to the user’s browser, so

that the browser knows what to do with the content. For example, here are the

headers that a server might send to announce an image in Portable Network

Graphics (PNG) format:

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2003 21:42:44 GMT

Server: Apache/1.3.27 (Unix) PHP/4.3.1

Last-Modified: Wed, 26 Feb 2003 01:27:19 GMT

Content-Length: 1164

Connection: close

Content-Type: image/png

2 http://www.sketchpad.net/readme.htm

http://www.sketchpad.net/readme.htm
http://www.sketchpad.net/readme.htm
http://www.sketchpad.net/readme.htm

Images 199

The Content-Type header is used to specify the MIME type of the content served

in response to a request for the current URL. In this case, the MIME type is im­

age/png, which signifies a PNG image.

It’s when we generate an image from a PHP script that the MIME type becomes im­

portant in PHP. By default, PHP scripts send a MIME type of text/html (denoting

an HTML document). So, in instances when your script is sending an image instead

of HTML, you’ll need to specify the MIME type with PHP’s header function. Here’s

an example:

<?php

 header('Content-Type: image/png');

?>

A list of the common MIME types you’ll need for images is shown in Table 8.1.

Table 8.1. MIME Types for Images

MIME TypeImage Format

image/jpegaJPEG File Interchange Format (.jpeg/.jpg)

image/pngPortable Network Graphics (.png)

image/gifGraphics Interchange Format (.gif)

image/bmpWindows Bitmap (.bmp)

image/xml+svgScalable Vector Graphics (.svg)

a Internet Explorer understands the image/jpeg type, but when uploading a JPEG image, it sends a

type of image/pjpeg.

How do I create thumbnail images?
If your site will allow images to be uploaded, perhaps for display with submitted

content, how can you make sure the images displayed will be of a suitable size? If

a user uploads a particularly large image, it might destroy the layout of the page

when it’s displayed.

Solution
One solution to this problem is to create thumbnail images, which guarantee that

the images displayed never exceed certain height and width values.

200 The PHP Anthology

Building a basic thumbnail is a five-stage process:

1. Load the source image into a PHP variable.

2. Determine the height and width of the original image.

3. Create a blank thumbnail image of the correct size.

4. Copy the original image to the blank thumbnail.

5. Display the thumbnail using the correct content type.

Let’s create a thumbnail from a photo in JPEG format. First, we specify the path to

the source image, as well as our desired width and height in pixels:

thumb.php (excerpt)

<?php
$sourceImage = 'sample_images/terrier.jpg';
$thumbWidth = 200;
$thumbHeight = 200;

Next, we use imagecreatefromjpeg to load an image from the file system into a

PHP variable: $original. The getimagesize function returns the width and height

of the image (we’ll discuss getimagesize further in “How do I resize images without

stretching them?”):

thumb.php (excerpt)

$original = imagecreatefromjpeg($sourceImage);
$dims = getimagesize($sourceImage);

We then use the imagecreatetruecolor function to create a blank image (in memory,

as PHP variable $thumb) into which the thumbnail image will be placed:

thumb.php (excerpt)

$thumb = imagecreatetruecolor($thumbWidth,$thumbHeight);

As the function name suggests, imagecreatetruecolor creates a true color (24-bit)

image, as opposed to the palette-based (8-bit) image that the imagecreate function

provides. The imagecreatefromjpeg function we used previously creates a true

color image from the source file, so we need the thumbnail to be true color as well.

Images 201

The next line in the example code is the point at which the thumbnail image is ac­

tually created from the original:

thumb.php (excerpt)

imagecopyresampled($thumb, $original, 0, 0, 0, 0,
 $thumbWidth, $thumbHeight, $dims[0], $dims[1]);

The imagecopyresampled function places a resized version of the image into the

blank thumbnail image, resampling along the way to ensure that the image is resized

smoothly. An older version of this function, imagecopyresized, changes the size

of the image more crudely.

The first two arguments to the function represent the destination image, $thumb,

and the source image, $original. The imagecopyresampled function is quite flexible

and can be used to copy a portion of one image into another. The next four arguments

refer to the x and y coordinates of the destination and source image portions, taken

from the top-left corner. As we’re only interested in copying the whole image, we

supply 0 for all four arguments. The final four arguments represent the width and

height of the destination and source image portions. Again, as we wish to copy the

whole image, we supply the full dimensions of each image. Refer to The PHP

Manual for more information.3

Finally, after we’ve sent the correct content type header, Content-type: image/jpeg,

we use imagejpeg to output the completed thumbnail:

thumb.php (excerpt)

header("Content-type: image/jpeg");
imagejpeg($thumb);
?>

Figure 8.1 shows the end result.

3 http://www.php.net/imagecopyresampled/

http://www.php.net/imagecopyresampled/
http://www.php.net/imagecopyresampled/

202 The PHP Anthology

Figure 8.1. Our first thumbnail

While there’s certainly room for improvement, this is a start.

How do I resize images
without stretching them?
Unless the original and thumbnail images happen to share the same width-to-height

ratio (or aspect ratio), the process of resizing the images to generate your thumbnails

will warp the dimensions of the images. What we really want is a proportionally

scaled version of the original, which fits into the blank thumbnail as neatly as pos­

sible.

Solution
It’s possible to determine the original image’s dimensions and use these to calculate

the proportional dimensions of the thumbnails. The getimagesize function returns

an array of useful information about an image. Here’s an example:

<?php

$sourceImage = 'sample_images/terrier.jpg';

$dims = getimagesize($sourceImage);

echo ('<pre>');

print_r($dims);

echo ('</pre>');

?>

The above example will display the contents of the $dims variable:

Images 203

Array

(

 [0] => 600

 [1] => 450

 [2] => 2

 [3] => width="600" height="450"

 [bits] => 8

 [channels] => 3

 [mime] => image/jpeg

)

The first element of the array is the width of the image; the second is its height. The

third array element is a number that identifies the type of image, for which a 1 in­

dicates the image is a GIF, 2 indicates a JPEG, and 3 a PNG—more values are de­

scribed in The PHP Manual.4 The fourth array element contains a string that’s in­

tended to be used within HTML tags. The bits element contains the color

depth.5 The channels element contains a value of 3 for RGB color images and 4 for

CMYK.6 The mime element contains the MIME type.

In this section, we’ll write a class called Thumbnail that allows the generation of

proportionally scaled images. The class will also make it possible for us to deal

with images that are smaller than the thumbnail size, allowing them to be left at

their original size if required. The class will be designed to handle PNG and JPEG

files only, but can easily be modified to handle other formats.

We need to define some custom exceptions for our error handling needs before we

start to create our Thumbnail class:

Thumbnail.class.php (excerpt)

class ThumbnailException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);

4 http://www.php.net/getimagesize/

5 Eight bits can represent 256 colors, and 8-bit color is known as indexed color. True, or 24-bit color can

represent 16,777,216 colors.

6 The RGB (Red-Green-Blue) color model is used for computer displays, while CMYK (Cyan-Magenta-

Yellow-blacK) is used for printing.

http://www.php.net/getimagesize/
http://www.php.net/getimagesize/

204 The PHP Anthology

error_log('Error in '.$this->getFile().

 ' Line: '.$this->getLine().

 ' Error: '.$this->getMessage()

);

 }

}

class ThumbnailFileException extends ThumbnailException {}

class ThumbnailNotSupportedException extends ThumbnailException {}

Our base custom exception class, ThumbnailException, ensures the exception details

are logged using the error_log function. The subclasses represent different exception

situations that might arise during the creation of the thumbnail.

As with any class, we start with the class properties:

Thumbnail.class.php (excerpt)

class Thumbnail
{
 private $maxWidth;
 private $maxHeight;
 private $scale;
 private $inflate;
 private $types;
 private $imgLoaders;
 private $imgCreators;
 private $source;
 private $sourceWidth;
 private $sourceHeight;
 private $sourceMime;
 private $thumb;
 private $thumbWidth;
 private $thumbHeight;

$maxWidth, $maxHeight, $scale, $inflate, $types, $imgLoaders, and $imgCreators

are set by the constructor and are described below. $source, $sourceWidth,

$sourceHeight, and $sourceMime represent the properties of the source image and

will be set by the image loading methods described below. $thumb, $thumbWidth,

and $thumbHeight represent the properties of the created thumbnail and are also

described below.

Images 205

Next, we create a class constructor:

Thumbnail.class.php (excerpt)

 public function __construct($maxWidth, $maxHeight, $scale = true,
 $inflate = true)

 {
 $this->maxWidth = $maxWidth;
 $this->maxHeight = $maxHeight;
 $this->scale = $scale;
 $this->inflate = $inflate;

The constructor for the Thumbnail class takes four arguments. The first two are the

maximum width and height of the thumbnail in pixels, respectively. The third ar­

gument tells the Thumbnail object whether it should scale the image to the thumbnail

proportionally, or just stretch it, as with the earlier example. The fourth argument

tells the Thumbnail object what to do with images that are too small; that is,

whether to blow them up to fill the thumbnail.

With those arguments safely stored in instance variables, we can create the rest of

the constructor:

Thumbnail.class.php (excerpt)

 $this->types = array('image/jpeg', 'image/png', 'image/gif');
 $this->imgLoaders = array(

 'image/jpeg' => 'imagecreatefromjpeg',
 'image/png' => 'imagecreatefrompng',
 'image/gif' => 'imagecreatefromgif'

);
 $this->imgCreators = array(

 'image/jpeg' => 'imagejpeg',
 'image/png' => 'imagepng',
 'image/gif' => 'imagegif'

);
 }

The $this->types property stores an array of the MIME types that this class can

handle. The $this->imgLoaders property stores the names of the functions used

to load images of those MIME types, while the $this->imgCreators property stores

the names of the functions for creating new images of those types.

206 The PHP Anthology

The Thumbnail class provides two methods for loading the image you want to con­

vert. The first, loadFile, allows you to specify a local file to load:

Thumbnail.class.php (excerpt)

 public function loadFile ($image)
 {
 if (!$dims = @getimagesize($image))
 {
 throw new ThumbnailFileException(

 'Could not find image: '.$image);
 }
 if (in_array($dims['mime'],$this->types))
 {
 $loader = $this->imgLoaders[$dims['mime']];
 $this->source = $loader($image);
 $this->sourceWidth = $dims[0];
 $this->sourceHeight = $dims[1];
 $this->sourceMime = $dims['mime'];
 $this->initThumb();
 return true;

 }
 else
 {
 throw new ThumbnailNotSupportedException(

 'Image MIME type '.$dims['mime'].' not supported');
 }

 }

The loadFile method uses the getimagesize function to grab all the required image

properties, including width, height, and MIME type. If getimagesize returns false,

an error has occurred and we throw one of our custom exceptions,

ThumbnailFileException. If the MIME type of the image is not on our list of sup­

ported types, we throw a ThumbnailNotSupportedException. If all’s well, we load

the image via the image loading function that’s appropriate for the MIME type, and

assign it to the $this->source property. We also assign the image width to the

$this->sourceWidth property, the image height to the $this->sourceHeight

property, and MIME type to the $this->sourceMime property.

After all the instance variables are set, the method calls the initThumb method,

which we’ll tackle in a moment. Finally, having no exceptions, the method returns

true.

Images 207

The loadData method performs the same function as loadFile, except that we load

an image from a string rather than a file. The string might come from a database, for

example. Here’s our loadData method:

Thumbnail.class.php (excerpt)

 public function loadData ($image, $mime)
 {
 if (in_array($mime,$this->types)) {
 if($this->source = @imagecreatefromstring($image))
 {
 $this->sourceWidth = imagesx($this->source);
 $this->sourceHeight = imagesy($this->source);
 $this->sourceMime = $mime;
 $this->initThumb();
 return true;

 }
else
 {

throw new ThumbnailFileException(
 'Could not load image from string');

 }
 }
 else
 {
 throw new ThumbnailNotSupportedException(

 'Image MIME type '.$mime.' not supported');
 }

 }

While the loadData method performs the same function and sets the same instance

variables as the loadFile method, the functions it uses are not the same as

loadFile’s. The loadData method first uses the imagecreatefromstring function

to load the image, throwing a ThumbnailFileException if the image cannot be cre­

ated. The imagecreatefromstring will return an image resource obtained from the

string data passed to the function in the argument. The width and height of our

source images are obtained by the imagesx and imagesy functions, which, predict­

ably, return an image’s width and height. In addition to the image data, you also

need to supply the MIME type as the second argument to the loadData method.

Next, the buildThumb method is used to render the finished thumbnail:

208 The PHP Anthology

Thumbnail.class.php (excerpt)

 public function buildThumb($file = null)
 {
 $creator = $this->imgCreators[$this->sourceMime];
 if (isset($file)) {
 return $creator($this->thumb, $file);

 } else {
 return $creator($this->thumb);

 }
 }

If you pass this method a filename, the thumbnail will be stored as a file that uses

the name you’ve specified. Otherwise, the image is output directly to the browser,

so you’ll need to make sure that you’ve sent the correct HTTP header first, which

you’ll see in the usage example that follows the Thumbnail class description. Notice

that we use the image function names we assigned to the $this->imgCreators

property in the constructor.

The final public methods are used to glean information about the thumbnail. The

getMime method returns the MIME type, which can be used to generate a Content-

Type header for the thumbnail:

Thumbnail.class.php (excerpt)

 public function getMime()
 {

 return $this->sourceMime;
 }

The getThumbWidth and getThumbHeight methods are used to return the width and

height of the thumbnail in pixels; you could use that information to create an HTML

img tag, for example:

Thumbnail.class.php (excerpt)

 public function getThumbWidth()
 {

 return $this->thumbWidth;
 }
 public function getThumbHeight()

Images 209

{

 return $this->thumbHeight;

 }

Our class has a private method, called initThumb, that’s called by the loading

methods I described previously. initThumb handles the scaling and inflating func­

tions of our class. The first step is to handle scaling:

Thumbnail.class.php (excerpt)

 private function initThumb ()
 {
 if ($this->scale)
 {
 if ($this->sourceWidth > $this->sourceHeight)
 {
 $this->thumbWidth = $this->maxWidth;
 $this->thumbHeight = floor(

 $this->sourceHeight *
($this->maxWidth/$this->sourceWidth)

);
 }
 else if ($this->sourceWidth < $this->sourceHeight)
 {
 $this->thumbHeight = $this->maxHeight;
 $this->thumbWidth = floor(

 $this->sourceWidth *
($this->maxHeight/$this->sourceHeight)

);
 }
 else
 {
 $this->thumbWidth = $this->maxWidth;
 $this->thumbHeight = $this->maxHeight;

 }
 }

This part of the function will check to ascertain whether or not image scaling is re­

quired. If it is, some calculations will be performed to determine the appropriate

size for the thumbnail so that it matches the width and height ratio of the original

210 The PHP Anthology

image, constraining the longest axis to the maximum size originally supplied to the

constructor.

If scaling isn’t required, we simply use the $maxWidth and $maxHeight values ori­

ginally supplied to the constructor:

Thumbnail.class.php (excerpt)

 else
 {
 $this->thumbWidth = $this->maxWidth;
 $this->thumbHeight = $this->maxHeight;

 }

The next step is to create our blank thumbnail image by employing the

imagecreatetruecolor function:

Thumbnail.class.php (excerpt)

 $this->thumb = imagecreatetruecolor(
 $this->thumbWidth,
 $this->thumbHeight

);

The final step in our initThumb method is to copy the source image into our

thumbnail image:

Thumbnail.class.php (excerpt)

 if ($this->sourceWidth <= $this->maxWidth &&
 $this->sourceHeight <= $this->maxHeight &&

 $this->inflate == false)
 {
 $this->thumb = $this->source;

 }
 else
 {
 imagecopyresampled($this->thumb, $this->source, 0, 0, 0, 0,

 $this->thumbWidth, $this->thumbHeight,
 $this->sourceWidth, $this->sourceHeight

);

Images 211

}

 }

}

If the source image is smaller than the specified thumbnail image size and the

inflate property is set to false, the thumb property is set to the original image.

Otherwise, the imagecopyresampled function is used to resample the source image

into the blank thumbnail image. We talked about the imagecopyresampled function

in more detail in “How do I create thumbnail images?”.

That’s it for our class! Let’s take it for a spin. Here’s a quick demonstration that

outputs a thumbnail based on a file:

thumbFromFile.php (excerpt)

<?php
require_once('Thumbnail.class.php');
$tn = new Thumbnail(200,200);
$tn->loadFile('sample_images/terrier.jpg');
header('Content-Type: '.$tn->getMime());
$tn->buildThumb();
?>

First, we instantiate a Thumbnail object, specifying that we want our thumbnail to

have dimensions of 200×200px. Then we call the loadFile method and pass it a

filename. We use the PHP header function together with the getMime method to

send the correct HTTP header; then, we simply call the buildThumb method to dis­

play the image. The result of our work is shown in Figure 8.2.

Figure 8.2. A proportionally scaled thumbnail

Here’s another example to show off the loadData method and illustrate how files

can be stored rather than output directly:

212 The PHP Anthology

beforeAndAfter.php (excerpt)

<?php
require_once('Thumbnail.class.php');
$tn = new Thumbnail(200, 200);
$image = file_get_contents('sample_images/terrier.jpg');
$tn->loadData($image, 'image/jpeg');
$tn->buildThumb('sample_images/nice_doggie.jpg');
?>

We begin by including our class and instantiating our Thumbnail object. We simulate

a source image string with the file_get_contents function. In a real-world situation,

of course, this string would probably come from a database. We use the loadData

method to load our image string and call the buildThumb method, but this time we

also pass a filename argument to make the method save our thumbnail to a file at

sample_images/nice_doggie.jpg.

Next comes the HTML for our example page:

beforeAndAfter.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title> Thumbnail Example </title>
 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />
 <style type="text/css">
 div { float: left; }

 </style>
 </head>
 <body>
 <div>
 <h1>Before...</h1>
 <p>

 </p>

 </div>
 <div>
 <h1>After...</h1>
 <p>
 <img src="sample_images/nice_doggie.jpg"

Images 213

width="<?php echo ($tn->getThumbWidth());?>"

 height="<?php echo ($tn->getThumbHeight());?>"

 alt="Resized Image" />

 </p>

 </div>

 </body>

</html>

Notice that as we generate the image tag for the thumbnail, we use the getThumbWidth

and getThumbHeight methods to complete the tag’s width and height attrib­

utes. The resulting page can be seen in Figure 8.3.

Figure 8.3. The image before and after resizing

There, now Rover looks cute at any size!

214 The PHP Anthology

How can I put together a

simple thumbnail gallery?

In the previous section, we investigated how to how to create thumbnails without

causing your much-loved pooch to look like some strange dog–bat hybrid. Armed

with that knowledge, it should be an easy task to build a simple thumbnail gallery

from a directory that contains PNG, GIF, and JPEG files!

Solution
We’ll use the Thumbnail class we created in the previous section, together with

PHP’s built-in dir pseudo-class (refer to the section called “Using the dir Pseudo-

Class” in Chapter 6 for more information on the dir pseudo-class) to create our

gallery. We simply read through the directory, look for images that don’t have

thumbnails, and create them; at the same time, we generate the HTML that will

display them. An important benefit of this approach—creating and storing thumb­

nails on the disk—is that it saves us the overhead of having to create the thumbnails

dynamically each time.

The first step we need to take, of course, is to include our Thumbnail class and ini­

tialize our $image_html variable to an empty string:

thumbGallery.php (excerpt)

<?php
require_once('Thumbnail.class.php');
$image_html = '';

The $image_html variable will eventually hold all the HTML for our gallery.

Next, we use the dir pseudo-class to get a Directory object for our sample_images

directory. This object allows us to start a while loop, which will loop over all the

directory entries within sample_images:

thumbGallery.php (excerpt)

$dir = dir('sample_images');
while ($image = $dir->read())
{

Images 215

Each loop will assign the next directory entry, obtained using the $dir->read

method, to the $image variable. When there are no more directory entries, the loop

will terminate.

Next, we check that the directory entry we’ve obtained is an image file we want to

include in our gallery:

thumbGallery.php (excerpt)

 $ext = explode('.',$image);
 $size = count($ext);
 if (($ext[$size-1] == 'png' ||

 $ext[$size-1] == 'jpg' ||
 $ext[$size-1] == 'gif')
 && !preg_match('/^thumb_/', $image)
 && $image != '.' && $image != '..')

 {

To check that the current directory entry is an image we want to include in our

gallery, we first examine the file extension to ensure it’s a .png, .jpg, or .gif. We then

make sure that the filename doesn’t begin with thumb_, which would indicate that

it’s one of our thumbnails, and that the entry is not the . or .. directory entry.

Provided these conditions are met, we proceed to create the thumbnail:

thumbGallery.php (excerpt)

 if (!file_exists('sample_images/thumb_'.$image))
 {
 $tn = new Thumbnail(200, 200, true, false);
 $tn->loadFile('sample_images/'.$image);
 $tn->buildThumb('sample_images/thumb_'.$image);

 }

First, we check to make sure a thumbnail doesn’t already exist for the current image.

Then, we create a new thumbnail with our Thumbnail class and save it, prepending

thumb_ to the filename.

The last step inside the while loop adds the HTML markup for the current image:

216 The PHP Anthology

thumbGallery.php (excerpt)

 $image_html .= '<div class="image">' .
 '' .
 '' .
 '</div>';

 }
}
?>

The HTML for the gallery page is quite simple; once the layout and the CSS style

sheet have been created, the markup for the images is output from the $image_html

variable:

thumbGallery.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title> Thumbnail Example </title>
 <style type="text/css">

⋮ insert attractive visual style here…
 </style>

 </head>
 <body>
 <h1>Gallery</h1>
 <?php echo ($image_html); ?>

 </body>
</html>

An example of this script’s output appears in Figure 8.4.

Images 217

Figure 8.4. Our thumbnail gallery

How do I extract EXIF
information from images?
Now that you have a functional gallery, you might like to provide visitors with extra

information about the photo. The exchangeable image file format, better known as

EXIF format, provides a mechanism for the storage of metadata within images; most

digital cameras and image editing applications support this facility natively. If

you’ve taken some of the images in your photo gallery with your digital camera,

you can extract the EXIF data, such as date and time of the photo, the camera

model, and the camera settings used, and display it alongside the shots.

Solution
Extracting this information is simplicity itself when you seek a little help from

PHP’s EXIF functions. To use the EXIF functions you need to ensure your PHP in­

218 The PHP Anthology

stallation has EXIF support enabled. Please read the instructions on the EXIF

functions manual page.7

The exif_read_data function reads all the meta information from a JPEG or TIFF

image into an array. Take a look at this example:

exif.php (excerpt)

<?php
 // Get the exif data
$exif_data = exif_read_data('sample_images/terrier.jpg');

 echo '<pre>';
 print_r($exif_data);
 echo '</pre>';

?>

The above code displays all the EXIF information available for an image. For the

sake of brevity, as there’s a lot of meta information in the array, here’s a subset of

the information available to us:

Array

(

 [FileName] => terrier.jpg

 [FileDateTime] => 1185158396

 [FileSize] => 46196

 [FileType] => 2

 [MimeType] => image/jpeg

 [Make] => FUJIFILM

 [Model] => FinePix S9500

[ExposureTime] => 10/520

 [FNumber] => 390/100

 [ISOSpeedRatings] => 80

 [ShutterSpeedValue] => 576/100

)

Let’s take this information and update the output for the gallery we built in “How

can I put together a simple thumbnail gallery?”. All we need to do is modify the

code that generates the markup in the $image_html variable, like so:

7 http://www.php.net/exif/

http://www.php.net/exif/
http://www.php.net/exif/
http://www.php.net/exif/

Images 219

exifGallery.php (excerpt)

 if($ext[$size-1] == 'jpg')
 {
 $exif_data = exif_read_data('sample_images/' . $image);

 }
 else
 {
 $exif_data = array();

 }
 $image_html .= '<div class="image">';
 $image_html .= '<div class="thumbnail">';
 $image_html .= '';
 $image_html .= '';
 $image_html .= '</div>';
 $image_html .= '<div class="exifdata">';
 if(isset($exif_data['FileDateTime']))
 {
 $image_html .= '<p>Date: ' .

 date('jS F Y', $exif_data['FileDateTime']) . '</p>';
 }
 if(isset($exif_data['Make']))
 {
 $image_html .= '<p>Taken with: ' . $exif_data['Make'];
 if(isset($exif_data['Model']))
 {

 $image_html .= ' ' . $exif_data['Model'];
 }
 $image_html .= '</p>';

 }
 $image_html .= '</div></div>';

In the above modification to our gallery, if the image is a JPEG image, we add to the

display the date the picture was taken, and the make and model of the camera that

was used, if those details are available.

As you can see, the EXIF data appears beneath the appropriate images in Figure 8.5.

220 The PHP Anthology

Figure 8.5. The thumbnail gallery displaying images’ EXIF data

How do I add a watermark to an image?
So, you really like your photos, and you want to protect them with a watermark.

That is, you want to place some identifying image or text within the original image

to show that you own the copyright to it. With the GD library and PHP, watermark­

ing’s a snap!

Solutions
The imagestring function can be used to place text within an image, while the

imagecopymerge function can be used to place another image within your original

image. Using either of these functions is extremely easy.

Displaying a Text Watermark
Adding text to an image is the simplest form of watermarking. Here’s how it works:

Images 221

textWatermark.php (excerpt)

<?php
$image = imagecreatefromjpeg('sample_images/thumb_terrier.jpg');
$color = imagecolorallocate($image, 68, 68, 68);
imagestring($image, 5, 90, 0, "Abbey '07", $color);

header('Content-Type: image/jpg');
imagejpeg($image);
?>

The imagecolorallocate function allows you to create a new color to use for

drawing on the image by specifying the red, green, and blue components. The

function returns a number, which identifies that color in the image.

Once you have the color in hand, you can use the imagestring function to place

the text over the image. The first of the function’s arguments is the image, and the

second is a font number—the numbers 1–5 refer to built-in fonts. You can use

imageloadfont to make other fonts available. The third and fourth arguments rep­

resent the horizontal and vertical coordinates at which the text should be drawn

on the image. The fifth argument contains the text you wish to be placed in the

image, and the last argument specifies the color of the text. The output of this script

is shown in Figure 8.6.

Figure 8.6. Applying a text watermark

Displaying a Graphical Watermark
A logo or some other identifiable graphic with a transparent background is easily

placed over another image. Here’s an example:

222 The PHP Anthology

imageWatermark.php (excerpt)

<?php
$image = imagecreatefromjpeg('sample_images/thumb_terrier.jpg');
$iWidth = imagesx($image);

$watermark = imagecreatefrompng(
 'sample_images/sitepoint_watermark.png');

$wmWidth = imagesx($watermark);
$wmHeight = imagesy($watermark);

$xPos = $iWidth - $wmWidth;
imagecopymerge($image, $watermark, $xPos, 0, 0, 0,

 $wmWidth, $wmHeight, 100);

header('Content-Type: image/jpg');
imagepng($image);
?>

The process is a simple matter. Load the original image and the watermark image;

then, once the original image’s height and width have been obtained, use

imagecopymerge to place the watermark on the original image. The first two argu­

ments to the imagecopymerge function are the original or destination image object,

and the source image object—the watermark, in our case. The next four arguments

represent the x and y coordinates of the destination image and source image respect­

ively, starting from the top-left corner of the images. The following two arguments

represent the width and height of the source image. The last argument represents

the level of transparency desired for true color images—an argument of 100 specifies

no transparency, while an argument of 0 causes the original image to remain un­

marked by the watermark.

The result, in this case, is shown in Figure 8.7—a miniature SitePoint logo appears

in the upper-right corner of the photo.

Images 223

Figure 8.7. Applying a graphical watermark

How do I display charts
and graphs with PHP?
The display of data in graphical form is a powerful way to communicate with your

site’s visitors, and can help you to understand exactly how your site’s being used.

The graphs could show any relevant data, including your site’s monthly traffic

statistics, or counts of sales made on your site.

Solutions
A number of projects extend PHP’s basic capabilities to render images, allowing

data to be displayed as some form of graph or chart.

First and foremost is a project written in PHP that makes full use of the GD library

and PHP’s image functions: the excellent JpGraph library.8 You can do a lot with

JpGraph, and to provide a detailed examination is beyond the scope of this book.

At over 1MB in size, the documentation is extremely thorough, and offers many

useful examples. If you’re looking for more advanced reading on JpGraph, I recom­

mend two articles by Jason E. Sweat: one at Zend Developer Zone,9 the other at php

| architect.10 Here, however, we’ll get a feel for the library as we use it to display

bar and pie charts for a given set of data.

Be aware that JpGraph is licensed free for noncommercial use only—make sure you

read the licensing information on the site. The version I’ll use in this example is

2.2, which only works on PHP versions 5.1.0 and above. If you’re using PHP 4,

you’ll need to download version 1 of JpGraph. The code here also assumes that

8 http://www.aditus.nu/jpgraph/
9 http://devzone.zend.com/node/view/id/1260/
10 http://www.phparch.com/issuedata/2003/apr/sample.php

http://www.aditus.nu/jpgraph/
http://devzone.zend.com/node/view/id/1260/
http://www.phparch.com/issuedata/2003/apr/sample.php
http://www.phparch.com/issuedata/2003/apr/sample.php
http://www.aditus.nu/jpgraph/
http://devzone.zend.com/node/view/id/1260/
http://www.phparch.com/issuedata/2003/apr/sample.php

224 The PHP Anthology

you’ve added the jpgraph/src/ directory to your PHP include path, to allow the Jp-

Graph class files to be loaded.

JpGraph and PHP Error Notices

You may run into trouble using JpGraph if you have PHP’s error notices switched

on in php.ini. The generated error messages can cause the graph image to fail to

display. The examples in this chapter explicitly disable notices in order to avoid

this problem. See Chapter 9 for more information on how to control error reporting.

Creating a Bar Graph
First, let’s see how we can generate a bar graph with JpGraph:

bargraph.php (excerpt)

<?php
error_reporting(E_ALL ^ E_NOTICE);

require_once ('jpgraph.php');
require_once ('jpgraph_bar.php');

$xdata = array('Mousemats','Pens','T-Shirts','Mugs');
$ydata = array (35,43,15,10);

First, we turn off E_NOTICE reporting; then we include the core “engine” as well as

the bar graph class (make sure you have it in your PHP include path). Next, we set

up two arrays of sample data that will be plotted on the x and y axes of the graph.

In a practical application, these might be results you’ve fetched from MySQL.

The JpGraph API is fairly self-explanatory, and comes with excellent quality docu­

mentation. The first step in generating a graph from our data arrays is to set up the

foundations of the graph itself, setting its size and background color:

bargraph.php (excerpt)

// Width, height,cache filename
$graph = new Graph(400,200,'auto');
// Margin widths
$graph->img->SetMargin(40,20,20,40);
// X text scale, Y linear scale

Images 225

$graph->SetScale('textlin');

// Plot background

$graph->SetColor('white');

// Margin color

$graph->SetMarginColor('darkgray');

// Use a drop shadow

$graph->SetShadow();

// Frame color

$graph->SetFrame(true,'black');

It’s no problem to add a title to the graph. JpGraph comes with three built-in bitmap

fonts, two of which can be displayed in bold, as well as built-in support for a

number of TrueType fonts.11 Note that the TrueType fonts aren’t packaged with

JpGraph—they must be available separately, as part of your operating system fonts.

Next, we set the graph’s title:

bargraph.php (excerpt)

// Title text
$graph->title->Set('Sales Figures for March');
// Title color
$graph->title->SetColor('white');
// Title font
$graph->title->SetFont(FF_VERDANA,FS_BOLD,14);

Now, let’s construct the x axis. Here, the labels are assigned using the SetTickLabels

method, ticks being the markers for each interval on the x axis:

bargraph.php (excerpt)

// Axis title text
$graph->xaxis->title->Set('Product Type');
// Axis title color
$graph->xaxis->title->SetColor('black');
// Axis title font
$graph->xaxis->title->SetFont(FF_VERDANA,FS_BOLD,10);
// Add labels
$graph->xaxis->SetTickLabels($xdata);

11 These include Courier, Verdana, Times, Comic, Arial, Georgia, Trebuchet, Gnome Vera, Chinese, Ja­

panese, and Hebrew fonts.

226 The PHP Anthology

// Axis colors

$graph->xaxis->SetColor('black','white');

// Axis font

$graph->xaxis->SetFont(FF_VERDANA,FS_NORMAL,8);

// Hide ticks

$graph->xaxis->HideTicks();

The y axis will take numeric values that are generated automatically once the y data

is added:

bargraph.php (excerpt)

// Axis title text
$graph->yaxis->title->Set('Units Sold');
// Axis title color
$graph->yaxis->title->SetColor('black');
// Axis title font
$graph->yaxis->title->SetFont(FF_VERDANA,FS_BOLD,10);
// Axis colors
$graph->yaxis->SetColor('black','white');
// Axis font
$graph->yaxis->SetFont(FF_VERDANA,FS_NORMAL,8);
// Hide ticks
$graph->yaxis->HideTicks();

In the following code, we create a new BarPlot object that handles the drawing of

the bars on the chart:

bargraph.php (excerpt)

// Instantiate with Y data
$bplot = new BarPlot($ydata);
// Width of bars
$bplot->SetWidth(0.75);
// Set bar background color
$bplot->SetFillColor('darkgray');

All that remains is to add the bar chart plot object to the graph object, and send it

to the browser:

Images 227

bargraph.php (excerpt)

$graph->Add($bplot);
$graph->Stroke();
?>

Figure 8.8 shows the outcome—it’s not bad for just 33 lines of PHP, is it?

Figure 8.8. Graph revealing a massive demand for pens in March

Creating a Pie Chart
Another type of graph that can be built very easily with JpGraph is the pie chart.

Let’s use the sample data we used in the last example to build a pie chart.

At the start of the script, we must include the main pie chart class and the class for

a three-dimensional pie chart:

piechart.php (excerpt)

<?php
error_reporting(E_ALL ^ E_NOTICE);

require_once ('jpgraph.php');
require_once ('jpgraph_pie.php');
require_once ('jpgraph_pie3d.php');

$xdata = array('Mousemats','Pens','T-Shirts','Mugs'); // X Axis
$ydata = array (35,43,15,10);

This time, rather than using the Graph class, we use the PieGraph class:

228 The PHP Anthology

piechart.php (excerpt)

// Width, height, cache filename
$graph = new PieGraph(400,200,'auto');
// Margin color
$graph->SetMarginColor('white');
// Use a drop shadow
$graph->SetShadow();
// Frame color
$graph->SetFrame(true,'black');

We set this chart’s title as we did for the previous graph:

piechart.php (excerpt)

// Title text
$graph->title->Set('March Sales');
// Title color
$graph->title->SetColor('black');
// Title font
$graph->title->SetFont(FF_VERDANA,FS_BOLD,14);

We also need a legend to identify what each segment of the pie chart represents:

piechart.php (excerpt)

// Legend text color
$graph->legend->SetColor('black');
// Legend background color
$graph->legend->SetFillColor('gray');
// Legend position
$graph->legend->Pos(0.02,0.61);

Now, we create the three-dimensional pie chart object; we instantiate it with the y

data while using the x data for the legends, and pop out two of the pie slices for

effect:

Images 229

piechart.php (excerpt)

// Instantiate 3D pie with Y data
$pie = new PiePlot3d($ydata);
// Add X data to legends
$pie->SetLegends($xdata);
// Set color theme (earth|pastel|sand|water)
$pie->SetTheme('earth');
// Center relative to X axis
$pie->SetCenter(0.36);
// Size of pie radius in pixels
$pie->SetSize(100);
// Set tilt angle of pie
$pie->SetAngle(30);
// Pop out a slice
$pie->ExplodeSlice(2);
// Pop out another slice
$pie->ExplodeSlice(3);

We’ll display a label next to each segment on the chart to identify the percentage

of the whole that segment represents:

piechart.php (excerpt)

// The font
$pie->value->SetFont(FF_VERDANA,FS_NORMAL,10);
// Font color
$pie->value->SetColor('black');

Finally, we add our pie chart object to the graph object and send it to the browser:

piechart.php (excerpt)

$graph->Add($pie);
$graph->Stroke();
?>

The result of our work is shown in Figure 8.9.

230 The PHP Anthology

Figure 8.9. The not-so-humble pie chart

Discussion
JpGraph represents the premiere graphing solution for PHP, and it offers much more

functionality than we’ve had a chance to explore with these examples. Of particular

note is the fact that this solution allows you to store the rendered graphs as PNG

files, so that you can render each graph once and reuse the finished image. If you

wanted to save the graph created by the code above, you’d simply change the call

to Stroke by supplying a filename, making sure that the web server has permissions

to write to this location. Here’s an example:

$graph->Stroke('humble_pie.png');

This process will create a file called humble_pie.png, and won’t return anything to

the browser.

How do I prevent the hotlinking of images?
One problem you may encounter, particularly if your site hosts unique images, is

other sites that hotlink to your images from their pages, in order to make it seem as

though they own or host your cool images. Aside from the potential copyright issues

here, hotlinking of your images by outside sites may also eat up your bandwidth.

Hotlinking is to be avoided like the plague, as I’m sure you’ll agree!

Solutions
Here we have two solutions; one uses the mod_rewrite extension to Apache and

the other uses PHP sessions.

Images 231

Using Apache’s mod_rewrite
The default behavior of a web browser is to send a referer value with each HTTP

request. This value represents the URL from which the current request originated.

For HTTP requests for images, this URL should reflect the page on which the images

appear. We can use Apache’s mod_rewrite to check the referral information that

the visiting browser provides to ensure that the referring source for all requests for

our site’s images is a local web page. For example, we can place these settings in

our web server’s http.conf file:

SetEnvIfNoCase Referer "^http://www\.sitepoint\.com/"

➥ locally_linked=1

SetEnvIfNoCase Referer "^http://sitepoint\.com/" locally_linked=1

SetEnvIfNoCase Referer "^$" locally_linked=1

<FilesMatch "\.(gif|png|jpe?g)$">

 Order Allow,Deny

 Allow from env=locally_linked

</FilesMatch>

Here, we indicate that any request for a file with a name that ends in .gif, .png, .jpeg,

or .jpg, and which contains http://www.sitepoint.com/, http://sitepoint.com/,

or a blank string in the referer field, should be considered valid. This specification

should therefore block any requests for images for which none of those values are

reflected in the referer field. We need to allow requests with a blank referer field,

as they could be legitimate requests—it’s likely that some requests won’t have

referer information. For example, it’s entirely reasonable for a visitor to your web

site to have disabled the reporting of referer information for privacy reasons. In

short, the field cannot be relied upon to determine that hotlinking is taking place;

rather than risk blocking images for what may be a legitimate request, we need to

allow such requests.

Using PHP Sessions
Another option is to use PHP sessions to establish that the person viewing the image

is a visitor to your site. The trick is to register a session variable that a visitor must

have in order to be able to view the image, then use a second script to render the

image. For example, here’s a simple web page that displays an image, where the

image source URL is a PHP script that ensures that only valid site visitors can see

the image:

"^http://www\.sitepoint\.com/"
"^http://sitepoint\.com/"
http://www.sitepoint.com/
http://sitepoint.com/

232 The PHP Anthology

hotlinking.php (excerpt)

<?php
session_start();
$_SESSION['viewImages'] = true;
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Preventing Hotlinking</title>
 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />
 </head>
 <body>
 <p>Here is the image:</p>

 </body>
</html>

Notice that this code registers a session variable called viewImages, and a value of

getimage.php?img=husky.jpg appears in the src attribute of the tag. Here’s

the code for that getimage.php script. Firstly, we check the viewImage session variable

to see that it has been set to true:

getimage.php (excerpt)

<?php
session_start();
if (isset($_SESSION['viewImages']) &&

 $_SESSION['viewImages'] == true)
{

If the viewImage session variable has been set to true, the image name provided

via the $_GET['img'] variable is checked to ensure that it’s registered in the array

of allowed images, $images:12

12 A more practical alternative is to store the list of images in a database. However you manage the list,

it’s important to verify that the file requested is one you intended to grant access to; otherwise, you may

be allowing access to more than you expect.

Images 233

getimage.php (excerpt)

 $images = array(
 'golden_retriever.jpg',
 'husky.jpg'
);

 if (isset($_GET['img']) && in_array($_GET['img'],$images))
 {

The request is valid, so we output the response headers and the image:

getimage.php (excerpt)

 $dims = getimagesize('sample_images/'.$_GET['img']);
 header('Content-Disposition: inline; filename=' . $_GET['img']);
 header('Content-Type: '.$dims['mime']); # PHP 4.3.x +
 header('Content-Length: ' . filesize('sample_images/' .

 $_GET['img']));
 readfile('sample_images/'.$_GET['img']);

 }

Notice that the script also uses the getimagesize function you saw earlier in “How

do I resize images without stretching them?” to obtain the correct MIME type for

the image.

Finally, we handle the error conditions by returning an HTTP status of 404 Not

Found:

getimage.php (excerpt)

 else
 {
 header("HTTP/1.1 404 Not Found");
header("Content-Type: text/plain");
 echo "Invalid image or no image specified\n";

 }
}
else
{
 header("HTTP/1.1 404 Not Found");
header("Content-Type: text/plain");

234 The PHP Anthology

echo "This image is protected from hotlinking\n";

}

?>

This protection should stop all but the most determined hotlinkers.

How do I create images that can be
verified by humans only?
With the ever-growing number of automated spamming robots which tirelessly

scour the Web, human-verification techniques are becoming an increasingly neces­

sary part of the creation of web forms. The most common technique is the Completely

Automated Public Turing Test to Tell Computers and Humans Apart—conveniently

abbreviated to CAPTCHA—which presents the visitor with a word, or sequence of

characters, in such a way that it’s hard for machines to decipher, but easy for a hu­

man being to read and type in.13

Solution
Conveniently, the JpGraph library we discussed in “How do I display charts and

graphs with PHP?” comes with an extremely easy-to-use CAPTCHA implementation:

captcha.php (excerpt)

<?php
require_once "jpgraph_antispam.php";
$spam = new AntiSpam();
$chars = $spam->Rand(6);
$spam->Stroke();
?>

A sample result of this script is shown in Figure 8.10.

Figure 8.10. A CAPTCHA image created using JpGraph

13 You can read more about CAPTCHA at the official web site: http://www.captcha.net/.

http://www.captcha.net/

Images 235

If you want to specify a particular word to appear in the box, simply change the

call to Rand with:

$spam->Set("my_string");

Discussion
Of course, this is only half the story. You’ll need to store the CAPTCHA text some­

where—such as within a session variable—in order to validate the user-entered

version of the text on the next page. Don’t pass the text through as a form field,

though—even a hidden one—as it could be altered by a malicious user.

Summary
In this chapter, we’ve examined the topics of MIME types, resizing images, creating

galleries, extracting EXIF information, watermarking, producing graphical charts,

preventing the hotlinking of your images, and creating CAPTCHA images. Add the

tips from other chapters in this book into the mix, and you’re well equipped to

create a host of image manipulation scripts, from the downright useful to the truly

unique.

However, one issue you should consider is the performance implications of on-the­

fly image manipulation, which chews through a significant amount of processing

time. Consider a gallery of 100 folders, each holding 100 images; this isn’t a partic­

ularly excessive number, even for the casual holiday-maker. The creation of 10,000

thumbnails for every visitor is not a small task. Similarly, creating your company

web site’s banner image for every page load is not only time-consuming, but also

largely unnecessary.

While the simple thumbnail caching techniques we covered here might suit many

cases, they won’t be appropriate for those instances where the image might change

over time—the creation of charts based on ever-changing datasets is a case in point.

I highly recommend you refer to Chapter 11, for more advanced performance im­

provement techniques.

The practice of manipulating images in PHP is widespread. Examples include social

networking sites that create thumbnails of your profile image, web page forms that

make use of CAPTCHA images, and photo gallery sites that allow you to edit, crop,

236 The PHP Anthology

and rotate your images in the web browser (most likely through the liberal sprinkling

of JavaScript and Ajax). What you can achieve is, more or less, only limited by your

imagination!

Chapter9
Error Handling
In PHP, errors are used to indicate syntax, environmental, or programming problems:

syntax errors	 These are unrecoverable compile-time errors that indic­

ate a syntax problem and cause the PHP interpreter to

halt.

environmental errors	 Environmental errors are problems associated with the

script’s runtime environment and associated services.

Such errors may indicate a database server being un­

available, a file that’s unable to be opened, restrictions

resulting from permission levels, and so on.

programming errors	 Programming errors are unexpected events that occur

during normal program execution. This type of error

may indicate, for example, passing unexpected argu­

ments to a function call (such as an array when the

function expects a string), referencing undefined vari­

ables or array indices, and so on.

238 The PHP Anthology

The Logic Error

Another type of error—the logic error—is common but much harder to detect.

Such an error produces an incorrect result as the output of apparently successful

execution. These types of errors are often program design problems created by

the programmer. They’re generally addressed during unit testing, and will not be

covered in this chapter.

Errors in PHP 5 come in two flavors: standard PHP errors and exceptions.

Standard PHP error reporting handles all kinds of errors. Error messages are reported

globally, and each is associated with an error level that represents the error’s

severity or type. Traditionally, PHP environmental and programming errors were

handled via a function’s return value, or by generating global warnings or fatal errors

using the trigger_error or die functions. However, this was typically only the

case for developers using versions prior to PHP 5, in which no other error reporting

method was available.

In PHP 5, exceptions are used to indicate that an exceptional event—for example,

an environmental or programming error—has occurred, disrupting the normal exe­

cution of the script. Exceptions are reported using the throw statement, usually to

indicate that execution cannot continue as expected. They’re caught and handled

using a try {…} catch(Exception $e) {…} block, which is included as part of

programming logic. Throwing and catching exceptions is the primary error-handling

mechanism of object oriented programming. Every exception object is an instance

of, or an instance of a subclass of, PHP 5’s native Exception class.

In this chapter, we’ll look at the flexibility PHP offers in order to let us extend its

native error- and exception-reporting mechanisms. We’ll also see how you can

harness these mechanisms to gain greater control over the ways in which errors and

exceptions are handled. These tools will help you when you’re dealing with errors,

and provide you the means with which to gracefully exit execution, easily debug

your applications, and successfully monitor the health of your applications.

What error levels does PHP report?
As I noted in the introduction, PHP errors fall into a variety of categories. Effective

harnessing of PHP’s error-handling mechanisms requires some knowledge of PHP

Error Handling 239

errors, so let’s take a quick look at a summary of PHP error levels. You may also

want to check out the PHP error function manual page for full information on this

topic.1

Solution
PHP categorizes errors into various levels, each representing an integer bit operat­

or—the integer increasing with error severity. The error levels most developers need

to understand are shown in Table 9.1.2

What built-in settings does PHP
offer for error handling?
If PHP can generate errors, there must be some automated way to handle these errors,

right? Providing error reporting facilities without the capabilities to handle the errors

leaves developers hobbled. So, what error handling settings are available to de­

velopers?

Solutions
PHP has several built-in mechanisms for displaying and logging errors. Each of the

following directives may be administered via ini_set, your web server’s .htaccess

file, or the php.ini file.

The error_reporting Directive
Set the error_reporting directive to indicate which errors need to be reported.

During development, you’d typically set this directive to E_ALL | E_STRICT, which

will notify you of any PHP errors that occur in your application. Once your code

moves to the production environment, you may want to tighten this setting up a bit

so that your error logs (which we’ll discuss in detail in a moment) don’t fill up;

E_ERROR | E_USER_ERROR | E_WARNING | E_USER_WARNING is usually a good setting

for production environments.

1 http://www.php.net/errorfunc/

2 Note that the _USER variants indicate errors that are triggered in user-generated code by

trigger_error or die, and that are of a roughly equivalent level of severity.

http://www.php.net/errorfunc/
http://www.php.net/errorfunc/
http://www.php.net/errorfunc/

240 The PHP Anthology

Table 9.1. PHP Error Levels

DescriptionLevel

This notice indicates a potential error in the

script—note my emphasis on potential. Errors of

this sort typically mean that something has

occurred that may indicate logical errors or

omissions, even though it hasn’t caused the PHP

interpreter to fail. Examples include accessing

undefined variables or array indices.

E_NOTICE / E_USER_NOTICE

A warning indicates a nonfatal error from which

PHP has recovered. Warnings are generally reserved

for environmental errors, such as the inability of

the executing script to access a database or web

service, errors that occur while you’re running a

third-party extension, and so on.

E_WARNING / E_USER_WARNING

These are fatal runtime errors from which PHP was

unable to recover; typically, they will be errors that

occur on the OS level, such as problems

encountered while allocating memory or disk space.

Note that E_USER_ERRORs are actually

recoverable; when such errors are caught in a

custom error handler, the developer can choose

whether or not to exit script execution.

E_ERROR / E_USER_ERROR

E_STRICT errors are basically notices, but these

are deployed to indicate that code you’ve used may

be deprecated, or may not follow best practices as

determined by the PHP interpreter.

E_STRICT

The display_errors Directive
When display_errors is set, PHP errors will be displayed inline in your script’s

output. This is a good setting to use in development, though it has the potential to

disrupt any HTTP headers you’re trying to send if an error occurs while they are

being output.

Once your application’s in production, turn display_errors off so that these mes­

sages are not displayed to your users.

Error Handling 241

The log_errors and error_log Directives
If log_errors is set, errors will be logged to the location specified in the error_log

directive. This setting is useful for maintaining a running log of the errors en­

countered in your application or site, and is helpful because it acts as a reference

for all the errors that may arise when the display_errors directive is disabled.

You will likely want to set ignore_repeated_errors and ignore_repeated_source

to prevent those logs from filling up when the same error occurs repeatedly.

How can I trigger PHP errors?
The capability to trigger errors is not restricted to the PHP interpreter. At times, you

may find it useful to generate PHP errors yourself—they can be used as a debugging

aid, to generate deprecation notices in code you’re releasing to others, and more.

So, how do you trigger PHP errors?

Solution
You can trigger errors within your code using PHP’s trigger_error function. This

function has the following prototype:

trigger_error($error_message, $error_type = E_USER_NOTICE);

The $error_type argument must be one of the user error constants E_USER_NOTICE,

E_USER_WARNING, or E_USER_ERROR, which, as noted in the code above, defaults to

E_USER_NOTICE.

Discussion
When they first discover trigger_error, PHP developers have a tendency to use

it for any error conditions they observe in their code. However, better strategies

exist.

Trigger E_USER_NOTICEs primarily in development when debugging your code.

Notices can be helpful for indicating the values that have been set, when certain

pieces of code are executing, and so on. (Note, however, that this isn’t the most ef­

ficient way to debug.)

242 The PHP Anthology

Trigger E_USER_WARNINGs when your code detects exceptional situations from which

it can recover gracefully. For example, such a situation might arise if a web service

cannot be contacted, but your code is still able to generate an error message; in this

case, the warning might serve to indicate to you later to check your application’s

connectivity with the web services server.

Trigger E_USER_ERRORs when your code hits a problem from which it cannot recover.

Examples of this kind of problem include a situation in which the executing script

is unable to connect to your database, or you discover that your web site template

directory is unreadable.

How do I implement a custom
error handler with PHP?
The php.ini settings for handling errors are fairly limited. They really only cover the

tasks of displaying and logging errors—you can’t even specify the format in which

those errors are logged or displayed! What if you want to do something other than

these tasks?

Solution
PHP allows developers to define custom error handlers. Such error handlers may

constitute any valid PHP callback: a function, a static class method, or a dynamic

class method. Whatever callback you decide to use, it must follow the error handler

prototype:

function handler($errno, $errmsg[, $filename[, $linenum[, $vars]]])

When your custom error-handling function is called, the first parameter $errno

will contain the level of the error as an integer; the second parameter, $errmsg, will

contain the description of the error. $filename contains the name of the file con­

taining the code that raised the error, $linenum contains the line number where the

error was raised, and $vars contains an array of all variables that existed in the

scope in which the error was triggered. You can choose to perform any task you

like within your error handler: log errors, mail the error details to system adminis­

trators or developers, print the error details, and so on.

Error Handling 243

However, you should understand that if you do not explicitly exit script execution

in your error handler, program execution will continue from the location at which

the error was triggered originally. Your code will have no idea what tasks were

undertaken in the error handler, though.

Use the set_error_handler function to tell PHP to use your error handler:

set_error_handler($error_handler[, $error_types])

The first parameter is a callback that references your error handler. The optional

second parameter is used to tell PHP which error types should be handled by your

custom function. By default, if no error type is provided, all errors will be handled

except for E_ERROR, E_PARSE, E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR,

E_COMPILE_WARNING, and E_STRICT. Since you can specify the types, you can specify

multiple error handlers—one for each type you wish to handle.

An easier solution, however, is to use a single error handler for all error types you

wish to handle, and in it employ a switch statement that uses the value of the first

argument to the handler function—represented by $errno—to select alternative

actions that respond to specific error types. $errno is the error level of the triggered

error, the integer value represented by the error type constants listed in “What error

levels does PHP report?”. Then, the error handler needs to return true if the error

was handled, or false if not; returning false tells PHP to pass on error-handling

control to the default error handler. As an example, here’s a PHP 5 class that imple­

ments a custom error handler which selects alternative actions appropriate to the

level of the error raised:

ErrorHandler.class.php (excerpt)

<?php
class ErrorHandler
{
 protected $_noticeLog = '/tmp/notice.log';
 public $message = '';
 public $filename = '';
 public $line = 0;
 public $vars = array();
 public function __construct($message, $filename, $linenum, $vars)
 {
 $this->message = $message;

244 The PHP Anthology

$this->filename = $filename;

 $this->linenum = $linenum;

 $this->vars = $vars;

 }

The constructor accepts the various error attributes as arguments and stores them

in the object’s properties. The $_noticeLog variable stores the location of the log

file for E_USER_NOTICE level error messages. If you’re testing on a Windows machine

you should change this value to something like C:\notice.log, or an appropriate

location on your system.

Here’s the custom error-handling method of our class:

ErrorHandler.class.php (excerpt)

 public static function handle($errno, $errmsg, $filename,
 $line, $vars)

 {
 $self = new self($errmsg, $filename, $line, $vars);
 switch ($errno) {
 case E_USER_ERROR:
 return $self->handleError();

 case E_USER_WARNING:
 case E_WARNING:
 return $self->handleWarning();

 case E_USER_NOTICE:
 case E_NOTICE:
 return $self->handleNotice();

 default:
 return false;

 }
 }

The handle method above instantiates an ErrorHandler object with the error mes­

sage, filename, line number, and variable context, and then calls the appropriate

handler method based on $errno.

If the error level does not match the levels handled by this class, it reverts the error

flow to the default error handler by returning false.

Error Handling 245

Now we can build the methods that handle the different types of errors. First up is

the handleError method:

ErrorHandler.class.php (excerpt)

 public function handleError()
 {
 ob_start();
 debug_print_backtrace();
 $backtrace = ob_get_flush();
 $body =<<<EOT

A fatal error occured in the application:
Message: {$this->message}
File: {$this->filename}
Line: {$this->line}
Backtrace:
{$backtrace}
EOT;

 error_log($body, 1, 'sysadmin@example.com',
 "Fatal error occurred\n");

 exit(1);
 }

handleError is used to handle E_USER_ERROR level errors. When it’s called, this

method sends an email to the system administrator and halts execution. It uses a

little-known feature of PHP’s error_log function to send the email—if you specify

1 for the second argument and an email address as the third argument, it employs

the php.ini settings for sendmail to send an email. Finally, handleError halts execu­

tion of the script using exit. 3

Our next method is handleWarning:

ErrorHandler.class.php (excerpt)

 public function handleWarning()
 {
 $body =<<<EOT

An environmental error occured in the application, and may
 indicate a potential larger issue:
Message: {$this->message}

3 Calling exit with an integer exit status parameter of anything other than 0 indicates a script failure.

246 The PHP Anthology

File: {$this->filename}

Line: {$this->line}

EOT;

 return error_log($body, 1, 'sysadmin@example.com',

 "Subject: Non-fatal error occurred\n");

 }

handleWarning is used to handle E_USER_WARNING and E_WARNING errors. Like

handleError above, it sends an email to the system administrator; however, instead

of halting execution, it simply returns the result of the error_log function—true

if the function succeeds, false if it fails.

Finally, the handleNotice method:

ErrorHandler.class.php (excerpt)

 public function handleNotice()
 {
 $body =<<<EOT

A NOTICE was raised with the following information:
Message: {$this->message}
File: {$this->filename}
Line: {$this->line}
EOT;

 $body = date('[Y-m-d H:i:s] ') . $body . "\n";
 return error_log($body, 3, $this->_noticeLog);

 }
}

handleNotice handles E_USER_NOTICE and E_NOTICE level errors. Since notices do

not represent dangerous errors, we assume that the system administrator doesn’t

need to know about them immediately, and log them to a file instead of sending an

email.

Finally, we tell PHP that we want ErrorHandler::handle to act as our error handler,

by using the aptly named set_error_handler function:

ErrorHandler.class.php (excerpt)

set_error_handler(array('ErrorHandler', 'handle'));

Error Handling 247

Discussion
PHP error handlers are trivial to implement, and, because you can write your own

functionality, you can create whatever error handling strategies you desire. Be

careful to test your code stringently, however, as you don’t want to find yourself in

a circular error-handling situation, where your error handler starts emitting errors

that it then needs to handle itself.

How do I log and report errors?
You need to create a robust web application, but even the best software engineers

make mistakes. Perhaps you’re using third-party libraries that omit deprecation

notices. Or maybe your code, though in its infancy, has been pushed into production

due to time constraints.

You need to keep track of the errors occurring on your site somehow. What tools

does PHP offer for the job?

Solution
Logging errors is one thing—reporting them is a whole different ballgame. Logging

is usually best done via PHP’s own logging facilities. For example, you’ll recall that

the error_log setting can be set at the php.ini level, using the ini_set function.

PHP’s error_log function can be used both to log errors and to send emails. It can

log errors to PHP’s error_log or an alternate log destination, or send an email to a

specified address (it uses mail to do the actual sending). Also, if you’re using a de­

bugger, it can send the information over the debugging connection.

While PHP’s logging functionality is nice, it still needs to be triggered within your

code—typically via your custom error handler.

The simplest way to log errors is to set up logging via your php.ini settings, like so:

error_reporting(E_ALL & (~E_NOTICE | ~E_USER_NOTICE));

ini_set('error_log', '/tmp/php-error.log');

ini_set('ignore_repeated_errors', true);

ini_set('ignore_repeated_source', true);

ini_set('log_errors', true);

248 The PHP Anthology

These settings will log all errors to /tmp/php-error.log except notices, repeated errors,

and errors reported from the same source.

You can also set up a custom error handler to conduct logging or reporting. Typically,

the safest and easiest way to do so is simply to use error_log, as we saw in the

solution in “How do I implement a custom error handler with PHP?”.

If you intend to use email to report errors in your custom error handler, doing so

via the error_log function or the standard PHP mail function may not be the best

solution. A third-party library, for example PEAR::Mail, may be better suited to the

task. In those cases, use the library within your custom error handler to send the

email.4

Finally, keep in mind that log files and email are not the only ways to report errors.

You could also tell PHP to send SMS text messages and pager messages to your

sysadmins or developers.

How can I use PHP

exceptions for error handling?

PHP errors are useful, but they pose many problems:

■	 There’s no way to allow an error to bubble up the calling stack—errors must be

handled immediately.

■	 The only way to exit the function or method that’s executing when an error is

triggered is to have the handler exit script execution.

■	 It’s difficult to determine what the problem is without interrogating the error

message, as any error you trigger yourself won’t have an associated error code

or name.

PHP 5 marked the introduction of a new error-handling scheme: exceptions. As I

mentioned at the start of this chapter, an exception is used to denote exceptional

behavior on the part of the script—situations in which something went wrong, or

something unexpected occurred. Exceptions are thrown by your code, and bubble

up through the code until they’re caught:

4 For more information about sending email with PHP, see Chapter 7.

Error Handling 249

throw new Exception(

 "There's something rotten in the state of this code");

So, how can we use PHP exceptions to perform error handling?

Solution
Unlike PHP errors, exceptions can always be caught within your code, which allows

you to handle them gracefully when you have the facilities to do so. When an ex­

ception is thrown, PHP will immediately look for a matching catch block and run

the code within it. Thus, it’s important to wrap your code within a try {…}

catch(Exception $e) {…} block at the point at which you wish to catch potential

exceptions. If an exception is not caught, PHP will generate a E_FATAL error with

the message “Uncaught Exception.”

Now, within the catch block, you can deal with the exception in the way you feel

is best. For example, imagine you’re generating a web page that includes data from

a web service. You may throw an exception when the web service is unavailable,

but catch it later and display a “Service unavailable” message within the web page

you’re generating:

try

{

 $data = $this->getDataFromService();

}

catch (ServiceUnavailableException $e)

{

 $data = 'Service unavailable';

}

In this example, the script doesn’t exit completely as a result of the error. Instead,

the script finishes executing and the web page is generated successfully, so you’re

able to deal with the error at the right time and take appropriate action.

If this sounds good, you’ll be pleased to hear that it gets even better—PHP 5 saw

the introduction of object type hinting. This facility forces parameters of functions

and methods to be objects of a particular class, or subclasses of that class. You can

use type hinting when you’re catching exceptions in a catch (Exception $e) {…}

block—multiple catch blocks can be used to catch different classes of exceptions:

250 The PHP Anthology

try

{

⋮ try some code…
}

catch (PDOException $e)

{

⋮ handle PDO exceptions…
}

catch (Zend_Exception $e)

{

⋮ handle Zend Framework exceptions…
}

catch (Exception $e)

{

⋮ handle all other exceptions…
}

Discussion
One common mistake novices make is to use exceptions for every type of error

situation. For instance, I’ve often seen constructs like this used to validate data:

public function isValidData($data)

{

 if (!is_array($data))

 {

throw new Exception('Invalid data');

 }

if (!array_key_exists($data))

 {

 throw new Exception('Id key missing');

 }

⋮ finish validating…

 return true;

}

What’s wrong with this code? Simply this: invalid data is just one of the possible

results; it’s not an exceptional situation. In the case above, it’s best simply to return

an error message or true. Then, you can always check for Boolean true or is_string

on the return value:

Error Handling 251

public function isValidData($data) {

 if (!is_array($data))

 {

 return 'Invalid data';

}

 if (!array_key_exists($data))

 {

 return 'Id key missing';

 }

⋮ finish validating…

 return true;

}

Another common mistake that’s related to the one above is to use exceptions as part

of the script’s program flow. Code that uses the original definition of isValidData

above, which throws exceptions, might look like this:

try

{

 $result = $this->isValidData($data);

}

catch (Exception $e)

{

 if ('Invalid data' == $e->getMessage())

 {

$error = $this->missingData();

}

 elseif ('Id key missing' == $e->getMessage())

 {

 $error = $this->missingId($data);

}

 else

 {

 $error = 'Unknown error';

}

}

if (isset($error))

{

⋮ handle error…
}

In this example, the code uses exceptions within the program flow to make decisions;

it’s almost the equivalent of programming using GOTO statements. This is a fairly

252 The PHP Anthology

confusing way to express decision-making branches in your code, particularly when

other methods are much more suitable (including testing return values from the

function/method call, performing the various error method calls within the called

function/method, and so on).

Use exceptions when you can detect an event or condition in a unit of code that

prevents any further execution. Good examples include:

■	 database errors
■	 web service call errors
■	 filesystem errors (such as permissions, missing paths, and so on)
■	 data encoding errors (until PHP 6 is out, that is)
■	 parse errors (for example, when parsing configuration or template files)

When used wisely and sparingly, exceptions become a very powerful error-handling

tool. For more information on PHP exceptions, read the relevant PHP manual page.5

How do I create a custom Exception class?
The base Exception class provided in PHP 5 can be extended, but since exceptions

bubble up the stack until they’re caught, why would you bother to create a custom

Exception class? Well, if you use different Exception classes, it becomes much

simpler to target specific types of exceptions and recover from them.

Other reasons why you’d create a custom Exception class include:

■	 You want to log specific types of exceptions.

■	 You need to mail exception messages of particular classes.

■	 You want to create special __toString output for pretty printing exceptions, or

use exceptions in other specialized circumstances (for example, an XML-RPC

client or server might use an exception class for fault responses, with the

__toString method creating the XML fault response).

5 http://php.net/exceptions/

http://php.net/exceptions/
http://php.net/exceptions/

Error Handling 253

Solution
Exception classes extend either the base PHP Exception class, or a class derived

from it. To be able to catch your custom exception, all you need to do is extend it:

class My_Exception extends Exception {}

An exception that’s defined like this will act as would any other exception, though

it can be type hinted as My_Exception when you’re catching exceptions:

try

{

⋮ try some code…
}

catch (My_Exception $e)

{

⋮ handle exception…
}

The only overrideable methods in the Exception class are __construct and

__toString. If you’re overriding the __construct method, your custom exception

should call parent::__construct to ensure all data in the exception is properly

set:

class My_Exception extends Exception

{

 public function __construct($message = null, $code = 0)

{

 parent::__construct($message, $code);

⋮ do the rest of the initialization…

 }

}

Discussion
It’s useful to create exception classes to cover distinct groups of code that may span

more than one class. For instance, if you were creating a suite of input filter classes,

you may want to create a single exception class to cover them; however, if you’re

creating an MVC (Model-View-Controller) suite, you may want a different type of

exception class for each distinct area of the MVC pattern.

254 The PHP Anthology

Earlier, we mentioned logging and emailing exceptions. Unlike PHP errors, excep­

tions are not logged, unless they remain uncaught, in which case they are logged

as E_FATAL errors. Most of the time, you won’t want or need to log exceptions.

However, some types of exceptions may indicate situations that need attention from

a developer or sysadmin—for example, your script is unable to connect to a database

(when PDO throws exceptions, not PHP errors, for instance), a web service is inac­

cessible, a file or directory is inaccessible (due to permissions, or the fact that it’s

simply missing), and so on.

The easy way to handle these situations is to override the exception’s constructor

to perform the notification task. Here’s a custom exception class called My_Exception

that calls the error_log function from within the constructor method:

class My_Exception extends Exception

{

 public function __construct($message = null, $code = 0)

 {

 parent::__construct($message, $code);

 error_log($this->getTraceAsString(), 3,

 '/tmp/my_exception.log');

}

}

While this is an easy method for performing special error-logging actions when ex­

ceptions occur, I find that making the exception observable offers even more flexib­

ility. Consider this usage example:

Observable_Exception::attach(new Logging_Exception_Observer());

Observable_Exception::attach(new Emailing_Exception_Observer());

class Foo_Exception extends Observable_Exception {}

⋮ perform some work…
throw new Foo_Exception('error occurred');

In this example, I’ve created a base exception class that’s observable, and called it

Observable_Exception. I’ve attached two observers to this class: one that logs, and

one that sends email. These observers check the type of the exceptions they observe,

and use that information to decide whether or not to act.

Error Handling 255

This strategy provides some flexibility in terms of the way exceptions are handled,

without requiring the use of an explicit exception handler. In addition, you can attach

an observer anywhere in your code, which means that you can decide how to handle

any given exception dynamically.

The code that implements observable exceptions is as follows:

Exception_Observer.class.php (excerpt)

interface Exception_Observer
{
 public function update(Observable_Exception $e);
}

This code defines the interface for exception observers. We’ll implement the

Exception_Observer interface in a custom class in just a minute.

Next, we create the Observable_Exception class by extending the Exception class.

We add a static property—$_observers—to hold an array of Exception_Observer

instances:

Observable_Exception.class.php (excerpt)

class Observable_Exception extends Exception
{
 public static $_observers = array();

Next, a static method is used to attach observers. Type hinting enforces that only

classes of the Exception_Observer type are allowed as observers:

Observable_Exception.class.php (excerpt)

 public static function attach(Exception_Observer $observer)
 {
 self::$_observers[] = $observer;

 }

We override the constructor method so that when the exception is instantiated all

observers are notified via a call to the notify method:

256 The PHP Anthology

Observable_Exception.class.php (excerpt)

 public function __construct($message = null, $code = 0)
 {
 parent::__construct($message, $code);
 $this->notify();

 }

Finally, the notify method loops through the array of observers and calls their

update methods, passing a self-reference to the Observable_Exception object,

$this:

Observable_Exception.class.php (excerpt)

 public function notify()
 {
 foreach (self::$_observers as $observer)
 {
 $observer->update($this);

 }
 }
}

Here’s an example of an exception observer:

Logging_Exception_Observer.class.php (excerpt)

require 'Exception_Observer.class.php';
require 'Observable_Exception.class.php';
class Logging_Exception_Observer implements Exception_Observer
{
 protected $_filename = '/tmp/exception.log';
 public function __construct($filename = null)
 {
 if ((null !== $filename) && is_string($filename))
 {
 $this->_filename = $filename;

 }
 }
 public function update(Observable_Exception $e)
 {

Error Handling 257

error_log($e->getTraceAsString(), 3, $this->_filename);

 }

}

This particular implementation of Exception_Observer logs exception information

to a file. If you’re testing this code, make sure you set the $_filename variable to

an appropriate location and filename.

This strategy offers more flexibility than simply handling the logging or reporting

in the constructor method of a custom exception class, or defining an exception

handler function. Firstly, if you build a hierarchy of exception classes deriving from

the Observable_Exception class, you can attach any number of observers to each

type of observable exception, allowing for the customization of the exception envir­

onment at any time without necessitating that changes be made to the actual excep­

tion code. It also means that only the top-level exception class needs to contain any

additional code; all classes that derive from that class can be empty stubs. Finally,

each observer’s update method can use type hinting via PHP’s instanceof operator

to decide whether or not any action needs to be taken.

How do I implement a custom
exception handler with PHP?
A custom handler for PHP errors can be specified using the set_error_handler

function. Exceptions bubble up until they’re caught, but what happens if they’re

not caught? By default, any exception that isn’t caught raises an E_FATAL error. You

could catch this error with a PHP error handler, but is there another way to handle

uncaught exceptions?

Solution
Like PHP errors, exceptions can be handled automatically using a custom exception

handler that’s specified with the set_exception_handler function.

You’d typically implement an exception handler if you wanted your program to

take a particular action for an uncaught exception—for example, you might want

to redirect the user to an error page, or to log or email the exception so the developer

can correct the issue.

258 The PHP Anthology

The basic approach involves providing a callback to set_exception_handler:

null|string set_exception_handler(mixed callback)

Discussion
Since exception handlers handle any uncaught exception—not exceptions of specific

types—they’re somewhat easier to implement than error handlers. In this example,

we create a custom exception-handling class that logs uncaught exceptions to a file,

and displays a simple error page:

ExceptionHandler.class.php (excerpt)

<?php
class ExceptionHandler
{
 protected $_exception;
 protected $_logFile = '/tmp/exception.log';
 public function __construct(Exception $e)
 {
 $this->_exception = $e;

 }
 public static function handle(Exception $e)
 {
 $self = new self($e);
 $self->log();
 echo $self;

 }

The entry point for this exception handler is the static handle method, which in­

stantiates itself, logs the exception, then displays an error message by echoing itself

(using the magic __toString method). If you’re testing this code, make sure you

set the $_logFile variable to an appropriate location and filename.

This code uses PHP’s error_log function to log the exception backtrace to a file:

Error Handling 259

ExceptionHandler.class.php (excerpt)

 public function log()
 {
 error_log($this->_exception->getTraceAsString(), 3,

 $this->_logFile);
 }

The __toString implementation below creates a “pretty” error page that’s displayed

when an exception is handled, preventing the display to users of any sensitive in­

formation contained in the exception backtrace:

ExceptionHandler.class.php (excerpt)

 public function __toString()
 {
 $message =<<<EOH

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Error</title>

 </head>
 <body>
 <h1>An error occurred in this application</h1>
 <p>
 An error occurred in this application; please try again. If
you continue to receive this message, please
<a href="mailto:webmaster@example.com"

 >contact the webmaster.
 </p>

 </body>
</html>
EOH;

 return $message;
 }
}

Finally, we tell PHP we want to handle exceptions using

ExceptionHandler::handle:

set_exception_handler(array('ExceptionHandler', 'handle'));

260 The PHP Anthology

And we’re done!

How can I handle PHP

errors as if they were exceptions?

Perhaps you prefer exceptions to PHP errors, and want to handle fatal or environ­

mental PHP errors as if they were exceptions. No problem!

Solution
This task is relatively simple. We need to create a custom exception class and, to

handle errors, we must add a public static method that throws an exception—that

is to say, creates an instance of itself:

ErrorToException.class.php (excerpt)

class ErrorToException extends Exception
{
 public static function handle($errno, $errstr)
 {
 throw new self($errstr, $errno);

 }
}

This class does not need to extend Exception in particular—just an Exception-de­

rived class. You could, for instance, extend the Observable_Exception from “How

do I create a custom Exception class?”.

You won’t want to handle all PHP errors this way, though—E_NOTICEs and E_STRICTs

don’t justify such handling. Fortunately, set_error_handler takes an error level

as its second argument:

set_error_handler(

 array('ErrorToException', 'handle'),

E_USER_ERROR | E_WARNING | E_USER_WARNING

);

The example code above dictates that only warnings and user errors will be thrown

as exceptions.

Error Handling 261

Discussion
While handling PHP errors as exceptions could be achieved even more simply using

a function, rather than a static method, the approach I’ve explained here has several

advantages. First, it allows you to type hint for these particular exceptions. Second,

the exception class above could extend another custom exception class that provides

additional functionality, such as the ability to log or mail exception information.

How do I display errors
and exceptions gracefully?
You’ve taken heed of the advice to turn off display_errors on your production

servers so that you don’t accidentally expose sensitive system information to users

(and potentially hackers). If you’re not going to display errors, you’ll need to display

something else instead. But how can you make this happen?

Solution
The solution to this common problem is to build the functionality into your error

or exception handler.

Displaying errors from an error or exception handler is a fairly trivial task, although

you may need to take into consideration whether or not the error is fatal, and

whether or not output buffering is being used.

Since exception handlers are only triggered in the event of an uncaught exception,

you can assume a fatal error when working with an exception handler; an example

of an exception handler was shown in “How do I implement a custom exception

handler with PHP?”. When you’re handling errors, however, you’ll need to check

the error level of each error—you may want to display errors at some error levels,

and not others, for example. The error-level checking can be done by testing the

error level in your error handler, or by passing a second argument to

set_error_handler to define which error levels the error handler should accom­

modate.

As for output buffering, we simply need to check the return value of ob_get_level.

If that function returns zero, no output buffering is currently activated and we may

262 The PHP Anthology

proceed; otherwise, we need to clean out all output buffers, which we can achieve

easily by nesting an ob_end_clean call in a while loop:

while (@ob_end_clean());

We need to use the error suppression operator, @, in this case, because the function

throws an E_NOTICE when it runs out of buffers to clean.

Let’s put together all the pieces, trapping what we deem fatal errors and throwing

them as exceptions, and then implementing an exception handler that displays an

error page, taking into consideration any output buffering that may be in process:

safeErrorDisplay.php (excerpt)

class ErrorToException extends Exception
{
 public static function handle($errno, $errstr)
 {
 throw new self($errstr, $errno);

 }
}
set_error_handler(

 array('ErrorToException', 'handle'),
 E_USER_ERROR | E_WARNING | E_USER_WARNING

);

The code above defines a class that can be used as a PHP error handler. It simply

throws itself as an exception. Here, I’ve set it to handle error types of E_USER_ERROR,

E_WARNING, and E_USER_WARNING, all of which are errors that can be caught, and are

likely indications that something’s seriously askew in the script.

Next, let’s define our ExceptionHandler class:

safeErrorDisplay.php (excerpt)

class ExceptionHandler
{
 protected $_exception;
 protected $_logFile = '/tmp/exception.log';
 public function __construct(Exception $e)
 {

Error Handling 263

$this->_exception = $e;

 }

 public static function handle(Exception $e)

 {

 $self = new self($e);

 $self->log();

 while (@ob_end_clean());

 ob_start();

 echo $self;

 ob_end_flush();

 }

So far, we’ve defined a class with a static handle method that accepts an exception

as its sole argument. The method instantiates itself, logs the exception, then generates

an error message. Before generating the error message, it clears out all output buffers

to ensure that the error message is the only output returned.

Let’s turn to the details of logging and output generation:

safeErrorDisplay.php (excerpt)

 public function log()
 {
 error_log($this->_exception->getTraceAsString(), 3,

 $this->_logFile);
 }

Logging is undertaken with PHP’s own error_log function. This approach is safe,

it won’t generate errors itself, and it’s simple to use. If you’re testing this code, be

sure to put the appropriate path and filename in the $_logFile variable.

Next, we implement a __toString method:

safeErrorDisplay.php (excerpt)

 public function __toString()
 {
 $message =<<<EOH

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

264 The PHP Anthology

<head>

 <title>Error</title>

 </head>

 <body>

 <h1>An error occurred in this application</h1>

 <p>

 An error occurred in this application; please try again. If

you continue to receive this message, please

<a href="mailto:webmaster@example.com"

 >contact the webmaster.

 </p>

 </body>

</html>

EOH;

 return $message;

 }

}

That code should look familiar—it’s similar to the solution in “How do I implement

a custom exception handler with PHP?”. Our ExceptionHandler class has a

__toString method that uses a heredoc to generate XHTML output. The method

could be modified to show details of the exception, such as the message or backtrace,

but that practice is discouraged in the production environment.

Finally, of course, we define ExceptionHandler::handle() as the exception

handler:

safeErrorDisplay.php (excerpt)

set_exception_handler(array('ExceptionHandler', 'handle'));

Discussion
The solution I’ve presented here achieves two goals: it throws severe PHP errors as

exceptions, and uses an exception handler to log the issues, which generates and

displays a generic error page for the user.

Utilizing this solution is a good practice for production systems, as it allows you

to keep track of site errors while generating a safe display for the end user.

Error Handling 265

Unfortunately, this solution has one drawback: it doesn’t prevent users from refresh­

ing the page and triggering the error condition again. Quite often, if a serious error

occurred, you may not want to keep the page that handles the error display code in

the same environment as the page on which the error was triggered. In fact, there

may be reasons why displaying an error page under these circumstances might fail

completely (including a lack of database connectivity, bad permissions on template

files, and so on). Additionally, if the user clicks on the browser’s Refresh button to

see if the error occurs again, they’ll likely just perpetuate the problem. Finally,

building the display HTML into a class can have a number of downsides—for in­

stance, being completely separate from the site template and style sheets, it may

not match your site’s look and feel. As such, you may want to consider redirecting

users to an error page, instead of simply displaying an error page.

How do I redirect users to another
page following an error condition?
So, you’ve got error and exception handlers in place, tried having them display error

pages, and you’re now worried about what will happen when a user refreshes the

page. As an example, imagine this scenario: a database connectivity issue causes

your site’s homepage to display an error page, and now hundreds or thousands of

incoming users are clicking their Refresh buttons.

It may be time to redirect them to an error page instead.

Solution
For this method to work, you’ll need to ensure that output buffering is on, so that

no headers are sent to the browser prior to the redirect header being sent. The fol­

lowing sample should serve as a guideline:

class ExceptionRedirectHandler

{

 protected $_exception;

 protected $_logFile = '/tmp/exception.log';

 public $redirect = 'http://www.example.com/error';

 public function __construct(Exception $e)

 {

 $this->_exception = $e;

 }

'http://www.example.com/error';

266 The PHP Anthology

public static function handle(Exception $e)

 {

 $self = new self($e);

 $self->log();

 while (@ob_end_clean());

 header('HTTP/1.1 307 Temporary Redirect');

 header("Cache-Control: no-cache, must-revalidate");

 header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");

 header('Location: ' . $self->redirect);

 exit(1);

 }

As its name implies, ExceptionHandler::handle will be used as an exception

handler. It instantiates itself, logs the exception, clears the output buffer, and then

redirects to the page indicated in the $redirect property. Several other HTTP

headers are specified as well.

We output a HTTP status code of 307, which indicates to the browser that the redirect

is only temporary. Additionally, Cache-Control and Expires are set in such a way

that any subsequent visit to the page will force the browser to refresh the con­

tent—and with any luck, display the intended content instead of an error.

Logging is implemented using PHP’s error_log, to which we specify a file argument:

 public function log()

 {

 error_log(

 $this->_exception->getTraceAsString(),

3,

$this->_logFile

);

 }

}

The actual message that’s logged is the exception’s backtrace. If you’re testing this

code, be sure to put the appropriate path and filename in the $_logFile property.

And the final step, of course, tells PHP that our class’s static method will be handling

the exceptions:

set_exception_handler(array('ExceptionRedirectHandler', 'handle'));

Error Handling 267

Discussion
When it’s combined with the solution shown in “How can I handle PHP errors as

if they were exceptions?”, the strategy I’ve outlined here will allow you to handle

PHP errors and exceptions gracefully, and to prevent issues associated with re-

propagating the conditions when users accidentally—or deliberately—refresh the

page. By redirecting users, you can ensure that if they refresh the page, they’ll remain

on the same error page. You can even take such steps as setting a session cookie to

prevent them from going back to the offending page, if you wish.

If you use this method, I recommend that you redirect your application’s users to

a page that loads a minimal amount of code—perhaps even a static page—to avoid

the situation in which environmental errors, such as database connectivity or tem­

plate directory permissions, prevent error display. Regardless of what else the error

page displays, it should provide, as a minimum, the basic navigational elements

found on the rest of your site.

Summary
In this chapter, we took a look at the variety of options PHP offers for error handling.

PHP’s error level constants were discussed, as was the behavior you can expect

each level to emit. We then turned to look at the built-in mechanisms that PHP offers

for handling error conditions automatically: the mechanisms we reviewed included

displaying and logging errors. Since PHP offers standard mechanisms for error

handling, you may want to be able to trigger errors of your own—a topic that was

discussed in detail. While error handling can be automated through the PHP inter­

preter itself, sometimes it’s useful to be able to handle errors yourself, so that you

can undertake such tasks as logging, recovery, and more; to this end, we discussed

how to write and use custom error handlers.

PHP 5 introduced a new error mechanism in the form of exceptions. All PHP 5 ex­

ceptions derive from a single internal class called Exception. We discussed how

exceptions bubble up through the code until they’re caught, and investigated the

use of try {…} catch (Exception $e) {…} blocks for this purpose. Additionally,

we created an exception handler to handle uncaught exceptions.

268 The PHP Anthology

Since exceptions are so easy to deal with, and since they allow code flow to continue

from the point at which they’re caught, you may want to throw your PHP errors as

exceptions, as I explained in this chapter.

Finally, we saw how easy it is, after an error or exception is handled, to display

graceful error pages that avoid presenting sensitive system information to your

users. An alternative—redirecting the users to an error page—was also discussed.

This chapter has provided a solid grounding to help you develop a professional

approach to managing errors in your PHP scripts. But don’t stop there! The PHP

manual has even more information to help you as you improve your PHP practices.

Chapter10
Access Control
One of the realities of building your site with PHP, as opposed to plain old HTML,

is that you build dynamic web pages rather than static web pages. Making the choice

to develop your site with PHP will allow you to achieve results that aren’t possible

with plain HTML. But, as the saying goes, with great power comes great responsib­

ility. How can you ensure that only you, or those to whom you give permission, are

able to view and interact with your web site, while it remains safe from the Internet’s

evil hordes as they run riot, spy on private information, or delete data?

In this chapter, we’ll look at the mechanisms you can employ with PHP to build

authentication systems and control access to your site. I can’t stress enough the

importance of a little healthy paranoia in building web-based applications. The

SitePoint Forums frequently receive visits from unhappy web site developers who

have had their fingers burned when it came to the security of their sites.

Data Transmission Over the Web is Insecure

Before we go any further into discussing any specific site security topics, you

must be aware that any system you build that involves the transfer of data from

a web page over the Internet will send that information in clear text by default

270 The PHP Anthology

(unless you’re using HTTPS, which encrypts the data). This potentially enables

someone to “listen in” on the network between the client’s web browser and the

web server; with the help of a tool known as a packet sniffer, they’ll be able to

read the username and password sent via your form, for example. The chance of

this risk eventuating is fairly small, as typically only trusted organizations like

ISPs have the access required to intercept packets; however, it is a risk, and it’s

one you should take seriously.

About the Examples in this Chapter

Before we dive in, I need to let you know about the example solutions discussed

in this chapter.

The example classes in some of these solutions require the use of a configuration

file: access_control.ini. This file is used to store various database table names and

column names used in the examples. Since not everyone names their database

tables in the same way, configuration values like these are often intended to be

customizable. The access_control.ini file is read into an array using the PHP

parse_ini_file function (you can read more about this technique in “How do

I store configuration information in a file?” in Chapter 6). The configuration file

looks like this:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']

[login_vars]

login=login

password=password

⋮ more settings follow…

When an example uses configuration information from this file, that will be indic­

ated within the section.

Similarly, the solutions below assume a certain database configuration. The SQL

details relevant to each solution are indicated in the text where appropriate.

If you’ve downloaded the code archive for this book from the SitePoint web site,

you’ll find a file called access_control_dump.sql in the folder for this chapter. You

can use this file to create the database and insert some sample data. Using this

Access Control 271

file is identical to using the world database in Chapter 2. The instructions found

at http://dev.mysql.com/doc/world-setup/en/world-setup.html can be used to

create the access_control database too, like so:

command prompt> mysql -u root -p
mysql> CREATE DATABASE access_control;
mysql> USE access_control;
mysql> SOURCE access_control_dump.sql;

Of course, you’ll have to add the missing path and password information as ap­

propriate for your system.

Finally, all these solutions use the PDO class to make the connection to the data­

base. For more information about using the PDO class, see Chapter 2. All the

solutions involving web page forms use the PEAR HTML_QuickForm package.

You can read more about using this package in “How do I build HTML forms with

PHP?” in Chapter 5.

How do I use HTTP authentication?

Hypertext Transfer Protocol, or HTTP—the transfer protocol used to send web

pages over the Internet to your web browser—defines its own authentication

mechanisms. These mechanisms, basic and digest authentication, are explained in

RFC 2617.1 If you run PHP on an Apache server, you can take advantage of these

mechanisms—digest is available from PHP version 5.1.0—using PHP’s header

function and a couple of predefined variables. A general discussion of these features

is provided in the Features section of The PHP Manual.2

HTTP Authentication and Apache

If you wish to use HTTP authentication on your web site, you can set it up using

only the Apache configuration settings—PHP is not required. For more information

on how to do this, see the Apache documentation for your server version.3

1 http://www.ietf.org/rfc/rfc2617
2 http://www.php.net/manual/en/features.http-auth.php
3 For example, the documentation for version 2.2 can be found at

http://httpd.apache.org/docs/2.2/howto/auth.html.

http://www.ietf.org/rfc/rfc2617
http://www.php.net/manual/en/features.http-auth.php
http://www.ietf.org/rfc/rfc2617
http://www.php.net/manual/en/features.http-auth.php
http://httpd.apache.org/docs/2.2/howto/auth.html

272 The PHP Anthology

Solution
Let’s step through a simple example page that uses the $_SERVER['PHP_AUTH_USER']

and $_SERVER['PHP_AUTH_PW'] automatic global variables and the WWW-Authenticate

HTTP header to protect itself—if the current user is not in a list of allowed users,

access is denied.

First, we need a list of valid usernames and passwords. For the purpose of this

simple demonstration, we’ll just use an array, but this would not be advisable for

a real-world situation where you’d likely use a database (which we’ll see in “How

do I build a registration system?”). Here’s the $users array:

httpAuth.php (excerpt)

<?php
$users = array(
 'jackbenimble' => 'sekret',
 'littlepig' => 'chinny'
);

Next, we test for the presence of the automatic global variable

$_SERVER['PHP_AUTH_USER']. If the variable is not set, a username hasn’t been

submitted and we need to make an appropriate response—a HTTP/1.1 401 Unau­

thorized response code, as well as a second header to indicate that we require basic

authentication using the WWW-Authenticate header:

httpAuth.php (excerpt)

if (!isset($_SERVER['PHP_AUTH_USER']))
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('This page requires authentication');
}

If a username has been submitted, we need to check that the username exists in our

list of valid usernames, then ensure that the submitted password matches the one

associated with the username in our list:

Access Control 273

httpAuth.php (excerpt)

if (!isset($users[$_SERVER['PHP_AUTH_USER']]))
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('Unauthorized!');
}

if ($users[$_SERVER['PHP_AUTH_USER']] != $_SERVER['PHP_AUTH_PW'])
{
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="PHP Secured"');
 exit('Unauthorized!');
}

Finally, if all our checks pass muster, we can proceed to display the web page. In

this example, we simply display the credentials we’ve received from the authentic­

ation form. Of course, this output is for demonstration purposes only—you’d never

do this in a real situation:

httpAuth.php (excerpt)

echo 'You\'re in ! Your credentials were:
';
echo 'Username: ' . $_SERVER['PHP_AUTH_USER'] . '
';
echo 'Password: ' . $_SERVER['PHP_AUTH_PW'];
?>

Discussion
To understand how HTTP authentication works, you must first understand what

actually happens when your browser sends a web page request to a web server.

HTTP is the protocol for communication between a browser and a web server. When

your browser sends a request to a web server, it uses an HTTP request to tell the

server which page it wants. The server then replies with an HTTP response that

describes the type and characteristics of the document being sent, then delivers the

document itself.

For example, a client might send the following request to a server:

274 The PHP Anthology

GET /subcat/98 HTTP/1.1

Host: www.sitepoint.com

Here’s what it might receive from the server in return:

HTTP/1.1 200 OK Date: Sat, 24 Mar 2007 08:12:44 GMT

Server: Apache/2.0.46 (Red Hat)

X-Powered-By: PHP/4.3.11

Transfer-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <title>PHP & MySQL Tutorials</title>

⋮ and so on…

If you’d like to see this process in action, the next example will give you the chance,

as we open a connection to www.sitepoint.com and request /subcat/98. 4 The ex­

ample script will read the response from the server and output the complete HTTP

response for you:

seeHeaders.php

<?php
// Connect to sitepoint.com
$fp = fsockopen('www.sitepoint.com', '80');

// Send the request
fputs($fp,

 "GET /subcat/98 HTTP/1.1\r\nHost: www.sitepoint.com\r\n\r\n");

// Fetch the response
$response = '';
while (!feof($fp))
{
 $response .= fgets($fp, 128);
}

4 We use sockets in the next example to illustrate the passing of the HTTP headers. You can use any of

a multitude of alternative methods to get the contents of the page itself, from file_get_contents

to fopen, fread, and fclose. For more information, see Chapter 6.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Access Control 275

fclose($fp);

// Convert HTML to entities

$response = htmlspecialchars($response);

// Display the response

echo nl2br($response);

?>

Authentication headers are additional headers sent by a server to instruct the browser

that it must send a valid username and password in order to view the page.

In response to a normal request for a page secured with basic HTTP authentication,

a server might respond with headers like these:

HTTP/1.1 401 Authorization Required

Date: Tue, 25 Feb 2003 15:41:54 GMT

Server: Apache/1.3.27 (Unix) PHP/4.3.1

X-Powered-By: PHP/4.3.1

WWW-Authenticate: Basic realm="PHP Secured"

Connection: close

Content-Type: text/html

No further information is sent, but notice the status code HTTP/1.1 401 Authorization

Required and the WWW-Authenticate header. Together, these HTTP request elements

indicate that the page is protected by HTTP authentication, and isn’t available to

an unauthorized user. A visitor’s browser can convey this information in a variety

of ways, but usually the user will see a small popup like that shown in Figure 10.1.

Figure 10.1. The Authentication Required dialog

276 The PHP Anthology

The dialog prompts site visitors to enter their usernames and passwords. After vis­

itors using Internet Explorer have entered these login details incorrectly three times,

the browser displays the “Unauthorized” message instead of displaying the prompt

again. In other browsers, such as Opera, users may be able to continue to try to log

in indefinitely.

Notice that the realm value specified in the WWW-Authenticate header is displayed

in the dialog. A realm is a security space or zone within which a particular set of

login details are valid. Upon successful authentication, the browser will remember

the correct username and password combination, and automatically resend any

future request to that realm. When the user navigates to another realm, however,

the browser displays a fresh prompt once again.

In any case, the user must provide a username and password to access the page.

The browser sends those credentials with a second page request like this:

GET /admin/ HTTP/1.1

Host: www.sitepoint.com

Authorization: Basic jTSAbT766yN0hGjUi

The Authorization header contains the username and password encoded with

base64 encoding which, it’s worth noting, isn’t secure—it’s unreadable for humans,

but it’s a trivial task to convert base64-encoded values back to the original text.

The server will check to ensure that the credentials are valid. If they’re not, the

server will send the HTTP/1.1 401 Authorization Required response again, as shown

previously. If the credentials are valid, the server will send the requested page as

normal.

A package you should consider if you expect to use the HTTP Authentication a lot

is the HTTP_Auth package available from PEAR.5 HTTP_Auth provides an easy-to­

use API so that you don’t have to worry about handling the header calls yourself.

Sending Headers

In PHP, the moment your script outputs anything that’s meant for display, the

web server finishes sending the headers and begins to send the content itself. You

5 You can view the package’s information at http://pear.php.net/Auth_HTTP/.

http://pear.php.net/Auth_HTTP/

Access Control 277

cannot send further HTTP headers once the output of the body of the HTTP mes­

sage—the web page itself—has commenced. If you do use the header or

session_start functions after the rendering of the body has begun, you’ll see

an error message like this:

Warning: Cannot add header information - headers already
sent by (output started at…

Remember, any text or whitespace outside the <?php … ?> tags causes output

to be sent to the browser. If you have whitespace before a <?php tag or after a ?>

tag, you won’t be able to send headers to the browser beyond that point.

How do I use sessions?

Sessions are a mechanism that allows PHP to preserve state between executions.

In simple terms, sessions allow you to store variables from one page—the state of

that page—and use them on another. For example, if a visitor submits his first name,

Bob, via a form on your site, sessions will allow your site to remember his name,

and allow you to place personal messages such as “Where would you like to go

today, Bob?” on all the other pages of your site for the duration of his visit. Don’t

be surprised if Bob leaves rather quickly, though!

The basic mechanism of sessions works like this: first, PHP generates a unique, 32­

character string to identify the session. PHP then passes the value to the browser;

simultaneously, it creates a file on the server and includes the session ID in the fi­

lename. There are two methods by which PHP can keep track of the session ID: it

can add the ID to the query string of all relative links on the page, or send the ID as

a cookie. Within the file that’s stored on the server, PHP saves the names and values

of the variables it’s been told to store for the session.

When the browser makes a request for another page, it tells PHP which session it

was assigned via the URL query string, or by returning the cookie. PHP then looks

up the file it created when the session was started, and so has access to the data

stored within the session.

Once the session has been established, it’ll continue until it’s specifically destroyed

by PHP (in response to a user clicking Log out, for example), or the session has been

inactive for longer than a given period of time (as specified in your php.ini file under

278 The PHP Anthology

session.gc_maxlifetime). At this point it becomes flagged for garbage collection

and will be deleted the next time PHP checks for outdated sessions.

Solution
Here’s a very simple demonstration of storing and retrieving a session variable:

simpleSession.php

<?php
session_start();
// If session variable doesn't exist, register it
if (!isset($_SESSION['test']))
{
 $_SESSION['test'] = 'Hello World!';
 echo '$_SESSION[\'test\'] is registered.
' .

 'Please refresh page';
}
else
{
 // It's registered so display it
 echo '$_SESSION[\'test\'] = ' . $_SESSION['test'];
}
?>

The script registers the session variable test the first time the page is displayed.

The next time (and all times thereafter, until the session times out through inactivity),

the script will display the value of the test session variable.

Discussion
In general, sessions are easy to use and powerful—they’re an essential tool for

building online applications. The first order of business in a script that uses sessions

is to call session_start to load any existing session variables.

You should always access session variables via the predefined global variable

$_SESSION, not the functions session_register and session_unregister.

session_register and session_unregister fail to work correctly when PHP’s

register_globals setting has been disabled, which should always be the case.

In the following HTTP response headers, a server passes a session cookie to a browser

as a result of the session_start function in a PHP script:

Access Control 279

HTTP/1.1 200 OK

Date: Wed, 26 Feb 2003 02:23:08 GMT

Server: Apache/1.3.27 (Unix) PHP/4.3.1

X-Powered-By: PHP/4.3.1

Set-Cookie: PHPSESSID=ce558537fb4aefe349bb8d48c5dcc6d3; path=/

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

⋮ and so on…

Storing Sessions Elsewhere

Notice that I’ve said sessions are stored, by default, on the server as files. It’s also

possible to store sessions elsewhere, such as in a database or even shared memory.

We’ll discuss creating a custom session handler for saving the session variables

to a database in “How do I store sessions in a database?”. Storing sessions in

database can be useful for displaying “who’s online” information, and for load-

balancing multiple web servers using a single-session repository—a mechanism

that allows visitors to (unknowingly) swap servers while their session is main­

tained.

Sessions Aren’t Perfect

While sessions are a wonderful tool, they can easily cause headaches if you don’t

understand their limitations. Take care when you handle data that’s relevant to

the session state. For example, when users open multiple windows for a site, a

script executed in one window may overwrite data saved from another, rolling

back a user to an earlier state in the site. Also be aware that resource handles and

references are not saved with an object in the session—you need to release and

recreate them in the __sleep and __wakeup methods of your classes.6 Also, try

to keep the amount of data in the session variables to a minimum, as pulling large

chunks of data that aren’t used for every page may slow the pages down.

6 __sleep and __wakeup are examples of magic methods, and are explained at

http://www.php.net/manual/en/language.oop5.magic.php.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
http://www.php.net/manual/en/language.oop5.magic.php

280 The PHP Anthology

Session Security
Sessions are very useful, but there are some important security considerations you

should take into account when you use sessions in your applications.

By default, all a browser has to do to gain control of a session is pass a valid session

ID to PHP. In an ideal world, you could store the IP address that registered the ses­

sion, and double-check it against every new request that used the associated session

ID. Unfortunately, some ISPs, such as AOL, assign their users a new IP on almost

every page request, so this type of security mechanism would soon start to throw

valid users out of the system. As such, it’s important to design your application in

a manner that assumes that one of your users will eventually have his or her session

“hijacked.”

The user’s account is exposed until the session expires, so your aim should be to

prevent the hijackers from causing serious damage while the session is active. This

means, for example, that when a logged-in user goes to change his or her account

password, the old password must be provided—obviously, hijackers won’t know

that. Also, be careful with the way you handle the users’ personal information (such

as credit card details). If you give users the opportunity to make significant changes

to their account details, such as change a shipping addresses, be sure to send a

summary notification of that change to them via email to alert users whose sessions

may have been hijacked.

Keep the session ID completely hidden, using SSL (secure sockets layer) to encrypt

the conversation. What’s more, you should only use the cookie method of passing

the session ID. If you pass it in the URL, you might give away the session ID upon

referring the visitor to another site, thanks to the referer header in the HTTP request.

The files PHP creates for the purpose of storing session information are, by default,

stored in the temporary directory of the operating system under which PHP is run­

ning. On Unix-based systems such as Linux, this directory will be /tmp. And, if

you’re on a shared server, the session files from all the hosted sites will be stored

together, which means that other users on the server can read the files’ contents.

They might not be able to identify which virtual host and PHP script are the owners

of the session but, depending on the information you place there, they might be

able to guess.

Access Control 281

This possibility is a serious cause for concern on shared PHP systems; the most ef­

fective solution is to store your sessions in a database, rather than in the server’s

temporary directory. We’ll look more closely at custom session handlers later in

this chapter, but a partial solution is to set the session.save_path option in your

php.ini to a directory that’s not available to the public. You’ll need to contact your

hosting company in order to have the correct permissions set for that directory, so

that the nobody or wwwuser user with which PHP runs has access to read, write, and

delete files in that directory.

One final warning: with the help of a common web security exploit, cross-site

scripting, or XSS, it’s possible for an attacker to place JavaScript on your site that

will cause visitors to give away their session IDs to a remote web site, thereby allow­

ing their sessions to be hijacked. If you allow your visitors to post any HTML to

your site, make sure you check and validate it very carefully. Remember the golden

rules: never rely on client-side technologies (such as JavaScript) to handle security,

and never trust any content submitted from a browser.

How do I create a session class?
You can make a simple wrapper class to handle your sessions. Doing so ensures

that if you ever want to switch to an alternative session-handling mechanism, such

as one you’ve built yourself, you simply need to modify the class rather than rewrit­

ing a lot of code. We can provide an interface to the $_SESSION variable with a few

simple methods.

Solution
Our custom Session class begins with the constructor method that simply calls

session_start:

Session.class.php (excerpt)

class Session
{
 public function __construct()
 {
 session_start();

 }

282 The PHP Anthology

We can then add the set and get methods to set a session variable and get a session

variable, respectively:

Session.class.php (excerpt)

 public function set($name, $value)
 {
 $_SESSION[$name] = $value;

 }

 public function get($name)
 {
 if (isset($_SESSION[$name]))
 {
 return $_SESSION[$name];

 }
 else
 {
 return false;

 }
 }

Finally, we add a del method to delete a session variable, and the destroy method

to remove all session variables and reset the session:

Session.class.php (excerpt)

 public function del($name)
 {
 unset($_SESSION[$name]);

 }

 function destroy()
 {

$_SESSION = array();
 session_destroy();
 session_regenerate_id();

 }
}

Access Control 283

How do I create a class to control
access to a section of the site?
Now we reach the business end of access control—let’s look at a class that controls

who’s permitted access to those private sections of your site. This class uses a

database to hold the access credentials and works with an HTML login form.

Solution
The Auth class wraps login, session storage, and logout functionality in a simple,

easy-to-use PHP class.

The Auth Class
The Auth class uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']
[login_vars]
login=login
password=password
hash=login_hash

;user login table details
[users_table]
table=user
col_login=login
col_password=password

The first two settings reflect the names of the username and password fields that

will appear on the login form we’ll build in a moment. They’ll match the names of

the $_POST variables submitted by the form: $_POST['password'], for example. The

next three settings provide details of the table in which user information is

stored—the name of the table, and the names of the username and password columns

in the table.

284 The PHP Anthology

The database table user will be used in all the solutions in this section. Here’s the

SQL for the table:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

The Auth class body begins with the class properties:

Auth.class.php (excerpt)

class Auth
{
 protected $db;
 protected $cfg;
 protected $session;
 protected $redirect;
 protected $hashKey;

The $db property will store an instance of our DB connection class, while the $cfg

property will store the configuration settings. The $session property will store an

instance of the Session class we created in “How do I create a session class?”. The

$redirect property will store a URL to which visitors will be redirected if they

aren’t logged in, or if their usernames or passwords are incorrect; this might be a

login form, for example. The $hashKey property is a seed we provide to double-

check the usernames and passwords of users who are already logged in. I’ll explain

this in more detail later.

Now we can create the constructor method of our Auth class:

Access Control 285

Auth.class.php (excerpt)

 function __construct(PDO $db, $redirect, $hashKey)
 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini', TRUE);
 $this->redirect = $redirect;
 $this->hashKey = $hashKey;
 $this->session = new Session();
 $this->login();

 }

The constructor requires a $db parameter that accepts an instance of the PDO class

(although you can alter it to a custom class—just be sure to adjust the database in­

teraction areas as required for your class). The $redirect parameter is a URL string

and the $hashKey parameter is a string.

In the constructor, we set the Auth instance variables, load the configuration file,

and create a new instance of the Session class, which we store in the $session

property; finally, we call the login method to validate the user against the database.

The login method checks the user’s login credentials:

Auth.class.php (excerpt)

 private function login()
 {
 $var_login = $this->cfg['login_vars']['login'];
 $var_pass = $this->cfg['login_vars']['password'];
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];

 if ($this->session->get('login_hash'))
 {
 $this->confirmAuth();
 return;

 }
 if (!isset($_POST[$var_login]) ||

 !isset($_POST[$var_pass]))
 {
 $this->redirect();

 }

286 The PHP Anthology

The configuration settings are assigned to local variables for the sake of readability.

The login method first checks to see whether values for the username and password

are currently stored in the session; if they are, it calls the confirmAuth method. If

username and password values are not stored in the session, the method checks to

see whether they’re available in the $_POST array; if they’re not, the method calls

the redirect method.

Assuming the script has found the $_POST values, it calls the md5 function to get a

digest for the password:

Auth.class.php (excerpt)

 $password = md5($_POST[$var_pass]);

We use the MD5 algorithm to store the password for security reasons, either in the

session or on the database—we don’t want to leave plain-text passwords lying

around.

The MD5 Algorithm

MD5 is a simple message digest algorithm (often referred to as one-way encryption)

that translates any string (such as a password) into a short series of ASCII characters

called an MD5 digest. A particular string will always produce the same digest,

but it’s practically impossible to guess a string that will produce a given digest.

By storing only the MD5 digest of your users’ passwords in the database, you can

verify their login credentials without actually storing the passwords on your

server! The built-in PHP function md5 lets you calculate the MD5 digest of any

string in PHP.

The script then performs a query against the database to see if it can find a record

to match the submitted username and password:

Auth.class.php (excerpt)

 try
 {
 $sql = "SELECT COUNT(*) AS num_users " .

 "FROM " . $user_table . " WHERE " .
$user_login . "=:login AND " .
 $user_pass . "=:pass";

Access Control 287

$stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $_POST[$var_login]);

 $stmt->bindParam(':pass', $password);

 $stmt->execute();

 $row = $stmt->fetch(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().

 ' Error: '.$e->getMessage()

);

 $this->redirect();

 }

 if ($row['num_users'] != 1)

 {

$this->redirect();

 }

 else

 {

 $this->storeAuth($_POST[$var_login], $password);

 }

 }

We use the PDO methods prepare and execute to perform the database query,

binding our $_POST[USER_LOGIN_VAR] and $password variables to the SQL paramet­

ers :login and :pass respectively. We can’t authenticate the user reliably if a

PDOException is thrown, so in that case, we log the error and call the redirect

method.

After we fetch the result of the query, we test that there is exactly one matching re­

cord. If not, we call the redirect method. Finally, assuming it has reached this

point, the script registers the username and password as session variables by way

of the storeAuth method (explained below), which makes them available for future

page requests.

288 The PHP Anthology

login and Magic Quotes

One point to note about the loginmethod is that it assumes magic_quotes_gpc

is switched off. In the scripts that utilize this class, we’ll need to nullify the effect

of magic quotes. You can read more about this task in the section called “Checking

for Magic Quotes” in Chapter 1.

The storeAuth method is used to add the username and password digest to the

session, along with a special hash value:

Auth.class.php (excerpt)

 public function storeAuth($login, $password)
 {
 $this->session->set($this->cfg['login_vars']['login'], $login);
 $this->session->set($this->cfg['login_vars']['password'],

 $password);
 $hashKey = md5($this->hashKey . $login . $password);
 $this->session->set($this->cfg['login_vars']['hash'], $hashKey);

 }

This special hash value is comprised of a seed value—the $hashKey parameter re­

quired by the constructor—as well as the username and password values. As we’ll

see in the confirmAuth method below, instead of laboriously checking the database

to verify the login credentials whenever a user requests a page, the class simply

checks that the current username and password produce a hash value that’s the

same as that stored in the session. This approach prevents potential attackers from

attempting to change the stored username after login if your PHP configuration has

register_globals enabled.

The confirmAuth method is used to double-check credentials stored in the session

once a user is logged in:

Auth.class.php (excerpt)

 private function confirmAuth()
 {
 $login = $this->session->get(

 $this->cfg['login_vars']['login']);
 $password = $this->session->get(

Access Control 289

$this->cfg['login_vars']['password']);

 $hashKey = $this->session->get(

 $this->cfg['login_vars']['hash']);

 if (md5($this->hashKey . $login . $password) != $hashKey)

 {

 $this->logout(true);

 }

 }

Notice how we reproduce the hash built by the storeAuth method—if this fails to

match the original hash value, the user is immediately logged out.

The logout method is used to remove the login credentials from the session, destroy

the session, and return the user to the page URL stored in the $redirect property:

Auth.class.php (excerpt)

 public function logout($from = false)
 {
 $this->session->del($this->cfg['login_vars']['login']);
 $this->session->del($this->cfg['login_vars']['password']);
 $this->session->del($this->cfg['login_vars']['hash']);
 $this->session->destroy();
$this->redirect($from);

}

For security reasons, I choose to destroy the session here and start a completely

new one. However, you may want to consider whether or not you wish to destroy

the session. When the session is destroyed, not only are the Auth credentials re­

moved, but all session data is as well, and a new session ID is created. If you have

session data that you don’t want to lose upon logout, you may wish to remove or

comment out the session->destroy method call.

The final piece of our Auth class is the redirect method:

Auth.class.php (excerpt)

 private function redirect($from = true)
 {
 if ($from)
 {

290 The PHP Anthology

header('Location: ' . $this->redirect . '?from=' .

 $_SERVER['REQUEST_URI']);

 }

 else

 {

 header('Location: ' . $this->redirect);

 }

 exit();

 }

}

The redirect method is used to return the visitor to the login form (or whichever

URL we specified upon instantiating the Auth class). By default, this method will

send the original page URL, requested in the from variable, in the query string to

the URL to which the browser is redirected—most likely the login form. This allows

the login form to read the query string and return the users to the location from

which they came; it saves the users from having to navigate back to that point, which

feature might be useful if, for example, a session times out. Note that I specified in

the logout method that redirect should not provide the from variable. If it did,

the script might return users to the URL they used to log out, trapping them in a

loop from which they can’t log in.

One important point to note here is that the redirection URL argument passed to

the constructor function should be absolute, not relative. According to the HTTP

specification, an absolute URL must be provided when a Location header is used.

Later on, when we put this class into action, I’ll break that rule and use a relative

URL, because I can’t guess the script’s location on your server. This trick works

because most recent browsers understand the relative location anyway (even though

they shouldn’t, as this doesn’t honour the specification). On a live site, though,

make sure you provide a full, absolute URL.

Finally, and most importantly, we use the exit function to terminate all further

processing. Calling the exit function prevents the calling script from sending the

protected content that follows the authentication code. Although we’ve sent a

header that should redirect the browser, we can’t rely on the browser to do what

it’s told. If the request were sent by, for instance, a Perl script pretending to be a

web browser, whoever was using the script would, no doubt, have total control over

Access Control 291

its behavior and could quite easily ignore the instruction to redirect elsewhere.

Hence, the exit statement is crucial.

The Restricted Area
Now that you’ve seen the internals of the Auth class, let’s take a look at some code

that makes use of it.

Here’s an example of a page we want to protect. First, we list the files we require:

access.php (excerpt)

<?php
require_once 'strip_quotes.php';
require_once 'Session.class.php';
require_once 'Auth.class.php';
require_once 'dbcred.php';

strip_quotes.php is a general-purpose script that checks for magic_quotes_gpc =

On and strips them from incoming requests, if necessary. classes/Session.class.php is

the Session class required by our Auth class and classes/Auth.class.php is the Auth

class itself. dbcred.php contains our database login credentials for use with PDO. The

file contains credentials relevant to our testing environment, so you’ll need to change

them should you wish to try this on your own web server.

Next, we instantiate the PDO object and authenticate the user. This code needs to

go at the top of any page we wish to protect from unauthorized access:

access.php (excerpt)

try
{
 $dbh = new PDO($dsn, $user, $password);
 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
}
catch (PDOException $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);

292 The PHP Anthology

header('Location: error.php?err=Database Error&msg=' .

 $e->getMessage());

 exit();

}

$auth = new Auth($dbh, 'login.php', 'secret');

if (isset($_GET['action']) && $_GET['action'] == 'logout')

{

 $auth->logout();

}

?>

First, we attempt to create a PDO instance to connect to our database. If an exception

is thrown and we can’t connect, we don’t want to reveal our protected content. In­

stead, we simply log the error, and redirect the user to an error page that displays

some helpful information. Once we have a PDO instance, we can create a new Auth

instance to check the current user’s login credentials. We pass our PDO instance, the

URL of our login form—login.php, and the seed for the login details hashing func­

tionality to the constructor function. Following that, we use an if statement to

check for a logout request. If a $GET['action'] variable is present and it equals the

value logout, we know the logout link has been clicked and we should log the user

out by way of the Auth->logout method. All we have to do to make a logout link

is append ?action=logout to any URL on our site.

Finally, here’s the HTML of our restricted page, complete with a logout link:

access.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>

⋮ restricted content…
 <p><a href="<?php echo $_SERVER['PHP_SELF']; ?>?action=logout">

 Logout</p>
 </body>
</html>

Access Control 293

The only way the user can view this page is to provide a correct username and

password. The Auth class performs the security check as soon as it’s instantiated.

If valid username and password values have been submitted via a form, they’re

stored by the Auth class in a session variable, which allows the visitor to continue

using the sites various sections without having to log in again.

Creating the login form itself isn’t complex, but it’s made even easier with the

PEAR::HTML_QuickForm package. HTML_Quickform allows us to add fields to our

form and define the validation requirements easily. I won’t launch into an explana­

tion of how this works, but if you’d like to learn more about HTML_Quickform, you

can read the documentation online.7

PEAR PHP 5 E_STRICT Compliance

It should be noted that most PEAR packages are not PHP 5 E_STRICT compliant.

You can expect errors to be generated, but don’t forget that you can turn them off

with the error_reporting function. Submit a bug report to the PEAR bug system

for any errors you do come across to help stomp them out in future versions.8

Let’s begin the login form: we’ll start by setting the error reporting level and requiring

the PEAR::HTML_QuickForm package:

login.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'HTML/QuickForm.php';

We set the error reporting level to E_ALL with the error_reporting function since

we’re using PEAR packages, which will cause E_Strict errors under PHP 5.

Next we check for the presence of a $_GET['from'] variable:

7 http://pear.php.net/manual/en/package.html.html-quickform.php
8 http://pear.php.net/bugs/

http://pear.php.net/manual/en/package.html.html-quickform.php
http://pear.php.net/bugs/
http://pear.php.net/manual/en/package.html.html-quickform.php
http://pear.php.net/bugs/

294 The PHP Anthology

login.php (excerpt)

if (isset($_GET['from']))
{
 $target = $_GET['from'];
}
else
{
 $target = 'access.php';
}
?>

The $_GET['from'] variable will have been set by our Auth class if it’s required.

This variable will represent the page to which the user was trying to gain access,

and from which they’ve been redirected to this login form. It’s used as the form’s

action attribute to send the user back to that page once he or she is logged in.

Otherwise, for the purposes of this demonstration, the form defaults to access.php,

our demonstration-restricted content page.

The next step is to construct our form with the PEAR::HTML_QuickForm class:

login.php (excerpt)

$form = new HTML_QuickForm('loginForm', 'POST', $target);

// Add a header to the form
$form->addElement('header', 'MyHeader', 'Please Login');

// Add a field for the login name
$form->addElement('text', 'login', 'Username');
$form->addRule('login', 'Enter your login', 'required', false,

 'client');

// Add a field for the password
$form->addElement('password', 'password', 'Password');
$form->addRule('password', 'Enter your password', 'required',

 false, 'client');

// Add a submit button
$form->addElement('submit', 'submit', ' Login ');

?>

Access Control 295

Finally, we have the HTML for the login form page:

login.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
⋮ HTML head contents…

 </head>
 <body>
 <h1>Please log in</h1>
 <?php echo $form->toHTML(); ?>

 </body>
</html>

The finished login form can be see in Figure 10.2.

Figure 10.2. The finished login form

Discussion
Access control consists of two main parts, or stages:

Authentication

Authentication is the process by which you determine that users are who they

say they are. Our Auth class handles this determination for us in the login

method, when we confirm the username and password against the database.

296 The PHP Anthology

We make the assumption that only the correct user will have these two pieces

of information.

Authorization

Authorization is the process by which you determine which permissions must

be given to an authenticated user. The Auth class is very limited in this respect,

as no levels of access are defined—there’s only global access or no access to the

site. Of course, you may want to grant a level of access that lies somewhere

between these extremes, in which case you should see “How to do I build a

permissions system?”

You may wonder why we handle the users in this class using a database, rather

then something similar to the HTTP authentication explained earlier. There are a

couple of reasons, actually. First, as a site grows from only a few members to hun­

dreds, thousands, or millions (we hope) of members, HTTP authentication becomes

harder to handle and slower. Yes, we can add the member details to the user file,

but as this, in turn, grows larger, it takes longer for the server to read and find a

given user. Second, what if we want to store more information about the user—as,

of course, most of us do—than just the username and password? Where would we

keep that information? Well, we’d keep it in the database, of course. Doesn’t that

mean we’re storing user information in two places? Yes, that’s right and, as you

know, that’s something we’d want to avoid; it just makes the job harder for us if we

ever have to go back and change things later.

Room for Improvement
The basic mechanics of the Auth class are solid, but it lacks the more sophisticated

elements that will be necessary to halt the efforts of any serious intruders.

It’s a good idea to implement a mechanism that can keep an eye on the number of

failed login attempts made from a single client. If your application always responds

immediately to any login attempt, it will be possible for a potential intruder to make

large numbers of requests—with different username and password combinations—in

a very short time, possibly using automated software to do so. The solution is to

build a mechanism that counts the number of failed attempts using a session variable.

Every time the number of failures is divisible by three (such as when three incorrect

passwords are entered), use PHP’s sleep function to delay the next attempt by, for

example, ten seconds. You may also decide that, after a certain threshold value (15

failed attempts, for example), you block all further access from that IP address for

Access Control 297

a given period, such as one hour. Of course, changing an IP address is easy for a

determined intruder, but you’ll stall would-be intruders, at least, and perhaps make

their lives difficult enough to persuade them to pursue their nefarious activities

elsewhere.

How do I build a registration system?
Having an authentication system is fine, but how will you fill it with users in the

first place? If only yourself and a few friends will access your site, you can probably

create accounts for all users through your database administration interface. However,

for a site that’s intended to become a flourishing community to which anyone and

everyone is free to sign up, you’ll likely need to automate this process. You’ll want

to allow visitors to register themselves, but you’ll probably conduct some level of

“screening” so that you have at least a little information about the people who have

signed up, such as a way to confirm their identities. A common and effective

screening approach is to have the registrants confirm their email address.

The purpose of the screening mechanism is to give you the ability to make it difficult

for those users who have “broken the rules” in some way and lost their account

privileges to create new accounts. You have their email addresses, or at least one

of their email addresses—if they try to register again with that address, you can

deny them access. Be warned, though: a new type of Internet service is becoming

popular. Pioneered by Mailinator, these services provide users with temporary email

addresses that they can use for registrations. This, of course, means email is not a

fool-proof screening mechanism, but it is still a worthwhile addition to a registration

system.

Solution
Here, we’ll put together a registration system that validates new registrants using

their email addresses, and in turn, sends them an email that asks them to confirm

their registration via a URL.

A registration system is yet another great opportunity to build more classes! This

time, though, it will be even more interesting, as we use the PEAR::HTML_QuickForm9

package and PEAR::Mail_Mime10 to do some of the work for the registration system.

9 http://pear.php.net/package/HTML_QuickForm/
10 http://pear.php.net/package/Mail_Mime/

http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/Mail_Mime/
http://pear.php.net/package/HTML_QuickForm/
http://pear.php.net/package/Mail_Mime/

298 The PHP Anthology

The rest will be handled by classes we’ll build, but the end result will be easy for

you to customize and reuse in your own applications.

First of all, we need to understand the process of signing up a new user:

■	 The user fills in the registration form.

■	 Upon the user’s completion of the form, the registration system inserts a record

into the signup table and sends a confirmation email.

■	 The visitor follows the link in the email and confirms the account.

■	 We copy the details from the signup table to the user table. The account is now

active.

We use two tables for handling signups: this way, we can separate the “dangerous”

or unverified user data from the “safe” or confirmed user data. You’ll need a cron

job or similar scheduled task to check the signup table on a regular basis and delete

any entries that are older than, say, 24 hours. Our separation of the tables makes it

easier to purge the contents of the signup table (and avoid unfortunate errors), and

keep the user table trim so that there’s no unnecessary impact on performance

during user authentication.

Our solution uses a specific database structure. Here’s the SQL for the signup table:

access_control.sql (excerpt)

CREATE TABLE signup (
 signup_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 confirm_code VARCHAR(40) NOT NULL DEFAULT '',
 created INT(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (signup_id),
 UNIQUE KEY confirm_code (confirm_code),
 UNIQUE KEY user_login (login),
 UNIQUE KEY email (email)
);

Access Control 299

Here’s the SQL for the user table:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

The SignUp Class
The first part of our solution is the SignUp class, which provides all the functionality

for signing up new users, and uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;user login table details
[users_table]
table=user
col_id=user_id
col_login=login
col_password=password
col_email=email
col_name_first=firstName
col_name_last=lastName
col_signature=signature

;signup login table details
[signup_table]
table=signup
col_id=signup_id
col_login=login
col_password=password
col_email=email
col_name_first=firstName

300 The PHP Anthology

col_name_last=lastName

col_signature=signature

col_code=confirm_code

col_created=created

The first group of settings represent the details of the user table in our database—the

name of the database and its columns. The second group represent the database and

column names of the signup table.

Let’s define some custom exception classes so that we can provide a consistent level

of error handling:

Signup.class.php (excerpt)

class SignUpException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);
 error_log('Error in '.$this->getFile().
 ' Line: '.$this->getLine().
 ' Error: '.$this->getMessage()

);
 }
}
class SignUpDatabaseException extends SignUpException {}
class SignUpNotUniqueException extends SignUpException {}
class SignUpEmailException extends SignUpException {}
class SignUpConfirmationException extends SignUpException {}

Our base class, SignUpException, is a custom exception that ensures the exception

details are logged using the error_log function. The subclasses represent different

exception situations that might arise during the signup process. This method of error

handling implementation ensures that all exceptions are logged consistently, and

allows any script that uses our SignUp class to implement custom logic to handle

the various types of exceptions. We’ll see how such logic can be implemented in

our script very soon.

We begin our SignUp class definition with the class properties:

Access Control 301

Signup.class.php (excerpt)

class SignUp
{
 protected $db;
 protected $cfg;
 protected $from;
 protected $to;
 protected $subject;
 protected $message;
 protected $html;
 protected $listener;
 protected $confirmCode;

$db will contain a PDO instance for our database connection, $cfg will store our

configuration details, $from will contain the name and address used in the confirm­

ation email’s From field, $to will contain the name and address the email is sent

to, $subject will contain the subject of the email, $message will represent the body

of the email, and $html will contain a true or false value to indicate whether or

not the email is an HTML email. The $listener property will contain the URL listed

as the email confirmation link and $confirmCode will contain the unique code

needed to confirm this particular user’s registration.

The $to and $confirmCode properties are set and used internally by the class, while

the rest of the properties are initialized by the class constructor:

Signup.class.php (excerpt)

 public function __construct(PDO $db, $listener, $frmName,
 $frmAddress, $subj, $msg, $html)

 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini',

 TRUE);
 $this->listener = $listener;
 $this->from[$frmName] = $frmAddress;
 $this->subject = $subj;
 $this->message = $msg;
 $this->html = $html;

 }

302 The PHP Anthology

When we instantiate the object in the constructor above, we need to pass it a PDO

object instance containing the connection to the database, the URL to which regis­

trants should be directed when they confirm their signups, a Sender name and From

address for use in the signup email (for example Your Name <you@yoursite.com>),

and the subject and message for the email itself. Finally, we need to identify

whether or not this is an HTML email, so that PEAR::Mail_Mime can format the

message correctly.

Whether it contains HTML or not, the message should contain at least one special

tag: <confirm_url/>. This acts as a placeholder in the message, identifying the

location in the email body at which the confirmation URL, built by the SignUp class,

should be inserted.

The createCode method is called internally within the class, and is used to generate

the confirmation code that will be sent via email:

Signup.class.php (excerpt)

 private function createCode($login)
 {
 srand((double)microtime() * 1000000);
$this->confirmCode = md5($login . time() . rand(1, 1000000));

 }

When the registration form is submitted, the createSignup method creates a record

of the registration request. The createSignup method takes the information the user

submits via the registration form, checks the database to ensure that the username

and email address do not already exist in the user table, and inserts a new record

into the signup table. Let’s take a look at how this method works:

Signup.class.php (excerpt)

 public function createSignup($userDetails)
 {
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];
 $user_email = $this->cfg['users_table']['col_email'];
 $user_first = $this->cfg['users_table']['col_name_first'];
 $user_last = $this->cfg['users_table']['col_name_last'];

Access Control 303

$user_sig = $this->cfg['users_table']['col_signature'];

 $sign_table = $this->cfg['signup_table']['table'];

 $sign_login = $this->cfg['signup_table']['col_login'];

 $sign_pass = $this->cfg['signup_table']['col_password'];

 $sign_email = $this->cfg['signup_table']['col_email'];

 $sign_first = $this->cfg['signup_table']['col_name_first'];

 $sign_last = $this->cfg['signup_table']['col_name_last'];

 $sign_sig = $this->cfg['signup_table']['col_signature'];

 $sign_code = $this->cfg['signup_table']['col_code'];

 $sign_created = $this->cfg['signup_table']['col_created'];

 try

 {

 $sql = "SELECT COUNT(*) AS num_row FROM " . $user_table . "

 WHERE

 " . $user_login . "=:login OR

 " . $user_email . "=:email";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $userDetails[$user_login]);

 $stmt->bindParam(':email', $userDetails[$user_email]);

 $stmt->execute();

 $result = $stmt->fetch(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 throw new SignUpDatabaseException('Database error when' .

 ' checking user is unique: '.$e->getMessage());

 }

First, we assign all the needed configuration settings to local variables to improve

the readability of our script. The first action the method performs is to complete a

database query: it counts the number of rows in the user table where the submitted

username matches the value in the login column in the database, or where the

submitted email address is a match to the value in the email column. We wrap this

action within a try {…} catch (PDOException $e) {…} block in case a

PDOException is thrown. When we catch the PDOException, we throw one of the

custom exceptions we wrote for this class—a SignUpDatabaseException.

The next step for the createSignup method is to check the results of the query and,

if it’s okay to proceed, to prepare the data for insertion into the signup table:

304 The PHP Anthology

Signup.class.php (excerpt)

 if ($result['num_row'] > 0)
 {
 throw new SignUpNotUniqueException(

 'username and email address not unique');
 }

 $this->createCode($userDetails[$user_login]);
 $toName = $userDetails[$user_first] . ' ' .

 $userDetails[$user_last];
 $this->to[$toName] = $userDetails[$user_email];

If, on the other hand, the result is not 0, it indicates that we already have a user

with that username or email address, and it’s not okay to proceed with the signup.

Our reaction is to throw another one of our custom exceptions, this time a

SignUpNotUniqueException, to indicate that the signup details are not unique.

The final step in the createSignup method is to insert the new registration into the

signup table:

Signup.class.php (excerpt)

 try
 {
 $sql = "INSERT INTO " . $sign_table .

"(". $sign_login . ", " . $sign_pass .
 ", " . $sign_email . ", " . $sign_first .
", " . $sign_last . ", " . $sign_sig .
", " . $sign_code . ", " . $sign_created . ") ".
 "VALUES (:login, :password,
 :email, :firstname, :lastname,
 :signature, :confirm, :time)";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':login', $userDetails[$user_login]);
 $stmt->bindParam(':password', $userDetails[$user_pass]);
 $stmt->bindParam(':email', $userDetails[$user_email]);
 $stmt->bindParam(':firstname', $userDetails[$user_first]);
 $stmt->bindParam(':lastname', $userDetails[$user_last]);
 $stmt->bindParam(':signature', $userDetails[$user_sig]);
 $stmt->bindParam(':confirm', $this->confirmCode);
 $stmt->bindParam(':time', time());
 $stmt->execute();

Access Control 305

}

 catch (PDOException $e)

 {

 throw new SignUpDatabaseException('Database error when' .

 ' inserting into signup: '.$e->getMessage());

 }

 }

All the data in the $userDetails variable—the details submitted via the registration

form—are inserted into the signup table. If a PDOException is thrown, we throw a

new instance of our SignUpDatabaseException class.

The sendConfirmation method is used to send a confirmation email to the person

who’s just signed up:

Signup.class.php (excerpt)

 public function sendConfirmation()
 {
 // Pear Mail_Mime included in the calling script
 $fromName = key($this->from);
 $hdrs = array(

 'From' => $this->from[$fromName],
 'Subject' => $this->subject

);
 $crlf = "\n";

if ($this->html)
 {
 $replace = 'listener . '?code=' .

 $this->confirmCode . '">' . $this->listener .
 '?code=' . $this->confirmCode . '';

 }
 else
 {
 $replace = $this->listener . '?code=' . $this->confirmCode;

 }
 $this->message = str_replace('<confirm_url/>',

 $replace,
 $this->message

);

 $mime = new Mail_mime($crlf);

306 The PHP Anthology

$mime->setHTMLBody($this->message);

 $mime->setTXTBody(strip_tags($this->message));

 $body = $mime->get();

 $hdrs = $mime->headers($hdrs);

 $mail = Mail::factory('mail');

 $succ = $mail->send($this->to, $hdrs, $body);

if (PEAR::isError($succ))

 {

 throw new SignUpEmailException('Error sending confirmation' .

 ' email: ' .$succ->getDebugInfo());

 }

 }

The sendConfirmationmethod will generate the content of the confirmation email,

in HTML or text, by replacing the special text <confirm_url/>with the confirmation

URL the user will need to click on to confirm the registration. The confirmation

URL is generated using the $listener property, set by the class constructor method,

and the unique code returned by the confirmCode method. sendConfirmation then

uses an instance of the PEAR::Mail_mime class to create and send the email. If an

error is generated with the sending of the email, another one of our custom excep­

tions, SignUpEmailException, will be thrown. We’ll also use the getDebugInfo

method of the PEAR_Error object to obtain some information about the error.

Finally, the confirm method is used to examine confirmations via the URL sent in

the email:

Signup.class.php (excerpt)

 public function confirm($confirmCode)
 {
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];
 $user_email = $this->cfg['users_table']['col_email'];
 $user_first = $this->cfg['users_table']['col_name_first'];
 $user_last = $this->cfg['users_table']['col_name_last'];
 $user_sig = $this->cfg['users_table']['col_signature'];

 $sign_table = $this->cfg['signup_table']['table'];
 $sign_id = $this->cfg['signup_table']['col_id'];
 $sign_login = $this->cfg['signup_table']['col_login'];

Access Control 307

$sign_pass = $this->cfg['signup_table']['col_password'];

 $sign_email = $this->cfg['signup_table']['col_email'];

 $sign_first = $this->cfg['signup_table']['col_name_first'];

 $sign_last = $this->cfg['signup_table']['col_name_last'];

 $sign_sig = $this->cfg['signup_table']['col_signature'];

 $sign_code = $this->cfg['signup_table']['col_code'];

 try

 {

 $sql = "SELECT * FROM " . $sign_table . "

 WHERE " . $sign_code . "=:confirmCode";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':confirmCode', $confirmCode);

 $stmt->execute();

 $row = $stmt->fetchAll();

 }

 catch (PDOException $e)

 {

 throw new SignUpDatabaseException('Database error when' .

 ' inserting user info: '.$e->getMessage());

 }

Again, we assign configuration settings to local variables to improve the script’s

readability. First, the confirm method selects from the signup table all records that

have a value in the confirm_code column that matches the $confirmCode value.

If the number of records returned is anything other than 1, a problem has occurred

and a SignUpConfirmationException exception is thrown:

Signup.class.php (excerpt)

 if (count($row) != 1) {
 throw new SignUpConfirmationException(count($row) .

' records found for confirmation code: ' .
$confirmCode

);
 }

If only one matching record is found, the method can continue to process the con­

firmation:

308 The PHP Anthology

Signup.class.php (excerpt)

 try
 {
 // Copy the data from Signup to User table
 $sql = "INSERT INTO " . $user_table . " (

 " . $user_login . ", " . $user_pass . ",
" . $user_email . ", " . $user_first . ",
 " . $user_last . ", " . $user_sig . ") VALUES (
 :login, :pass, :email, :firstname, :lastname, :sign)";

$stmt = $this->db->prepare($sql);
 $stmt->bindParam(':login',$row[0][$sign_login]);
 $stmt->bindParam(':pass',$row[0][$sign_pass]);
 $stmt->bindParam(':email',$row[0][$sign_email]);
 $stmt->bindParam(':firstname',$row[0][$sign_first]);
 $stmt->bindParam(':lastname',$row[0][$sign_last]);
 $stmt->bindParam(':sign',$row[0][$sign_sig]);
 $stmt->execute();
 // Delete row from signup table
 $sql = "DELETE FROM " . $sign_table . "

 WHERE " . $sign_id . "= :id";
 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':id', $row[0][$sign_id]);
 $stmt->execute();

 }
 catch (PDOException $e)
 {
 throw new SignUpDatabaseException('Database error when' .

 ' inserting user info: '.$e->getMessage());
 }

 }
}

If an account is successfully confirmed, the record is copied to the user table, and

the old record is deleted from the signup table.

Thus the confirmation process, the user’s registration, and our SignUp class, is

complete!

The Signup Page
Now that our SignUp class is done, we need a web page from which to display the

registration form and run the process.

Access Control 309

The first step is to include the classes we’ll use:

signup.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'SignUp.class.php';
require_once 'HTML/QuickForm.php';
require_once 'Mail.php';
require_once 'Mail/mime.php';
require 'dbcred.php';

First, because we’re using PEAR packages, which will cause E_Strict errors under

PHP 5, we set the error reporting level to E_ALLwith the error_reporting function.

Of course, we need to include our SignUp class file. We’ll also be using the PEAR

HTML_Quickform and Mail_mime packages. The dbcred.php file contains the database

credentials we’ll need to connect to our database.

Next, we create the variables we need:

signup.php (excerpt)

$reg_messages = array(
 'success' => array(

 'title' => 'Confirmation Successful',
 'content' => '<p>Thank you. Your account has now been' .
 ' confirmed.
You can now login' .
 '</p>'

),
 'confirm_error' => array(

 'title' => 'Confirmation Problem',
 'content' => '<p>There was a problem confirming your' .
 ' account.
Please try again or contact the site ' .
 'administrators</p>'

),
 'email_sent' => array(

 'title' => 'Check your email',
 'content' => '<p>Thank you. Please check your email to ' .
 'confirm your account</p>'

),
 'email_error' => array(

 'title' => 'Email Problem',

310 The PHP Anthology

'content' => '<p>Unable to send confirmation email.
' .

 'Please contact the site administrators.</p>'

),

 'signup_not_unique' => array(

 'title' => 'Registration Problem',

 'content' => '<p>There was an error creating your' .

 ' account.
The desired username or email address has' .

 ' already been taken.</p>'

),

 'signup_error' => array(

 'title' => 'Registration Problem',

 'content' => '<p>There was an error creating your' .

 ' account.
Please contact the site administrators.' .

 '</p>'

)

);

$listener = 'http://localhost/phpant2/chapter_10/examples/' .

 'signup.php';

$frmName = 'Your Name';

$frmAddress = 'noreply@yoursite.com';

$subj = 'Account Confirmation';

$msg = <<<EOD

<html>

<body>

<h2>Thank you for registering!</h2>

<div>The final step is to confirm

your account by clicking on:</div>

<div><confirm_url/></div>

<div>

Your Site Team

</div>

</body>

</html>

EOD;

The $reg_messages variable contains an array of page titles and messages that will

be used in the web page, depending on the stage and status of the registration process.

$listener, $frmName, $frmAddress, $subj, and $msg are required by our Signup

class. If you have a look at the $msg variable, the body of our confirmation email,

you’ll see the special <confirm_url/> code which will be replaced by the confirm­

ation URL later in the process.

'http://localhost/phpant2/chapter_10/examples/'

Access Control 311

The $listener variable stores the absolute URL of the script to which the confirm­

ation code should be submitted. It links to itself in our example script. This variable

is set to reflect the folder setup of our testing environment, so make sure you change

this variable to suit your own setup.

The next step is to set up our database connection and instantiate our SignUp object:

signup.php (excerpt)

try
{
 // Instantiate the PDO object for the database connection
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 // Instantiate the signup class
 $signUp = new SignUp($db, $listener, $frmName,

 $frmAddress, $subj, $msg, TRUE);

Notice also that we’re opening a try block to catch any exceptions that may be

thrown from the execution of the rest of the code. Any exceptions caught after this

point—if the PDO connection fails for example—will display an appropriate message

on the web page, instead of showing a PHP error.

The next step is to check whether the page is being requested as part of a confirma­

tion—we’ll check for the presence of the $_GET['code'] variable:

signup.php (excerpt)

 if (isset($_GET['code']))
 {
 try
 {
 $signUp->confirm($_GET['code']);
 $display = $reg_messages['success'];
} catch (SignUpException $e){
 $display = $reg_messages['confirm_error'];

 }
 }

312 The PHP Anthology

If the confirmation code is present, we call the SignUp->confirm method, supplying

the code the page received. We then set the $display variable, which will contain

the page title and message to display on our web page. If no exception was raised

from the confirm method at this point in the script, we can assume all went well

and set the $display variable to the success message. If, however, a

SignUpException exception was thrown, we set the $display variable to the con­

firmation_error message. You may remember that the SignUpException class was

the base class for all our custom exceptions. By catching this class of exception,

we’ll catch an instance of any of our custom exceptions.

If the confirmation code is not present, we prepare to display the registration form:

signup.php (excerpt)

 else
 {
 function cmpPass($element, $confirmPass)
 {

$password = $GLOBALS['form']->getElementValue('password');
 return $password == $confirmPass;

 }
 function encryptValue($value)
 {
 return md5($value);

 }

The above are helper functions that will be used by our HTML_Quickform object to

validate and filter the registration form contents.

The HTML_Quickform object makes it very easy to construct the form and the form

validation:

signup.php (excerpt)

 /* Make the form */
 // Instantiate the QuickForm class
 $form = new HTML_QuickForm('regForm', 'POST');

 // Register the compare function
 $form->registerRule('compare', 'function', 'cmpPass');

Access Control 313

// The login field

 $form->addElement('text', 'login', 'Desired Username');

 $form->addRule('login', 'Please provide a username',

 'required', FALSE, 'client');

 $form->addRule('login',

 'Username must be at least 6 characters',

 'minlength', 6, 'client');

 $form->addRule('login',

 'Username cannot be more than 50 characters', 'maxlength',

 50, 'client');

 $form->addRule('login',

 'Username can only contain letters and numbers',

 'alphanumeric', NULL, 'client');

 // The password field

 $form->addElement('password', 'password', 'Password');

 $form->addRule('password', 'Please provide a password',

 'required', FALSE, 'client');

 $form->addRule('password',

 'Password must be at least 6 characters', 'minlength', 6,

 'client');

 $form->addRule('password',

 'Password cannot be more than 12 characters', 'maxlength',

 12, 'client');

 $form->addRule('password',

 'Password can only contain letters and numbers',

 'alphanumeric', NULL, 'client');

 // The field for confirming the password

 $form->addElement('password', 'confirmPass',

 'Confirm Password');

 $form->addRule('confirmPass', 'Please confirm password',

 'required', FALSE, 'client');

 $form->addRule('confirmPass', 'Passwords must match',

 'compare', 'function');

 // The email field

 $form->addElement('text', 'email', 'Email Address');

 $form->addRule('email', 'Please enter an email address',

 'required', FALSE, 'client');

 $form->addRule('email', 'Please enter a valid email address',

 'email', FALSE, 'client');

 $form->addRule('email',

 'Email cannot be more than 50 characters',

 'maxlength', 50, 'client');

314 The PHP Anthology

// The first name field

 $form->addElement('text', 'firstName', 'First Name');

 $form->addRule('firstName', 'Please enter your first name',

 'required', FALSE, 'client');

 $form->addRule('firstName',

 'First name cannot be more than 50 characters', 'maxlength',

 50, 'client');

 // The last name field

 $form->addElement('text', 'lastName', 'Last Name');

 $form->addRule('lastName', 'Please enter your last name',

 'required', FALSE, 'client');

 $form->addRule('lastName',

 'Last name cannot be more than 50 characters', 'maxlength',

 50, 'client');

 // The signature field

 $form->addElement('textarea', 'signature', 'Signature');

 // Add a submit button called submit

// and "Send" as the button text

 $form->addElement('submit', 'submit', 'Register');

 /* End making the form */

After we’ve defined the registration form, we use the HTML_Quickform->validate

method to check that the form has been submitted and that it validates. If it does

validate, we can proceed to build the array of form data our SignUp object needs to

create a new signup record:

signup.php (excerpt)

 if ($form->validate())
 {
 // Apply the encryption filter to the password
 $form->applyFilter('password', 'encryptValue');

 // Build an array from the submitted form values
 $submitVars = array(

 'login' => $form->getSubmitValue('login'),
 'password' => $form->getSubmitValue('password'),
 'email' => $form->getSubmitValue('email'),
 'firstName' => $form->getSubmitValue('firstName'),

Access Control 315

'lastName' => $form->getSubmitValue('lastName'),

 'signature' => $form->getSubmitValue('signature')

);

Since we’re using HTML_Quickform, any slashes added by magic quotes are automat­

ically removed from the submitted values; when you’re not using HTML_Quickform,

be sure to strip out the slashes if magic_quotes is enabled.

Next, we call the create the signup record and send the confirmation email. We

want to wrap this in a try block in order to catch any possible exceptions:

signup.php (excerpt)

 try
 {
 $signUp->createSignup($submitVars);
 $signUp->sendConfirmation();
 $display = $reg_messages['email_sent'];

 }
 catch (SignUpEmailException $e)
 {
 $display = $reg_messages['email_error'];

 }
 catch (SignUpNotUniqueException $e)
 {
 $display = $reg_messages['signup_not_unique'];

 }
 catch (SignUpException $e)
 {
 $display = $reg_messages['signup_error'];

 }
 }

If no exceptions are thrown, we can set $display to an appropriate message that

informs the user to expect the email. If exceptions are thrown, we can set $display

to a message that’s appropriate for each one, thanks to our defining of several custom

exception classes.

If the form hasn’t been submitted yet, it’ll need to be shown to the user; we set

$display to include the form HTML source:

316 The PHP Anthology

signup.php (excerpt)

 else
 {
 // If not submitted, display the form
 $display = array(

 'title' => 'New Registration',
 'content' => $form->toHtml()

);
 }

 }
}

We’ve reached the end of the first try block, so we need to catch any remaining ex­

ception that may be thrown. If an exception is caught here, it won’t be one of our

custom exceptions. Therefore, we need to make sure that the exception details are

logged using the error_log function, and that the web page displays an appropriate

message to inform the user that registration cannot be completed:

signup.php (excerpt)

catch (Exception $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $display = $reg_messages['signup_error'];
}
?>

Now, the only task left to do is to produce the HTML source for the web page. Our

$display variable has been set to an array value containing two elements—one for

the page title and one for the page contents. This setting will display the registration

form and a confirmation message, or an error message if something has gone wrong.

These displays are inserted into the source code where appropriate:

Access Control 317

signup.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>
 <h1><?php echo $display['title']; ?></h1>
 <?php echo $display['content']; ?>

 </body>
</html>

The finished registration form should look like the one shown in Figure 10.3.

Figure 10.3. The finished registration form

And there we have it—a simple but fully functioning user registration system with

email confirmation facility!

318 The PHP Anthology

Discussion
So that you don’t grow bored, I’ve left a couple of pieces of the jigsaw puzzle for

you to fill in yourself. If a registered user exists who has the same username or email

address as the one entered by the new registrant, the createSignup method throws

an exception and the procedure is halted. If you’re happy using HTML_QuickForm,

you might want to split this check into a separate method that HTML_QuickForm can

apply as a validation rule for each field in the form. This approach should reduce

frustration when users find that the account name they chose already ex­

ists—HTML_QuickForm will generate a message to inform them of this fact, preserve

the rest of the values they entered, and allow them to try again with a different

username.

If you plan to let users change their email addresses once their accounts are created,

you’ll also need to confirm the new addresses before you store them in the user

table. You should be able to reuse the methods provided by the SignUp class for

this purpose. You might even consider reusing the signup table to handle this task.

Some modifications will be required—you’ll want the confirm method to be able

to update an existing record in the user table, for example. Be very careful that you

don’t create a hole in your security, though. If you’re not checking for existing records

in the user table, a user could sign up for a new account with details that match an

existing row in the user table. You’ll then end up changing the email address of an

existing user to that of a new user, which will cause you some embarrassment, at

the very least.

How do I deal with members

who forget their passwords?

Unfortunately, humans have a tendency to forget important information such as

passwords, so a feature that allows users to retrieve forgotten passwords is an essen­

tial time saver. Overlook this necessity, and you can expect to waste a lot of time

manually changing passwords for people who have forgotten them.

If you encrypt the passwords in your database, you’ll need a mechanism to generate

a new password that, preferably, is easy to remember.

Access Control 319

Be Careful with Password Hints

A common tactic used in web site registration is to use simple questions as memory

joggers should users forget their password. These questions can include “Where

were you born?” and “What’s your pet’s name?” Yet details like this may well be

common knowledge or easy for other users to guess.

Solution
Since we already have a valid email address for each account, as confirmed through

our signup procedure in “How do I build a registration system?”, we just need to

send the new password to that address. Our solution uses the user table from the

previous sections:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

The AccountMaintenance Class
The AccountMaintenance class is a utility class that, among other things, will reset

the password for a user’s account and generate an email to send the user the new

password. Our class uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']
[login_vars]
login=login

320 The PHP Anthology

;user login table details

[users_table]

table=user

col_id=user_id

col_login=login

col_password=password

col_email=email

col_name_first=firstName

col_name_last=lastName

To provide a consistent level of error handling, we define some custom exception

classes:

AccountMaintenance.class.php (excerpt)

class AccountException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);
 error_log('Error in '.$this->getFile().
 ' Line: '.$this->getLine().
 ' Error: '.$this->getMessage()

);
 }
}
class AccountDatabaseException extends AccountException {}
class AccountUnknownException extends AccountException {}
class AccountPasswordException extends AccountException {}
class AccountPasswordResetException extends AccountException {}

Our base class, AccountException, is a custom exception that ensures the exception

details are logged using the error_log function. The subclasses represent different

exception situations that might arise during account maintenance.

We begin our AccountMaintenance class definition with the class properties:

Access Control 321

AccountMaintenance.class.php (excerpt)

class AccountMaintenance
{
 protected $db;
 protected $cfg;
 private $words;

$db will contain a PDO instance for our database connection, $cfg will store our

configuration details, and $words will store the path to the random words file that’s

used in password generation.

The constructor simply stores the database object for future use by the class and

loads the configuration file:

AccountMaintenance.class.php (excerpt)

 public function __construct(PDO $db)
 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini', TRUE);

 }

Since we save the user’s password in the database as an MD5 hash (a form of one-

way encryption), we can no longer find out what the original password was. If

members forget their passwords in such cases, you’ll have to make new ones for

them. You could simply generate a random string of characters, but it’s important

to remember that if you make your security systems too unfriendly, you’ll put off

legitimate users. The resetPassword method generates a more human-friendly

randomized password:

AccountMaintenance.class.php (excerpt)

 function resetPassword($login, $email)
 {
 //Put the cfg vars into local vars for readability
 $user_table = $this->cfg['users_table']['table'];
 $user_id = $this->cfg['users_table']['col_id'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];
 $user_email = $this->cfg['users_table']['col_email'];

322 The PHP Anthology

$user_first = $this->cfg['users_table']['col_name_first'];

 $user_last = $this->cfg['users_table']['col_name_last'];

 $user_sig = $this->cfg['users_table']['col_signature'];

 try

 {

 $sql = "SELECT " . $user_id . ",

 " . $user_login . ", " . $user_pass . ",

 " . $user_first . ", " . $user_last . "

 FROM

 " . $user_table . "

 WHERE

 " . $user_login . "=:login

 AND

 " . $user_email . "=:email";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $login);

 $stmt->bindParam(':email', $email);

 $stmt->execute();

 $row = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 throw new AccountDatabaseException('Database error when' .

 ' finding user: '.$e->getMessage());

 }

First, we assign the configuration settings to local variables to make the code a little

more readable. Next, we deal with the resetPassword method, which, when given

a combination of a username and an email address, attempts to identify the corres­

ponding row in the user table.

We use both the username and email to identify the row, so it’s a little more difficult

for other people to reset your members’ passwords. Although there’s no risk of in­

dividuals stealing the new password (unless they have control over a member’s

email account), it will certainly irritate people if their passwords are continually

being reset. Requiring both the username and email address of the user makes the

process a little more complex.

If we can’t find a single matching row, we throw an exception:

Access Control 323

AccountMaintenance.class.php (excerpt)

 if (count($row) != 1)
 {
 throw new AccountUnknownException('Could not find account');
}

Next, we call the generatePassword method (which we’ll discuss in a moment) to

create a new password:

AccountMaintenance.class.php (excerpt)

 try
 {
 $password = $this->generatePassword();

This method call is placed within a try block to catch the exception thrown by

generatePassword if a new password cannot be generated.

generatePassword then updates the user table with the new password (using md5

to encrypt it), and returns the new password in an array containing the user details:

AccountMaintenance.class.php (excerpt)

 $sql = "UPDATE " . $user_table . "
 SET
 " . $user_pass . "=:pass
 WHERE
 " . $user_id . "=:id";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':pass',md5($password));
 $stmt->bindParam(':id', $row[0][$user_id]);
$stmt->execute();

 }
 catch (AccountPasswordException $e)
 {
 throw new AccountResetPasswordException('Error when' .

 ' generating password: '.$e->getMessage());
}
 catch (PDOException $e)
 {
 throw new AccountDatabaseException('Database error when' .

324 The PHP Anthology

' resetting password: '.$e->getMessage());

}

 $row[0][$user_pass] = $password;

 return $row;

 }

The addWords method is used to supply the class with an indexed array of words

with which to build memorable passwords:

AccountMaintenance.class.php (excerpt)

 function addWords($words)
 {
 $this->words = $words;

 }

I’ve used a list of over one thousand words, stored in a text file, to build memorable

passwords. Be aware that if anyone knows the list of words you’re using, cracking

the new password will be significantly easier, so you should create your own list.

generatePassword constructs a random password from the

AccountMaintenance->words array, adding separators that can include any number

from 0 to 9, or an underscore character:

AccountMaintenance.class.php (excerpt)

 protected function generatePassword()
 {
 $count = count($this->words);
 if ($count == 0)
 {
 throw new AccountPasswordException('No words to use!');

 }
mt_srand((double)microtime() * 1000000);
 $seperators = range(0,9);
 $seperators[] = '_';
 $password = array();
 for ($i = 0; $i < 4; $i++) {
 if ($i % 2 == 0) {
 shuffle($this->words);
 $password[$i] = trim($this->words[0]);

Access Control 325

} else {

 shuffle($seperators);

 $password[$i] = $seperators[0];

 }

 }

 shuffle($password);

 return implode('', $password);

 }

}

The password itself will contain two words chosen at random from the list, as well

as two random separators. The order in which these elements appear in the password

is also random. The passwords this system generates might look something like

7correct9computer and 48courtclothes, which follow a format that’s relatively easy

for users to remember.

The Reset Password Page
There’s one thing we need to finish our web site’s account maintenance feature: we

need a web form that our users can fill in to request a password change or reset.

First, we include all the packages we need:

newpass.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'Session.class.php';
require_once 'AccountMaintenance.class.php';
require_once 'HTML/QuickForm.php';
require_once 'Mail.php';
require_once 'Mail/mime.php';
require_once 'dbcred.php';

We then set the error reporting level to E_ALL with the error_reporting function,

since we’re using PEAR packages that will cause E_Strict errors under PHP 5.

Of course, we need to include our AccountMaintenance class file. We’ll also be using

the PEAR HTML_Quickform and Mail_mime packages. The dbcred.php file contains

the database credentials we’ll need to connect to our database.

Next, we create the variables we need:

326 The PHP Anthology

newpass.php (excerpt)

$reg_messages = array(
 'email_sent' => array(

 'title' => 'Check your email',
 'content' => '<p>Thank you. An email has been sent to:</p>'

),
 'email_error' => array(

 'title' => 'Email Problem',
 'content' => '<p>Unable to send your details.
' .
 'Please contact the site administrators.</p>'

),
 'no_account' => array(

 'title' => 'Account Problem',
 'content' => '<p>We could not find your account.
' .
 'Please contact the site administrators.</p>'

),
 'reset_error' => array(

 'title' => 'Password Reset Problem',
 'content' => '<p>There was an error resetting your' .
 ' password.
Please contact the site administrators.' .
 '</p>'

)
);
$yourEmail = 'you@yourdomain.com';
$subject = 'Your password';
$msg = 'Here are your login details. Please change your password.';

The $reg_messages variable contains an array of page titles and messages that will

be used in the web page at various stages of the registration process. $yourEmail,

$subject, and $msg are used in the creation of the email notification.

Next, we build our form with PEAR::HTML_Quickform:

newpass.php (excerpt)

try
{
 // Instantiate the QuickForm class
 $form = new HTML_QuickForm('passwordForm', 'POST');

 // Add a header to the form
 $form->addElement('header', 'MyHeader',

 'Forgotten Your Password?');

Access Control 327

// Add a field for the email address

 $form->addElement('text', 'email', 'Enter your email address');

 $form->addRule('email', 'Enter your email', 'required', FALSE,

 'client');

 $form->addRule('email', 'Enter a valid email address', 'email',

 FALSE, 'client');

 // Add a field for the login

 $form->addElement('text', 'login', 'Enter your login name');

 $form->addRule('login', 'Enter your login', 'required', FALSE,

 'client');

// Add a submit button called submit with label "Send"

 $form->addElement('submit', 'submit', 'Get Password');

Notice also that we’re opening a try block: we want to catch any exceptions that

may be thrown from the execution of the rest of the code. This precaution will allow

us to display an appropriate message on the web page instead of a PHP error.

If the form has been submitted, we can begin the password changing process:

newpass.php (excerpt)

 if ($form->validate())
 {
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $aMaint = new AccountMaintenance($db);
 $rawWords = file('words.txt');
 $word = array_map('trim', $rawWords);
 $aMaint->addWords($word);

We instantiate the PDO and AccountMaintenance classes and load our words file (I

also trimmed off any whitespace that may appear before or after each word—just

in case) so we can pass it to the addWords method.

Next, we call the resetPassword method, passing the login and email values from

the form as arguments:

328 The PHP Anthology

newpass.php (excerpt)

 $details = $aMaint->resetPassword(
 $form->getSubmitValue('login'),
 $form->getSubmitValue('email'));

If all goes well, an email is sent via PEAR::Mail_Mime to inform the user of the new

password:

newpass.php (excerpt)

 $crlf = "\n";
 $text = $msg . "\n\nLogin: " . $details[0]['login'] .

 "\nPassword: " . $details[0]['password'];

$hdrs = array(
 'From' => $yourEmail,
 'Subject' => $subject

);

 $mime = new Mail_mime($crlf);
 $mime->setTXTBody($text);
 $body = $mime->get();
 $hdrs = $mime->headers($hdrs);
 $mail = Mail::factory('mail');
// Send the message
 $succ = $mail->send($form->getSubmitValue('email'), $hdrs,

 $body);
if (PEAR::isError($succ))
 {
 $display = $reg_messages['email_error'];

 }
 else
 {
 $display = $reg_messages['email_sent'];
 $display['content'] .= '<p>' .

$form->getSubmitValue('email') . '</p>';
 }

 }

The page $display variable is set to a helpful message when the email is sent suc­

cessfully; if it’s not, the $display variable displays an error message.

Access Control 329

If the form hasn’t yet been submitted, we just display the form HTML:

newpass.php (excerpt)

 else
 {
 $display = array(

 'title' => 'Reset Password',
 'content' => $form->toHtml()

);
 }
}

Finally, we catch any exceptions that may have occurred and display an appropriate

message:

newpass.php (excerpt)

catch (AccountUnknownException $e)
{
 $display = $reg_messages['no_account'];
}
catch (Exception $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $display = $reg_messages['reset_error'];
}
?>

The HTML of the Reset Password page looks like this:

newpass.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>

330 The PHP Anthology

<h1><?php echo $display['title']; ?></h1>

 <?php echo $display['content']; ?>

 </body>

</html>

Figure 10.4 shows the page’s display.

Figure 10.4. The Reset Password page

You can add a link to the bottom of your login form so that the user is able to access

the Reset Password page. Here’s an example:

Forgotten your password?

How do I let users change their passwords?
A good design test for many PHP applications is whether users can change their

passwords without needing to log back into the application afterwards. Provided

you construct your application carefully, your users should be able to go about their

business without further ado after changing their passwords. It’s important to be

considerate to your site’s users if you want them to stick around!

Access Control 331

Solution
If we return for a minute to the session-based authentication mechanism we dis­

cussed earlier in this chapter, you’ll remember that the login and md5 encrypted

password are stored in session variables and rechecked on every new page by the

Auth class. The trick is to change the value of the password in both the session

variable and the database when users change their passwords. We can perform this

trick with a small modification to the AccountMaintenance class—found in “How

do I deal with members who forget their passwords?”—and the addition of a new

form.

Modifying AccountMaintenance
With a little tweaking of the AccountMaintenance class to add a method for changing

passwords, we should be able to handle the job fairly easily. The changePassword

method requires an instance of the Auth class (found in “How do I create a class to

control access to a section of the site?”), the old password, and the new password

as arguments:

AccountMaintenance.class.php (excerpt)

 public function changePassword($auth, $oldPassword, $newPassword)
 {
 $var_login = $this->cfg['login_vars']['login'];
 $user_table = $this->cfg['users_table']['table'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_pass = $this->cfg['users_table']['col_password'];

At the beginning of the method, we store some of the configuration settings in local

variables to help the readability of the rest of the method.

The method then instantiates a new Session object (which we saw in “How do I

create a session class?”) and attempts to find the user record in the database:

AccountMaintenance.class.php (excerpt)

 $session = new Session();
 try
 {
 $sql = "SELECT *

 FROM " . $user_table . "

332 The PHP Anthology

WHERE

 " . $user_login . " = :login

 AND

 " . $user_pass . " = :pass";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $session->get($var_login));

 $stmt->bindParam(':pass', md5($oldPassword));

 $stmt->execute();

 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }

 catch (PDOException $e)

 {

 throw new AccountDatabaseException('Database error when' .

 ' finding user: '.$e->getMessage());

}

The method first performs a database lookup to find the record of the user who’s

using the current login details—obtained from the session information—and the

old password. If a PDOException is thrown, the method throws one of our custom

exceptions, AccountDatabaseException.

The results of the database lookup are checked—if anything but a single matching

record is returned, the method will thrown an AccountUnknownException:

AccountMaintenance.class.php (excerpt)

 if (count($result) != 1)
 {
 throw new AccountUnknownException('Could not find account');
}

Finally, if no exceptions have been thrown, the method updates the password in­

formation in the database with the new password:

AccountMaintenance.class.php (excerpt)

 try
 {

$sql = "UPDATE " . $user_table . "
 SET
 " . $user_pass . " = :pass

Access Control 333

WHERE

 " . $user_login . " = :login";

 $stmt = $this->db->prepare($sql);

 $stmt->bindParam(':login', $session->get($var_login));

 $stmt->bindParam(':pass', md5($newPassword));

 $stmt->execute();

 $auth->storeAuth($session->get($var_login),

 md5($newPassword));

 }

 catch (PDOException $e)

 {

 throw new AccountDatabaseException('Database error when' .

 ' updating password: '.$e->getMessage());

}

 }

After we update the information in the user table, the current session information

is also updated via the Auth->storeAuth method. Again, if the operation throws a

PDOException, we throw an AccountDatabaseException.

It’s a good idea to ask the user to enter the old password before changing it over and

giving them access with a new one. Perhaps the user logged in at an Internet café

and then left, forgetting to log out, or worse, his or her session was hijacked elec­

tronically. The process of ascertaining that the user can provide the old password

can preclude some of the potential for damage, as it prevents anyone who “takes

over” the session from being able to change the password and thus assume total

control. Instead, the newcomer’s only logged in as long as the session continues.

(You may also wish to ask a user to reenter the password before completing any

major actions—like making a credit card purchase—for this very reason.)

The Change Password Form
This web page form will show you how the changePassword method can easily be

used in your registration system. We start by including all the classes and other

files we’ll need:

changepass.php (excerpt)

<?php
error_reporting(E_ALL);
require_once 'Session.class.php';

334 The PHP Anthology

require_once 'Auth.class.php';

require_once 'AccountMaintenance.class.php';

require_once 'HTML/QuickForm.php';

require_once 'dbcred.php';

We set the error reporting level to E_ALL with the error_reporting function, as

we’re using PEAR packages, which will cause E_Strict errors under PHP 5. We

then include our custom classes for session, authorization, and account management,

the PEAR::HTML_QuickForm package, and our database credentials file.

Next, we set the $reg_messages array to hold the page content for the different form

outcomes:

changepass.php (excerpt)

$reg_messages = array(
 'success' => array(

 'title' => 'Password Changed',
 'content' => '<p>Your password has been changed' .

 ' successfully.</p>'
),
 'no_account' => array(

 'title' => 'Account Problem',
 'content' => '<p>We could not find your account.
' .
 'Please contact the site administrators.</p>'

),
 'change_error' => array(

 'title' => 'Change Password Problem',
 'content' => '<p>There was an error changing your' .
 ' password. Please contact the site administrators,' .
 ' or click ' .
 'here to' .
 ' try again.</p>'

)
);

We then test to find out whether the user is currently authorized to see the Change

Password form, with the assistance of the Auth class:

Access Control 335

changepass.php (excerpt)

try
{
 $db = new PDO($dsn, $user, $password);
 $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
 $auth = new Auth($db, 'login.php', 'secret');

At this point, we open a try block; we want to catch any exceptions that may be

thrown from the execution of the rest of the code. Catching any exceptions from

this point will allow us to display an appropriate message on the web page instead

of a PHP error.

We instantiate the PDO and Auth classes; if the user isn’t authorized, he or she will

be redirected to the login form. And if all’s well, we start building the Change

Password form with PEAR::HTML_QuickForm:

changepass.php (excerpt)

 $form = new HTML_QuickForm('changePass', 'POST');

 function cmpPass($element, $confirm)
 {

$password = $GLOBALS['form']->getElementValue('newPassword');
 return $password == $confirm;

 }
 $form->registerRule('compare', 'function', 'cmpPass');

After instantiating the HTML_QuickForm object, we define and register the function

cmpPass that will be used to validate the password fields, to ensure that the password

and password confirmation fields match.

Then we add the form:

changepass.php (excerpt)

 $form->addElement('header', 'MyHeader', 'Change your password');

// Add a field for the old password
 $form->addElement('password', 'oldPassword',

336 The PHP Anthology

'Current Password');

 $form->addRule('oldPassword', 'Enter your current password',

 'required', false, 'client');

 // Add a field for the new password

 $form->addElement('password', 'newPassword', 'New Password');

 $form->addRule('newPassword', 'Please provide a password',

 'required', false, 'client');

 $form->addRule('newPassword',

 'Password must be at least 6 characters',

 'minlength', 6, 'client');

 $form->addRule('newPassword',

 'Password cannot be more than 12 chars',

 'maxlength', 50, 'client');

 $form->addRule('newPassword',

 'Password can only contain letters and ' .

 'numbers', 'alphanumeric', NULL, 'client');

 // Add a field for password confirmation

 $form->addElement('password', 'confirm', 'Confirm Password');

 $form->addRule('confirm', 'Please confirm your password',

 'required', false, 'client');

 $form->addRule('confirm', 'Your passwords do not match',

 'compare', false, 'client');

 // Add a submit button

 $form->addElement('submit', 'submit', 'Change Password');

If the form has been submitted, we can attempt to change the password:

changepass.php (excerpt)

 if ($form->validate())
 {
 $aMaint = new AccountMaintenance($db);
 $aMaint->changePassword($auth,

 $form->getSubmitValue('oldPassword'),
 $form->getSubmitValue('newPassword')

);
 $display = $reg_messages['success'];

 }

Access Control 337

On validation of the form, we instantiate an AccountMaintenance object and call

the changePassword method. If no exceptions are thrown, we set the $display

variable to the success message.

If the form has not yet been submitted and validated, we display the form contents:

changepass.php (excerpt)

 else
 {
 // If not submitted, display the form
 $display = array(

 'title' => 'Change Password',
 'content' => $form->toHtml()

);
 }
}

The final task of our main script is to catch any possible exceptions and display

appropriate page content:

changepass.php (excerpt)

catch (AccountUnknownException $e)
{
 $display = $reg_messages['no_account'];
}
catch (Exception $e)
{
 error_log('Error in '.$e->getFile().

 ' Line: '.$e->getLine().
 ' Error: '.$e->getMessage()

);
 $display = $reg_messages['change_error'];
}
?>

The HTML content of the Change Password page is as follows:

338 The PHP Anthology

changepass.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>
 <h1><?php echo $display['title']; ?></h1>
 <?php echo $display['content']; ?>

 </body>
</html>

Finally, the new Change Password page can be seen in Figure 10.5.

Figure 10.5. The new Change Password page

Discussion
Now that you know how to allow users to change their passwords, it should be no

problem for you to change other account settings, such as the first and last names

and the signature—simply add the details to the AccountMaintenance class. If you

want to allow users to change their email addresses, you’ll need to examine the re­

gistration procedure used earlier in “How do I build a registration system?”, and

modify the SignUp class. You should make sure that users confirm a new email

address before you allow them to change it.

Access Control 339

How to do I build a permissions system?

In the previous sections, we built an authentication system that provided global

security for your web site. But, consider this: are all the members of your site equal?

You probably don’t want all of your users to have access to edit and delete articles,

for example. To deal with this issue, you need to add to the security system further

functionality that allows you to assign permissions to groups of members, permitting

only these users to perform specific actions.

Rather than assign permissions to single accounts, which would quickly become a

nightmare to administer, we’ll build a permissions system in terms of users, groups,

and permissions. Users (login accounts) will be assigned to groups, which will have

names like Administrators, Authors, Managers, and so on. Permissions reflect actions

that users will be allowed to perform within the site, and they will also be assigned

to groups. >From an administration perspective, this system will be easy to manage,

as it’ll be a simple matter to see which Permissions a particular group has, and

which users are assigned to that group.

This kind of access control is known as role-based access control. If you’d like to

read more on the theory of role-based access control, the web site of the US Govern­

ment National Institute of Standards and Technology has a complete section on

it.11

Solution
Let’s leap in and build our permission system.

Setting Up the Database
Building the permissions system initially requires the construction of many-to-many

relationships between database tables. This is explained as follows:

■ A user can belong to many groups.
■ A group may have many users.
■ A permission can be assigned to many groups.
■ A group may have many permissions.

11 http://csrc.nist.gov/rbac/

http://csrc.nist.gov/rbac/
http://csrc.nist.gov/rbac/
http://csrc.nist.gov/rbac/

340 The PHP Anthology

In practical terms, the way to build many-to-many relationships in MySQL is to use

a bridge table, which relates to two other tables. The bridge table stores a two-column

index, each column being the key of one of the two related tables. For example, we

have a user table and a collection table in our database. Here’s the SQL for those

tables:

access_control.sql (excerpt)

CREATE TABLE user (
 user_id INT(11) NOT NULL AUTO_INCREMENT,
 login VARCHAR(50) NOT NULL DEFAULT '',
 password VARCHAR(50) NOT NULL DEFAULT '',
 email VARCHAR(50) DEFAULT NULL,
 firstName VARCHAR(50) DEFAULT NULL,
 lastName VARCHAR(50) DEFAULT NULL,
 signature TEXT NOT NULL,
 PRIMARY KEY (user_id),
 UNIQUE KEY user_login (login)
);

CREATE TABLE collection (
 collection_id INT(11) NOT NULL auto_increment,
 name VARCHAR(50) NOT NULL default '',
 description TEXT NOT NULL,
 PRIMARY KEY (collection_id)
);

Each user has a unique ID and login name, and several other pieces of information

associated with his or her record. Each group has a unique ID, a name, and a descrip­

tion. We’ll use a bridge table to link users to their groups, and groups to their users.

Here’s the definition of the user2collection lookup table:

access_control.sql (excerpt)

CREATE TABLE user2collection (
 user_id INT(11) NOT NULL default '0',
 collection_id INT(11) NOT NULL default '0',
 PRIMARY KEY (user_id, collection_id)
);

Access Control 341

Notice that the primary key for the table uses both columns: this ensures that no

combination of user_id and collection_id can appear more than once.

Be Aware of Reserved Words

I use “collection” to refer to “group” in MySQL. “Group” is a reserved word in

SQL, so it shouldn’t be used as a table name. Technically, it can be used with the

proper quoting, but why run the risk of confusing ourselves—and possibly MySQL?

You can find more about SQL reserved words at the MySQL web site.12

Here’s some hypothetical data that shows how the bridge table can be used:

mysql> select * from user2collection;

+---------+---------------+

| user_id | collection_id |

+---------+---------------+

1	1
2	1
2	2
3	1
4	1
+---------+---------------+

5 rows in set (0.00 sec)

This data tells us that user 1 is a member of group 1, user 2 is a member of groups

1 and 2, user 3 is a member of group 1, and so on.

We’ll also need a permission table for the purpose of keeping track of permissions:

access_control.sql (excerpt)

CREATE TABLE permission (
 permission_id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(50) NOT NULL DEFAULT '',
 description TEXT NOT NULL,
 PRIMARY KEY (permission_id)
);

12 http://dev.mysql.com/doc/refman/4.1/en/reserved-words.html

http://dev.mysql.com/doc/refman/4.1/en/reserved-words.html
http://dev.mysql.com/doc/refman/4.1/en/reserved-words.html

342 The PHP Anthology

Each permission has a unique ID, a name, and a description. Permission names will

represent actions; view, create, edit and delete, for example. We’ll need a bridge

table to link groups to permissions—here’s the collection2permission table:

access_control.sql (excerpt)

CREATE TABLE collection2permission (
 collection_id INT(11) NOT NULL DEFAULT '0',
 permission_id INT(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (collection_id, permission_id)
);

With the lookup tables defined, we can now perform queries across the tables to

identify the permissions a particular user has been allowed. For example, the fol­

lowing query returns all the permission names for the user with user_id 1:

SELECT p.name as permission

FROM

 user2collection uc,

INNER JOIN collection2permission cp

ON uc.collection_id = cp.collection_id

 INNER JOIN permission p

 ON cp.collection_id = p.collection_id

WHERE uc.user_id = 1;

Note that I’ve used aliases for table names, such as user2collection uc, to make

writing the query easier.

If you’ve downloaded and installed the sample access_control database mentioned

in the introduction to this chapter, you’ll find it contains three sample user accounts

with the details shown in Table 10.1.

Table 10.1. Sample User Accounts

GroupPasswordLogin

Userspasswordjackblack

Editorspasswordjackwhite

Administratorspasswordsiteadmin

Access Control 343

The access_control database also contains three sample groups, as shown in

Table 10.2.

Table 10.2. Sample Groups

PermissionsGroup

viewUsers

view, create, editEditors

view, create, edit, deleteAdministrators

The User Class
The User class will encapsulate all the functionality for checking a user’s permis­

sions. Our class uses the following configuration settings:

access_control.ini (excerpt)

; Access Control Settings

;web form variables e.g. $_POST['login']
[login_vars]
login=login

;user login table details
[users_table]
table=user
col_id=user_id
col_login=login
col_password=password
col_email=email
col_name_first=firstName
col_name_last=lastName
col_signature=signature

;Permission table details
[permission_table]
table=signup
col_id=permission_id
col_name=name

;Collection table details
[collection_table]
table=collection

344 The PHP Anthology

col_id=collection_id

col_name=name

;User to Collection lookup table details

[user_to_collection_table]

table=user2collection

col_id=user_id

col_collection_id=collection_id

;Collection to Permission lookup table details

[collection_to_permission_table]

table=collection2permission

col_id=collection_id

col_permission_id=permission_id

We define some custom exception classes to provide a consistent level of error

handling:

User.class.php (excerpt)

class UserException extends Exception
{
 public function __construct($message = null, $code = 0)
{
 parent::__construct($message, $code);
 error_log('Error in '.$this->getFile().
 ' Line: '.$this->getLine().
 ' Error: '.$this->getMessage()

);
 }
}
class UserDatabaseException extends UserException {}

Our base class, UserException, is a custom exception that ensures the exception

details are logged using the error_log function. The subclass

UserDatabaseException represents a database problem. If you were to add further

functionality to the User class, you could create further custom exceptions based

on the UserException class to cover all possible exception situations.

We begin to create the class by defining some class properties:

Access Control 345

User.class.php (excerpt)

class User
{
 protected $db;
 protected $cfg;
 protected $userId;
 protected $firstName;
 protected $lastName;
 protected $email;
 protected $permissions;

$db will contain a PDO instance for our database connection, $cfg will store our

configuration details, and the remaining properties will contain information from

the user’s account details.

The constructor takes an instance of the PDO class, loads the configuration file, and

calls the populate method:

User.class.php (excerpt)

 public function __construct(PDO $db)
 {
 $this->db = $db;
 $this->cfg = parse_ini_file('access_control.ini', TRUE);
 $this->populate();

 }

Next comes the populate method:

User.class.php (excerpt)

 private function populate()
 {
 $var_login = $this->cfg['login_vars']['login'];
 $user_table = $this->cfg['users_table']['table'];
 $user_id = $this->cfg['users_table']['col_id'];
 $user_login = $this->cfg['users_table']['col_login'];
 $user_email = $this->cfg['users_table']['col_email'];
 $user_first = $this->cfg['users_table']['col_name_first'];
 $user_last = $this->cfg['users_table']['col_name_last'];

346 The PHP Anthology

We load some configuration values into local variables to aid the readability of the

code.

Next, we attempt to look up the user’s details in the database:

User.class.php (excerpt)

 $session = new Session();
 try
 {
 $sql = "SELECT

 " . $user_id . ", " . $user_email . ",
" . $user_first . ", " . $user_last . "
 FROM
 " . $user_table . "
 WHERE
 " . $user_login . " = :login";

 $stmt = $this->db->prepare($sql);
 $login = $session->get($var_login);
 $stmt->bindParam(':login', $login);
 $stmt->execute();
 $row = $stmt->fetch(PDO::FETCH_ASSOC);

 }
 catch(PDOException $e)
 {
 throw new UserDatabaseException('Database error when' .

 ' populating user details: '.$e->getMessage());
 }

We first need to instantiate a new session object (which we built in “How do I create

a session class?”). The session login variable is then used as the key to find the

user’s details in the user table. If a PDOException is thrown, we throw our custom

UserDatabaseException.

Once we’ve retrieved the user’s record from the database, we store all the detail in

the User object properties:

Access Control 347

User.class.php (excerpt)

 $this->userId = $row[$user_id];
 $this->email = $row[$user_email];
 $this->firstName = $row[$user_first];
 $this->lastName = $row[$user_last];
 }

Populate pulls this user’s record from the database and stores various useful pieces

of information from that record in the object’s variables so that we can access them

easily; for example, when we want to display the user’s name on the page. The most

important aspect is to gather the user_id value from the database, for the purpose

of checking permissions.

We also add a few accessor methods. Accessor methods allow public access to

otherwise protected object properties—they allow the properties to be read without

granting public access to users of the class to write to them:

User.class.php (excerpt)

 public function getId()
 {
 return $this->userId;

 }

 public function getFirstName()
 {
 return $this->firstName;

 }

 public function getLastName()
 {
 return $this->lastName;

 }

 public function getEmail()
 {
 return $this->email;

 }

Finally, we add the checkPermission method. This method takes a named permis­

sion as an argument and checks that the user has that permission:

348 The PHP Anthology

User.class.php (excerpt)

 public function checkPermission($permission)
 {
 if (!isset($this->permissions))
 {
 $perm_table = $this->cfg['permission_table']['table'];
 $perm_id = $this->cfg['permission_table']['col_id'];
 $perm_name = $this->cfg['permission_table']['col_name'];
 $u2c_table = $this->cfg['user_to_collection_table']['table'];
 $u2c_id = $this->cfg['user_to_collection_table']['col_id'];
 $c2p_table = $this->cfg['collection_to_permission_table']

➥['table'];
 $c2p_id = $this->cfg['collection_to_permission_table']

➥['col_id'];
 $c2p_pid = $this->cfg['collection_to_permission_table']

➥['col_permission_id'];

The first step we take is to check that the permissions array for this user has been

set. If not, we proceed with the database lookup. Before we perform the lookup,

though, we assign some configuration settings to local variables to help improve

our code’s readability.

Next, we assemble the SQL query and perform the lookup using the User->userId

property as the key:

User.class.php (excerpt)

 try
 {
 $this->permissions = array();
 $sql = 'SELECT p.'. $perm_name .' as perm

 FROM
 ' . $u2c_table . ' uc
INNER JOIN ' . $c2p_table . ' cp
ON uc.' . $u2c_id . ' = cp.' . $c2p_id . '
 INNER JOIN ' . $perm_table . ' p
 ON cp.' . $c2p_pid . ' = p.' . $perm_id . '
 WHERE uc.user_id =:user';

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':user', $this->userId);
 $stmt->execute();

Access Control 349

while ($row = $stmt->fetch(PDO::FETCH_ASSOC))

 {

 $this->permissions[] = $row['permission'];

 }

 }

 catch(PDOException $e)

 {

 throw new UserDatabaseException('Database error when' .

 ' checking permissions: '.$e->getMessage());

 }

 }

If the lookup has returned database rows, we store them in object User->permissions

property array. This means that if we need to check permissions more than once

on a page, that check will only come at the cost of a single query. And, as usual, if

a PDOException is thrown, we in turn throw our custom UserDatabaseException.

Finally, we check that the permission passed into the method as an argument in

the $permission variable is included in the user’s permissions array:

User.class.php (excerpt)

 if (in_array($permission, $this->permissions))
 {
 return true;

 }
 else
 {
 return false;

 }
 }
}

The checkPermission simply returns true if the user has the permission, and false

if not.

The Permissions Test Page
Now, to test our permissions system, we can build a permissions testing page. This

testing page will require you to log in using the details of one of the accounts in the

350 The PHP Anthology

user table, and will simulate an attempt to access one of four defined permission

levels in the permission table—view, create, edit, and delete.

First, we need to include all the required classes and the database credentials file:

permissions.php (excerpt)

<?php
require_once 'Session.class.php';
require_once 'Auth.class.php';
require_once 'User.class.php';
require_once 'dbcred.php';

Next, we instantiate our PDO, Auth (which we met in “How do I create a class to

control access to a section of the site?”), and User objects:

permissions.php (excerpt)

try
{
 $db = new PDO($dsn, $user, $password);
 $auth = new Auth($db, 'login.php', 'secret');
 $authuser = new User($db);

The Auth object will make sure the current user is authorized, and redirect them to

the login form if not. If the user is authorized, we create a User object in order to

be able to check the user’s permissions.

We’re simulating permissions through a query string variable—$_GET['view']:

permissions.php (excerpt)

 switch (@$_GET['view']) {
 case 'create':
 $permission = 'create';
 $msg = 'You are able to create new content.';
 break;

 case 'edit':
 $permission = 'edit';
 $msg = 'You are able to edit existing content.';
 break;

 case 'delete':

Access Control 351

$permission = 'delete';

 $msg = 'You are able to delete existing content.';

 break;

 default:

 $permission = 'view';

 $msg = 'You are able to read existing content.';

 }

We set the permission level and the $msg variable—the message that appears on the

page—to reflect the value of $_GET['view'].

Next, we test the user’s permissions:

permissions.php (excerpt)

 if (!$authuser->checkPermission($permission)) {
 $msg = 'You do not have permission to do this.';

 }

If the user doesn’t have the required permission, we take appropriate action. Since

this demonstration is merely a test, we simply set the page message to indicate that

the user does not have the required permission level. In a production web applica­

tion, you’d redirect the user to the login form, adding a message to indicate that

they’re not authorized to obtain that level of access.

Finally, we make sure to catch any exceptions and take appropriate action:

permissions.php (excerpt)

}
catch (Exception $e)
{
 $msg = 'An error has occurred: ' . $e->getMessage();
}
?>

The only task left is to create the HTML for our permissions testing page:

352 The PHP Anthology

permissions.php (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

⋮ HTML Head contents…
 </head>
 <body>
 <h1>Permissions Test</h1>
 <p>
 <a href="<?php echo $_SERVER['PHP_SELF']; ?>">View |
 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=create">Create |

 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=edit">Edit |

 <a href="<?php echo $_SERVER['PHP_SELF'];
 ?>?view=delete">Delete

 </p>
 <h2><?php echo $authuser->getFirstName() . ' ' .

$authuser->getLastName(); ?></h2>
 <p>Permission Level: '<?php echo $permission ?>'</p>
 <p><?php echo $msg; ?></p>

 </body>
</html>

The testing page is very simple. First, we have a menu of links that test each permis­

sion level by appending the appropriate query string to the link URLs. Then ,we

have a simple page body that consists of the current user’s name, the current per­

mission level, and the message set by the permissions test.

Discussion
The User class fetches data on a “need to know” basis. That is, despite the fact that

some user data is retrieved on instantiation using the populate method, the data

pertaining to permissions may not be needed every time the User class is instantiated.

It’s likely that we’ll only check permissions on a restricted number of pages, so we

can save ourselves a database query when the user views public pages, and leave

the checkPermission method to be called only when needed. This approach of only

fetching data from the database at the moment it is needed—as opposed to performing

all the queries at the beginning—is known as lazy fetching, and can be a useful ap­

proach to reducing unnecessary queries and performance overhead.

Access Control 353

The permissions testing page was a simple example, of course, but you could use

the checkPermission method any way you like—perhaps within if statements to

decide what a user is allowed to do and see. Another approach would be to use a

variable, such as the $msg variable we’ve used here, to store the name of a PHP

script, which contained the restricted content, for use with an include statement.

Otherwise, that’s all there is to it. Now, all you need to do is build an administration

interface to control Users, Groups, and Permissions. Well, what are you waiting for?

How do I store sessions in a database?
As discussed earlier, in “How do I use sessions?”, the default behavior of sessions

in PHP on the server side is to create a temporary file in which session data is stored.

This file is usually kept in the temporary directory of the operating system and, as

such, presents a security risk to your applications, especially if you’re using a shared

server.

Solution
Use the PHP function session_set_save_handler to specify a custom session

handler that provides an alternative data store that’s fully under your control. The

session_set_save_handler function definition is as follows:

bool session_set_save_handler (callback $open,

 callback $close,

 callback $read,

 callback $write,

 callback $destroy,

 callback $gc

);

Each callback argument is a function that must conform to the PHP session’s API.

You can read more about the function on The PHP Manual page.13 You can simply

implement a separate function for each callback; however, in this solution we create

a new class—the DatabaseSession class—to encapsulate all our session handling

needs, and use a PDO object to connect to a database and store session information

there.

13 http://www.php.net/session_set_save_handler/

http://www.php.net/session_set_save_handler/
http://www.php.net/session_set_save_handler/

354 The PHP Anthology

Before we delve deep into the details of the class, I’ll show you the create statement

for the session table we use. This statement provides a minimal amount of inform­

ation for you to keep track of, so feel free to add more if you wish—for example,

you might like to store the IP address or the last page visited. Just remember to add

the new columns and values to the queries that are used throughout the class’s

methods below:

CREATE TABLE session (

 sess_id VARCHAR(255),

 sess_start DATETIME,

 sess_last_acc DATETIME,

 sess_data VARCHAR(255),

 PRIMARY KEY (sess_id)

);

The DatabaseSession Class
Now, let’s look at the class. We begin by defining the class properties:

DatabaseSession.class.php (excerpt)

class DatabaseSession
{
 private $sess_table;
 private $sess_db;
 private $sess_db_host;
 private $sess_db_usr;
 private $sess_db_pass;
 private $db;

$sess_table will store the database table name, $sess_db will store the database

name, $sess_db_host will store the database server hostname, $sess_db_usr will

store the database username, and $sess_db_pass will store the database password.

The $db property will store the PDO object used for all the database queries.

Next, we define the constructor method:

Access Control 355

DatabaseSession.class.php (excerpt)

 public function __construct($sess_db_usr = 'user',
$sess_db_pass = 'passwd',
$sess_table = 'session',
$sess_db = 'dbname',
$sess_db_host = 'locolhost')

 {
 $this->sess_db_usr = $sess_db_usr;
 $this->sess_db_pass = $sess_db_pass;
 $this->sess_table = $sess_table;
 $this->sess_db = $sess_db;
 $this->sess_db_host = $sess_db_host;

 }

The constructor simply stores the database information passed to the method

within the object’s properties.

The first function callback that we must pass to the session_set_save_handler

function is an open function, which is called when a session is started. The open

method of the DatabaseSession class will handle that job:

DatabaseSession.class.php (excerpt)

 public function open($path, $name)
 {
 try
 {
 $dsn = "mysql:host={$this->sess_db_host};".

 "dbname={$this->sess_db}";
 $this->db = new PDO($dsn, $this->sess_db_usr,

 $this->sess_db_pass);
 $this->db->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);
 }
 catch (PDOException $e)
 {
 error_log('Error connecting to the session database.');
 error_log('Reason given:'.$e->getMessage()."\n");
 return false;

 }
 return true;

 }

356 The PHP Anthology

This method is called with two string arguments—the path of the session file and

the name of the file—and must return either true or false. The path and filename

information is irrelevant to us as we’re using a database, so we do nothing with it.

In the method, we make the connection to the database that will hold the session

data. If there’s an error, we return false; if the database connection is successful, we

return true.

The next function callback we need to implement is the close function, so we add

a close method to our class:

DatabaseSession.class.php (excerpt)

 public function close()
 {
 $this->db = null;
 return true;

 }

The close method is called when we end a session, and must return either true or

false. It isn’t uncommon to manually call the garbage collection (gc) method here,

though it isn’t strictly necessary—PHP will do its own garbage collection throughout.

We remove our database connection by setting the close method to null.

session_set_save_handler also requires that a read function be implemented.

The read function needs to take the session ID as an argument and return a

string—even an empty one, if that’s appropriate. We implement a read method in

our class:

DatabaseSession.class.php (excerpt)

 public function read($sess_id)
 {
 try
 {
 $sql = "SELECT sess_data FROM {$this->sess_table} WHERE " .

 "sess_id = :id";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$sess_id));
 $res = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }
 catch (PDOException $e)

Access Control 357

{

error_log('Error reading the session data table in the' .

 ' session reading method.');

 error_log(' Query with error: '.$sql);

 error_log(' Reason given:'.$e->getMessage()."\n");

 return '';

}

 if (count($res) > 0)

 {

return isset($res[0]['sess_data']) ?

$res[0]['sess_data'] : '';

 }

 else

 {

 return '';

 }

 }

The read method retrieves the session data from the database, using the session ID

as the key, and returns the data as a string. If no data is found or there’s a database

error, an empty string is returned.

After the read function, the next function callback we need to implement is the

write function. This function, as the name implies, handles the writing of the session

data. The function is required to take two arguments—the session ID and the session

data—and the return value must be either true or false. We implement a write

method in our class-based solution. In our method, we first see if the session ID is

already in the database:

DatabaseSession.class.php (excerpt)

 public function write($sess_id, $data)
 {
 try
 {
 $sql = "SELECT sess_data FROM {$this->sess_table} WHERE " .

 "sess_id = :id";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$sess_id));
 $res = $stmt->fetchAll(PDO::FETCH_ASSOC);

 }
 catch (PDOException $e)

358 The PHP Anthology

{

error_log('Error reading the session data table in the' .

 ' session writing method.');

 error_log(' Query with error: '.$sql);

 error_log(' Reason given:'.$e->getMessage()."\n");

 return false;

}

The $res variable contains the result of our database lookup. Based upon this result,

we either update the existing session record with an SQL UPDATE query or insert a

new one with an SQL INSERT query:

DatabaseSession.class.php (excerpt)

 try
 {
 if (count($res) > 0)
{
 $sql = "UPDATE {$this->sess_table} SET" .

 " sess_last_acc = NOW(), sess_data = :data" .
 " WHERE sess_id = :id";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':data', $data);
 $stmt->bindParam(':id', $sess_id);

}
 else
{
 $sql ="INSERT INTO {$this->sess_table}(sess_id," .

 " sess_start, sess_last_acc," .
 " sess_data) VALUES (:id, NOW(), NOW(), :data)";

 $stmt = $this->db->prepare($sql);
 $stmt->bindParam(':id', $sess_id);
 $stmt->bindParam(':data', $data);
}
 $res = $stmt->execute();

 }

Access Control 359

If you know you’ll only be using MySQL as your database, consider using the RE­

PLACE syntax instead.14 Since we don’t want to limit our class to MySQL, we use

the longer but more compatible method above.

Finally, we need to catch any PDOExceptions and return true or false:

DatabaseSession.class.php (excerpt)

 catch (PDOException $e)
 {
 error_log('Error writing to the session data table.');
 error_log('Query with error: '.$sql);
 error_log('Reason given:'.$e->getMessage()."\n");
 return false;

 }
 return true;

 }

Our next task is to implement a destroy function, which, as the name suggests, is

called when the session is destroyed. It receives the session ID as an argument and

must return either true or false. In our class method destroy, we simply delete the

session from the database using the session ID as the key, and return false if an error

occurs or true if the operation succeeds:

DatabaseSession.class.php (excerpt)

 public function destroy($sess_id)
 {
 try
 {
 $sql = "DELETE FROM {$this->sess_table} WHERE sess_id = :id";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$sess_id));
}
 catch (PDOException $e)
 {
 error_log('Error destroying the session.');
 error_log('Query with error: '.$sql);

14 REPLACE is a MySQL extension to the SQL standard that either inserts a new row, or deletes an old

row and inserts the new row if the old row had the same value as the new row for a PRIMARY KEY or

UNIQUE index. You can read more about it at http://dev.mysql.com/doc/refman/5.1/en/replace.html.

http://dev.mysql.com/doc/refman/5.1/en/replace.html

360 The PHP Anthology

error_log('Reason given:'.$e->errorMessage()."\n");

 return false;

 }

 return true;

 }

The final function we are required to implement is the gc, or garbage collection,

function, which is used to clean out any old sessions that were never closed properly.

It receives an integer argument for the “time to live” (TTL) value for a session. In

our class method, gc, we delete any session record where the last access time is less

then the current time, minus the TTL value:

DatabaseSession.class.php (excerpt)

 public function gc($ttl)
 {
 $end = time() - $ttl;
 try
 {
 $sql = "DELETE FROM {$this->sess_table} WHERE" .

 " sess_last_acc <:end";
 $stmt = $this->db->prepare($sql);
 $stmt->execute(array(':id'=>$end));

 }
 catch (PDOException $e)
 {
 error_log('Error with the garbage collection method of the' .

 ' session class.');
 error_log('Query with error: '.$sql);
 error_log('Reason given:'.$e->getMessage());
 return false;

 }
 return true;

 }

The garbage collection method is called by PHP as dictated by the php.ini settings

session.gc_probability and session.gc_divisor, and is checked every time a

new session is started. Again, you can call it manually in the session close method

if you wish.

Access Control 361

MySQL MyISAM Engine Performance

If your session table sees high rates of insertions and deletions, you should consider

adding an OPTIMIZE TABLE query to the garbage collection function to regain

memory and help increase performance. For more information on OPTIMIZE

TABLE, see the MySQL manual.15

Finally, we implement a class __destruct method. This step is necessitated by the

changes that were made in how PHP sessions are closed after version 5.0.5. Basically,

we just have to make sure the session is explicitly written and closed by calling the

session_write_close function. You can read more about this task on the manual

page.16 Here’s our __destruct method and the end of our class definition:

DatabaseSession.class.php (excerpt)

 public function __destruct()
 {
 session_write_close();

 }
}

Using the DatabaseSession Class
Here’s a simple script to test our new DatabaseSession class:

dbsession.php (excerpt)

<?php
require_once 'DatabaseSession.class.php';

$session = new DatabaseSession('user', 'secret', 'session',
 'access_control','localhost');

session_set_save_handler(array($session, 'open'),
 array($session, 'close'),
 array($session, 'read'),
 array($session, 'write'),
 array($session, 'destroy'),
 array($session, 'gc')

);

15 http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
16 http://www.php.net/session_set_save_handler/

http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://www.php.net/session_set_save_handler/
http://www.php.net/session_set_save_handler/
http://dev.mysql.com/doc/refman/5.1/en/optimize-table.html
http://www.php.net/session_set_save_handler/

362 The PHP Anthology

session_start();

$name = (isset($_SESSION['name']))? $_SESSION['name'] :'';

if ($name !== '')

{

 echo 'Welcome ', $name, ' to your session!';

}

else

{

 echo 'Lets start the session!';

 $_SESSION['name'] = 'PHP';

}

?>

We include our DatabaseSession class, then instantiate the DatabaseSession object.

Next, we use session_set_save_handler to register our custom PHP session-

handling methods. Then we have a quick little demonstration to show us that the

session is working—the first time you load the web page you should see the message

“Let’s start the session!" We then set the $_SESSION['name'] to PHP. When you re­

fresh the web page, the message should change to “Welcome PHP to your session!”

which indicates that our session data is being stored and retrieved correctly in the

database.

Welcome to database-saved sessions!

Summary
In this chapter we’ve investigated HTTP authentication and PHP sessions, and

created a complete access control system that can manage user registrations, pass­

word resets, and changes, including authorization, groups, and multiple permission

levels.

Phew! Well, there you have it—total access control over your site! Now you have

the power to bark “Denied” at those that shouldn’t be in restricted areas, and roll

out the red carpet for those that should. Can you feel the warm glow of power

gathering within you? Will you use it for good—or evil? Either way, I hope you’ve

enjoyed it and learned a bit along the way.

Chapter11
Caching
In the good old days when building web sites was as easy as knocking up a few

HTML pages, the delivery of a web page to a browser was a simple matter of having

the web server fetch a file. A site’s visitors would see its small, text-only pages almost

immediately, unless they were using particularly slow modems. Once the page was

downloaded, the browser would cache it somewhere on the local computer so that,

should the page be requested again, after performing a quick check with the server

to ensure the page hadn’t been updated, the browser could display the locally cached

version. Pages were served as quickly and efficiently as possible, and everyone was

happy.

Then dynamic web pages came along and spoiled the party by introducing two

problems:

■	 When a request for a dynamic web page is received by the server, some interme­

diate processing must be completed, such as the execution of scripts by the PHP

engine. This processing introduces a delay before the web server begins to deliver

the output to the browser. This may not be a significant delay where simple PHP

scripts are concerned, but for a more complex application, the PHP engine may

have a lot of work to do before the page is finally ready for delivery. This extra

364 The PHP Anthology

work results in a noticeable time lag between the user’s requests and the actual

display of pages in the browser.

■	 A typical web server, such as Apache, uses the time of file modification to inform

a web browser of a requested page’s age, allowing the browser to take appropriate

caching action. With dynamic web pages, the actual PHP script may change only

occasionally; meanwhile, the content it displays, which is often fetched from a

database, will change frequently. The web server has no way of discerning up­

dates to the database, so it doesn’t send a last modified date. If the client (that

is, the user’s browser) has no indication of how long the data will remain valid,

it will take a guess. This is problematic if the browser decides to use a locally

cached version of the page which is now out of date, or if the browser decides

to request from the server a fresh copy of the page, which actually has no new

content, making the request redundant. The web server will always respond

with a freshly constructed version of the page, regardless of whether or not the

data in the database has actually changed.

To avoid the possibility of a web site visitor viewing out-of-date content, most

web developers use a meta tag or HTTP headers to tell the browser never to use

a cached version of the page. However, this negates the web browser’s natural

ability to cache web pages, and entails some serious disadvantages. For example,

the content delivered by a dynamic page may only change once a day, so there’s

certainly a benefit to be gained by having the browser cache a page—even if only

for 24 hours.

If you’re working with a small PHP application, it’s usually possible to live with

both issues. But as your site increases in complexity—and attracts more

traffic—you’ll begin to run into performance problems. Both these issues can be

solved, however: the first with server-side caching; the second, by taking control

of client-side caching from within your application. The exact approach you use to

solve these problems will depend on your application, but in this chapter, we’ll

consider both PHP and a number of class libraries from PEAR as possible panaceas

for your web page woes.

Note that in this chapter’s discussions of caching, we’ll look at only those solutions

that can be implemented in PHP. For a more general introduction, the definitive

Caching 365

discussion of web caching is represented by Mark Nottingham’s tutorial.1 Further­

more, the solutions in this chapter should not be confused with some of the script

caching solutions that work on the basis of optimizing and caching compiled PHP

scripts, such as Zend Accelerator2 and ionCube PHP Accelerator.3

How do I prevent web

browsers from caching a page?

If timely information is crucial to your web site and you wish to prevent out-of-date

content from ever being visible, you need to understand how to prevent web

browsers—and proxy servers—from caching pages in the first place.

Solutions
There are two possible approaches we could take to solving this problem: using

HTML meta tags, and using HTTP headers.

Using HTML Meta Tags
The most basic approach to the prevention of page caching is one that utilizes HTML

meta tags:

<meta http-equiv="expires" content="Mon, 26 Jul 1997 05:00:00 GMT"/>

<meta http-equiv="pragma" content="no-cache" />

The insertion of a date that’s already passed into the Expires meta tag tells the

browser that the cached copy of the page is always out of date. Upon encountering

this tag, the browser usually won’t cache the page. Although the Pragma: no-cache

meta tag isn’t guaranteed, it’s a fairly well-supported convention that most web

browsers follow. However, the two issues associated with this approach, which

we’ll discuss below, may prompt you to look at the alternative solution.

Using HTTP Headers
A better approach is to use the HTTP protocol itself, with the help of PHP’s header

function, to produce the equivalent of the two HTML meta tags above:

1 http://www.mnot.net/cache_docs/
2 http://www.zend.com/
3 http://www.php-accelerator.co.uk/

http://www.mnot.net/cache_docs/
http://www.zend.com/
http://www.php-accelerator.co.uk/
http://www.mnot.net/cache_docs/
http://www.zend.com/
http://www.php-accelerator.co.uk/

366 The PHP Anthology

<?php

 header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');

 header('Pragma: no-cache');

?>

We can go one step further than this, using the Cache-Control header that’s suppor­

ted by HTTP 1.1-capable browsers:

<?php

 header('Expires: Mon, 26 Jul 1997 05:00:00 GMT');

 header('Cache-Control: no-store, no-cache, must-revalidate');

 header('Cache-Control: post-check=0, pre-check=0', FALSE);

 header('Pragma: no-cache');

?>

For a precise description of HTTP 1.1 Cache-Control headers, have a look at the

W3C’s HTTP 1.1 RFC.4 Another great source of information about HTTP headers,

which can be applied readily to PHP, is mod_perl’s documentation on issuing correct

headers.5

Discussion
Using the Expires meta tag sounds like a good approach, but two problems are as­

sociated with it:

■	 The browser first has to download the page in order to read the meta tags. If a

tag wasn’t present when the page was first requested by a browser, the browser

will remain blissfully ignorant and keep its cached copy of the original.

■	 Proxy servers that cache web pages, such as those common to ISPs, generally

won’t read the HTML documents themselves. A web browser might know that

it shouldn’t cache the page, but the proxy server between the browser and the

web server probably doesn’t—it will continue to deliver the same out-of-date

page to the client.

On the other hand, using the HTTP protocol to prevent page caching essentially

guarantees that no web browser or intervening proxy server will cache the page, so

4 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
5 http://perl.apache.org/docs/general/correct_headers/correct_headers.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://perl.apache.org/docs/general/correct_headers/correct_headers.html
http://perl.apache.org/docs/general/correct_headers/correct_headers.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://perl.apache.org/docs/general/correct_headers/correct_headers.html

Caching 367

visitors will always receive the latest content. In fact, the first header should accom­

plish this on its own; this is the best way to ensure a page is not cached. The Cache-

Control and Pragma headers are added for some degree of insurance. Although they

don’t work on all browsers or proxies, the Cache-Control and Pragma headers will

catch some cases in which the Expires header doesn’t work as intended—if the

client computer’s date is set incorrectly, for example.

Of course, to disallow caching entirely introduces the problems we discussed at

the start of this chapter: it negates the web browser’s natural ability to cache pages,

and can create unnecessary overhead, as new versions of pages are always requested,

even though those pages may not have been updated since the browser’s last request.

We’ll look at the solution to these issues in just a moment.

How do I control client-side caching?
We addressed the task of disabling client-side caching in “How do I prevent web

browsers from caching a page?”, but disabling the cache is rarely the only (or best)

option.

Here we’ll look at a mechanism that allows us to take advantage of client-side caches

in a way that can be controlled from within a PHP script.

Apache Required!

This approach will only work if you’re running PHP as an Apache web server

module, because it requires use of the function getallheaders—which only

works with Apache—to fetch the HTTP headers sent by a web browser.

Solutions
In controlling client-side caching you have two alternatives. You can set a date on

which the page will expire, or respond to the browser’s request headers. Let’s see

how each of these tactics is executed.

Setting a Page Expiry Header
The header that’s easiest to implement is the Expires header—we use it to set a

date on which the page will expire, and until that time, web browsers are allowed

to use a cached version of the page. Here’s an example of this header at work:

368 The PHP Anthology

expires.php (excerpt)

<?php
function setExpires($expires) {
 header(

 'Expires: '.gmdate('D, d M Y H:i:s', time()+$expires).'GMT');
}
setExpires(10);
echo ('This page will self destruct in 10 seconds
');
echo ('The GMT is now '.gmdate('H:i:s').'
');
echo ('View Again
');
?>

In this example, we created a custom function called setExpires that sets the HTTP

Expires header to a point in the future, defined in seconds. The output of the above

example shows the current time in GMT, and provides a link that allows us to view

the page again. If we follow this link, we’ll notice the time updates only once every

ten seconds. If you like, you can also experiment by using your browser’s Refresh

button to tell the browser to refresh the cache, and watching what happens to the

displayed date.

Acting on the Browser’s Request Headers
A more useful approach to client-side cache control is to make use of the Last-

Modified and If-Modified-Since headers, both of which are available in HTTP

1.0. This action is known technically as performing a conditional GET request;

whether your script returns any content depends on the value of the incoming If-

Modified-Since request header.

If you use PHP version 4.3.0 and above on Apache, the HTTP headers are accessible

with the functions apache_request_headers and apache_response_headers. Note

that the function getallheaders has become an alias for the new

apache_request_headers function.

This approach requires that you send a Last-Modified header every time your PHP

script is accessed. The next time the browser requests the page, it sends an If-

Modified-Since header containing a time; your script can then identify whether

the page has been updated since that time. If it hasn’t, your script sends an HTTP

304 status code to indicate that the page hasn’t been modified, and exits before

sending the body of the page.

Caching 369

Let’s see these headers in action. The example below uses the modification date of

a text file. To simulate updates, we first need to create a way to randomly write to

the file:

ifmodified.php (excerpt)

<?php
$file = 'ifmodified.txt';
$random = array (0,1,1);
shuffle($random);
if ($random[0] == 0) {
 $fp = fopen($file, 'w');
 fwrite($fp, 'x');
 fclose($fp);
}
$lastModified = filemtime($file);

Our simple randomizer provides a one-in-three chance that the file will be updated

each time the page is requested. We also use the filemtime function to obtain the

last modified time of the file.

Next, we send a Last-Modified header that uses the modification time of the text

file. We need to send this header for every page we render, to cause visiting browsers

to send us the If-Modifed-Since header upon every request:

ifmodified.php (excerpt)

header('Last-Modified: ' .
gmdate('D, d M Y H:i:s', $lastModified) . ' GMT');

Our use of the getallheaders function ensures that PHP gives us all the incoming

request headers as an array. We then need to check that the If-Modified-Since

header actually exists; if it does, we have to deal with a special case caused by older

Mozilla browsers (earlier than version 6), which appended an illegal extra field to

their If-Modified-Since headers. We use PHP’s strtotime function to generate a

timestamp from the date the browser sent us. If there’s no such header, we set this

timestamp to zero, which forces PHP to give the visitor an up-to-date copy of the

page:

370 The PHP Anthology

ifmodified.php (excerpt)

$request = getallheaders();
if (isset($request['If-Modified-Since']))
{
 $modifiedSince = explode(';', $request['If-Modified-Since']);
 $modifiedSince = strtotime($modifiedSince[0]);
}
else
{
 $modifiedSince = 0;
}

Finally, we check to see whether or not the cache has been modified since the last

time the visitor received this page. If it hasn’t, we simply send a 304 Not Modified

response header and exit the script, saving bandwidth and processing time by

prompting the browser to display its cached copy of the page:

ifmodified.php (excerpt)

if ($lastModified <= $modifiedSince)
{
 header('HTTP/1.1 304 Not Modified');
 exit();
}

echo ('The GMT is now '.gmdate('H:i:s').'
');
echo ('View Again
');
?>

Remember to use the “View Again” link when you run this example (clicking the

Refresh button usually clears your browser’s cache). If you click on the link re­

peatedly, the cache will eventually be updated; your browser will throw out its

cached version and fetch a new page from the server.

If you combine the Last-Modified header approach with time values that are already

available in your application—for example, the time of the most recent news art­

icle—you should be able to take advantage of web browser caches, saving bandwidth

and improving your application’s perceived performance in the process.

Caching 371

Be very careful to test any caching performed in this manner, though; if you get it

wrong, you may cause your visitors to consistently see out-of-date copies of your

site.

Discussion
HTTP dates are always calculated relative to Greenwich Mean Time (GMT). The

PHP function gmdate is exactly the same as the date function, except that it auto­

matically offsets the time to GMT based on your server’s system clock and regional

settings.

When a browser encounters an Expires header, it caches the page. All further re­

quests for the page that are made before the specified expiry time use the cached

version of the page—no request is sent to the web server. Of course, client-side

caching is only truly effective if the system time on the computer is accurate. If the

computer’s time is out of sync with that of the web server, you run the risk of pages

either being cached improperly, or never being updated.

The Expires header has the advantage that it’s easy to implement; in most cases,

however, unless you’re a highly organized person, you won’t know exactly when

a given page on your site will be updated. Since the browser will only contact the

server after the page has expired, there’s no way to tell browsers that the page they’ve

cached is out of date. In addition, you also lose some knowledge of the traffic visiting

your web site, since the browser will not make contact with the server when it re­

quests a page that’s been cached.

How do I examine HTTP
headers in my browser?
How can you actually check that your application is running as expected, or debug

your code, if you can’t actually see the HTTP headers? It’s worth knowing exactly

which headers your script is sending, particularly when you’re dealing with HTTP

cache headers.

Solution
Several worthy tools are available to help you get a closer look at your HTTP

headers:

372 The PHP Anthology

LiveHTTPHeaders (http://livehttpheaders.mozdev.org/)

This add-on to the Firefox browser is a simple but very handy tool for examining

request and response headers while you’re browsing.

Firebug (http://getfirebug.org/)

Another useful Firefox add-on, Firebug is a tool whose interface offers a dedic­

ated tab for examining HTTP request information.

HTTPWatch (http://www.httpwatch.com/)

This add-on to Internet Explorer for HTTP viewing and debugging is similar to

LiveHTTPHeaders above.

Charles Web Debugging Proxy (http://getcharles.com/)

Available for Windows, Mac OS X, and Linux or Unix, the Charles Web Debug­

ging Proxy is a proxy server that allows developers to see all the HTTP traffic

between their browsers and the web servers to which they connect.

Any of these tools will allow you to inspect the communication between the server

and browser.

How do I cache file downloads

with Internet Explorer?

If you’re developing file download scripts for Internet Explorer users, you might

notice a few issues with the download process. In particular, when you’re serving

a file download through a PHP script that uses headers such as Content-Disposi­

tion: attachment, filename=myFile.pdf or Content-Disposition: inline,

filename=myFile.pdf, and that tells the browser not to cache pages, Internet Ex­

plorer won’t deliver that file to the user.

Solutions
Internet Explorer handles downloads in a rather unusual manner: it makes two re­

quests to the web site. The first request downloads the file and stores it in the cache

before making a second request, the response to which is not stored. The second

request invokes the process of delivering the file to the end user in accordance with

the file’s type—for instance, it starts Acrobat Reader if the file is a PDF document.

Therefore, if you send the cache headers that instruct the browser not to cache the

(http://livehttpheaders.mozdev.org/)
(http://getfirebug.org/)
(http://www.httpwatch.com/)
(http://getcharles.com/)

Caching 373

page, Internet Explorer will delete the file between the first and second requests,

with the unfortunate result that the end user receives nothing!

If the file you’re serving through the PHP script won’t change, one solution to this

problem is simply to disable the “don’t cache” headers, pragma and cache-control,

which we discussed in “How do I prevent web browsers from caching a page?”, for

the download script.

If the file download will change regularly, and you want the browser to download

an up-to-date version of it, you’ll need to use the Last-Modified header that we

met in “How do I control client-side caching?”, and ensure that the time of modific­

ation remains the same across the two consecutive requests. You should be able to

achieve this goal without affecting users of browsers that handle downloads correctly.

One final solution is to write the file to the file system of your web server and simply

provide a link to it, leaving it to the web server to report the cache headers for you.

Of course, this may not be a viable option if the file is supposed to be secured.

How do I use output buffering
for server-side caching?
Server-side processing delay is one of the biggest bugbears of dynamic web pages.

We can reduce server-side delay by caching output. The page is generated normally,

performing database queries and so on with PHP; however, before sending it to the

browser, we capture and store the finished page somewhere—in a file, for instance.

The next time the page is requested, the PHP script first checks to see whether a

cached version of the page exists. If it does, the script sends the cached version

straight to the browser, avoiding the delay involved in rebuilding the page.

Solution
Here, we’ll look at PHP’s in-built caching mechanism, the output buffer, which can

be used with whatever page rendering system you prefer (templates or no templates).

Consider situations in which your script displays results using, for example, echo

or print, rather than sending the data directly to the browser. In such cases, you

can use PHP’s output control functions to store the data in an in-memory buffer,

which your PHP script has both access to and control over.

374 The PHP Anthology

Here’s a simple example that demonstrates how the output buffer works:

buffer.php (excerpt)

<?php
ob_start();
echo '1. Place this in the buffer
';
$buffer = ob_get_contents();
ob_end_clean();
echo '2. A normal echo
';
echo $buffer;
?>

The buffer itself stores the output as a string. So, in the above script, we commence

buffering with the ob_start function, and use echo to display a piece of text which

is stored in the output buffer automatically. We then use the ob_get_contents

function to fetch the data the echo statement placed in the buffer, and store it in

the $buffer variable. The ob_end_clean function stops the output buffer and

empties the contents; the alternative approach is to use the ob_end_flush function,

which displays the contents of the buffer.

The above script displays the following output:

2. A normal echo

1. Place this in the buffer

In other words, we captured the output of the first echo, then sent it to the browser

after the second echo. As this simple example suggests, output buffering can be a

very powerful tool when it comes to building your site; it provides a solution for

caching, as we’ll see in a moment, and is also an excellent way to hide errors from

your site’s visitors, as is discussed in Chapter 9. Output buffering even provides a

possible alternative to browser redirection in situations such as user authentication.

In order to improve the performance of our site, we can store the output buffer

contents in a file. We can then call on this file for the next request, rather than

having to rebuild the output from scratch again. Let’s look at a quick example of

this technique. First, our example script checks for the presence of a cache file:

Caching 375

sscache.php (excerpt)

<?php
if (file_exists('./cache/page.cache'))
{
 readfile('./cache/page.cache');
 exit();
}

If the script finds the cache file, we simply output its contents and we’re done!

If the cache file is not found, we proceed to output the page using the output buffer:

sscache.php (excerpt)

ob_start();
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Cached Page</title>

 </head>
 <body>
 This page was cached with PHP's
 <a href="http://www.php.net/outcontrol"

 >Output Control Functions
 </body>
</html>
<?php
$buffer = ob_get_contents();
ob_end_flush();

Before we flush the output buffer to display our page, we make sure to store the

buffer contents in the $buffer variable.

The final step is to store the saved buffer contents in a text file:

376 The PHP Anthology

sscache.php (excerpt)

$fp = fopen('./cache/page.cache','w');
fwrite($fp,$buffer);
fclose($fp);
?>

The page.cache file contents are exactly same as the HTML that was rendered by

the script:

cache/page.cache (excerpt)

<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Cached Page</title>

 </head>
 <body>
 This page was cached with PHP's
 <a href="http://www.php.net/outcontrol"

 >Output Control Functions
 </body>
</html>

Discussion
For an example that shows how to use PHP’s output buffering capabilities to handle

errors more elegantly, have a look at the PHP Freaks article “Introduction to Output

Buffering,” by Derek Ford.6

What About Template Caching?
Template engines often include template caching features—Smarty is a case in

point.7 Usually, these engines offer a built-in mechanism for storing a compiled

version of a template (that is, the native PHP generated from the template), which

prevents us developers from having to recompile the template every time a page is

requested.

6 http://www.phpfreaks.com/tutorials/59/0.php
7 http://smarty.php.net/

http://www.phpfreaks.com/tutorials/59/0.php
http://www.phpfreaks.com/tutorials/59/0.php
http://smarty.php.net/
http://smarty.php.net/
http://www.phpfreaks.com/tutorials/59/0.php
http://smarty.php.net/

Caching 377

This process should not be confused with output—or content—caching, which

refers to the caching of the rendered HTML (or other output) that PHP sends to the

browser. In addition to the content cache mechanisms discussed in this chapter,

Smarty can cache the contents of the HTML page. Whether you use Smarty’s content

cache or one of the alternatives discussed in this chapter, you can successfully use

both template and content caching together on the same site.

HTTP Headers and Output Buffering
Output buffering can help solve the most common problem associated with the

header function, not to mention the issues surrounding session_start and

set_cookie. Normally, if you call any of these functions after page output has begun,

you’ll get a nasty error message. When output buffering’s turned on, the only output

types that can escape the buffer are HTTP headers. If you use ob_start at the very

beginning of your application’s execution, you can send headers at whichever point

you like, without encountering the usual errors. You can then write out the buffered

page content all at once, when you’re sure that no more HTTP headers are required.

Use Output Buffering Responsibly

While output buffering can helpfully solve all our header problems, it should

not be used solely for that reason. By ensuring that all output is generated after

all the headers are sent, you’ll save the time and resource overheads involved in

using output buffers.

How do I cache just the parts of
a page that change infrequently?
Caching an entire page is a simplistic approach to output buffering. While it’s easy

to implement, that approach negates the real benefits presented by PHP’s output

control functions to improve your site’s performance in a manner that’s relevant to

the varying lifetimes of your content.

No doubt, some parts of the page that you send to visitors will change very rarely,

such as the page’s header, menus, and footer. But other parts—for example, the list

of comments on your blog posts—may change quite often. Fortunately, PHP allows

you to cache sections of the page separately.

378 The PHP Anthology

Solution
Output buffering can be used to cache sections of a page in separate files. The page

can then be rebuilt for output from these files.

This technique eliminates the need to repeat database queries, while loops, and so

on. You might consider assigning each block of the page an expiry date after which

the cache file is recreated; alternatively, you may build into your application a

mechanism that deletes the cache file every time the content it stores is changed.

Let’s work through an example that demonstrates the principle. Firstly, we’ll create

two helper functions, writeCache and readCache. Here’s the writeCache function:

smartcache.php (excerpt)

<?php
 function writeCache($content, $filename)
 {
 $fp = fopen('./cache/' . $filename, 'w');
 fwrite($fp, $content);
 fclose($fp);

 }

The writeCache function is quite simple; it just writes the content of the first argu­

ment to a file with the name specified in the second argument, and saves that file

to a location in the cache directory. We’ll use this function to write our HTML to

the cache files.

The readCache function will return the contents of the cache file specified in the

first argument if it has not expired—that is, the file’s last modified time is not older

than the current time minus the number of seconds specified in the second argument.

If it has expired or the file does not exist, the function returns false:

smartcache.php (excerpt)

 function readCache($filename, $expiry)
 {
 if (file_exists('./cache/' . $filename))
 {
 if ((time() - $expiry) > filemtime('./cache/' . $filename))
 {

Caching 379

return false;

 }

 $cache = file('./cache/' . $filename);

 return implode('', $cache);

 }

 return false;

 }

For the purposes of demonstrating this concept, I’ve used a procedural approach.

However, I wouldn’t recommend doing this in practice, as it will result in very

messy code and is likely to cause issues with file locking. For example, what happens

when someone accesses the cache at the exact moment it’s being updated? Better

solutions will be explained later on in the chapter.

Let’s continue this example. After the output buffer is started, processing begins.

First, the script calls readCache to see whether the file header.cache exists; this

contains the top of the page—the HTML <head> tag and the start <body> tag. We’ve

used PHP’s date function to display the time at which the page was actually

rendered, so you’ll be able to see the different cache files at work when the page is

displayed:

smartcache.php (excerpt)

 ob_start();
 if (!$header = readCache('header.cache', 604800))
 {
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Chunked Cached Page</title>
 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"/>
 </head>
 <body>
 <p>The header time is now: <?php echo date('H:i:s'); ?></p>

<?php
 $header = ob_get_contents();

380 The PHP Anthology

ob_clean();

 writeCache($header,'header.cache');

 }

Note what happens when a cache file isn’t found: the header content is output and

assigned to a variable, $header, with ob_get_contents, after which the ob_clean

function is called to empty the buffer. This allows us to capture the output in

“chunks” and assign them to individual cache files with the writeCache function.

The header of the page is now stored as a file, which can be reused without our

needing to rerender the page. Look back to the start of the if condition for a moment.

When we called readCache, we gave it an expiry time of 604800 seconds (one week);

readCache uses the file modification time of the cache file to determine whether

the cache is still valid.

For the body of the page, we’ll use the same process as before. However, this time,

when we call readCache, we’ll use an expiry time of five seconds; the cache file

will be updated whenever it’s more than five seconds old:

smartcache.php (excerpt)

 if (!$body = readCache('body.cache', 5))
 {
 echo 'The body time is now: ' . date('H:i:s') . '
';
 $body = ob_get_contents();
 ob_clean();
 writeCache($body, 'body.cache');

 }

The page footer is effectively the same as the header. After the footer, the output

buffering is stopped and the contents of the three variables that hold the page data

are displayed:

smartcache.php (excerpt)

 if (!$footer = readCache('footer.cache', 604800)) {
?>

 <p>The footer time is now: <?php echo date('H:i:s'); ?></p>
 </body>
</html>

Caching 381

<?php

 $footer = ob_get_contents();

 ob_clean();

 writeCache($footer, 'footer.cache');

 }

 ob_end_clean();

 echo $header . $body . $footer;

?>

The end result looks like this:

The header time is now: 17:10:42

The body time is now: 18:07:40

The footer time is now: 17:10:42

The header and footer are updated on a weekly basis, while the body is updated

whenever it is more than five seconds old. If you keep refreshing the page, you’ll

see the body time updating.

Discussion
Note that if you have a page that builds content dynamically, based on a number

of variables, you’ll need to make adjustments to the way you handle your cache

files. For example, you might have an online shopping catalog whose listing pages

are defined by a URL such as:

http://example.com/catalogue/view.php?category=1&page=2

This URL should show page two of all items in category one; let’s say this is the

category for socks. But if we were to use the caching code above, the results of the

first page of the first category we looked at would be cached, and shown for any

request for any other page or category, until the cache expiry time elapsed. This

would certainly confuse the next visitor who wanted to browse the category for

shoes—that person would see the cached content for socks!

To avoid this issue, you’ll need to incorporate the category ID and page number in

to the cache file name like so:

http://example.com/catalogue/view.php?category=1&page=2

382 The PHP Anthology

$cache_filename = 'catalogue_' . $category_id . '_' .

 $page . '.cache';

 if (!$catalogue = readCache($cache_filename, 604800))

 {

⋮ display the category HTML…
 }

This way, the correct cached content can be retrieved for every request.

Nesting Buffers

You can nest one buffer within another practically ad infinitum simply by calling

ob_start more than once. This can be useful if you have multiple operations

that use the output buffer, such as one that catches the PHP error messages, and

another that deals with caching. Care needs to be taken to make sure that

ob_end_flush or ob_end_clean is called every time ob_start is used.

How do I use PEAR::Cache_Lite
for server-side caching?
The previous solution explored the ideas behind output buffering using the PHP

ob_* functions. Although we mentioned at the time, that approach probably isn’t

the best way to meet to dual goals of keeping your code maintainable and having a

reliable caching mechanism. It’s time to see how we can put a caching system into

action in a manner that will be reliable and easy to maintain.

Solution
In the interests of keeping your code maintainable and having a reliable caching

mechanism, it’s a good idea to delegate the responsibility of caching logic to classes

you trust. In this case, we’ll use a little help from PEAR::Cache_Lite (version 1.7.2

is used in the examples here).8 Cache_Lite provides a solid yet easy-to-use library

for caching, and handles issues such as: file locking; creating, checking for, and

deleting cache files; controlling the output buffer; and directly caching the results

from function and class method calls. More to the point, Cache_Lite should be rel­

8 http://pear.php.net/package/Cache_Lite/

http://pear.php.net/package/Cache_Lite/
http://pear.php.net/package/Cache_Lite/
http://pear.php.net/package/Cache_Lite/

Caching 383

atively easy to apply to an existing application, requiring only minor code modific­

ations.

Cache_Lite has four main classes. First is the base class, Cache_Lite, which deals

purely with creating and fetching cache files, but makes no use of output buffering.

This class can be used alone for caching operations in which you have no need for

output buffering, such as storing the contents of a template you’ve parsed with PHP.

The examples here will not use Cache_Lite directly, but will instead focus on the

three subclasses. Cache_Lite_Function can be used to call a function or class

method and cache the result, which might prove useful for storing a MySQL query

result set, for example. The Cache_Lite_Output class uses PHP’s output control

functions to catch the output generated by your script and store it in cache files; it

allows you to perform tasks such as those we completed in “How do I cache just

the parts of a page that change infrequently?”. The Cache_Lite_File class bases

cache expiry on the timestamp of a master file, with any cache file being deemed

to have expired if it is older than the timestamp.

Let’s work through an example that shows how you might use Cache_Lite to create

a simple caching solution. When we’re instantiating any child classes of Cache_Lite,

we must first provide an array of options that determine the behavior of Cache_Lite

itself. We’ll look at these options in detail in a moment. Note that the cacheDir

directory we specify must be one to which the script has read and write access:

cachelite.php (excerpt)

<?php
 require_once 'Cache/Lite/Output.php';
 $options = array(
 'cacheDir' => './cache/',
 'writeControl' => 'true',
 'readControl' => 'true',
 'fileNameProtection' => false,
 'readControlType' => 'md5'

);
 $cache = new Cache_Lite_Output($options);

For each chunk of content that we want to cache, we need to set a lifetime (in

seconds) for which the cache should live before it’s refreshed. Next, we use the

start method, available only in the Cache_Lite_Output class, to turn on output

384 The PHP Anthology

buffering. The two arguments passed to the start method are an identifying value

for this particular cache file, and a cache group. The group is an identifier that allows

a collection of cache files to be acted upon; it’s possible to delete all cache files in

a given group, for example (more on this in a moment). The start method will

check to see if a valid cache file is available and, if so, it will begin outputting the

cache contents. If a cache file is not available, start will return false and begin

caching the following output.

Once the output for this chunk has finished, we use the end method to stop buffering

and store the content as a file:

cachelite.php (excerpt)

 $cache->setLifeTime(604800);

 if (!$cache->start('header', 'Static')) {
?>
<!DOCTYPE html public "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>PEAR::Cache_Lite example</title>
 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"/>
</head>
<body>
 <h2>PEAR::Cache_Lite example</h2>
 <p>The header time is now: <?php echo date('H:i:s'); ?></p>
<?php

 $cache->end();
 }

To cache the body and footer, we follow the same procedure we used for the header.

Note that, again, we specify a five-second lifetime when caching the body:

cachelite.php (excerpt)

 $cache->setLifeTime(5);
 if (!$cache->start('body', 'Dynamic')) {
 echo 'The body time is now: ' . date('H:i:s') . '
';
 $cache->end();

 }

Caching 385

$cache->setLifeTime(604800);

 if (!$cache->start('footer', 'Static')) {

?>

 <p>The footer time is now: <?php echo date('H:i:s'); ?></p>

 </body>

</html>

<?php

 $cache->end();

 }

?>

On viewing the page, Cache_Lite creates cache files in the cache directory. Because

we’ve set the fileNameProtection option to false, Cache_Lite creates the files

with these names:

■ ./cache/cache_Static_header

■ ./cache/cache_Dynamic_body

■ ./cache/cache_Static_footer

You can read about the fileNameProtection option—and many more—in “What

configuration options does Cache_Lite support?”. When the same page is requested

later, the code above will use the cached file if it is valid and has not expired.

Protect your Cache Files

Make sure that the directory in which you place the cache files is not publicly

available, or you may be offering your site’s visitors access to more than you

realize.

What configuration options
does Cache_Lite support?
When instantiating Cache_Lite (or any of its subclasses, such as

Cache_Lite_Output), you can use any of a number of approaches to controlling its

behavior. These options should be placed in an array and passed to the constructor

as shown below (and in the previous section):

386 The PHP Anthology

$options = array(

 'cacheDir' => './cache/',

 'writeControl' => true,

 'readControl' => true,

 'fileNameProtection' => false,

 'readControlType' => 'md5'

);

 $cache = new Cache_Lite_Output($options);

Solution
The options available in the current version of Cache_Lite (1.7.2) are:

cacheDir

This is the directory in which the cache files will be placed. It defaults to /tmp/.

caching

This option switches on and off the caching behavior of Cache_Lite. If you have

numerous Cache_Lite calls in your code and want to disable the cache for de­

bugging, for example, this option will be important. The default value is true

(caching enabled).

lifeTime

This option represents the default lifetime (in seconds) of cache files. It can be

changed using the setLifeTime method. The default value is 3600 (one hour),

and if it’s set to null, the cache files will never expire.

fileNameProtection

With this option activated, Cache_Lite uses an MD5 encryption hash to generate

the filename for the cache file. This option protects you from error when you

try to use IDs or group names containing characters that aren’t valid for file­

names; fileNameProtection must be turned on when you use

Cache_Lite_Function. The default is true (enabled).

fileLocking

This option is used to switch the file locking mechanisms on and off. The default

is true (enabled).

Caching 387

writeControl

This option checks that a cache file has been written correctly immediately after

it has been created, and throws a PEAR::Error if it finds a problem. Obviously,

this facility would allow your code to attempt to rewrite a cache file that was

created incorrectly, but it comes at a cost in terms of performance. The default

value is true (enabled).

readControl

This option checks any cache files that are being read to ensure they’re not

corrupt. Cache_Lite is able to place inside the file a value, such as the string

length of the file, which can be used to confirm that the cache file isn’t corrupt.

There are three alternative mechanisms for checking that a file is valid, and

they’re specified using the readControlType option. These mechanisms come

at the cost of performance, but should help to guarantee that your visitors aren’t

seeing scrambled pages. The default value is true (enabled).

readControlType

This option lets you specify the type of read control mechanism you want to

use. The available mechanisms are a cyclic redundancy check (crc32, the default

value) using PHP’s crc32 function, an MD5 hash using PHP’s md5 function (md5),

or a simple and fast string length check (strlen). Note that this mechanism is

not intended to provide security from people tampering with your cache files;

it’s just a way to spot corrupt files.

pearErrorMode

This option tells Cache_Lite how it should return PEAR errors to the calling

script. The default is CACHE_LITE_ERROR_RETURN, which means Cache_Lite will

return a PEAR::Error object.

memoryCaching

With memory caching enabled, every time a file is written to the cache, it is

stored in an array in Cache_Lite. The saveMemoryCachingState and

getMemoryCachingState methods can be used to store and access the memory

cache data between requests. The advantage of this facility is that the complete

set of cache files can be stored in a single file, reducing the number of disk

read/write operations by reconstructing the cache files straight into an array to

which your code has access. The memoryCaching option may be worth further

investigation if you run a large site. The default value is false (disabled).

388 The PHP Anthology

onlyMemoryCaching

If this option is enabled, only the memory caching mechanism will be used.

The default value is false (disabled).

memoryCachingLimit

This option places a limit on the number of cache files that will be stored in

the memory caching array. The more cache files you have, the more memory

will be used up by memory caching, so it may be a good idea to enforce a limit

that prevents your server from having to work too hard. Of course, this option

places no restriction on the size of each cache file, so just one or two massive

files may cause a problem. The default value is 1000.

automaticSerialization

If enabled, this option will automatically serialize all data types. While this

approach will slow down the caching system, it is useful for caching nonscalar

data types such as objects and arrays. For higher performance, you might con­

sider serializing nonscalar data types yourself. The default value is false (dis­

abled).

automaticCleaningFactor

This option will automatically clean old cache entries—on average, one in x

cache writes, where x is the value set for this option. Therefore, setting this

value to 0 will indicate no automatic cleaning, and a value of 1 will cause cache

clearing on every cache write. A value of 20 to 200 is the recommended starting

point if you wish to enable this facility; it causes cache cleaning to happen, on

average, 0.5% to 5% of the time. The default value is 0 (disabled).

hashedDirectoryLevel

When set to a nonzero value, this option will enable a hashed directory structure.

A hashed directory structure will improve the performance of sites that have

thousands of cache files. If you choose to use hashed directories, start by setting

this value to 1, and increasing it as you test for performance improvements. The

default value is 0 (disabled).

errorHandlingAPIBreak

This option was added to enable backwards compatibility with code that uses

the old API. When the old API was run in CACHE_LITE_ERROR_RETURN mode

(see the pearErrorMode option earlier in this list), some functions would return

Caching 389

a Boolean value to indicate success, rather than returning a PEAR_Error object.

By setting this value to true, the PEAR_Error object will be returned instead.

The default value is false (disable).

How do I purge the Cache_Lite cache?
The built-in lifetime mechanism for Cache_Lite cache files provides a good

foundation for keeping your cache files up to date, but there will be some circum­

stances in which you need the files to be updated immediately.

Solution
In cases in which you need immediate updates, the methods remove and clean

come in handy. The remove method is designed to delete a specific cache file; it

takes as arguments the cache ID and group name of the file. To delete the page body

cache file we created in “How do I use PEAR::Cache_Lite for server-side caching?”,

we’d use this code:

$cache->remove('body', 'Dynamic');

If we use the clean method, we can delete all the files in our cache directory simply

by calling the method with no arguments; alternatively, we can specify a group of

cache files to delete. If we wanted to delete both the header and footer cache files

we created in “How do I use PEAR::Cache_Lite for server-side caching?”, we could

do so like this:

$cache->clean('Static');

Discussion
The remove and clean methods should obviously be called in response to events

that arise within an application. For example, if you have a discussion forum ap­

plication, you probably want to remove the relevant cache files when a visitor posts

a new message.

Although it may seem like this solution entails a lot of code modifications, with

some care it can be applied to your application in a global manner. If you have a

central script that’s included in every page, your script can simply watch for incom­

ing events—for example, a variable like $_GET['newPost']—and respond by deleting

390 The PHP Anthology

the required cache files. This keeps the cache file removal mechanism central and

easier to maintain. You might also consider using the php.ini setting auto_pre­

pend_file to include this code in every PHP script.

How do I cache function calls?
Many web sites provide access to their data via web services such as SOAP and

XML-RPC.9 As web services are accessed over a network, it’s often a very good idea

to cache results so that they can be fetched locally, rather than repeating the same

slow request to the server multiple times. A simple approach might be to use PHP

sessions, but as that solution operates on a per-visitor basis, the opening requests

for each visitor will still be slow.

Solution
Let’s assume you wish to create a web page that lists all the SitePoint books available

on Amazon. The actual list is not likely to change from moment to moment, so why

would we make the request to the Amazon web service every time the web page is

displayed? We won’t! Instead, we can take advantage of Cache_Lite by caching the

results of the XML-RPC request.

Requires PEAR::SOAP Version 0.11.0

The following solution uses the PEAR::SOAP library version 0.11.0 to access the

Amazon web service. You can find this package on the PEAR web site.10

Here’s some hypothetical code that fetches the data from the remote Amazon server:

$results = $amazonClient->ManufacturerSearchRequest($params);

Using Cache_Lite_Function, we can cache the results so the data returned from

the service can be reused; this will avoid unnecessary network calls and significantly

improve performance.

The following example code focuses on the caching aspect to prevent us from getting

bogged down in the details of using the Amazon web service. You can see the

9 You can read all about web services in Chapter 12.
10 http://pear.php.net/package/soap/

http://pear.php.net/package/soap/
http://pear.php.net/package/soap/

Caching 391

complete script if you download this book’s code archive from the SitePoint web

site.

The Cache_Lite_Function requires the inclusion of the following file:

cachefunction.php (excerpt)

 require_once 'Cache/Lite/Function.php';

We instantiate the Cache_Lite_Function class with some options:

cachefunction.php (excerpt)

 $options = array(
 'cacheDir' => './cache/',
 'fileNameProtection' => true,
 'writeControl' => true,
 'readControl' => true,
 'readControlType' => 'strlen',
 'defaultGroup' => 'SOAP'

);
 $cache = new Cache_Lite_Function($options);

It’s important that the fileNameProtection option is set to true (this is in fact the

default value, but in this case I’ve set it manually to emphasize the point). If it were

set to false, the filename would be invalid, so the data will not be cached.

Here’s how we make the calls to our SOAP client class:

cachefunction.php (excerpt)

$results = $cache->call('amazonClient->ManufacturerSearchRequest',
$params);

If the request is being made for the first time, Cache_Lite_Function will store the

results as a serialized array or object in a cache file (not that you need to worry

about this), and this file will be used for future requests until it expires. The

setLifeTime method can again be used to specify how long the cache files should

survive before they’re refreshed; currently, the default value of 3600 seconds (one

hour) is being used. You can then use the $results variable exactly as if you were

392 The PHP Anthology

calling the web service method directly. The output of our example script can be

seen in Figure 11.1.

Figure 11.1. SitePoint books at Amazon

Summary
Caching is an important and often overlooked aspect of web site development. Many

factors that affect the performance of today’s web sites weren’t a problem for their

predecessors—from complex, dynamic page generation, to a reliance on third-party

data over the network. In this chapter, we’ve examined HTML meta tags, HTTP

headers, PHP output buffering and PEAR::Cache_Lite, and we’ve seen how you

can use them to control the caching of your web site content and improve the site’s

reliability and performance.

Caching 393

Implementing a caching system for your site might be simple, but ultimately, it

depends on your requirements. If you have a busy and predominantly static web

site—such as a blog—that’s managed through a content management system, it will

likely require little alteration, yet may benefit from huge performance improvements

resulting from a small investment of your time. Setting up caching for a more com­

plex site that generates content on a per-user basis, such as a portal or shopping

cart system, will prove a little more tricky and time consuming, but the benefits are

still clear. Regardless, I hope the information in this chapter has given you a good

grasp of the options available, and will help you determine which techniques are

most suitable for your application.

Chapter12
XML and Web Services
Probably the single biggest addition to PHP 5 following the changes in the object

oriented programming model was the rewriting of the DOM XML extension, the

addition of the SimpleXML extension, and the addition of the SOAP extension.

PHP 5.1 introduced two new XML extensions, XMLReader and XMLWriter.

XML and web services are broad topics when viewed within the realm of PHP, due

to the number of facilities that are available for producing and consuming XML.

Entire books have been devoted to them.1 In this chapter, we’ll explore useful

solutions for handling some of the more common XML-related tasks, as well as for

consuming and serving XML-based web services; the rest is up to you!

Using the Zend Framework

A number of examples in this chapter utilize components from the Zend Frame­

work.2 Installation of the framework is simple: download the appropriate format

1 Two good sources include Rob Richards’s Pro PHP XML and Web Services (Berkeley: Apress, 2006),

and Thomas Myer’s No Nonsense XML Web Development With PHP (Melbourne: SitePoint, 2005).
2 http://framework.zend.com/

http://framework.zend.com/
http://framework.zend.com/
http://framework.zend.com/

396 The PHP Anthology

from http://framework.zend.com/download/, extract the archive, and update your

include_path to point to the library directory of the installation.

Which XML technologies are
available in PHP 5?
PHP 5 offers a number of new XML extensions. You can read about what’s new in

the Zend Developer Network article, “XML in PHP 5: What’s New?”3

Solution
Table 12.1 summarizes the XML extensions available in PHP 5.

Why should I use PHP’s XML extensions
instead of PHP string functions?
If XML is primarily a text format, why would we bother using the XML extensions?

Why wouldn’t we simply concatenate strings to create documents, or use regular

expressions to parse them?

Solution
The answer to this question is: for reasons of performance, compatibility, flexibility,

and ease of use.

Certainly, XML documents can be parsed using a series or regular expressions.

However, the PCRE engine is fairly heavyweight, and isn’t optimized for such tasks.

Tools such as SimpleXML and XMLReader allow you to iterate through a document

with ease, grabbing only the content you need without ever once writing a regular

expression. Using SAX, you can trigger code to execute as particular elements are

found in the document. XSL can be used to transform XML documents into other

XML documents, XHTML, SQL, and more.

3 http://devzone.zend.com/node/view/id/1713/

http://devzone.zend.com/node/view/id/1713/
http://framework.zend.com/download/
http://devzone.zend.com/node/view/id/1713/

XML and Web Services 397

Table 12.1. XML Extensions in PHP

More InformationPurposeExtension

http://www.php.net/xml/This set of PHP functions was designed for creating

XML parsers and XML event handlers. It has been

available since PHP 4 and is enabled by default.

SAX

http://www.php.net/dom/This OOP extension allows you to operate on or create

an XML document using the Document Object Model,

DOM

or DOM. It has been available since PHP 5.0.0 and is

enabled by default.

Built into the DOM extension, XPath allows you to

perform queries on your XML documents. It’s been

XPath

available as part of the DOM extension since PHP

5.0.0.

http://www.php.net/xsl/An OOP extension for performing Extensible

Stylesheet Language Transformations (XSLT) on DOM

XSL

documents, XSL has been available since PHP 5.0.0.

It can be enabled by sending the --with-xsl

argument to the compiler.

http://www.php.net/simplexml/An OOP tool set used to convert XML to iterable

objects, and thus allow the processing of XML using

SimpleXML

normal property selectors and array access. Available

since PHP 5.0.0, SimpleXML is enabled by default;

some features vary between PHP versions.

http://www.php.net/xmlreader/An OOP extension for iterating through an XML

stream a node at a time, XMLReader has been

XMLReader

available in PECL since PHP 5.0.0, and enabled by

default since PHP 5.1.0.

http://www.php.net/xmlwriter/This hybrid extension uses either function or OOP

access to create XML documents. Available in PECL

XMLWriter

since PHP 5.1.0, it has been enabled by default since

PHP 5.1.4. Enable it by sending the

--with-xmlwriter argument to the compiler

in previous versions.

398 The PHP Anthology

More InformationPurposeExtension

http://www.php.net/xmlrpc/A set of functions that allow developers to encode

and decode XML-RPC values and create XML-RPC

servers that use PHP functions and callbacks to

handle requests, XML-RPC has been available since

PHP 4.1.0. Enable it by sending the

--with-xmlrpc argument to the compiler.

XML-RPC

http://www.php.net/soap/The SOAP extension allows developers to create SOAP

clients or servers easily, and to bind objects or

functions to the client or server. Available since PHP

5.0.0, it can be enabled by sending the

--with-soap argument to the compiler.

SOAP

Discussion
XML documents may easily be written as the standard output of an application, or

by concatenating strings. However, you then need to worry about character encoding

issues, character typos that may affect document validity, and more. You can avoid

these issues using tools such as the DOM or XMLWriter extensions.

How do I parse an RSS feed?
RSS is becoming a ubiquitous Web technology—most sites offer RSS feeds of their

updated content, and many use this as a means to communicate with users. How

can you incorporate RSS feeds from other sites on your own?

Solutions
SimpleXML makes parsing XML as easy as traversing an object: instead of needing

to check for the element’s position, name, and type, we simply access the element.

To do so, though, we need to know something about the structure of the XML we’re

parsing; RSS, since it’s a published standard, is easy to parse using SimpleXML.

One thing to remember with SimpleXML is that if you want the actual value of a

property you’re accessing, you must cast it to the appropriate type first; otherwise,

you’ll receive the SimpleXMLElement representing the value. In the following ex­

ample, we use the simplexml_load_file function to load the RSS from the

sitepoint.com blogs feed and output the content of some of the elements:

XML and Web Services 399

simplexml.php (excerpt)

$url = 'http://rss.sitepoint.com/f/sitepoint_blogs_feed';
$xml = simplexml_load_file($url);
$channel = $xml->channel;
echo "Title: ", (string) $channel->title, "\n",

 "Description: ", (string) $channel->description, "\n",
 "Link: ", (string) $channel->link, "\n";

foreach ($channel->item as $item)
{
 echo "Item: ", (string) $item->title, "\n",

 "Link: ", (string) $item->link, "\n",
 "Description:\n", (string) $item->description, "\n";

}

The SimpleXML solution provided above is just one of several approaches you may

use with PHP 5. Let’s take a quick look at some other possibilities that exemplify

the elegance of SimpleXML.

Parsing XML with XMLReader
XMLReader is a newcomer on the PHP scene, having only become available since

PHP 5.1.0. It allows iterative access to XML documents using object oriented nota­

tion. However, it is more in the class of SAX than DOM or SimpleXML, as it provides

a more programmatic way to process the document.

In this example, we'll build a class—Rss_XmlReader—to encapsulate the functions

we need to parse an RSS feed using XMLReader. First, we define some class properties

and the constructor method:

Rss_XmlReader.class.php (excerpt)

class Rss_XmlReader
{
 public $channelTitle = '';
 public $channelDesc = '';
 public $channelLink = '';
 public $items = array();
 public $xml;
 public function __construct($url = null)
 {
 if (null !== $url)

400 The PHP Anthology

{

 $this->load($url);

 }

 }

The first three of these properties hold the RSS channel information, the $items

array will hold all the RSS items from the specified feed, and $xml will hold the

feed’s raw XML source. The constructor takes one argument: the URL of the RSS

feed.

If a URL is provided to the constructor, we’ll load and parse it immediately. Here’s

what the load method looks like:

Rss_XmlReader.class.php (excerpt)

 public function load($url)
 {
 $this->xml = file_get_contents($url);
 $xr = new XMLReader();
 $xr->XML($this->xml);
 $this->channelTitle = '';
 $this->channelDesc = '';
 $this->channelLink = '';
 $this->items = array();
 while ($xr->read())
 {
 if (XMLReader::ELEMENT == $xr->nodeType)
 {
 switch ($xr->localName)
 {
 case 'channel':
 $this->_getChannelInfo($xr);
 break;

 case 'item':
 $this->_getItem($xr);
 break;

 }
 }

 }
 }

XML and Web Services 401

Using file_get_contents, we retrieve the raw XML source, instantiate a new

XMLReader, and begin to read the RSS feed. As I mentioned previously, XMLReader

requires us to iterate through every node of the document—including the text ele­

ments of an XML node. During the load routine, we go through the top-level element

nodes of the document, and, if the current node is a channel, we read the channel

information. If it’s an item element, we read the details of the item.

The _getChannelInfo method reads the channel information from the channel

element:

Rss_XmlReader.class.php (excerpt)

 protected function _getChannelInfo($xr)
 {
 while ($xr->read() && ($xr->depth == 2))
 {
 if (XMLReader::ELEMENT == $xr->nodeType)
 {
 switch ($xr->localName)
 {
 case 'title':
 $xr->read();
 $this->channelTitle = $xr->value;
 break;

 case 'description':
 $xr->read();
 $this->channelDesc = $xr->value;
 break;

 case 'link':
 $xr->read();
 $this->channelLink = $xr->value;
 break;

 }
 }

 }
 }

Parsing the channel information requires that we pluck the appropriate nodes out

of the channel element, including the channel title, description, and link, and

store them in the appropriate object properties.

402 The PHP Anthology

Parsing an item is really no different from parsing the channel information—we

grab one item element at a time. The only difference is that the information is stored

in the $items array for later iteration:

Rss_XmlReader.class.php (excerpt)

 protected function _getItem($xr)
 {
 $title = '';
 $link = '';
 $desc = '';
 $date = '';
 while ($xr->read() && ($xr->depth > 2))
 {
 if (XMLReader::ELEMENT == $xr->nodeType)
 {
 switch ($xr->localName)
 {
 case 'title':
 $xr->read();
 $title = $xr->value;
 break;

 case 'description':
 $xr->read();
 $desc = $xr->value;
 break;

 case 'link':
 $xr->read();
 $link = $xr->value;
 break;

 case 'date':
 $xr->read();
 $date = $xr->value;
 break;

 }
 }

 }
 $this->items[] = array(
 'title' => $title,
 'link' => $link,
 'desc' => $desc,
 'date' => $date

);
 }
}

XML and Web Services 403

Here is an example of our class in use:

xmlreader.php (excerpt)

<?php
require_once 'Rss_XmlReader.class.php';

$rss = new Rss_XmlReader(
 'http://rss.sitepoint.com/f/sitepoint_blogs_feed');

echo "Title: ", $rss->channelTitle, "\n",
 "Description: ", $rss->channelDesc, "\n",
 "Link: ", $rss->channelLink, "\n";

foreach ($rss->items as $item)
{
 echo "Item: {$item['title']}\nLink: "

 . "{$item['link']}\nDescription:\n{$item['desc']}\n";
}
?>

Now that all this work is done, we finally have the equivalent of the simple solution

we presented earlier with SimpleXML. Unfortunately, we’ve also done a lot more

work.

SimpleXML with Zend_Feed
RSS feeds are not the only feeds available, and you might want to access multiple

feed types in a similar fashion. Zend_Feed, a component of the Zend Framework,

offers a unified interface to both RSS and Atom feeds.4 It’s basically a class that

uses SimpleXML, but simplifies the process of retrieving the values by eliminating

the need to cast them to the appropriate type. Here’s an example:

zendfeed.php (excerpt)

require_once 'Zend/Feed/Rss.php';
$url = 'http://rss.sitepoint.com/f/sitepoint_blogs_feed';
$channel = new Zend_Feed_Rss($url);
// Use function syntax to grab properties as values
echo "Title: ", $channel->title(), "\n",

 "Description: ", $channel->description(), "\n",
 "Link: ", $channel->link(), "\n";

4 For Zend_Feed documentation, see http://framework.zend.com/manual/en/zend.feed.html.

http://framework.zend.com/manual/en/zend.feed.html

404 The PHP Anthology

foreach ($channel as $item)

{

 echo "Item: ", $item->title(), "\n",

 "Link: ", $item->link(), "\n",

 "Description:\n", $item->description(), "\n";

}

Discussion
As you can see, using SimpleXML or Zend_Feed is much simpler than creating your

own parser, as we did when we used XMLReader. The approach that uses Zend_Feed

doesn’t differ much from that which used SimpleXML; it simply eliminates the

need to perform type casting. So, why would we bother with XMLReader?

In the days of PHP 4, the parsing of XML in formats such as RSS feeds was almost

always done in SAX, if it wasn’t done using simple regular expressions. The DOM

XML extension was a latecomer on the PHP 4 scene and wasn’t included in the core

distribution, and thus did not gain much popularity amongst PHP 4 users. In addi­

tion, most PHP 4 books demonstrated XML parsing using SAX, which led many

developers to use SAX whenever XML parsing was required.

Things have changed, however, and we now have a plethora of options for parsing

XML in PHP 5.

SAX is still a good option if you’re parsing large documents, as it parses element

by element, allowing PHP to keep a low memory footprint. However, since it does

parse element by element, and requires the developer to define callbacks practically

at a per-element level, it’s rather unintuitive to use, and developers tend to end up

mired in the details of keeping track of element names and references. If you thought

the XMLReader example above was difficult to follow, a SAX example would have

had you completely lost.

XMLReader combines the low-memory footprint benefits of SAX with some of the

simplicity of SimpleXML. Like SAX, XMLReader uses a pull technology, which

means it parses the document incrementally as it reads it. Unlike SAX, however,

you don’t have to specify handlers for elements; it’s actually relatively simple to

parse through a document in a single loop. The main benefit of using XMLReader is

performance; since XMLReader operates on a stream instead of pulling the entire

XML and Web Services 405

XML document into memory, it can achieve a lot of processing with a small memory

footprint.

DOM functions can also be used to navigate XML.5 This option has one feature that

makes it an excellent choice for many: XPath integration. XPath allows you to search

for nodes within the document by path—an excellent technique for those times

when you want to pull data selectively from an XML document. However, the DOM

functions make it relatively difficult to loop over elements with the ease that Sim­

pleXML presents; they’re simply overkill for a situation as simple as parsing an RSS

feed. Use DOM when you need to do more complex tasks, such as modifying XML

documents in place.

The best answer to the question of how to parse XML is to use SimpleXML, or a

library wrapping it, such as Zend_Feed. The simplicity of treating an XML document

like a native PHP object cannot be overstated. In addition, because it builds on the

DOM extension, it has built-in XPath support, and at any point you can convert a

SimpleXMLElement to a DOMElement using the dom_import_simplexml function.6

How do I generate an RSS feed?
While it’s great to know how to parse RSS feeds, at some point, you’ll undoubtedly

want to generate your own. What XML technologies can you use with PHP 5 to

generate an RSS feed?

Solutions
All these solutions use the following data definition with which to generate the

RSS feed (you can find the complete file in the code archive):

rsssource.php.inc (excerpt)

$baseUrl = 'http://example.com/extensions/xml/';
$extensions = array(
 1 => array(
 'title' => 'SAX',
 'description' => 'ext/xml provides a SAX XML parser generator',
 'link' => $baseUrl . 'sax'

5 http://www.php.net/dom/
6 http://www.php.net/dom_import_simplexml/

http://www.php.net/dom/
http://www.php.net/dom_import_simplexml/
http://www.php.net/dom/
http://www.php.net/dom_import_simplexml/

406 The PHP Anthology

),

 2 => array(
 'title' => 'DOM',
 'description' => 'The DOM extension provides an implementation

➥ of DOM, the Document Object Model',
 'link' => $baseUrl . 'dom'

),

 3 => array(

 'title' => 'XPath',

 'description' => 'XPath is used to query XML documents for

➥ elements',
 'link' => $baseUrl . 'xpath'

)

⋮ more array items follow…
);

Because of its ability to map object properties to XML elements, SimpleXML makes

it very easy to generate XML documents quickly:

rss_simplexml.php (excerpt)

require 'rsssource.php.inc';
$rss = new SimpleXMLElement(

 '<?xml version="1.0" encoding="UTF-8" ?>' .
 '<rss version="2.0"></rss>');

$rss->addChild('channel');
$rss->channel->addChild('title', 'PHP XML Extensions');
$rss->channel->addChild('description',

 'Information and examples for using the PHP XML extensions');
$rss->channel->addChild('link',

'http://example.com/extensions/xml/');
foreach ($extensions as $extension)
{
 $item = $rss->channel->addChild('item');
 $item->addChild('title', $extension['title']);
 $item->addChild('description', $extension['description']);
 $item->addChild('link', $extension['link']);
}
echo $rss->asXML();

We previously used SimpleXML to parse XML; in PHP 5.1.3 and versions above, it

can also be used to generate XML (instead of simply modifying existing XML). It

XML and Web Services 407

doesn’t offer the full set of tools that the DOM makes available, but you can always

convert your SimpleXMLElement to a DOMElement using dom_import_simplexml.

As with the task of parsing XML, there’s more than one way to generate XML; other

options include DOM and XMLWriter.

Generating XML Using the DOM
DOM, the Document Object Model, allows you to traverse XML in a tree-like

structure, looking down the tree at child nodes, up the tree at parent nodes, and

horizontally at sibling nodes. Since it supports the entire breadth of XML, the DOM

is an excellent all-around choice for generating XML structures:

rss_dom.php (excerpt)

require 'rsssource.php.inc';
$document = new DOMDocument('1.0', 'UTF-8');
$rss = $document->createElement('rss');
$rss->setAttribute('version', '2.0');
$channel = $document->createElement('channel');
$title = $document->createElement('title', 'PHP XML Extensions');
$description = $document->createElement('description',

 'Information and examples for using the PHP XML extensions');
$link = $document->createElement('link',

 'http://example.com/extensions/xml/');
$channel->appendChild($title);
$channel->appendChild($description);
$channel->appendChild($link);
foreach ($extensions as $extension)
{
 $item = $document->createElement('item');
 $title = $document->createElement('title', $extension['title']);
 $description = $document->createElement('description',

 $extension['description']);
 $link = $document->createElement('link', $extension['link']);
 $item->appendChild($title);
 $item->appendChild($description);
 $item->appendChild($link);
 $channel->appendChild($item);
}
$rss->appendChild($channel);
$document->appendChild($rss);
echo $document->saveXML();

408 The PHP Anthology

Generating XML Using XMLWriter
XMLWriter is a cousin to XMLReader. It allows you to iteratively write XML docu­

ments, element by element, and to write either in-memory or directly to a URL.7

The XMLWriter interface can be accessed using either OOP or procedural function

calls:

rss_xmlwriter.php (excerpt)

require 'rsssource.php.inc';
$xw = new xmlWriter();
$xw->openMemory(); // use openUri() to output directly to a file
$xw->startDocument('1.0', 'UTF-8');
$xw->startElement('rss');
$xw->startElement('channel');
$xw->writeElement('title', 'PHP XML Extensions');
$xw->writeElement('description',

 'Information and examples for using the PHP XML extensions');
$xw->writeElement('link', 'http://example.com/extensions/xml/');
foreach ($extensions as $extension)
{
 $xw->startElement('item');
 $xw->writeElement('title', $extension['title']);
 $xw->writeElement('description', $extension['description']);
 $xw->writeElement('link', $extension['link']);
 $xw->endElement(); // item
}
$xw->endElement(); // channel
$xw->endElement(); // rss
$xml = $xw->outputMemory(true);
echo $xml;

Discussion
While probably the easiest solutions for generating XML are simply to concatenate

strings or to use a templating system, both have a significant drawback: they make

it very easy to mix character encodings accidentally or to introduce extraneous tags

or reserved XML entities, and thus end up with invalid XML. The better solution

7 For an in-depth explanation of XMLWriter, check out php|architect’s May 2006 issue, which has

an article entitled "XMLWriter," by Rob Richards, author of the extension.

XML and Web Services 409

is to use one of DOM, SimpleXML, or XMLWriter extensions, which take care of

those problems automatically.

XMLWriter is a relatively new extension that can be very useful if you’re generating

XML content sequentially. It’s a great choice if you have a fairly flat tree structure,

as this approach is almost as easy as concatenating strings or using a template system,

yet it protects you against encoding issues and improperly formed XML. XMLWriter

is also a great choice if you’re creating large documents, as it has the ability to write

documents directly to disk instead of keeping them in memory. This approach helps

prevent the kinds of memory issues found in the more heavyweight extensions,

such as DOM and SimpleXML, that operate entirely in memory. On the downside,

you have to close your own elements and keep track of where you are in the tree in

order to use this functionality. Your best bet is to use code indentation and comments

to keep track of where you are in the tree.

DOM allows you to build your documents from the inside out, and vice versa.

However, you’ll quickly become bogged down trying to remember which node

you’re in and whether or not it has children or a parent, because you need to operate

on individual DOMElements. There’s no easy way to view the overall tree structure

from your code. As a result, it’s probably best to use the DOM when you need to

modify existing XML.

As we’ve seen in these examples, SimpleXML allows you to build XML documents

as well as read them. Its object mapping of XML makes it very easy to create visual

trees in your code, and its ties to the DOM mean that once you’ve created the

structure, you can easily manipulate the document using DOM to set the encoding

and namespaces as necessary. The combination of SimpleXML and DOM should

become the Swiss Army Knife of your XML toolbox in PHP 5.

How do I search for a node
or content in XML?
Often, you only need a few pieces of information from a particular XML document.

Should you parse the entire document to find those elements? What if, for example,

all you need is a set of siblings that share a given element name?

410 The PHP Anthology

Solution
The solution is easy: use XPath. XPath, the XML Path Language, allows you to

search the logical structure of a document using a URL-like path notation. It was

originally developed to aid in XSL transformations, but has many other uses. The

DOM extension has built-in support for XPath; so does SimpleXML. Here’s an ex­

ample that uses the DOM extension:

xpath_dom.php (excerpt)

$doc = new DOMDocument;
$doc->preserveWhiteSpace = false;
$doc->load('http://rss.sitepoint.com/f/sitepoint_blogs_feed');
$xpath = new DOMXPath($doc);

$titles = $xpath->query('//item/title');
foreach ($titles as $title)
{

 echo $title->nodeValue, "\n";
}

This example loads the SitePoint blog feed and uses the XPath query //item/title

to select the title elements from all the item elements.

Here's a similar solution using SimpleXML:

xpath_simplexml.php (excerpt)

$doc = new SimpleXMLElement(
 'http://rss.sitepoint.com/f/sitepoint_blogs_feed',
null,
true // tell SimpleXML that we're supplying a URL

);
// search for titles with an item parent
foreach ($doc->xpath('//item/title') as $title)
{

echo $title, "\n";
}

XML and Web Services 411

Discussion
XPath could easily be the subject of an entire chapter, or even a book. The following

discussion serves only as the briefest of introductions; for full documentation on

the subject, check out the XPath specification at the W3C.8 9

XPath operates under a number of rules, the most basic of which is that the forward

slash, /, is used as a path separator between different levels in the XML tree hier­

archy. In the examples above, we were looking only for title nodes that were children

of item elements: item/title. In order to tell XPath that this is a relative path, and

that we don’t want to start the search from the root node, we prefix the path with

double slashes, //. The same data could have been queried using a full path to the

elements, /rss/channel/item/title.

The most basic rules for using XPath are:

■	 A forward slash, /, is a path separator.
■	 An absolute path from the root starts with a single forward slash, /.
■	 A relative path from a given location can start with anything else.
■	 A relative path matching elements at any depth of the document starts with two

forward slashes, //.
■	 A double period, .., indicates the parent of a node.
■	 A single period, ., indicates the current node.

XPath also allows you to match against element attributes, specific items within a

set of results, and even element values:

■	 Match values using [NODE=””], where NODE is a node name or indicator (such

as . or ..).
■	 Match attributes using @ATTR, either as part of the path expression, or as a mod­

ifier to the node (for example item/@type, item[@type], item[@type='']).
■	 Match a specific element in a returned list of nodes using brackets (for example,

//item/title[2]); note that indices start at 1.

8 http://www.w3.org/TR/xpath/

9 Sun also has an excellent XPath tutorial available at

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPXSLT3.html.

http://www.w3.org/TR/xpath/
mailto:item[@type=''])
http://www.w3.org/TR/xpath/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JAXPXSLT3.html

412 The PHP Anthology

As an example, on the day I write this, the SitePoint Blogs RSS feed presents an

item with the title, “News Wire: Liquid vs. Fixed.” To grab this item element, I can

use the following code:

// assuming $doc is a SimpleXMLElement

$item = $doc->xpath(

 '//item/title[.="News Wire: Liquid vs. Fixed"]/..');

Those lines return to me the item node and its children by matching:

■	 all item elements (//item)
■	 that have a title element (/title)
■	 with a value of “News Wire: Liquid vs. Fixed” ([.="News Wire: Liquid vs.

Fixed"])
■	 and return the parent item element(/..)

Several wildcards are also allowed:

■	 * matches any element node (not a text or attribute node).
■	 node() matches any type of node.
■	 @* matches any attribute.

XPath has much more to offer, including operators and a set of functions for

matching and manipulating strings in the path. If you find yourself needing to search

your XML documents, XPath is a good skillset to have at your disposal.

How can I consume XML-RPC web services?
XML-RPC is an XML-based protocol for performing remote procedure calls—basic­

ally, the process of calling functions and methods on a remote machine. The XML­

RPC specification defines a simple structure for calling a method on a server with

one or more parameters of given types; a single value is returned—just like a PHP

function.10 For more information on XML-RPC, visit the official XML-RPC web

site.11

10 http://www.xmlrpc.com/spec/
11 http://www.xmlrpc.com/

http://www.xmlrpc.com/spec/
http://www.xmlrpc.com/spec/
http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/spec/
http://www.xmlrpc.com/

XML and Web Services 413

XML-RPC also uses the concept of namespaces. Namespaces allow a single server

to serve several groups of related methods in a way that ensures that method name

collisions do not occur. A prototype XML-RPC method call might look like this:

struct lookup.state(string)

This call indicates that the state method of the lookup namespace expects a string

as an argument, and returns a struct (associative array) as a response. An actual call,

using Zend Framework’s Zend_XmlRpc_Client, might look like this:

$info = $client->lookup->state('Vermont');

XML-RPC is the grand-daddy of web services, and its simplicity is appealing to

many developers; with the clients available in most languages, we simply pass in

native values, and receive a native value as a response.

So, now you know about XML-RPC; how can you consume an XML-RPC service?

Solution
The Zend Framework offers an XML-RPC implementation that includes both a client

and server. Its interface is entirely object oriented, making it a good choice for OOP

enthusiasts; in particular, the ability to chain namespaces leading to a method makes

it incredibly intuitive to use. As an example, here’s a simple XML-RPC client script

that uses the XML-RPC server in “How do I serve my own XML-RPC web services?”.

The server exposes a math namespace with two methods, add and multiply:

zend_xmlrpc_client.php (excerpt)

require_once 'Zend/XmlRpc/Client.php';
try
{
 $client = new Zend_XmlRpc_Client(

 'http://localhost/phpant2/chapter_12/examples/' .
 'zend_xmlrpc_serv.php');

 $proxy = $client->getProxy();
 $add = $proxy->math->add(array(1,2));
 $mult = $proxy->math->multiply(array(21343243346,989554365486));
 echo '1 + 2 = ' . $add . "
";
 echo '21343243346 * 989554365486 = ' . $mult;
}

414 The PHP Anthology

catch (Zend_XmlRpc_Client_FaultException $e)

{

 echo $e->getMessage();

}

We first instantiate the Zend_XmlRpc_Client object with the URL of the web service.

The URL I've used above is relevant only to our testing environment so be sure to

change it to an appropriate alternative if you’re testing this script. The

Zend_XmlRpc_Client then allows us to call the web service directly as if it were a

PHP method, for example, $proxy->math->add.

It’s really that easy; the Zend_XmlRpc_Client and its namespace proxy make calling

XML-RPC methods as simple as calling object methods.12 We pass native PHP values

as method arguments, and get PHP values back. What could be easier?

PHP’s Native XML-RPC Extension
If you don’t want to install Zend Framework, what other options do you have?

PHP has a native XML-RPC extension, ext/xmlrpc, that can either be compiled

using the --with-xmlrpc directive, or installed via PECL. It’s marked as experiment­

al, so using it in a production environment may be risky, though it has been available

since the early PHP 4 series. It provides functions for encoding and decoding XML­

RPC values, creating XML-RPC requests and responses, and binding an XML-RPC

server to PHP callbacks.

A basic request uses the xmlrpc_encode_request function:

$request = xmlrpc_encode_request($methodName, $valuesArray);

Here, $methodName is the XML-RPC method being requested, and $valuesArray is

an array of values that are to be passed as arguments to the request. If you need to

specify an XML encoding, you can pass an optional third value—an associative ar­

ray—with some options:

12 http://framework.zend.com/manual/en/zend.xmlrpc.html

http://framework.zend.com/manual/en/zend.xmlrpc.html
http://framework.zend.com/manual/en/zend.xmlrpc.html

XML and Web Services 415

$request = xmlrpc_encode_request(

 $methodName,

$valuesArray,

array('encoding' => 'UTF-8')

);

The returned $request is the XML that we can use to make the request.

Note that some XML-RPC types don’t have direct equivalents in PHP; to use these,

you’ll need to tell ext/xmlrpc how they should be encoded using the

xmlrpc_set_type function. These values can then be passed directly to the

xmlrpc_encode_request function:

$date = xmlrpc_set_type('2006-12-01', 'datetime');

$base64 = xmlrpc_set_type($base64EncodedData, 'base64');

$request = xmlrpc_encode_request(

 $methodName,

array($date, $base64, $assocArray),

 array('encoding' => 'UTF-8')

);

As an example, here’s a simple XML-RPC client script that uses ext/xmlrpc and

the XML-RPC server we saw in “How do I serve my own XML-RPC web services?”:

ext_xmlrpc_client.php (excerpt)

try
{
$request = xmlrpc_encode_request(
 'math.add',
array(array(1,2)),
array('encoding' => 'UTF-8')

);

$context = stream_context_create(array('http' => array(
 'method' => "POST",
 'header' => "Content-Type: text/xml",
 'content' => $request

)));
 $file = file_get_contents(

 'http://localhost/phpant2/chapter_12/examples/' .
 'zend_xmlrpc_serv.php', false, $context);

 if(!file) {

416 The PHP Anthology

throw new Exception('Unable to get response from web service');

 }

 $response = xmlrpc_decode($file);

 if (is_array($response) && xmlrpc_is_fault($response))

 {

 throw new Exception($response['faultString'],

 $response['faultCode']);

 }

 echo '1 + 2 = ' . $response;

}

catch (Exception $e)

{

 echo $e->getMessage();

}

PHP’s ext/xmlrpc extension does most of the work to abstract the basic XML-RPC

functionality of encoding and decoding values and requests and responses. However,

you have to create the actual data exchange transfer yourself, as we did above with

the file_get_contents function. This approach offers nothing near the simplicity

of Zend_XmlRpc_Client unless, for example, you write your own class wrapper

around it.

How do I serve my own

XML-RPC web services?

XML-RPC servers listen at a specified address for HTTP POST requests, and return

XML in the response content using the text/xml Content-Type header. Errors are

reported using an XML-RPC fault response, which is an XML struct response that

contains faultCode and faultString elements.

Let’s see what’s involved in the process of decoding incoming requests, dispatching

them, and returning a valid response.

Solution
The Zend_XmlRpc_Server class allows you to bind classes or functions to the server

with optional namespaces;13 it then uses the Reflection API, and the developer­

13 http://framework.zend.com/manual/en/zend.xmlrpc.html

http://framework.zend.com/manual/en/zend.xmlrpc.html
http://framework.zend.com/manual/en/zend.xmlrpc.html

XML and Web Services 417

created phpDocumentor docblocks describing the functions or class methods,14 to

determine the XML-RPC prototypes. The caveat to using this approach is that you

must use XML-RPC types in your docblocks to describe your parameters and return

values.

Zend_XmlRpc_Server, like all server classes in the Zend Framework, follows PHP’s

SoapServer API, which makes the interface consistent across the different protocol

implementations.

As an example, here’s a simple Math class with two methods, add and multiply,

for which we can build a server:

Math.class.php (excerpt)

/**
 * Math methods
 */
class Math
{

 /**
 * Return the sum of all values in an array
 *
* @param array $values An array of values to sum
 * @return int
 */
 public static function add($values)
 {

 return array_sum($values);
 }
 /**
 * Return the product of all values in an array
 *
* @param array $values An array of values to multiply
 * @return int
 */
 public static function multiply($values)
 {

 return array_product($values);
 }

}

14 http://www.phpdoc.org/

http://www.phpdoc.org/
http://www.phpdoc.org/

418 The PHP Anthology

Now, let’s build the XML-RPC server, and for good measure, let’s also create a

function for retrieving XML-RPC server information:

zend_xmlrpc_serv.php (excerpt)

require_once 'Zend/XmlRpc/Server.php';
require_once 'Math.class.php';

/**
 * Get some info from the server
 *
* @return struct
 */
function getInfo()
{
 return array(

 'publisher' => 'SitePoint',
 'title' => 'The PHP Anthology'

);
}

$server = new Zend_XmlRpc_Server();
// Math class methods will be available in the 'math' namespace
$server->setClass('Math', 'math');
// getInfo() function will be available as server.getInfo
$server->addFunction('getInfo', 'server');
// Handle a request
echo $server->handle();

The Zend_XmlRpc_Server instance in this example will make three methods avail­

able, math.add, math.multiply, and server.getInfo, in addition to several system

methods that we can use to obtain information about the server. It will automatically

check incoming requests to make sure they adhere to the various method signatures,

throwing fault responses if they do not, and return the XML-RPC response along

with any required headers. You don’t need to change your code to conform to the

server class requirements; the server conforms to your code.

You will need to write phpDocumentor docblocks for each method or function you’ll

be serving, and ensure they contain @param and @return tags; the server uses these

to create the method signatures, and compares the types and numbers of incoming

parameters with those signatures to ensure the incoming request conforms to the

definition. Additionally, the types specified with these tags should conform to XML­

XML and Web Services 419

RPC type definitions; for example, use struct for associative arrays, date-

Time.iso8601 for dates, and so on.

PHP’s Native XML-RPC Extension
Serving XML-RPC with Zend_XmlRpc_Server is as easy as serving SOAP requests

in PHP 5; simply register a class or function with the server, and handle it. But be­

sides Zend_XmlRpc_Server, what options do we have?

ext/xmlrpc can be used to build XML-RPC servers, too. We simply create an XML­

RPC server using xmlrpc_server_create, register callbacks to XML-RPC method

names, grab the request, handle it, and send the response back. As an example, let’s

try to serve the following method and function:

ext_xmlrpc_serv.php (excerpt)

/**
 * Math methods
 */
class Math
{

 /**
 * Return the sum of all values in an array
 *
* @param array $values An array of values to sum
 * @return int
 */
 public static function add($method, $params)
 {

 return array_sum($params[0]);
 }

}

/**
 * Return the product of some values
 *
* @param string $method The XML-RPC method name called
 * @param array $params Array of parameters from the request
 * @return int
 */
function product($method, $params)
{

 return array_product($params);
}

420 The PHP Anthology

Now that we’ve created these definitions, we’ll register them with the XML-RPC

server:

ext_xmlrpc_serv.php (excerpt)

$server = xmlrpc_server_create();
xmlrpc_server_register_method($server, 'math.add', array('Math',

 'add'));
xmlrpc_server_register_method($server, 'product', 'product');

Now we need to grab the request, dispatch it, and return a response:

ext_xmlrpc_serv.php (excerpt)

$request = file_get_contents('php://input');
$response = xmlrpc_server_call_method($server, $request, null);
header('Content-Type: text/xml');
echo $response;

If you examine this example closely, you’ll notice that functions and method calls

have to follow a particular signature; specifically, they can only accept two argu­

ments: the requested $method and the requested $params. This means that if you

want to create an XML-RPC server using ext/xmlrpc, you must either write all your

method handlers to conform to this specification, write wrappers for your existing

methods, or write a dispatcher to dispatch method calls using the original parameter

order—all of which activities are beyond the scope of this discussion.

The easier approach is to use an XML-RPC server that creates this magic for you.

PEAR’s XML_RPC2 and Zend_XmlRpc are two such implementations. Zend_XmlRpc

makes XML-RPC a first-class OOP citizen, simplifying the process of making requests

and serving responses, and allowing any function or class method to be used as a

server handler.

How can I consume SOAP web services?
SOAP, originally an acronym for Simple Object Access Protocol, but now simply a

protocol name, is, to quote the specification, “a lightweight protocol intended for

exchanging structured information in a decentralized, distributed environment.”

SOAP provides tremendous flexibility and extensibility.

XML and Web Services 421

Like the other protocols discussed in this section, SOAP uses XML to transfer

messages between the client and server. The base message unit that’s transferred is

an object. A server needs to specify the available methods and properties, and make

that specification available to clients so that they can initiate requests. This specific­

ation is achieved using a WSDL, the Web Services Description Language, specifica­

tion.

The SOAP and WSDL specifications are notoriously difficult to decipher. The gen­

eral consensus among developers is to use WSDL development tools to create the

WSDL from your application classes, and to use clients and servers provided in

your language to conduct the actual SOAP communication. Fortunately, PHP 5 has

native SoapClient and SoapServer classes, and tools are emerging for generating

the WSDL.

The topic of consuming SOAP-based web services is incredibly broad and we

couldn’t possibly cover it in any great detail in this book, but here’s a gentle intro­

duction.

Solution
Using the PHP 5 SoapClient class is incredibly easy:

$client = new SoapClient($uriToWsdl,

 array('location' => $uriToSoapService));

$result = $client->SomeMethod($value1, $value2)

There’s certainly much more to the SoapClient class, but that’s the basic usage:

create a SoapClient instance by passing the URL to the WSDL specification, and

the location of the SOAP service, as arguments to the SoapClient constructor, and

start making calls. The SoapClient makes all the methods of the SOAP service

available as PHP methods.

What if you want to pull the results of a SOAP request into an object? No problem!

You can easily map a SOAP response to a PHP class. Here’s a hypothetical example

that uses a book information service. The SOAP service provides a getBookInfo

method. If we pass it an $id value, it will return a response representing a book

with author, title, date, and publisher properties. This response is defined in

the web service’s WSDL file as the type Book. And if we already have an object for

422 The PHP Anthology

a book in our PHP application (let’s call it MyBook), we can map the SOAP response

type onto our own MyBook object. First, we define our MyBook class:

class MyBook

{

 public $author;

 public $title;

 public $date;

 public $publisher;

}

When we instantiate the SoapClient object, we add a classmap option that maps

the WSDL Book type to our MyBook PHP class:

$client = new SoapClient($uriToWsdl, array(

 'location' => $uriToSoapService,

 'classmap' => array('Book' => 'MyBook')

));

Now, when we call the SOAP method that would normally return the SOAP object

type, we receive an instance of our PHP class instead:

$book = $client->GetBookInfo($id); // $book is a MyBook instance

echo $book->title;

When it binds a class to a SOAP response, SoapClient will set in the object any

public properties for which it finds a match in the response. Because the returned

object instance is a standard PHP object, you can also define methods for accessing

or transforming the SOAP data in the class.

Discussion
Assuming that the remote service has a defined WSDL specification, making requests

to SOAP services is tremendously easy in PHP 5. The flexibility to bind objects to

responses can offer tremendous opportunities for working with remote data. If

you’ve been afraid of SOAP before, yet you’re comfortable with OOP, there’s no

need to be afraid any longer!

XML and Web Services 423

How do I serve SOAP web services?
You’ve dipped your toes in the SOAPy water by consuming some SOAP services

in “How can I consume SOAP web services?”, and now you’re thinking that the

next step is to create some of your own. You’ve got a number of classes that seem

eligible; how can you expose their APIs publicly?

Solution
Serving SOAP is roughly as easy as the using the client: use SoapServer. The topic

of creating SOAP-based web services is another broad area that we couldn’t possibly

cover in any great detail in this book, but let’s get our bearings by looking a simple

example.

First, let’s define a class for a book with the original name of Book:

class Book

{

 public $author;

 public $title;

 public $date;

 public $publisher;

 /**

 * Constructor

 *

 * @param string $author

 * @param string $title

 * @param int $date

 * @param string $publisher

 * @return void

public function __construct($author, $title, $date, $publisher)

 {

 $this->author = $author;

 $this->title = $title;

 $this->date = $date;

 $this->publisher = $publisher;

 }

}

With that out of the way, we can define an API for retrieving books with a class

called BookService:

424 The PHP Anthology

class BookService

{

 /**

 * Retrieve book information and send

 *

* @param int $id

 * @return Book

 */

 public function GetBookInfo($id)

 {

⋮ perform some work and get some book details…
 $book = new Book($author, $title, $date, $publisher);

 return $book;

 }

}

Now let’s bind these classes to a SoapServer instance:

$server = new SoapServer($uriToWsdl, array(

 'encoding' => 'ISO-8859-1',

 'actor' => $uriToSoapService,

 'classmap' => array('Book' => 'Book')

));

$server->setClass('BookService');

$server->handle();

That’s all there is to it; your BookService class’s GetBookInfo method is now ex­

posed as a SOAP method, and will return Book instances to requests from SOAP

clients.

Discussion
Serving SOAP has never been so easy as it is with PHP 5. But there’s one more aspect

to consider: what about the WSDL specification?

It’s possible to use SOAP between PHP servers without using WSDL, but this ap­

proach is problematic, because it means that many of the features of the SOAP client,

such as the auto-discovery of available methods, won’t work. It then becomes the

responsibility of the service developer to communicate the available methods to

those consuming the services. Although generating your own WDSL may be a

daunting task, given the complexity of the specification, many IDEs have tools for

generating WSDL specifications based on the introspection of your classes. Another

XML and Web Services 425

choice for generating WSDL specifications, and a newcomer on the scene, is

Zend_Soap, from the Zend Framework.15 This component contains the

Zend_Soap_AutoDiscover class, which will generate a WSDL specification from a

class using PHP’s own Reflection API. Here’s an example:

$generator = new Zend_Soap_AutoDiscover('BookService');

$wsdl = $generator->handle();

From here, you can cache the generated WSDL specification, contained in the $wsdl

variable, in a web-accessible location, then start to create servers and clients for it

using SoapServer and SoapClient.

How can I consume REST services?
REST, or Representational State Transfer, is a newcomer on the web services scene,

and has gained considerable popularity in the past few years. The ideas behind this

architectural approach are simple: application state and functionality are separated

into resources that can be addressed with a unique identifier, all resources share a

consistent interface and standardized content types. As it happens, the Web is a

great example of this style of application architecture. We can use the URL as the

unique identifier for resources and the HTTP protocol as the consistent interface

through which we access the resources. Finally, resources are represented by

standardized content types—XML, HTML, and so on.16

As an example, let’s consider a hypothetical REST service for books:

■	 A GET request to http://example.com/books uses XML to return a list of books.

■	 A POST request that contains XML book data and is made to the same URL will

add a new book to the service.

■	 Retrieving the XML for an individual book involves making an HTTP GET request

to a slightly different URL that specifies a particular resource, such as

http://example.com/books/php-anthology.

15 http://framework.zend.com/manual/en/zend.soap.html
16 A more detailed explanation can be found on Wikipedia, at

http://en.wikipedia.org/wiki/Representational_State_Transfer.

http://framework.zend.com/manual/en/zend.soap.html
http://example.com/books
http://example.com/books/php-anthology
http://framework.zend.com/manual/en/zend.soap.html
http://en.wikipedia.org/wiki/Representational_State_Transfer

426 The PHP Anthology

■	 Editing the book involves sending XML book data via an HTTP PUT request to

the same URL.

■	 Sending an HTTP DELETE request to the URL would delete the resource.

Such a service would be considered RESTful, that is, it would follow the principles

of REST. Each resource has a unique identifier, its URL, and each resource has a

consistent interface, HTTP, through which the request type describes the type of

action being requested.

Basically, REST makes use of the technology of the Web, unlike XMLRPC or SOAP,

which use the Web simply as a means for sending commands. For example, in our

REST API above, sending a GET request to http://example.com/books/php-anthology

returns the XML representation of the book. If the book doesn’t exist, the service

responds with a standard HTTP 404 Not Found response. In contrast, using an

XMLRPC interface to the same service might require you open a connection to the

service and make a method call to a getBook method, passing the book’s identifying

code, php-anthology, as an argument. If the book didn’t exist, the service would

respond with an error message. The main difference between these two approaches

is the use of HTTP to represent the intended action—GETting a book—and the

meaningful URL that represents the book itself.

In real-world circumstances, many browsers and HTTP clients still don’t implement

PUT and DELETE, so all resource update and delete operations are completed via

POST requests that use additional request parameters to represent the operation de­

sired. While not entirely RESTful, the practice is widespread enough to be considered

the standard approach.

Modern REST services that use XML are common. Some REST services provide

XML schemas so that consumers can easily determine how to get at the data they

need or format their requests, while others simply provide API documentation.

Solution
By now, you should be well on your way to being able to handle any XML that’s

thrown at you. We can use SimpleXML to parse REST responses, and SimpleXML,

DOM, or XMLWriter to create requests (if a data payload is needed).

http://example.com/books/php-anthology

XML and Web Services 427

To use a specific REST service, you’ll need to obtain its API documentation, but for

the purposes of this example, let’s use the hypothetical REST service for books we

defined above. Let’s assume that the URL http://example.com/books, when called

via an HTTP GET request, returns the following XML list of books:

<?xml version="1.0" encoding="UTF-8"?>

<books>

 <book id="php-anthology">PHP Anthology</book>

 <book id="css-anthology">CSS Anthology</book>

</books>

In our book service, the id attribute of each book can be used to retrieve the book’s

details. Here’s an example of the XML returned by a GET request to

http://example.com/books/php-anthology:

<?xml version="1.0" encoding="UTF-8"?>

<book>

 <id>php-anthology</id>

 <title>PHP Anthology</title>

 <publisher>SitePoint Pty., Ltd.</publisher>

 <chapterCount>14</chapterCount>

 <edition>2</edition>

 <pubDate>2007</pubDate>

</book>

To retrieve and process this information, we might use a hypothetical client script

that uses SimpleXML, like this:

$books = new SimpleXMLElement('http://example.com/books',

 null, true);

$ids = array();

foreach ($books as $book) {

 $ids[] = $book['id'];

}

foreach ($ids as $id) {

 $book = new SimpleXMLElement(

 'http://example.com/books/' . $id,

null,

true

http://example.com/books
http://example.com/books/php-anthology
'http://example.com/books/'

428 The PHP Anthology

);

 echo $book->title, ', published by: ', $book->publisher, "\n";

}

For XML-based REST services, we can employ SimpleXML to do the heavy lifting

of making the request, receiving the response, and parsing it. In the example above,

we retrieve the books list by instantiating a new SimpleXMLElement object, passing

the URL as the first argument. If the first argument to the constructor is a URL, the

third argument must be true. We grab the id attribute values of all books, and use

them to make new requests to obtain the XML data for each book. We then grab

each book’s title and publisher in order to display the list.

How would you create a new book using this service? Most services would have

you POST a book definition to the base URL, and in our example, that approach

might look like this:

$book = new SimpleXMLElement(

 '<?xml version="1.0" encoding="UTF-8"?><book></book>');

$book->addChild('title', 'Life, the Universe, and Everything');

$book->addChild('publisher', 'Del Rey');

$book->addChild('chapterCount', 42);

$book->addChild('edition', '26 April 2005');

$book->addChild('pubDate', '2005');

$opts = array('http' => array(

 'method' => 'POST',

 'header' => 'Content-type: application/x-www-form-urlencoded',

 'content' => $book->asXML()

));

$context = stream_context_create($opts);

$response = file_get_contents('http://example.com/books', false,

 $context);

The task of editing a particular resource would be similar to that of adding a new

document. However, the URL we’ll use will be the resource’s unique URL, and in­

stead of sending the entire book definition, we’ll need to send only the data that’s

changing:

$book = new SimpleXMLElement(

 '<?xml version="1.0" encoding="UTF-8"?><book></book>');

$book->addChild('chapterCount', 21);

XML and Web Services 429

$book->addChild('edition', 'Del Rey 2005');

$opts = array('http' => array(

 'method' => 'POST',

 'header' => 'Content-type: application/x-www-form-urlencoded',

 'content' => $book->asXML()

));

$context = stream_context_create($opts);

$response = file_get_contents(

 'http://example.com/books/php-anthology', false, $context);

Maybe we want to delete the book from the list—how would we accomplish this?

So far, we’ve distinguished between adding and updating resources by changing

the URL. A proper RESTful web service would have us send an HTTP DELETE request

to the book’s unique URL, but since not all HTTP clients can generate DELETE re­

quests, our web service does the next best thing: it requires users to POST a delete

element with a value of 1:

$book = new SimpleXMLElement(

 '<?xml version="1.0" encoding="UTF-8"?><book></book>');

$book->addChild('delete', 1);

$opts = array('http' => array(

 'method' => 'POST',

 'header' => 'Content-type: application/x-www-form-urlencoded',

 'content' => $book->asXML()

));

$context = stream_context_create($opts);

$response = file_get_contents(

 'http://example.com/books/php-anthology', false, $context);

The example above is a bit contrived, but it’s not far off the mark. A client makes

simple HTTP GET requests to resources, and decides what to do with the responses,

or POSTs XML to the service in order to add, update, or delete resources. SimpleXML

is the staple resource for consuming and generating requests, and PHP’s own streams

layer makes POSTing requests a breeze.

In a real REST service, you’ll need to examine the API carefully to determine which

URLs are available, what XML they return, and what XML they expect for operations

that affect data in the service. REST is loosely defined, so each time you want to

interact directly with a new REST service, you’ll need to do a bit of learning.

'http://example.com/books/php-anthology'
'http://example.com/books/php-anthology'

430 The PHP Anthology

Using the Zend Framework
Another possible approach to consuming a REST service is to use Zend Framework’s

Zend_Rest_Client component.17 This client expects that the REST server it contacts

is using XML for the transaction, which should be a safe assumption. After perform­

ing the request, we access the response using object properties, which eliminates

the need to perform type casting as we must with SimpleXML.

Technorati’s bloginfo API requires you to make a GET request to the following

URL:18

http://api.technorati.com/bloginfo?key=apikey&url=blog url

The URL requires two arguments to appear in the query string: your API key and

the blog’s URL. You can get your own API key from the Technorati web site at

http://technorati.com/developers/apikey.html.

The above URL will return the following XML:

<?xml version="1.0" encoding="utf-8"?>

<!-- generator="Technorati API version 1.0 /bloginfo" -->

<!DOCTYPE tapi PUBLIC "-//Technorati, Inc.//DTD TAPI 0.02//EN"

 "http://api.technorati.com/dtd/tapi-002.xml">

<tapi version="1.0">

<document>

<result>

 <url>URL</url>

 <weblog>

 <name>blog name</name>

 <url>blog URL</url>

 <rssurl>blog RSS URL</rssurl>

 <atomurl>blog Atom URL</atomurl>

 <inboundblogs>inbound blogs</inboundblogs>

 <inboundlinks>inbound links</inboundlinks>

 <lastupdate>date blog last updated</lastupdate>

 <rank>blog ranking</rank>

 <lang></lang>

 <foafurl>blog foaf URL</foafurl>

 </weblog>

17 http://framework.zend.com/manual/en/zend.rest.html
18 http://technorati.com/developers/api/bloginfo.html

http://framework.zend.com/manual/en/zend.rest.html
http://technorati.com/developers/api/bloginfo.html
http://technorati.com/developers/api/bloginfo.html
http://api.technorati.com/bloginfo?key=apikey&url=blog
http://technorati.com/developers/apikey.html
"http://api.technorati.com/dtd/tapi-002.xml">
http://framework.zend.com/manual/en/zend.rest.html
http://technorati.com/developers/api/bloginfo.html

XML and Web Services 431

<inboundblogs>inbound blogs</inboundblogs>

 <inboundlinks>inbound links</inboundlinks>

</result>

</document>

</tapi>

As an example, you could use the following approach to use Technorati’s bloginfo

service:

zend_rest_technorati.php (excerpt)

require_once 'Zend\Rest\client.php';
$key = apikey; // Technorati requires an API key
$technorati = new Zend_Rest_Client(

 'http://api.technorati.com/bloginfo');
$technorati->key($key);
$technorati->url('http://sitepoint.com');
$result = $technorati->get();
echo $result->weblog->name .

' (rank: '. $result->weblog->rank . ')';

This code would return:

SitePoint : New Articles, Fresh Thinking for Web Developers and

➥ Designers (rank: 196)

How can I serve REST services?
You’re jumping on the REST bandwagon. Your boss is convinced that this is the

big new trend in web services, and wants something out the door today. What do

you need to do?

Solution
Honestly, all you need to do is:

■ Create URLs or a URL schema that can map to your resources.
■ Create XML for your responses.

You need to determine which resources you’ll make available, and then come up

with a URL schema to cover them. In this example, let’s use books as the resource

432 The PHP Anthology

we want to make available. Perhaps you need services that allow you to list the

book resources, detail a single book at a time, and allow users to post information

about new books and edit that for existing books.

A RESTful URL schema might look like this:

■ retrieve list of books: http://example.com/books
■ retrieve single book: http://example.com/books/book-name

To add a book, you would POST to the first URL; to update the details of an existing

book, you would POST to the second. Next, you need to create a script to handle the

incoming requests. Make sure you have a look at “How do I make “pretty” URLs in

PHP?” in Chapter 5—there, you’ll find a complete solution for creating a URL schema

with the Apache web server and a request handling class. Here’s a simple example

script to handle our book requests:

$path = explode(‘/’, trim($_SERVER[‘PATH_INFO’], ‘/’));

if ((1 == count($path)) && (‘books’ == $path[0]))

{

 if (‘post’ == strtolower($_SERVER[‘REQUEST_METHOD’]))

 {

⋮ new book entry
 }

 else

 {

⋮ list books
 }

}

elseif ((2 == count($path)) && (‘books’ == $path[0]))

{

 if (‘post’ == strtolower($_SERVER[‘REQUEST_METHOD’]))

 {

⋮ edit book entry
 }

 else

 {

⋮ retrieve book entry
 }

}

This script starts by exploding the path information of the incoming request into

an array, and trimming the trailing / character. It then tests how many elements are

http://example.com/books
http://example.com/books/book-name

XML and Web Services 433

generated, and whether the first element is books. If only one element is present,

books, the script checks the request method. If it’s a POST request, the code takes

the branch to creating a new book; if it’s a GET request, the code takes the branch to

listing all the books.

If two elements are present, the script assumes that the second element is the book

name. In this case, a POST request represents an update to the specific book and a

GET request will display the named book.

For the book list and named-book information requests, simply generate or fetch

the XML to return to the user. In the case of new entries or updated entries, you’ll

need to retrieve and parse the incoming XML first. To retrieve the incoming XML,

grab it from the raw POST request like this:

$post = fopen('php://input', 'r');

$xml = fread($post);

fclose($post);

Once you have the XML, you can parse and act on it as necessary.

Discussion
REST services allow us either to create the XML ahead of time, or to generate it on

the fly using PHP as I’ve described elsewhere in this chapter. I highly recommend

that you cache the responses, unless the request is allowed to change the data; one

easy way to scale REST is by caching the service as static XML, because static content

is usually served much faster than dynamic content by modern web servers.

While REST services scale well and are relatively easy to implement, they do make

the job more difficult for developers who want to use your services, since developers

need to learn a new XML schema for every new REST service they consume. How­

ever, the simplicity of dealing with XML in PHP 5 makes this a moot point in most

regards, and the combination of REST and SimpleXML makes for some very powerful

web services, both on the client and server ends.

Summary
In this chapter, we’ve taken a quick tour of PHP 5’s various XML and web service

extensions. We discussed the tasks of parsing and generating XML and using RSS

434 The PHP Anthology

feeds, concluding that SimpleXML is PHP 5’s Swiss Army Knife for XML manipu­

lation, but also noting other important extensions such as SAX, XMLReader,

XMLWriter, and DOM (on which SimpleXML is based). Searching XML via XPath,

using both DOM and SimpleXML, was demonstrated, and the basic XPath syntax

was covered.

Most modern web services use XML for their payloads. XML-RPC uses XML for

type hinting values passed in a request and returned in a response; with modern

XML-RPC libraries such as Zend_XmlRpc, XML-RPC services can be called as PHP

object methods transparently. SOAP defines an object as the unit of transport, and

PHP 5’s SoapServer and SoapClient classes make creating and consuming SOAP

services trivial. Finally, we discussed REST and RESTful web services, using Sim­

pleXML to generate and consume REST resources.

Chapter13
Best Practices
The fact that PHP has an incredibly low barrier to entry represents both its greatest

strength and greatest weakness. To its merit, PHP allows the novice programmer to

develop feature-rich applications without needing to learn even the rudiments of

computer science. The downside, however, is that as PHP offers many ways to

complete the same task, application code can quickly become unmaintainable.

Many programmers in the PHP field are now recognizing the need to standardize

and promote best practices. Some of these best practices are PHP specific, such as

the usage of tools like phpDocumentor for consistent documentation,1 or testing

suites such as SimpleTest2 and PHPUnit.3 Other practices that are being promoted

in the PHP community are more generic—the use of revision control systems and

code deployment practices, for example. Regardless, if you follow all of them, these

practices will make your life—and the lives of those who may later maintain your

code—much easier.

1 http://www.phpdoc.org/
2 http://simpletest.org/
3 http://www.phpunit.de/

http://www.phpdoc.org/
http://simpletest.org/
http://www.phpunit.de/
http://www.phpdoc.org/
http://simpletest.org/
http://www.phpunit.de/

436 The PHP Anthology

How do I track revisions

to my project’s code?

Picture this sad scene: your site is on the verge of being launched, and you’ve intro­

duced some new code to the system at the eleventh hour only to find, to your

chagrin, that other features are now broken. You now have less than an hour to fix

the problem. You need to undo your changes. But how on earth do you do that?

We can only hope you’re using some form of revision control software (RCS).4 Re­

vision control software allows users to track changes to documents, code, and other

files, and offers features to allow the merging of changes from multiple users, and

the management of different versions of your code. Think of RCS as both a backup

repository for your code, and a record of all the changes it undergoes for the duration

of a project.

Solution
My preferred RCS is Subversion, and this software will be used in all the examples

throughout this chapter.5

So you need to undo your changes fast? If you haven’t already committed your

changes, you can roll them back easily with the following command:

$ svn up -r BASE filename

If you’ve already committed your changes, the following command will undo them:

$ svn revert filename

This command will revert your code to the previous version:

$ svn up -r PREV filename

4 See the Wikipedia Version Control entry for a summary of revision control and a comparison of revision

control systems: http://en.wikipedia.org/wiki/Version_control.

5 Visit the Subversion project web site at http://subversion.tigris.org/ for complete documentation.

O’Reilly Media has published its book, Version Control with Subversion, online at

http://svnbook.red-bean.com/

http://en.wikipedia.org/wiki/Version_control
http://subversion.tigris.org/
http://svnbook.red-bean.com/

Best Practices 437

Discussion
A variety of versioning solutions is available, but they can be grouped into two

major categories: distributed and non-distributed systems.

In distributed systems, each user maintains his or her own repository, and the

software typically tracks only changesets—software patches representing changes

to the files under version control. Developers then share the changesets with one

another, usually maintaining one canonical repository with all the changesets that

have been accepted into the project.

In non-distributed systems, a repository resides on a central server. Developers in­

dividually check out the repository to their own working directories, and check in

their changes as they’re completed.

Both systems have their benefits and downsides. However, non-distributed systems

are more commonly used in PHP projects, so they’re the type you’ll most likely run

into. Having a central repository allows you to designate a single location for the

canonical version of the software you’re developing. You can easily tie in processes

to run pre- and post-commit, perhaps performing unit tests, compiling documenta­

tion, or sending commit notifications to a distribution list.

As I mentioned, many revision control systems are available, in both proprietary

and open source forms. The most popular open source packages, and arguably the

most popular revision control systems, are Concurrent Versioning System (CVS)

and Subversion (SVN). The popularity of the two is, in large part, due to their open

source nature; users obtain the tools for free, and can develop their own tools around

these without needing to worry about license infringement. Additionally, no propri­

etary clients are necessary in order to work with these tools.

CVS is the grandfather of non-distributed systems, and is the chosen revision control

software for high-profile projects such as PHP itself and the PEAR project. Subversion

is an evolution of CVS, and offers easier syntax for renaming files and directories

in a repository, committing entire directory trees, and branching and tagging. This

software is used in many modern frameworks, such as eZ Components and the Zend

Framework.

I personally recommend the use of Subversion for any new PHP projects, as its ease

of setup, simple processes for creating pre- and post-commit hook scripts, and in­

438 The PHP Anthology

tegration with other tool sets (IDEs and bug-tracking software, for example), are

unparalleled among RCNs. Another advantage of Subversion is that the entire tree

is versioned—individual files don’t receive their own versions. This feature allows

you to make changes to multiple files as a distinct change set. When checking in

your code, you can check in a complete change—unit tests, code, and documenta­

tion—all in one go. This style of versioning makes it easier later when you need to

look through the log files to determine what changed and when, and which files

were affected.

How can I maintain multiple
versions of a single codebase?
Your project has just had a successful release, and now you need to support that

release. However, you’ve been hard at work and already have new changes you

want to introduce for the next release. How can you maintain both code bases, and

ensure important fixes in one are ported to the other?

Alternatively, perhaps you need to be able to continue development of your web

site’s code base, but have a stable, production version of it running as well. How

can you keep the two versions separate?

Solution
Branching and tagging are features common to RCS, allowing you to maintain sep­

arate branches of code in your repository. A branch is a separate version of the

software that exists independently from other versions and maintains its own history.

A tag is a named snapshot of the project at a given point in time.

A typical repository layout should look something like this:

project/

 branches/

 tags/

 trunk/

We create a branch for each release like so:

Best Practices 439

project/

 branches/

 release-1.0.0/

 release-1.1.0/

The use of Subversion allows this task to be completed very easily:

$ svn copy trunk branches/release-1.1.0 -m '1.1.0 release branch'

Later, if you need to create a point release—a minor version, especially one intended

to fix bugs rather than add new features—you can create an appropriate tag:

$ svn copy branches/release-1.0.0

➥ tags/release-1.0.1 -m '1.0.1 bugfix release'

Similarly, you can create a branch for a production version of a site:

project/

 branches/

 production/

 tags/

 trunk/

When you’re ready to deploy a software release, create a tag with a name that de­

scribes the changes:

$ svn copy branches/production tags/2006-09-19-PirateDayJargon

➥ -m 'Pirate Day Jargon version of site for Pirate Day'

Discussion
In most cases, day-to-day development will occur in the repository trunk. When

you’re ready to create a software release, create a branch. From this point forward,

changes in the trunk will not affect code in the release branch—unless you merge

them manually. Branches provide code separation, which helps you to prevent new

features or backward compatibility breaks from creeping into released code. You

can also selectively merge bug fixes or new features from one branch to another

using your version control system’s merging capabilities. Here’s how the merge

command would be used in Subversion, for instance:

440 The PHP Anthology

$ svn merge

➥ -r 123:145 trunk/filename branches/release-1.0.0/filename

However, an actual release needs to be static—that is, active development must

have stopped—and we achieve this with tagging.

In Subversion, tags and branches are created in the same way—via the “copy” oper­

ation. The only difference between them lies in the conventions that surround their

use. Branches should indicate ongoing development, such as bug fixes, new features,

and the like; tags should be considered static snapshots.

One aspect to note is that in Subversion, copies are achieved using hard links, and

not actual file copies; new files are only created when a new version is checked in

against the copy. This means that copies are cheap, so you can—and should—branch

and tag often.

“Wait!" you say. “I’m not developing software—I’m developing a web site! How

does this apply to me?” Easy now; you still need to be able to keep your development

and production versions of the site separate, and your tags should represent points

at which you launch bug fixes or new features on the site:

project/

 branches/

 production/

 tags/

 2006-09-19-PirateDayJargon/

 2006-05-11-LifeUniverseEverything/

 2006-04-01-AprilFools/

 trunk/

On a day-to-day basis, you work in the repository trunk. As you finish features or

bug fixes, you merge them into the production branch. You then preview this branch

on your staging server, which is almost identical to the production server—it may

even use the same data, pulled from the same web services. Once you’ve verified

the changes, or your quality assurance team has reviewed the site and given its seal

of approval, you create a tag. You can then export the project files from this tag:

Best Practices 441

$ svn export

➥	 http://example.com/svn/project/tags/2006-09-19-PirateDayJargon
➥	 2006-09-19-PirateDayJargon

svn export grabs code from the repository and creates a local working copy without

the versioning information (that is, the.svn subdirectories). This gives you a leaner,

production-ready code tree to deploy.

How can I write distributable code?
When you’re working in a team, or writing code that will be released to the public,

you need to keep several points in mind:

■	 Code should be easily reused and extended.
■	 Code should be easily readable.
■	 Code files should be easily found in the file system.

Common problems developers run into when they’re working on others’ code, or

they’re using or extending third-party code, include:

■	 difficulty extending code due to inflexible APIs (or lack of an API), or unclear

inheritance (for example, how do you extend procedural code?)

■	 naming collisions as a result of poor naming practices such as using common

names when creating a class (for example, Mail)

■	 difficulty reading other people’s code because of inconsistencies with indentation;

variable, function, class, and file naming conventions; and code structure

These are obviously separate problems, but all are related to the problem of failing

to write distributable code.

Solutions
Distributable code is all about adopting good habits. There’s no single, bullet-proof

solution to writing distributable code, but there are a few programming practices

you should adopt. Turning them into programming habits will also mean that

writing distributable code will take no extra effort at all. Let’s take a look at three

different programming practices you should consider.

http://example.com/svn/project/tags/2006-09-19-PirateDayJargon

442 The PHP Anthology

Using OOP
If you haven’t done so yet, make sure you read “What is OOP?” in Chapter 1. Object

oriented programming (OOP) is often derided by performance experts as being very

costly to an application’s performance.6 The counter-argument is that CPU cycles

and memory are cheap, while developers are not. OOP provides incredible benefits

to developers: object oriented code is very easily reused and extended, it’s typically

easier to test because of the testing frameworks now available in PHP, it can reduce

the number of naming collisions drastically, and it can lead to shorter syntax in

many cases. Consider the following example:

oop.php (excerpt)

class Foo
{
 public function bar()
 {
 echo 'Do';

 }
}

class MyFoo extends Foo
{
 public function bar()
 {
 parent::bar();
 echo ' more!';

 }
}

Class Foo has a bar method. Class MyFoo extends class Foo and overrides the bar

method. This technique allows a MyFoo object to access the functionality of its parent

class by calling parent::bar, and then add its own functionality to the do method.

The beauty of this approach is that the objects are now interchangeable—we can

use either Foo or MyFoo, depending on the situation, and the method syntax remains

exactly the same. We can instantiate an object of either class, pass it to other methods

or functions, and use either object in exactly the same way without needing to know

which class it encapsulates:

6 For documentation of PHP 5’s OOP feature set, visit http://www.php.net/oop5/.

http://www.php.net/oop5/

Best Practices 443

$foo = new Foo();

$foo->bar();

$foo = new MyFoo();

$foo->bar();

If we wanted to achieve the same end using procedural functions, the equivalent

code might look like this:

function foo_bar()

{

 echo 'Do';

}

function myfoo_bar()

{

 foo_bar();

 echo ' more';

}

myfoo_bar();

The actual function call is certainly faster now that we don’t have to instantiate an

object, although this benefit is moot with static methods. The downside is that we

can’t simply call foo_bar() and get the new behavior—we have to call an entirely

different function.

If we want to be able to dynamically call a method of our choosing elsewhere in

the application, we can’t hard-code the function call; instead, we need to pass a

function name or PHP callback. This approach could decrease performance, and

also makes debugging and testing more difficult.

Let’s also consider that we may well need to implement similar functionality, but

with radically different internals. As an example, we might want to create two dif­

ferent mail functions: one that sends email using the PHP mail function, and another

that sends it via SMTP. I’ve witnessed situations where both functions were named

mailer, which led to naming conflicts later when both files were loaded simultan­

eously. If we incorporate these functions into classes instead, using, say My_Sendmail

and My_Smtp as class names, we remove the conflict:

444 The PHP Anthology

class My_Sendmail

{

 public function mailer($to, $subject, $body){}

}

class My_Smtp

{

 public function mailer($to, $subject, $body, $host ='localhost'){}

}

I mentioned earlier that classes are also easier to test than procedural code. This is

because the popular and well-documented unit testing frameworks, SimpleTest and

PHPUnit, were designed primarily to test class methods, and even define their test

suites, using classes:

oop.php (excerpt)

class FooTest extends PHPUnit_Framework_TestCase
{
 /**
 * Foo Object
 * @var Foo
 */
 protected $_foo;
 /**
 * Setup environment
 */
 public function setUp()
 {
 $this->_foo = new Foo();

 }
 /**
 * Teardown environment
 */
 public function tearDown()
 {
 unset($this->_foo);

 }
 /**
 * Test the bar() method
 */
 public function testBar()
 {

Best Practices 445

⋮ test the method…
 }

}

Writing object oriented code makes unit testing more intuitive and flexible—each

test method tests a method in a class. Should you wish to investigate further, you

can read about additional testing strategies on the SimpleTest and PHPUnit web

sites detailed in this chapter’s introduction.

Choosing a Namespace
We’ve mentioned naming conflicts once already. Just because you’re using OOP

now doesn’t mean you’re out of the woods; class names may still conflict. The easy

way to avoid the problem is to choose a namespace, a name prefix generally based

on the project name or vendor name, with which to prefix your classes.7Here are

some examples of namespaces that are in use within existing projects:

■ Solar Framework: Solar_
■ Zend Framework: Zend_
■ Cerebral Cortex: Crtx_

Using a namespace has several benefits. Firstly, it provides a very easy way to sep­

arate your code from that of other projects. If you make your code available through

a PEAR channel, for instance, having your own prefix means that your code will

be grouped under a single tree within your local PEAR checkout.

Secondly, as I’ve already mentioned, selecting a namespace helps to prevent naming

conflicts. Uri may be the minimally most descriptive name needed to describe your

class, but it could then conflict with another vendor’s Uri class; prefix it with your

own namespace, and the problem is avoided: Zend_Uri, Solar_Uri, My_Uri.

What should you use for your namespace? If you represent a company or a public

project, try to use its name—after all, this approach is good enough for Solar and

Zend. Also, try to keep the name short; you’ll appreciate not needing to type as

many keystrokes every time you create a new class definition. That said, a name

can be too short—you should probably use no fewer than three characters in order

7 For a good discussion of the value of namespaces, read Paul M. Jones’s blog entry “No More Loners!”

at http://paul-m-jones.com/blog/?p=215.

http://paul-m-jones.com/blog/?p=215

446 The PHP Anthology

to ensure that the name is unique and spells something recognizable. Crtx, for in­

stance, is recognizable as a truncation of “Cerebral Cortex;” anything shorter would

be unrecognizable; Cortex itself starts to get lengthy as a prefix; CerebralCortex

is simply too long to be usable.

Choosing a Coding Standard
How many times have you reformatted a coworker’s (or former employee’s) code

to make it more readable? How many times has someone done the same to your

code? We can consider such actions to be a net loss of coding time.

Chances are that if this has happened too much in your shop, you’ve probably

already decided to create a coding standard. Coding standards dictate:

■ file naming and placement
■ variable, function, and class naming conventions
■ indentation rules
■ documentation and comment guidelines

… and much, much more.

Rather than creating your own standard, consider adopting a public standard. The

benefits of using a public standard include:

It’s programmer-neutral.

Instead of one programmer or group of programmers dictating their own prefer­

ences, choosing a public standard is a programmer-neutral solution.

The issues have been settled.

A public standard will have undergone heavy debate already. While not everyone

will be able to agree that the outcome is the best one, everyone has agreed that

the standards represent the best collective solutions.

Use it as hiring criterion.

When adopting a public standard, you can use it as a criterion of employment:

“Applicant must know and be able to use XYZ Coding Standards.”

It’s better for code distribution.

For instance, if you’re following PEAR Coding Standards, your code will be in

a format—both the physical, on-disk format, as well as the format in which the

Best Practices 447

code is written—that can easily be packaged and installed using the PEAR in­

staller, or via a PEAR channel.

So, what public standards exist? Some popular examples include:

■	 PEAR, at http://pear.php.net/manual/en/standards.php
■	 Zend Framework, at http://framework.zend.com/manual/en/coding-standard.html
■	 eZ Components, at http://svn.ez.no/svn/ezcomponents/docs/guidelines/

With some additions of their own, these coding standards were all originally derived

from the Horde project.8 Horde and PEAR coding standards are identical at this

point. Zend Framework standards basically follow those of PEAR, with a few slight

changes; all in all, however, Zend Framework remains compatible with PEAR. eZ

Components standards are basically only used by the eZ Components project and

those developers who code with it.

PEAR coding standards are widely adopted, and used in other high-profile projects

such as ADOdb9 and Solar.10 Overall, when it comes to a choosing a standard to

adopt for your project or company, PEAR’s standards are probably the best option.

The basics of PEAR coding standards are summarized as follows:

■	 There is one class per file.

■	 Underscores in class names map to the directory separator: for example, Net_SMTP

maps to Net/SMTP.php.

■	 There is One True Brace: class and function declarations have the opening brace

on the following line at the same indentation level as the declaration; in other

control structures, the opening brace remains on the same line as the statement.

■	 Code indentation should equal four spaces per indentation level.

■	 Variables, functions, and classes are named using camelCase or studlyCaps;

variable and function names should begin lowercased, while classes should begin

uppercased.

8 http://horde.org/
9 http://adodb.sourceforge.net/
10 http://solarphp.com/

http://horde.org/
http://adodb.sourceforge.net/
http://solarphp.com/
http://pear.php.net/manual/en/standards.php
http://framework.zend.com/manual/en/coding-standard.html
http://svn.ez.no/svn/ezcomponents/docs/guidelines/
http://horde.org/
http://adodb.sourceforge.net/
http://solarphp.com/

448 The PHP Anthology

■	 Private and protected properties and methods should be named with a leading

underscore.

■	 All classes, functions, and methods should have a docblock.

All the examples in this chapter are written using PEAR coding standards.

Discussion
Writing distributable code is achievable once you adopt a few useful habits. Writing

object oriented code may not give your projects a performance advantage, but it will

help you develop code faster, as you’ll be able to easily reuse code that you or others

have already written. Choosing a namespace for your code will help prevent colli­

sions with code written by other developers, and provides for the easy grouping of

different code bases in the directory tree. Finally, using a coding standard lets you

ensure that you’ll be able to maintain the code of your fellow programmers, and

vice versa.

How can I document my code for later
reference by myself or others?
You’ve written the next great API, and you’re all ready to release it. But nobody,

including your coworkers, knows how to use it. What methods are available? What

arguments do they take? What do they return? What do they actually do? Why would

anyone want to use them?

The topic of documentation is often skimmed over during the coding phase, but as

you can see from these questions, a lack of documentation can make your code ba­

sically worthless to others.

“But I don’t have time to document!” you protest. “Documentation is too hard!”

This is simply not true. Documentation can be created while you code, as part of

your code. Let’s see how.

Best Practices 449

Solution
phpDocumentor uses specially formatted comment blocks, called docblocks, within

the code itself to generate documentation.11 Docblocks have existed for a number

of years, having originally been written to support PHP 4 code, and are based on

Javadoc.12 Docblocks start with an opening /** , and then follow regular C-style

comment format. Multiline comment blocks should start with a *. Here’s an example:

login.php (excerpt)

/**
 * This is a sample docblock
 *
 * This is a sample docblock. Content prior to the first empty line
 * of the comment block is called the 'short description'; this
 * content here is considered the 'long description'.
 */

Docblocks can also contain tags that provide meta information, such as the function

or method parameters and return value types, the exceptions thrown, and more. As

an example, consider the following function declaration:

login.php (excerpt)

/**
 * Login a user
 *
 * Logs in a user, applying their credentials against those found in
 * the database.
 *
 * @param string $user Username
 * @param string $password User's password
 * @return boolean
 * @throws Exception on database error
 */
function login($user, $password)
{

⋮ function body…
}

11 http://phpdoc.org/
12 http://java.sun.com/j2se/javadoc/

http://phpdoc.org/
http://java.sun.com/j2se/javadoc/
http://phpdoc.org/
http://java.sun.com/j2se/javadoc/

450 The PHP Anthology

Running this declaration through phpDocumentor is a fairly simple exercise:

$ phpdoc -f login.php -t docs

This action creates a documentation tree inside the docs directory, and parses only

the login.php file. The documentation generated for this function can be seen in

Figure 13.1.

Figure 13.1. Documentation generated with the phpDocumentor and docblocks

You can link documented code using two different mechanisms. Any given docblock

may contain one or more @see tags, each of which should have: a single argument;

a class, function, or method name; or a documented constant, variable, object

property, or object constant. An optional second argument can be used to provide

information about the link. Alternatively, you can generate inline links using the

{@link argument comment} syntax; the argument is the same as the one we used

for @see, and the comment we provide will become the text that will be linked (if

none is provided, the argument is used). Here’s an example:

Best Practices 451

login.php (excerpt)

/**
 * Validate a password
 *
 * Validates a password for {@link login() the login function}.
 *
 * @see login() Login function
 * @param string $user Username
 * @param string $password User's password
 * @return boolean
 */
function validatePassword($user, $password)
{

⋮ function body…
}

What can be documented with docblocks? Well, a file can have a page-level docblock

that describes the contents of the file, its author, copyright information, and so on.

Classes can have a docblock describing the class, inheritance, and more. Functions

and methods may have docblocks, as we saw previously. Additionally, any class

member variable can have a docblock. In short, any element of the code can have

a docblock.

Discussion
The main points to note about phpDocumentor-style code comments are:

■ Documentation resides with the code.
■ Documentation refers to the code it precedes.
■ Docblocks make your code self-documenting.

Knowing these points, you really have no reason not to document your code; so as

you code, document away to your heart’s content. As you’re doing so, keep a few

points in mind:

Use both short and long descriptions, unless they’re basically identical.

In the example above, the long description provides additional information

that’s not necessary for a short synopsis, but gives good information to the de­

veloper using it. Often, the parameters and return value provide plenty of in­

formation, so you don’t need to use the long description.

452 The PHP Anthology

Use the most specific parameter and return value types you can.

For instance, don’t just use a type of object or stdclass if something more

specific will work, such as Solar_Db_Adapter. This type will allow you link to

the appropriate class, producing even better documentation; additionally, some

IDEs will use such type hinting to better provide code completion.

Another point to keep in mind is that phpDocumentor is not the only tool that can

parse docblocks. Another tool that can utilize the same docblocks and docblock

tags as phpDocumentor to create API documentation is Doxygen.13 The benefit to

using Doxygen is that it supports languages other than PHP, such as C, C++, Java,

and Python, and can generate documentation accordingly.

Note also that docblocks are associated with compiler tokens in PHP itself, which

means that they may be retrieved through PHP’s Reflection API using the

getDocComment method of any of the various Reflection classes. This ability can

be useful when you want to program some form of self-discovery into your

code—when you’re creating server classes, for instance. Zend Framework makes

use of this capability in its various server components (Zend_XmlRpc_Server,

Zend_Rest_Server, Zend_Json_Server, and Zend_Soap_Wsdl) in order to have service

classes generate their own server definitions.

Finally, many IDEs will use docblocks to provide code completion functionality.

For example, as you type into Zend Studio and Eclipse, tool tips and drop-downs

appear, displaying the possible methods of an object and the prototype for each

method, as Figure 13.2 illustrates. It’s easy to select the entry you want to use from

the list and save keystrokes in the process.

13 http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

Best Practices 453

Figure 13.2. IDE autocompletion based on PHP docblocks (Zend Studio)

Comments can Tell Lies!

Programmers always have the best of intentions when they implement a system­

atic approach to using code comments. However, as time goes by and functions

are patched, enhanced, or otherwise changed, the code comments will slowly

become out of date unless they’re rigorously maintained. When you read someone

else’s code comments, remember that they may have written those comments for

the function as it was implemented three versions ago, which may not reflect how

the function actually works today. When you approach your own code, try to be

as accurate as possible with your commenting, but complement your docblocks

with good unit test cases—we’ll look at unit testing in “How can I ensure future

changes to my code won’t break current functionality?”. A good unit test suite

can serve as functional documentation, too, as it documents how the code will

behave when called.

So, start documenting your code today—you’ll never look back!

454 The PHP Anthology

How can I ensure future changes to my
code won’t break current functionality?
Your application has been in production for a month, and all is well, but your boss

has requested a new feature. You create the new functionality, roll it out, and then,

within minutes, you have an angry call from your boss, who complains that some­

thing’s broken on the site.

How many times has this happened to you? How can you prevent it from ever

happening again? Try out one of the unit testing frameworks available to PHP.

Solutions
The goal of unit testing is to isolate code into distinct units and verify that each of

those units satisfies all your criteria.14 When they’re run after refactoring processes

or the introduction of new features, unit tests are often referred to as regression

tests, and are used to check that the changes have not broken existing functionality.

Typical testing frameworks have you run code and make assertions against the return

values or object state. The examples that follow all reference this code:

Foo.php (excerpt)

/**
 * Foo class for PHP Anthology Best Practices chapter
 *
 * @package SitePoint
 * @version @release-version@
 * @copyright Copyright (C) 2006-Present, SitePoint Pty Ltd.
 * @author Matthew Weier O'Phinney <XXX@YYYY.ZZZ>
 */
class Foo
{
 /**
 * @var string
 */
 public $name;
 /**

14 Wikipedia has an entry on unit testing, along with references to many unit-testing resources, at

http://en.wikipedia.org/wiki/Unit_testing.

http://en.wikipedia.org/wiki/Unit_testing

Best Practices 455

* @var boolean

 */

 public $baz = false;

 /**

 * Constructor

 *

 * @param string $name

 * @return void

 * @throws Exception with non-string $name

 */

 public function __construct($name)

 {

 if (!is_string($name) || empty($name)) {

 throw new Exception('Invalid name');

 }

 $this->name = $name;

 }

 /**

 * Bar returns an array

 *

 * @return array

 */

 public function bar()

 {

 return array(

 'baz',

 'bal',

 'boo'

);

 }

 /**

 * Set the {@link $baz} flag

 *

 * @param boolean $flag

 * @return void

 */

 public function baz($flag)

 {

 $this->baz = ($flag) ? true : false;

 }

}

Let’s look at an example of unit testing performed on the code above:

456 The PHP Anthology

$object = new Foo('sitepoint');

$result = $object->bar();

$this->assertTrue(is_array($result));

$this->assertContains('bar', $result);

In this test, we assert that the return value of the Foo object’s bar method is an array

and contains the value bar as one element.

Three principal testing frameworks are used by most PHP projects:

phpt (http://qa.php.net/write-test.php)

The testing format used by the PHP project itself, phpt is primarily found in

unit tests written for PEAR modules.

PHPUnit (http://phpunit.de/)

Originally a PEAR project, but now a standalone project, PHPUnit is a faithful

port of Java’s JUnit.15 PHPUnit is written in PHP 5, supports E_STRICT, and is

targeted largely at OOP code.

SimpleTest (http://www.lastcraft.com/simple_test.php)

Written in the early days of PHPUnit to address the lack of Mock Objects and

web testing functionality, SimpleTest supports PHP 4, and PHP 5 when it’s not

set to report E_STRICT errors.

Testing Using SimpleTest or PHPUnit
SimpleTest and PHPUnit test cases are written as classes, and will typically test an

entire class or file of functions at a time. The basic testing strategies of these

frameworks are very similar, having only minor differences. I use PHPUnit in the

examples to come, partly in order to build on it in upcoming sections; however, the

code could be written in SimpleTest with very few changes.

In this example, we’ll test the entire Foo class:

unittest.php (excerpt)

/**
 * Test class for class Foo
 *

15 http://www.junit.org/

http://www.junit.org/
(http://qa.php.net/write-test.php)
(http://phpunit.de/)
(http://www.lastcraft.com/simple_test.php)
http://www.junit.org/

Best Practices 457

* @uses PHPUnit_Framework_TestCase

 * @package Sitepoint

 * @subpackage UnitTests

 * @copyright Copyright (C) 2006-Present, SitePoint Pty Ltd.

 * @author Matthew Weier O'Phinney <XXX@YYYY.ZZZ>

 */

class FooTest extends PHPUnit_Framework_TestCase

{

 /**

 * @var Foo

 */

 protected $_foo;

 /**

 * Setup test environment

 *

 * @return void

 */

 public function setUp()

 {

 $this->_foo = new Foo('sitepoint');

 }

 /**

 * Tear down test environment

 *

 * @return void

 */

 public function tearDown()

 {

 unset($this->_foo);

 }

 /**

 * Verify that the constructor properly sets the name attribute

 *

 * @return void

 */

 public function testConstructorSetsName()

 {

 $this->assertEquals('sitepoint', $this->_foo->name);

 $foo = new Foo('anthology');

 $this->assertEquals('anthology', $foo->name);

 }

 /**

 * Verify that non-string $name arguments cause the constructor

* to throw an exception

 *

mailto:<XXX@YYYY.ZZZ>

458 The PHP Anthology

* @return void

 */

 public function testConstructorThrowsExceptionOnBadName()

 {

 try

 {

 $foo = new Foo('');

 $this->fail('Empty string should throw exception');

 }

 catch (Exception $e)

 {

 // success

 }

 try

 {

 $foo = new Foo(array('boo', 'bar'));

 $this->fail('Array should throw exception');

 }

 catch (Exception $e)

 {

 // success

 }

 try

 {

 $foo = new Foo(new Stdclass());

 $this->fail('Object should throw exception');

 }

 catch (Exception $e)

 {

 // success

 }

 try

 {

 $foo = new Foo(true);

 $this->fail('Boolean should throw exception');

 }

 catch (Exception $e)

 {

 // success

 }

 }

 /**

 * Verify Foo::bar() returns an array containing the value 'bar'

 *

 * @return void

Best Practices 459

*/

 public function testBar()

 {

 $bar = $this->_foo->bar();

 $this->assertTrue(is_array($bar));

 $this->assertContains('bar', $bar);

 }

 /**

 * Verify that baz() sets the $baz property

 *

 * @return void

*/

 public function testBazSetsBazProperty()

 {

 $this->_foo->baz(true);

 $this->assertTrue($this->_foo->baz);

 $this->_foo->baz(false);

 $this->assertFalse($this->_foo->baz);

 $this->_foo->baz(1);

 $this->assertTrue($this->_foo->baz);

 $this->_foo->baz(0);

 $this->assertFalse($this->_foo->baz);

 }

}

In this example, the setUp method is called prior to each test case being run, and

creates a Foo object. The tearDown method is called after each test case, and, in this

instance, unsets the Foo object in the test suite.

Any method that begins with the word test is a test method. In the examples we’ve

covered, I’ve named each method to reflect either the class method being tested, or

the behavior I’m testing. Thus, the name testConstructorSetsName indicates that

this method will test that the constructor (__construct) sets the $name property in

the object correctly.

Behavioral testing such as this is particularly useful because as well as serving as

contracts for the objects, the test cases themselves can serve as agile documenta­

tion—documentation automatically generated from unit tests. PHPUnit will generate

agile documentation based on unit test names. For example, the documentation

generated for the method called testConstructorSetsName would be “Constructor

sets name.”

460 The PHP Anthology

Testing Using phpt
I skipped over phpt testing in the solution above, so let’s take a quick look at it now.

phpt tests typically target a single function or method at a time, with the goal of

breaking the functionality that unit provides. Test files are divided into several

sections that define, at a minimum, the test name, the code to test, and the expected

results. Tests are run via a script provided with the PHP distribution: run-tests.php,

or the pear run-tests command.

To test the Foo::bar method, we might write the following hypothetical test:

--TEST-­

Foo::bar() method

--FILE-­

<?php

require_once 'Foo.class.php';

$foo = new Foo('simpletest');

$bar = $foo->bar();

assert(is_array($bar));

assert(in_array('bar', $bar));

?>

--EXPECT-­

You’ll note that the --EXPECT-- section here is empty. The idea is that no output

is expected; the test will fail if any output—such as a warning from the assert

statements—is generated.

This next example sets up a testing scaffold that includes the source PHP file for

the class to test, and creates the object to test. There are no formal procedures for

creating test scaffolds with phpt tests, but one common convention is to create a

setup.php.inc file, like so:

setup.php.inc

<?php
require_once 'Foo.class.php';
$foo = new Foo('simpletest');
?>

That file performs the setup for us; we then require it in our test script:

Best Practices 461

phpt.php (excerpt)

--TEST-­
Foo::bar() method
--FILE-­
<?php
require_once 'setup.php.inc';
$bar = $foo->bar();
assert(is_array($bar));
assert(in_array('bar', $bar));
?>
--EXPECT-­

phpt tests are generally very easy to write, and offer the advantage that each test is

run in its own environment so, for instance, you don’t have to worry about resetting

static variables values between requests. The big disadvantages of phpt tests are the

lack of a formal method for the setup and teardown of test environments, and the

proliferation of files that occurs when we test classes with many methods.

Discussion
Additional reasons to choose a testing framework like SimpleTest or PHPUnit over

phpt include:

phpt lacks formal methods for assertions.

Certainly, PHP’s own assert function offers the same functionality, but methods

like assertTrue and assertContains have better names that indicate the type

of assertion being made, and contain their own error handling functionality to

ensure that the arguments provided conform to those expected.

phpt lacks formal methods for setting up and tearing down the test environment.

While phpt offers mechanisms for setting up the request environment, they

need to be performed in each test file; this deficiency also makes it difficult to

share environments between tests.

phpt lacks mechanisms for sharing testing functionality between tests.

In PHPUnit and SimpleTest, any method that doesn’t begin with the word test

is just another method in the class, which means that you can create a more

generalized method and call it from the individual test methods if several tests

use similar testing strategies. The ability to easily share an environment without

462 The PHP Anthology

needing to load additional files or classes is especially useful, for obvious

reasons.

If SimpleTest and PHPUnit are so similar, how can you choose one over the other?

The tool you use will depend on what you’ll be testing, and the test strategies you’ll

use. Each testing framework has features that the other does not (although the feature

sets are converging as the years progress). For example:

■	 PHPUnit includes support for code coverage reports (using XDebug; this topic

is covered later in “How can I determine what remains to be tested?”).

■	 SimpleTest contains support for Mock Objects (PHPUnit 3 introduces this cap­

ability).

■	 SimpleTest has web testing functionality (PHPUnit 3 introduces this capability

through a third-party tool, Selenium RC).

■	 SimpleTest has a very active user community.

I use PHPUnit extensively, mainly because it suits the projects I contribute to and

the coding standards that I follow, yet I’ve met many developers who swear by

SimpleTest. Choose one testing framework and learn its ins and outs—and invest­

igate the other to compare their strengths and weaknesses.

Unit testing is a broad topic, and much of the information presented here is, by

necessity, abbreviated. Choose a testing framework that suits your needs, and read

up on the documentation for that framework as you start to write your tests. You

may want to read up on unit testing in general as well.

One subject that I haven’t covered here is the concept of Test Driven Development

(TDD), or Test First Development. The basic tenet of TDD is to write unit tests first,

then your code, and repeat the process until your project is complete. Many de­

velopers practice this strategy; it has many benefits, particularly when you refactor

code or add features. For more information on TDD, see the Portland Pattern Repos­

itory wiki,16 and ExtremeProgramming.org.17

16 http://c2.com/cgi/wiki?TestDrivenDevelopment
17 http://www.extremeprogramming.org/rules/testfirst.html

http://c2.com/cgi/wiki?TestDrivenDevelopment
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://www.extremeprogramming.org/rules/testfirst.html
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://www.extremeprogramming.org/rules/testfirst.html

Best Practices 463

How can I determine
what remains to be tested?
Regardless of whether you’re using Test Driven Development or writing your tests

after the fact, eventually you’ll need to know how much of your code has actually

been tested. Often, even though your tests are passing, substantial portions of your

code won’t have been exercised by your tests. How can you determine which code

has been exercised, and which has not?

Solution
PHPUnit 3 provides the ability to generate code coverage reports.18 This feature

requires XDebug to be installed on your machine. You can obtain XDebug via PEAR

or PECL, or download the extension yourself.19 In my experience, users of *nix­

based machines will need to compile the extension themselves. To do so, use the

following steps, substituting the appropriate paths, of course:20

$ cd /path/to/xdebug/sources

$ /path/to/phpize

$./configure —with-php-config=/path/to/php-config

$ make

$ make install

Once XDebug is installed, you’ll need to enable the extension in your php.ini file.

Since this extension needs to interact with the Zend Engine, you must enable it as

a zend_extension:

zend_extension = /full/path/to/xdebug.so

The full path is absolutely necessary if the extension is to be found by the PHP en­

gine.

18 For documentation on PHPUnit’s code coverage report facilities, read the online documentation at

http://www.phpunit.de/pocket_guide/3.0/en/code-coverage-analysis.html.

19 http://xdebug.org/

20 I originally covered this process in a blog entry entitled, “Getting XDebug Working with PHPUnit For

Code Coverage Reports,” at http://weierophinney.net/matthew/.

http://xdebug.org/
http://www.phpunit.de/pocket_guide/3.0/en/code-coverage-analysis.html
http://xdebug.org/
http://weierophinney.net/matthew/

464 The PHP Anthology

You’ll also want to disable the extension by default (there’s no need to slow down

your site unless you’re actually doing some profiling or checking code coverage).

This can also be done in your php.ini:

xdebug.default_enable = Off

While the code coverage reports run from the CLI, you may need to restart your web

server after all the installation tasks and INI changes have been performed.

Once XDebug is available, generating code coverage reports is as easy as throwing

another switch to PHPUnit:

$ phpunit --report UnitTest

The --report switch expects a directory argument. When it’s run in this fashion,

PHPUnit generates code coverage reports after the tests are performed, and saves

them as HTML files in the directory you specify. You can then browse these reports

in a web browser. For example, Figure 13.3, shows the report I generated while

developing the Zend_Controller class in the Zend Framework.

Best Practices 465

Figure 13.3. Code coverage report generated with PHPUnit and XDebug

As you can see by the legend in Figure 13.3, it defines three thresholds of code

coverage:

■ 0–35%: low
■ 35–70%: medium
■ 70–100%: high

You can then drill down into individual files. A sample from

Zend_Controller_Action is shown in Figure 13.4.

466 The PHP Anthology

Figure 13.4. Code coverage analysis of Zend_Controller_Action showing a sampling of untested, dead, and tested

code

In a web browser, code coverage report output is color coded, with green marking

code that has been executed, red marking code that was not executed, and orange

marking “dead” code, or code that will never be executed (usually end braces).

Comments, as well as function and class definitions, are never considered in code

coverage.

By generating these reports frequently, you can quickly determine which files need

more coverage, and which code needs testing.

Don’t Hold Out for 100%!

True, 100% code coverage is impossible to achieve in most cases, though the report

may show that it has been achieved. Often, code will be written to account for

many different situations, and testing even one of those will exercise it—but there’s

Best Practices 467

no way to test all cases. The general rule of thumb holds that test coverage of 85%

or greater is excellent.

I’ve reviewed some of my old code, and it’s
horrible. How can I make it better?
Of course, you’re one of those good developers who maintains their code rigorously,

or, at the very least, you occasionally go back and review code you wrote six months

or a year ago, right? And, as you learn new techniques or new approaches to prob­

lems, the code you wrote before suddenly looks like a mess of tangled, overcooked

spaghetti.

Solution
The solution to the old-code nightmare is summed up in a single word: refactoring.

Quite simply, refactoring is the act of revising a program to make it more readable,

or incorporating better structure, while preserving the program’s functionality.

If your code has been unit tested previously, you have a great foundation for under­

taking such a task. Create a new branch in your revision control system and start

hacking away at your code. Run the existing tests regularly as you work to ensure

that nothing breaks. Based on your changes, you may need to add new unit tests.

Be wary of altering the existing unit tests, however, as this may lead to incompatib­

ilities.

If the code in question has not been tested previously, you have a bit more work to

do. Your first step should be to write unit tests for the existing code. This approach

will effectively produce a contract for the new code, which must pass these tests.

Additionally, in writing the tests, you’ll likely identify which areas of the code are

most brittle and need to be rewritten, and uncover some bugs. Once your tests are

finished, start the process of rewriting, running your test suite often.

468 The PHP Anthology

Discussion
Refactoring is a complex topic, and the solution presented here is the briefest of

summaries. If you’d like to dig into a thorough discussion of the subject, I recommend

a classic reference: Martin Fowler’s Refactoring. 21

How can I deploy code safely?
As PHP developers, we don’t release code in the typical development model: code,

build, package, release. More often than not, we find ourselves making tweaks on

live systems, or deploying code directly onto a live web site.

Problems arise in these situations, as we introduce the possibility of site breakage.

How many times has a fix or a new feature broken your web site? How many times

have you needed to roll back to the previous version of a project, but had no clean

way to do so?

With any luck, you’re already on the way to solving many of these problems by

following the examples shown previously in this chapter:

■	 Use revision control software.
■	 Maintain separate development and production branches of your site in your

versioning system.
■	 Tag your production branch prior to release.
■	 Write and run unit tests for your code.
■	 Make sure as much of your code as possible is being exercised by your unit tests.

Solutions
With those tools already in place, you have only a little way to go to reach the calm

waters of safe code deployment.

Using Tags and Symlinks
First, set up a staging or quality-assurance server that can run off a checked-out

copy of your production branch. This server can be a separate virtual host on the

same machine as your production server (though that’s not recommended), or on a

21 Martin Fowler, Refactoring (Reading, MA: Addison-Wesley Professional, 1999).

Best Practices 469

separate server entirely, preferably behind a firewall (you guessed it—this approach

is recommended).

Once you’ve merged your changes from the development branch or trunk into your

production branch, test the site. Use unit tests as well as testing visually, using a

browser—looking at your project can often reveal issues that your tests simply

cannot find.

Once you’re confident that the site works to your satisfaction—or even better, to

your boss’s or client’s satisfaction—tag the production branch. I usually name my

tags with a combination of the date and a summary of the changes being introduced,

something like this:

$ svn copy https://example.com/svn/project/branch/production

➥ https://example.com/svn/project/tag/2007-01-01-NewYearAnnc

➥ -m 'New Year announcements'

Create an export of the tag on your production server:

$ svn export

➥ https://example.com/svn/project/tag/2007-01-01-NewYearAnnc
➥ /path/to/web/2007-01-01-NewYearAnnc

Then, when you’re ready to launch the changes, use a symlink. A symlink, or

symbolic link, is a special directory entry in Unix-based operating systems. A

symlink is not a literal directory entry, like a directory or file, but is a reference to

another directory entry. In this example, we’ll assume that /path/to/web/production

is where your site is installed. This will be a symlink. When it comes time to launch,

make a note of the location to which the symlink points, then execute the following

command:

$ rm /path/to/web/production

$ ln -s /path/to/web/2007-01-01-NewYearAnnc /path/to/web/production

If you need to roll back to the previous version, simply point the symlink to the

previous install directory.

https://example.com/svn/project/branch/production
https://example.com/svn/project/tag/2007-01-01-NewYearAnnc
https://example.com/svn/project/tag/2007-01-01-NewYearAnnc

470 The PHP Anthology

Using a Build System
Additional tasks will, more than likely, need to be undertaken during deployment.

Often, user-generated content is not kept in the repository, so it will need to be

transferred into the new installation directory prior to launch. If database changes

have been made between versions, they will also need to be applied, or a separate

database will need to be used, and content synchronized between production and

the staging install. If many additional tasks, such as the ones mentioned here, are

required when you deploy a new version of your web site, you may need to invest­

igate using a build system that can take care of this sort of thing for you. Examples

include:

GNU Make (http://www.gnu.org/software/make/)

The venerable GNU Make can be used for much more than C code, and has been

used in many projects successfully for performing site installation and upgrade

tasks.

Phing (http://phing.info/trac/)

Phing Is Not GNU Make is based on Apache Ant, a Java-build system. With

Phing, you use XML build files to create your build targets and tasks.

Take great care to determine all the tasks that you need to perform in order to suc­

cessfully launch your site, and complete test runs on your development box regularly.

The more numerous and complicated the tasks, the more likely you are to introduce

errors. Adhere to the KISS principle—Keep It Simple Stupid—as much as possible,

and your project deployment will be more successful.

Discussion
If you have a team of programmers, make sure that the deployment process is so

easy that any single member of your team could deploy it on his or her own box

with a minimum of effort.

The symlink method may seem overly simplistic, but, as I think I’ve mentioned,

the simpler you can keep the deployment process, the greater the likelihood that

it’ll be a success. Ultimately, the success of any deployment will depend upon the

overall development process, from planning, to coding, to final release—and

everything in between. If you’re coding for extensibility, writing and running your

unit tests, documenting your code, and making efficient and effective use of your

(http://www.gnu.org/software/make/)
(http://phing.info/trac/)

Best Practices 471

revision control software, simple, reliable processes may be all you need when it

comes to final deployment.

Summary
Best practices encompass a wide variety of topics, any one of which could be covered

in a chapter of its own—or even a book. Many of the concerns we covered in this

chapter may seem unimportant at first, especially if you’re the sole maintainer of

your project, or work in a small group of like-minded developers. However, the first

time you need to work on a public project, or with another team of developers—or,

worse, delete your project tree or introduce an error into your project—the value of

these practices will become readily apparent.

Revision control will quickly become your friend, particularly when you want to

keep your production code stable while continuing development on your project,

be it to add new features or fix bugs. When you need to develop a feature that touches

many areas of code, being able to branch to keep your changes isolated from the

main development trunk becomes an invaluable advantage.

Adopting a coding standard will save you many headaches as you have others review

your code, and you review the code of others. If you all write in the same style, the

code will be easier to read and decipher. Additionally, using sane file and class

naming conventions will make it easier to find code for later revisions, and prevent

the issues associated with naming collisions.

Code documentation is often overlooked. Tools like phpDocumentor make the

documentation of your code, while you write it, much easier. Run phpDocumentor

on your code base once, having written a few code blocks, and you’ll see how quickly

you can generate API documentation merely by adding a few comments to your

code.

I could have devoted an entire book to the subject of unit testing. I’d even go so far

as to say that unit testing is arguably the single best practice from this chapter that

you should learn and incorporate into your daily routine. Testing your code will

help you better define your interfaces, isolate them from each other, and develop

more stable, reliable code. Write tests, and, more importantly, run them often. Run

code coverage reports periodically to ensure that you exercise as much of your code

as possible.

472 The PHP Anthology

Finally, an often-overlooked aspect of PHP development is the actual deployment

process—the gritty details of pushing your code to the production server, and en­

suring that you can roll back if it fails. Tools like GNU Make and Phing can help

automate these tasks; however, don’t underestimate the simplicity of a good repos­

itory strategy and symlinks. Often the simplest solution is best!

I’ve only scratched the surface with the practices outlined in this chapter. Incorporate

what you can into your daily habits, but also examine your processes constantly

and ask yourself how you can perform tasks better. Refactoring your processes will

ultimately be the most useful tool in your toolbox.

Appendix A: PHP Configuration

This quick reference to PHP configuration covers the most important general settings

you need to be aware of, either when running applications in a live environment,

or because they impact upon security or the way you write code.

Configuration Mechanisms
The primary mechanism for configuring PHP is the php.ini file. As the master file,

it provides you with control over all configuration settings. PHP’s manual contains

a guide to configuring PHP,1 and documents all the available configuration options,

and where they can be set.2 Note that some configuration options can only be set

in the php.ini file, while others can be set in other locations as discussed later in

this section.

Entries in the php.ini file generally take the following format:

setting=value

Be sure to read the comments provided in the file before making changes, though.

The comments describe a few tricks, such as include_path using a colon (:) as a

separator on Unix and a semicolon (;) on Windows, that you’ll want to be aware

of.

Most web hosts won’t allow you to access to your php.ini file unless you have root

access to the system, which is typically not the case if you’re using a cheap, shared

hosting service. The alternative is to use .htaccess files to configure PHP (assuming

the web server is Apache).

An .htaccess file is a plain text file that you place in a public web directory, and use

to control the way Apache behaves when it comes to serving pages from that direct­

ory; for instance, you might identify in the .htaccess file the pages to which you’ll

allow public access. Note that the effect of an .htaccess file is recursive—it applies

to subdirectories as well.

1 http://www.php.net/manual/en/configuration.php
2 http://www.php.net/manual/en/ini.php

http://www.php.net/manual/en/configuration.php
http://www.php.net/manual/en/ini.php
http://www.php.net/manual/en/ini.php
http://www.php.net/manual/en/configuration.php
http://www.php.net/manual/en/ini.php

474 The PHP Anthology

In order for you to configure PHP with .htaccess files, your hosting provider must

have applied the Apache setting AllowOverride Options or AllowOverride All

to your web directory in Apache’s main httpd.conf configuration file. If that has

been done, you can use two Apache directives to modify PHP’s configuration:

php_flag

used for settings that have Boolean values (that is, on/off or 1/0), such as re­

gister_globals

php_value

used to specify a string value for settings, such as the include_path setting

Here’s an example of an .htaccess file:

Switch off register globals

php_flag register_globals off

Set the include path

php_value include_path ".:/home/username/pear"

The final mechanism that controls PHP’s configuration is the group of functions

that contains ini_set and ini_alter, which let you modify configuration settings,

as well as ini_get, which allows you to check configuration settings, and

ini_restore, which resets PHP’s configuration to the default value defined by

php.ini and any .htaccess files. Here’s an example in which using ini_set allows us

to avoid having to define our host, user name, and password when connecting to

MySQL:

ini_set('mysql.default_host', 'localhost');

ini_set('mysql.default_user', 'harryf');

ini_set('mysql.default_password', 'secret');

if (!mysql_connect())

{

 echo mysql_error();

}

else

{

 echo 'Success';

}

Appendix A: PHP Configuration 475

Be aware that for some settings, such as error_reporting, PHP provides alternative

functions that perform effectively the same job as ini_set. You can use whichever

approach you prefer.

Note that certain settings, such as register_globals, can only be usefully modified

by php.ini or .htaccess, because such settings influence PHP’s behavior before it begins

to execute your scripts.

Furthermore, some configuration settings can be changed only in php.ini—exten­

sion_dir, for instance, which tells PHP the directory in which PHP extensions can

be found. For a complete reference on controlling settings, refer to The PHP Manual.3

Key Security and Portability Settings
Table A.1 shows the most important PHP settings that relate to the security and

portability of your PHP scripts.

Includes and Execution Settings
Table A.2 shows the most important PHP settings that relate to includes, and how

well your PHP scripts run.

3 http://www.php.net/ini_set

http://www.php.net/ini_set
http://www.php.net/ini_set

476 The PHP Anthology

Table A.1. Key Security and Portability Settings

NotesDefaultSetting

register_globals

magic_quotes_gpc

call_time_pass_reference
 off

short_open_tag

off

off

on

This setting automatically creates global variables

from incoming HTTP request variables, such as GET

and POST. For security and portability reasons, it’s

strongly recommended that you switch off this

setting. See the section called “Turning

register_globals Off” in Chapter 1 or

http://www.php.net/register_globals/ for more

details.

This setting automatically escapes quotes in

incoming HTTP request variables with a backslash,

helping to prevent SQL injection attacks. If you

know what you’re doing, it’s usually better to switch

off this functionality and handle the escaping

yourself when inserting data into a database, given

the problems this feature can cause with forms, and

the performance overhead they introduce. See the

section called “Checking for Magic Quotes” in

Chapter 1 for information on making your scripts

compatible with this feature.

This setting allows you to use variable references

(e.g. htmlentities(&$string)) at call time.

To keep code clean and understandable, and to

ensure its portability, keep this functionality

switched off.

This setting allows you to start a block of PHP code

with just <? instead of the longer <?php. It also

lets you write out PHP expressions with <?=, which

is identical to <?php echo. While convenient,

these shortcuts are not XML compliant, and can

cause the PHP processor to become confused when

it encounters XML processing instructions such as

<?xml version="1.0"?>. Many people have

short_open_tag switched off, so, for maximum

portability, avoid the shortcuts and switch off this

feature during development.

http://www.php.net/register_globals/

Appendix A: PHP Configuration 477

NotesDefaultSetting

A setting that allows ASP-style tags (<% … %>) to

be used as an alternative to the PHP open and close

tags (<?php … ?>). Few people use this feature,

so, for maximum portability, it’s best to avoid them,

and switch off this feature during development.

offasp_tags

error_reporting
 E_ALL &

~E_NOTICE

display_errors
 on

not setopen_basedir

allow_url_fopen
 on

When developing, and for maximum portability, it’s

best to set this option to E_ALL (or E_STRICT

in PHP 5), so that PHP will inform you of situations

where, for example, a $_GET variable your code

relies upon has not been initialized. This forces you

to write code that’s more secure and contains fewer

logic errors, in order to avoid warnings. This also

ensures that your code will run neatly on other

servers configured this way.

This setting determines whether or not PHP sends

error messages to the browser. When you’re running

your application in a live environment, it’s generally

better to switch off this option, and instead to use

PHP’s logging mechanism to capture errors to a file,

for example.

This setting allows you to restrict all PHP file

operations to a given directory and its

subdirectories. This can be a good idea if, for

example, you want to prevent a script that’s used

to display the contents of files from being used to

access sensitive files elsewhere on your server.

This setting allows you to specify remote file

locations for use with functions like fopen (e.g.

fopen('http://www.sitepoint.com/','r');).

It’s a handy tool but is also potentially a security

risk for a badly written script. Switch it off if you

know you don’t need it.

478 The PHP Anthology

Table A.2. Includes and Execution Settings

NotesDefaultSetting

include_path

auto_prepend_file

auto_append_file

max_execution_time

not set

'.'

not set

30

This setting allows you to specify the relative and

absolute paths that PHP should search when you use

one of the include-related commands. Make sure you

specify at least the current directory (.), or most

third-party scripts will fail to work. On Unix systems,

the list of directories is separated by colons (:), while

on Windows the separator is a semicolon (;). To make

your life easier, the constant

DIRECTORY_SEPARATOR is set to represent the

correct character based on the operating system,

making it easier to produce cross-platform-compatible

code.

PHP will execute the file(s) specified in this setting

before executing any requested script. This setting is

useful for performing site-wide operations such as

security, logging, defining error handlers, stripping

backslashes added by the magic quotes feature, and so

on. It’s also useful for applications that you’re sure you

will only use yourself, but is unsuitable for use in code

you intend to distribute, as those who are unable to

modify php.ini settings with .htaccess files will

be unable to use such code. The list separator is the

same as that used for the include_path setting.

The twin of auto_prepend_file, this setting is

executed after a requested script is executed.

This setting specifies the maximum execution time (in

seconds) for which a PHP script run via a web server

may be allowed to execute. Generally, it’s best to leave

this as the default setting and use the

set_time_limit function to extend the limit on

a per-script basis. A value of 0 for either setting

removes limitations on script execution time.

Appendix A: PHP Configuration 479

NotesDefaultSetting

memory_limit

post_max_size
 8M

8M
	 This setting determines the amount of memory PHP

has available to it at runtime. Usually, the default is

fine, but when you’re handling very large XML

documents, for example, or dealing with images, you

might need to increase it. The bigger this value, the

more memory a script actually uses, and the less

memory will be available for other applications running

on your server.

This setting reflects the maximum amount of data that

PHP will accept via an HTTP POST (e.g. a form that

uploads an image). You might need to increase this

value if you have an application that will allow users

to upload bigger files.“

480 The PHP Anthology

Error-related Settings

Table A.3 shows the most important PHP settings that relate to the way PHP handles

errors. Note that display_errors and error_reporting are not included here, as

they were described in Table A.1.

Table A.3. Error-related Settings

NotesDefaultSetting

This setting, in conjunction with error_log (below),

allows you to log errors to a text file. It’s useful for a

live site where you’ve switched off the display of errors

to visitors.

offlog_errors

This setting allows you to specify the name of a file to

which errors are logged when log_errors is

switched on.

not seterror_log

Using this setting, if the same error occurs multiple

times from the same line of a given PHP script, the

error will only be reported once per script execution.

This setting helps prevent the massive log files that can

result from errors that occur in loops and are logged

to a text file.

offignore_repeated_errors

This setting is similar to

ignore_repeated_errors, but, in this case, it

suppresses repeated errors of the same type throughout

a PHP script.

30ignore_repeated_source

Make sure this setting is switched on, especially if

you’re using experimental versions or nonstable releases

of PHP. Otherwise, you might end up crashing your

server once leaked memory has eaten up all the

available space. error_reporting must be set to

report warnings for this setting to apply.

onreport_memleaks

Appendix A: PHP Configuration 481

Miscellaneous Settings

Table A.4 shows additional important settings that you should be aware of in your

PHP configuration.

Table A.4. Miscellaneous Settings

NotesDefaultSetting

If you’re storing sessions in files on a Windows-based

system, you’ll need to modify this setting to an available

directory to which PHP can write session files.

/tmpsession.save_path

This setting uses cookies to store the session ID on the

client, rather than placing the session ID in the URL

(which can present a risk to security).

1session.use_cookies

This setting specifies the path under which compiled

PHP extensions can be found. On Windows-based

systems, it might be something like this: extension_dir

= C:\php\extensions\

'./'extension_dir

On Windows-based systems only, this setting is used

to identify all the extensions that should be loaded.

The extensions specified should reside in the

extension_dir path (above), for example, extension =

php_xslt.dll.

extension

Appendix B: Hosting Provider Checklist

PHP, and, more generally, the LAMP combination of Linux, Apache, MySQL, and

PHP/Perl/Python, are widely available via literally thousands of web hosts at very

affordable prices. You can easily access quality web hosting that will suit 90% of

your needs quite inexpensively. That said, all PHP installations are not created

equal—their capabilities depend largely on the configuration settings defined in

php.ini, as well as the extensions the host has installed for you. A number of general

issues relating to the amount of control you’re given over your own environment

also deserve consideration if you’re to avoid trouble later on.

This appendix summarizes the key issues you should investigate before paying for

a hosting service. Contact potential providers and ask them to respond to each of

these points. Follow up by asking for the opinions of other people who’ve used the

service in question—there are many online forums where you’ll find people who

are able to offer advice. Be aware, though, that the ratio of “knowledgeable” to “ig­

norant” people is stacked highly in favor of ignorance; familiarize yourself with

technical details so that you’re able to verify that the answers you’re given are well

informed.

Some of the points I’ve included here may seem a little extreme, but once you’ve

been around the block a few times, you’ll probably want to get value for your money,

rather than spending your Saturday mornings fixing the problems your host made

for you on Friday night.

General Issues
Consider these issues whichever host you’re looking at—they’re the key markers of

a decent service.

Does the host support Linux and Apache?
From the point of view of performance and reliability, the Linux–Apache setup is

the best combination. Ask for details of the Linux distribution. Although Red Hat

and its derivatives (such as CentOS and Fedora) are popular, you might find hosts

using Debian or Ubuntu—or, better yet, Rock Linux—know more about what they’re

doing.

484 The PHP Anthology

Avoid any host that uses Apache 2.x with a threaded multiprocessing module

(MPM), as there are still many third-party libraries that aren’t thread safe. Stick with

a host that offers Apache 2.x with the prefork MPM, or Apache 1.3.x.

Does the host provide you with SSH access to the
server?
SSH gives you a secure connection to the server, through which you can perform

tasks from the Linux command line, or transfer files with SCP (Secure Copy Protocol)

or SFTP (SSH File Transfer Protocol). Avoid any host that allows you to use telnet,

as this is a fundamentally insecure way to connect to a server over the Internet. For

Windows users, Putty1 makes an excellent SSH client and command line tool, while

WinSCP2 provides a secure file transfer mechanism using an SSH connection.

Alternatively, make sure you can upload files using FTPS (FTP over SSL). Don’t

transfer files with FTP—it’s as insecure as telnet.

Is the host a reseller, or does it maintain servers
itself?
Resellers can provide significant value if you need help at a basic technical level

(if, for example, you’re a beginner), but they generally have the same level of control

over the server as you do. Going “straight to the source” means you won’t have to

deal with delays when there are system problems, as you’ll likely be dealing directly

with those who maintain the server. The downside is that they tend to be less

newbie tolerant, so you might get answers—but not ones you can understand!

To what degree does the host “overload” the server?
Many web hosting companies create far more accounts on a server than the maximum

for which the system is specified. To gauge the degree of server overload, the best

metric is obtained using the uptime command (if you have access to use it); this

will tell you the server load averages over one, five, and 15 minutes. Ideally, the

server should never have load averages above one. Obviously, the issue isn’t really

as simple as this, but once you see your server hit averages in excess of five, you’ll

begin to experience significant delays in your PHP-based applications.

1 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
2 http://winscp.net/eng/

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.net/eng/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.net/eng/

Appendix B: Hosting Provider Checklist 485

What’s the hosting provider’s policy on running scripts
and programs from the command line?
MySQLDump is a very handy tool for backing up your database, but it’s no good if

you can’t run it on your server. Some hosts automatically kill any command line

application that executes for longer than a given time, so be sure to investigate this

issue.

Does the host provide you access to cron, the Unix
utility that allows you to schedule batch jobs?
If so, make sure the host allows command line scripts to be executed. Some hosts

have taken to implementing cron so that it executes scripts via a web URL, but this

is no use if the script in question uses the MySQLDump application to back up your

database—a PHP script executed via Apache will typically run as a user, which will

not have the correct permissions required for the job.

PHP-related Issues
These considerations relate specifically to PHP and the way it’s set up on the server.

Can you see the output of phpinfo on the server you
will actually be assigned to?
Some hosts might claim this is a security risk, but expert hosts know that security

by obscurity is no substitute for real security. The information provided by phpinfo

is not a security risk to hosting providers that know what they’re doing, and have

Linux, Apache, and firewalls correctly set up. What phpinfo tells you is the best

way to confirm the facts.

Is PHP installed as an Apache module (not the CGI
variant)?
PHP installed as an Apache module provides much better performance than if PHP

is running in CGI mode.

486 The PHP Anthology

Is the Apache settingAllowOverride set to
Options or All?
This setting will let you modify php.ini settings with .htaccess files.

Is PHP Safe Mode disabled?
The safe_mode option in php.ini is, in theory, a way to make PHP secure, and prevent

users from performing certain tasks or using certain functions that are security

sensitive. Safe Mode is nothing but a large headache if you’re doing any serious

work in PHP.

Check the upgrade policy of your host.
Ask the host how much warning you will get before upgrades are performed. Check

that they’ll provide you with a copy of the php.ini file they’ll be using for the upgrade

before it happens—the number of hosts that, overnight, switch from register_glob­

als=on to register_globals=off is considerable. Make sure you test your applic­

ations on your development system against the new version before the host performs

the upgrade.

Ask for a list of installed PHP extensions.
Confirm that these extensions match the requirements of your applications—few

hosts, for example, bother to provide the XSLT extension. Confirm also that the

host guarantees that all extensions will remain available between PHP upgrades.

Will PHP be available for use from the command line?
If not, you might alternatively require access to Perl or Python, or the ability to run

shell scripts, if you’re happy with those languages. Usually, running a serious web

site will require that you have the ability to run routine batch jobs (with cron) for

tasks like backups, mailing yourself the PHP error log, and so on.

What’s the host’s knowledge of PHP?
Last but not least, throw in one or two questions that will test your hosting provider’s

knowledge of PHP. Although it might not be the host’s job to write PHP code, when

you find yourself in the position of knowing a lot more about PHP than your host,

Appendix B: Hosting Provider Checklist 487

the end result is depressing. It’s important to have a host that understands your

needs.

Appendix C: Security Checklist
Given that online PHP applications are exposed essentially to anyone and everyone,

security should be on, if not at the top of, your list of concerns as you develop your

applications. To some extent, the ease with which PHP applications can be developed

is also one of the language’s greatest weaknesses: for beginners who aren’t aware of

the possible dangers, it’s very easy to deploy an application for which the line of

security has as many holes as Swiss cheese.

Make sure you’re informed and, if in any doubt, prepared to ask questions. The

Open Web Application Security Project (OWASP) is a corporate-sponsored com­

munity focused on raising the awareness of web security, and is an excellent source

of information on potential dangers.1 They OWASP recently updated its list of the

top ten common security flaws in web applications, the relevant points of which

I’ve summarized here. The previous version from 2004 still contains relevant inform­

ation and, while there’s some duplication, it’s well worth a read.2

For a more detailed coverage of PHP security, you might like to read Essential PHP

Security by Chris Shiflett,3 and php|architect’s Guide to PHP Security by Ilia

Alshanetsky.4

Top Security Vulnerabilities
This list comprises the most common—and dangerous—security flaws found in

web applications today.

Cross-site Scripting (XSS)
Cross-site scripting attacks are the result of sending unchecked, user-supplied data

to a browser. The problem with user-supplied data is that it’s completely outside

of your control, and it’s easy to fake values like the HTTP referrer and the values

in a hidden form field.

1 http://www.owasp.org/
2 http://www.owasp.org/index.php/Top_10_2004
3 http://phpsecurity.org/
4 http://www.phparch.com/pgps/

http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/index.php/Top_10_2004
http://phpsecurity.org/
http://phpsecurity.org/
http://www.phparch.com/pgps/
http://www.phparch.com/pgps/
http://www.owasp.org/
http://www.owasp.org/index.php/Top_10_2004
http://phpsecurity.org/
http://www.phparch.com/pgps/

490 The PHP Anthology

When dealing with forms, for example, validate the data carefully, and use a “deny

all, permit a little” policy. For example, if a registration form has a field for the

user’s username, allow only alphabetical characters and perhaps the numbers 0–9,

rather than simply rejecting particular special characters. Use regular expressions

to limit the data to exactly that which you require. Packages like

PEAR::HTML_QuickForm, which we saw in “How do I build HTML forms with PHP?”

in Chapter 5, provide built-in mechanisms for validating forms, and do a lot to help

cover weaknesses you might otherwise neglect.

Without these checks, it might be possible for a malicious user to create an account

with a username like this:

John

Doe<script type="text/javascript">…</script>

This username includes a JavaScript file that connects to another server and sends

the current user’s session ID. Any person who then sees this username in the web

browser (when browsing a forum, for example) will be sending his or her session

ID to the remote server, allowing “John Doe” to connect to the web site as them.

Of course, this tactic isn’t limited to user names; the same trick could be employed

to exploit blog comment areas, the content of a forum post, or even the filename of

an uploaded image. Less serious, but equally embarrassing, is when malicious users

simply post HTML that “scrambles” the layout of your page, perhaps closing a table

tag prematurely. Employ a separate markup language such as BBCode where pos­

sible,5 and eliminate HTML with PHP functions like strip_tags and

htmlspecialchars (see Chapter 3 for more on this). If you really want to allow

HTML to be posted to your application, consider building a filter based on

PEAR::XML_HTMLSax. 6

Also, where items like include files are concerned, watch out for logic like this:

include($_GET['page']);

Make sure you check the value of $_GET['page'] against a list of files you intend

to include in your code:

5 http://www.phpbb.com/community/faq.php?mode=bbcode
6 http://pear.php.net/package/XML_HTMLSax/

http://www.phpbb.com/community/faq.php?mode=bbcode
http://www.phpbb.com/community/faq.php?mode=bbcode
http://pear.php.net/package/XML_HTMLSax/
http://www.phpbb.com/community/faq.php?mode=bbcode
http://pear.php.net/package/XML_HTMLSax/

Appendix C: Security Checklist 491

$pages = array('news.php', 'downloads.php', 'links.php');

if (in_array($_GET['page'], $pages))

{

 include $_GET['page'];

}

else

{

 include 'not_found.php';

}

Without such checks, it’s very easy for an attacker to use code similar to this to ex­

ecute other PHP scripts—even if you didn’t write them, and they’re not stored on

your server.

Injection Flaws
Another example of the problems associated with the use of unchecked user-supplied

data values in a script, injection flaws allow an attacker to influence the way PHP

interacts with an external system, such as the file system or a database.

An SQL injection attack occurs when an attacker uses a form or URL to modify a

database query, and the topic was discussed in some detail in “How do I protect

my web site from an SQL injection attack?” in Chapter 2. The bottom line is: escape

all the data you receive from a user before you use it in a query.

Malicious File Execution
Any script that allows the execution of a file that doesn’t reside on the server will

enable an attacker to execute arbitrary code on your server. The consequences of

such an attack could involve the undetected extraction of data from your application,

or a total compromise of your server.

Malicious file execution attacks are applicable to any system that takes filenames,

in part or in whole, or files from the user, and this issue ties in closely with that of

cross-site scripting attacks.

Insecure Direct Object Reference
You’ve seen URLs such as this before:

492 The PHP Anthology

http://site.com/view_order/?orderid=123

Perhaps you’ve tried changing the value of orderid. This is one example of a direct

object reference attack—most are easy to prevent, however. For example, to make

sure that a user can only see his or her own orders on your site, you might use SQL

like the following to confirm that the ordered items stored in the database have the

same user_id as the current user’s user_id session value:

$sql = 'SELECT * FROM order WHERE order_id=' .

 intval($_GET['orderid']) . ' AND user_id=' .

 $_SESSION['user']->get('user_id');

Another form of direct object reference attack can be made by exploiting the way

files are referenced within a script. Scripts that reference files on the basis of user-

submitted data could be used to reveal information stored outside the web site’s

document root. For example, take this innocuous-looking URL:

http://site.com/welcome/?lang=en

Behind the scenes, this URL tells a page to display in English by including the

en.lang.php script:

include($_GET['lang'] . '.lang.php');

What do you imagine the following request would return from the above script?

http://site.com/welcome/?lang=../../../../../../../etc/passwd%00

The ../s will push the request to the root of the file system, and the %00 on the end

of that URL uses the null termination trick, which will exploit the insecure include

in the PHP script to include the /etc/passwd file—the list of all system users on

the server. Because all strings in PHP are null terminated, the PHP interpreter will

not see the '.lang.php' appended to the end.

Remember—user-submitted information is not limited to the URL and form para­

meters! You should check to ensure that unchecked cookie values, and HTTP request

header and content values, aren’t used in your script, either.

http://site.com/view_order/?orderid=123
http://site.com/welcome/?lang=en
http://site.com/welcome/?lang=../../../../../../.

Appendix C: Security Checklist 493

Cross-site Request Forgery (CSRF)
This type of attack forces victims to perform actions on another site without their

consent. As an example, such an attack might include an image in a forum message

using this code:

This code would automatically log out of Google all forum visitors who visit the

page on which this code appears. More devastatingly, a CSRF could result in your

account details being altered, or even bank transfers being initiated, without your

consent.

Protection against this type of attack is actually easier for the site that’s being attacked

than for the site that’s unknowingly hosting the attack. To protect against the auto­

matic submission of forms, you could create a random token that’s regenerated for

every form view, and placed in a session variable and a hidden field in the form:

<?php $_SESSION['token'] = md5(uniqid(rand(), true)); ?>

<form action="sensitive_action.php" method="post">

<input type="hidden" name="token"

value="<?php echo $_SESSION['token'] ?>"/>

⋮ …rest of the form
</form>

When the form is submitted, a script checks that the token matches the value in the

session variable, which will only be the case if the form is loaded from the real

site—the page fails if the request comes from elsewhere.

Another option—especially for high-risk operations such as bank transfers and

password changes—is to require the user to confirm changes. This way, a forged

request will cause the real user to be prompted to confirm the action before it goes

ahead.

Information Leakage and Improper Error Handling
When errors occur in scripts, information that can be useful to attackers might be

leaked in error messages. Take, for example, a message such as this:

494 The PHP Anthology

Warning: mysql_connect(): Access denied for user

➥ 'sitepoint'@'db.sitepoint.com' (using password: YES)
➥ in /var/www/index.php on line 12

This information gives a potential attacker the database server’s name, the database

name, and the user name.

Similarly, error messages that output erroneous SQL statements give attackers a

small view into your database structure—possibly their first step towards SQL in­

jections.

Refer to the section called “Key Security and Portability Settings” in Appendix A

for information on disabling error output to the browser in production environments,

and opting for error messages to be logged to a file instead.

Broken Authentication and Session Management
Broken authentication and session management vulnerabilities are closely tied to

the inadequate protection of account and session data. We’ve already seen how

sessions can be hijacked using cross-site scripting, and if the session is hijacked

before a user logs in, the attacker simply needs to wait until the user logs in to gain

full access to that person’s account.

PHP offers the session_regenerate_id function,7 which should be used before

any change in privilege level. Essentially, it maintains the session data, while

changing the session ID. So after a user logs in, that person obtains a new session

ID, and any previous sessions hijacked by the attacker are useless. You should also

stick with PHP’s own session and cookie management functions—don’t write your

own or use third-party scripts.

Other measures you can take to prevent this type of vulnerability include ensuring

that your site’s logout functionality completely destroys the session data, and

automatically logging users out after a period of inactivity.

It’s also advisable to not send passwords in plain text, either in emails or to be dis­

played on screen. If you must email a password, ensure the user has to change that

password upon the next login before he or she can continue to use the site.

7 http://www.php.net/session-regenerate-id/

http://www.php.net/session-regenerate-id/
http://www.php.net/session-regenerate-id/

Appendix C: Security Checklist 495

Insecure Cryptographic Storage
First of all, when it comes to cryptography, don’t roll your own code. Second, re­

member that if you’re encrypting data using an algorithm that’s meant to be decoded,

then someone else will also be capable of decoding it.

Remember that, strictly speaking, MD5 and SHA are not encryption algorithms (that

is, you can’t decrypt an MD5 string to obtain the original data); they are message

digest algorithms. But if you don’t need to decrypt a value, use SHA-256, which is

available through PHP 5.1.2’s hash8 [Usage: hash('sha256', $password);] function.

If this is not an option, you can opt for the less secure MD5 hash, which is available

through the md59 function.

This technique allows you to compare the encrypted versions of two pieces of data

(e.g. a stored password and that entered by a user), which avoids the risks involved

in working with encrypted values that could possibly be decrypted by an attacker.

Insecure Communications
Sending any type of sensitive information in plain text isn’t just bad practice, it’s

inexcusable. For example, if you’re asking a user to log in or provide credit card

details, you should be securing the communications using SSL. If your application

causes your server to talk to another server, for example a bank’s merchant services

system, that communication should also be secured using SSL.

Failure to Restrict URL Access
Most applications will limit the links available to users on the basis of their privilege

levels. For example, all users see a link to the homepage, but only administrators

have access to the link to the list of users. However, many applications’ user author­

ization systems stop at that point, which means that anyone who types in the full

URL to the user list page will gain access.

Make sure that your users only see the links they can use, but also make sure that

each page checks users’ privileges before allowing them to continue.

8 http://www.php.net/hash/
9 http://www.php.net/md5/

http://www.php.net/hash/
http://www.php.net/md5/
http://www.php.net/hash/
http://www.php.net/md5/

496 The PHP Anthology

More information on this topic is available at PHP Advisory,10 although, sadly, the

site is no longer being maintained.

10 http://www.phpadvisory.com/

http://www.phpadvisory.com/
http://www.phpadvisory.com/

Appendix D: Working with PEAR

PEAR,1 the PHP Extension and Application Repository, is the brainchild of Stig

Bakken, and was inspired by Perl’s CPAN.2

As a project, it was originally conceived in 1999 and reached its first stable release

in January 2003. PEAR serves two purposes. First, it provides a library of PHP classes

for solving common architectural problems, a number of which you’ve seen in this

book. Second, under the title PECL (PHP Extension Code Library), PEAR provides

a repository for extensions to PHP. PECL was originally intended to store nonstand­

ard extensions that lay more on the fringes of PHP, but it has since evolved into the

default repository for all the extensions that aren’t included in the core PHP distri­

bution. Here, I’ll be concentrating on the PHP classes that PEAR provides.

Those who submit work and maintain the PEAR repository are all volunteers. Ori­

ginally a small community of developers, the numbers of volunteers have grown

significantly since the release of the first stable version of PEAR, and the group re­

ceives a greater focus from the PHP community as a whole. There’s still a lot of

work to be done to raise the standards of PECL to that of PHP itself, documentation

being a key area in which there’s still much room for improvement. If you’re strug­

gling with a PEAR package, a good place to start is PHPKitchen’s list of PEAR Tu­

torials.3 That said, PEAR already offers significant value in terms of reducing the

effort required in developing PHP applications.

But what does PEAR actually mean to you? Browse the list of packages,4 and you’ll

see that PEAR provides many more classes, categorized by subject, to help you avoid

having to reinvent wheels. It’s important to understand that the focus of PEAR

classes is architectural issues, not application-level classes. In other words, you

won’t find complete applications there; rather, you’ll find code that can be reused

in many different applications. Also important is that the PEAR developer com­

munity does its best to maintain and support the library, which compares favorably

with, say, the projects available via SourceForge,5 which are often individual en­

1 http://pear.php.net/

2 http://www.cpan.org/

3 http://www.phpkitchen.com/index.php?/archives/668-PEAR-Tutorials.html

4 http://pear.php.net/packages.php

5 http://sourceforge.net/

http://pear.php.net/
http://www.cpan.org/
http://www.phpkitchen.com/index.php?/archives/668-PEAR-Tutorials.html
http://www.phpkitchen.com/index.php?/archives/668-PEAR-Tutorials.html
http://pear.php.net/packages.php
http://sourceforge.net/
http://pear.php.net/
http://www.cpan.org/
http://www.phpkitchen.com/index.php?/archives/668-PEAR-Tutorials.html
http://pear.php.net/packages.php
http://sourceforge.net/

498 The PHP Anthology

deavours and come to a sudden end once the individuals in question stop contrib­

uting their time. Otherwise, there is some emphasis on maintaining a degree of

standardization throughout the PEAR library. For example, all error handling should

be performed using PEAR::Error, and the code should be documented using the

PHPDoc standard, which means that if you can’t find the API documentation on

the PEAR web site, you should be able to extract it using phpDocumentor,6 which

we covered in some detail in “How can I document my code for later reference by

myself or others?” in Chapter 13.

Be warned: the degree of integration between the packages within PEAR is currently

fairly low when compared to, say, the Java class library. This means that, in some

cases, you’ll be confronted with decisions such as whether to use

PEAR::HTML_QuickForm’s validation functionality, or PEAR::Validate, or both. It’s

a good idea to invest some time investigating which option fits your development

style up-front, rather than jumping straight in and using a PEAR class for a critical

part of your application, only to discover later that it wasn’t the best solution to the

problem.

One important point to be clear on is that a reference to PEAR can actually mean

one of two things: the repository as a whole, or the PEAR front end (also known as

the package manager), which provides tools for installing and upgrading the PEAR

packages you use.

You’re not required to use the PEAR package manager to install PEAR packages. If

you need to, you can download them directly from the PEAR web site and manually

extract them to your PHP’s include path. Make sure you check the dependencies

listed on the site (these are other required packages) and be aware that most packages

implicitly require the PEAR base package for tasks like error handling.7

Installing PEAR
These days, the foundations of PEAR are provided with the PHP distribution itself,

but web hosts typically fail to provide customers with their own default PEAR in­

stallations, so it’s worth knowing how to go about installing PEAR from scratch.

The process can differ slightly between Unix- and Windows-based systems.

6 http://www.phpdoc.org/
7 http://pear.php.net/package/PEAR/

http://www.phpdoc.org/
http://pear.php.net/package/PEAR/
http://www.phpdoc.org/
http://pear.php.net/package/PEAR/

Appendix D: Working with PEAR 499

Step one is to make sure you can run PHP scripts via the command line. This is al­

ways possible if you type the full path to the PHP binary. For a Unix-based system,

you’d use the following:

/usr/local/bin/php /home/username/scripts/my_script.php

For Windows, you’d use something like this:

c:\php\cli\php.exe c:\scripts\my_script.php

Note that in the Windows path above, we used the executable in the c:\php\cli\

(command line interface) subdirectory of the PHP installation. This executable be­

haves slightly differently from that used by Apache to handle web pages. PHP binary

releases for Windows since version 4.3.0 place the CLI version of the PHP executable

in this directory. We can make PHP much easier to use from the command line by

applying some changes to the system’s environment variables. For more information,

see the PHP CLI manual pages.8

Next, point your browser at http://go-pear.org/, where you’ll see a PHP script. This

script is used to install the PEAR package manager—the basis you’ll need in order

to install other PEAR packages. Download this to your computer and save it as go-

pear.php. From this point, you have a number of options.

Storing go-pear.php somewhere under your web server’s document root directory

will allow you to run the script as a web page. This behavior is still experimental,

though, so there are no guarantees it’ll work correctly. If you do use this approach,

make sure that the script is not publicly available!

A better option is to execute the go-pear.php script via the command line:

/usr/local/bin/php /home/username/pear/go-pear.php

Here’s the command for Windows users:

c:\php\cli\php c:\pear\go-pear.php

8 http://www.php.net/features.commandline/

http://www.php.net/features.commandline/
http://go-pear.org/
http://www.php.net/features.commandline/

500 The PHP Anthology

This command will launch an interactive command line interface, which will ask

you questions about how you would like PEAR installed. Note that the installation

prefix is the directory in which PEAR (as well as any packages you install later)

will be installed, and is referred to as $prefix; $php_dir contains the path to your

PHP installation (in which go-pear.php will put PEAR-related documentation by

default, unless you specify otherwise). Windows users should be aware that changing

the installation prefix will cause a Windows Browse dialog to display; you can use

it to specify the directory you require.

With the installation options set to your requirements, the go-pear.php script will

connect to the PEAR web site and download all the packages required to set up the

package manager (it also asks if you require additional packages, which are well

worth having). Packages are installed in a subdirectory, called pear, that’s within

the directory you specified as the installation prefix. So, in the above examples,

you’d end up with c:\pear\pear or /home/username/pear/pear).

Finally, if you let it, the go-pear.php installer will attempt to modify your in­

clude_path in php.ini. To do this manually, assuming you used the directories

above, you’d specify the following:

include_path = ".:/home/username/pear/pear"

For Windows users, the path is as follows:

include_path = ".;c:\pear\pear"

Finally, to use the PEAR package manager from the command line, you’ll need to

set up some environment variables. Windows users can automatically add these

variables to their Windows registries by right-clicking on the file PEAR_ENV.reg and

choosing Run from the menu that appears. The variables may also be manually

configured as environment variables via the Windows Control Panel. Users of Unix­

based systems can configure the variables to be set up every time they log in. To do

so, they must edit the file .profile in the home directory (/home/username):

#

Environment variables

export PHP_PEAR_SYSCONF_DIR=/home/username/pear

export

Appendix D: Working with PEAR 501

PHP_PEAR_INSTALL_DIR=/home/username/pear/pear

export

PHP_PEAR_DOC_DIR=/home/username/pear/pear/docs

export

PHP_PEAR_BIN_DIR=/home/username/pear

export

PHP_PEAR_DATA_DIR=/home/username/pear/pear/data

export

PHP_PEAR_TEST_DIR=/home/username/pear/pear/tests

export

PHP_PEAR_PHP_BIN=/usr/local/bin/php

Finally, you’ll need to add the PEAR command line script to your system path,

which, on Windows, can be achieved through the System Control Panel application

(on the Advanced tab, click Environment Variables). Simply append ;c:\pear to the

PATH variable.

On Unix-based systems, add the following to the .profile script:

export PATH=$PATH:/home/username/pear

Once you’ve done all that, you’re ready to move on and use the package manager.

The PEAR Package Manager
Assuming you’ve set up PEAR correctly, you can now use the command line interface

to the PEAR package manager to install packages. For example, take this command:

pear install HTML_Common

This line will install the package HTML_Common from the PEAR web site. The package

names for the command line are the same as those on the web site.

The PEAR Package Manager uses XML_RPC to communicate with the PEAR web

site. If you’re behind a proxy server or firewall, you’ll need to tell PEAR the domain

name of the proxy server like so:

pear config-set http_proxy proxy.your-isp.com

To unset the variable at some later stage, simply use this command:

502 The PHP Anthology

pear config-set http_proxy ""

To add HTML_QuickForm to the installed PEAR packages, you simply need to type

the following:

pear install HTML_QuickForm

Should another release of HTML_QuickForm be made after you’ve installed it, you

can upgrade the version with this command:

pear upgrade HTML_QuickForm

If, for some reason, you later decide you don’t need HTML_QuickForm any more, you

can remove it using this line:

pear uninstall HTML_QuickForm

For a list of all the PEAR commands, simply type pear.

Now, if you don’t like command lines, there’s also an (experimental) web-based

front end to PEAR (there’s also a PHP-GTK front end, but it’s beyond the scope of

this discussion). To use this tool, you need to install it from the command line, al­

though if you executed go-pear.php through your web server, the web-based front

end will already have been installed for you. To install the front end, type the fol­

lowing commands:

pear

install Net_UserAgent_Detect

pear install

Pager

pear install HTML_Template_IT

pear

install PEAR_Frontend_Web

Note that the first three packages we’ve specified here are required by

PEAR_Frontend_Web. Now you can launch the front end from your web server using

the following simple script:

Appendix D: Working with PEAR 503

<?php

// Optional if include path not set

ini_set('include_path','c:\htdocs\PEAR');

require_once 'PEAR.php';

//For Windows users

$pear_user_config = 'c:\windows\pear.ini';

//For Unix users

$pear_user_config = '/home/username/pear/pear/PEAR/pear

➥.conf';

$useDHTML = true; // Switch off for older browsers

require_once 'PEAR/WebInstaller.php';

?>

Installing Packages Manually
It’s possible to install PEAR packages manually (although this involves more work),

but it’s important to watch the include paths carefully when you’re doing so. First

of all, create a directory that will be the base of all the PEAR classes you install,

making sure that this directory is in your include path. Next, install the main PEAR

package.9 Download the latest stable version and extract it directly to the directory

you’ve created, so that PEAR.php is in the root of this directory.

Installing further packages can be completed in more or less the same fashion, but

you need to be careful to choose the correct directories when you’re extracting the

various files. For example, if you’re installing PEAR::DB, the main DB.php file goes

alongside the PEAR.php file in the root of the PEAR class directory, while further

PEAR::DB-related files belong in the subdirectory DB. The best way to check that

you’ve selected the appropriate directories is to look at the package.xml file that

comes with every PEAR package. There you’ll find an element called filelist,

which lists all the files contained in the package and the locations at which they

should be installed. For each file, check the baseinstalldir attribute—if it’s spe­

cified, it will tell you where the file should be placed relative to the root PEAR class

directory. The name attribute specifies the path and filename, relative to the

9 http://pear.php.net/package/PEAR/

http://pear.php.net/package/PEAR/
http://pear.php.net/package/PEAR/
http://pear.php.net/package/PEAR/

504 The PHP Anthology

baseinstalldir (or just the root PEAR class directory if there’s no baseinstalldir

attribute), where each file should be placed.

Alternatives to PEAR
Many repositories of reusable PHP classes are available. Some web sites, such as

PHP Classes,10 offer user-contributed work for download, while others, such as eZ

Components,11 manage their own code base of reusable classes that can be down­

loaded as a package.

For more tightly integrated repositories of code, you might like to investigate the

numerous rapid application development frameworks available, such as the Zend

Framework12 and CakePHP.13

It’s not within the scope of this book to cover any of these frameworks in depth, or

comment on which will best suit your needs, but on the whole, reusing code from

any of these sources, including PEAR, can save you development time and allow

you to concentrate on writing software that solves your needs, rather than rewriting

basic components for every project.

Note, however, that some overhead is involved when you’re starting out with code

from repositories and frameworks. Writing all your code from scratch might be the

fastest solution in the short term, but selecting and becoming fluent with one repos­

itory or framework will help decrease your development time in the medium term,

and will benefit anyone that writes more than one web site. You’ll also find that

selecting the right framework will make it easier for other developers to come up

to speed when they’re working on the sites you create. Also, avoid switching devel­

opment environments frequently, as this will reset your learning curve and might

adversely affect your productivity.

Finally, remember that when you use code from any repository that accepts public

contributions with little or no requirement for quality control, you might be opening

yourself up to all sorts of problems, from security vulnerabilities to reliance on stale

and unmaintained components.

10 http://www.phpclasses.org/
11 http://ez.no/ezcomponents/
12 http://framework.zend.com/
13 http://www.cakephp.org/

http://www.phpclasses.org/
http://ez.no/ezcomponents/
http://ez.no/ezcomponents/
http://framework.zend.com/
http://framework.zend.com/
http://www.cakephp.org/
http://www.phpclasses.org/
http://ez.no/ezcomponents/
http://framework.zend.com/
http://www.cakephp.org/

Index

Symbols
$_SESSION, 278, 281

$this variable, 15, 32

.forward file, 191

.htaccess file, 473

.ini files

storing configuration information, 164

A
abstract classes

about, 27

abstract methods

about, 28

AcceptPathInfo

"pretty" URLs, 140

access

to cron utility, 485

files on remote servers, 166–167

to SSH, 484

URLs, 495

access control, 269–362

changing passwords, 330–338

forgotten passwords, 318–330

HTTP authentication, 271–277

permission systems, 339–353

private sections of web sites, 283–297

registration systems, 297–318

session classes, 281–282

storing sessions in databases, 353–362

using sessions, 277–281

AccountMaintenance class, 319, 331

adding

data in databases, 53–55

aggregation

about, 23

agile documentation

about, 459

allow_url_fopen, 477

anti-spam (see spam legislation)

Apache web server

caching, 367

hosting support, 483

HTTP authentication, 271

PHP installation, 485

APIs

about, 13

callback arguments, 353

documenting, 448

REST web services, 429

arguments

overriding properties, 21

arrays

of lines, 86–88

reading files as, 149

strings, 78

asp_tags, 477

assertions

testing framework, 461

attachments

adding to email messages, 184–186

Auth class, 283

authentication

(see also HTTP authentication)

defined, 295

security, 494

authentication headers, 275

authorization

defined, 296

506

authorization header, 276

auto_append_file, 478

auto_prepend_file, 478

auto-commit mode

default mode, 66

autoincrementing field

determining INSERT's row number,

62–63

B
back-ups

database, 69–75

bandwidth

reading files, 152

bar graph

creating, 224

batch jobs

scheduling, 485

behavioral testing

about, 459

branches

revision control software, 438

bridge tables

about, 340

browsers (see Internet Explorer; web

browsers)

buffering (see output buffering)

build systems

developing code, 470

C
cache files

protecting, 385

Cache_Lite (see PEAR::Cache_Lite)

Cache_Lite cache

purging, 389–390

Cache_Lite_Function class, 391

caching, 363–393

client-side, 367–371

examining HTTP headers in web

browsers, 371–372

file downloads with Internet Explorer,

372–373

function calls, 390–392

output buffering for server-side cach­

ing, 373–377

parts of pages, 377–381

PEAR::Cache_Lite configuration op­

tions, 385–389

purging Cache_Lite cache, 389–390

using PEAR::Cache_Lite for server-

side caching, 382–385

calendars

creating, 102–107

call_time_pass_reference, 476

callbacks

arguments, 353

error handler prototype, 242

CAPTCHA (Completely Public Turing

Test to Tell Computers and Hu­

mans)

image verification, 234

CGI mode, 485

change password form

example of, 333

changesets

revision control software, 437

characters (see escape characters; wild­

card characters)

charts

displaying, 223–230

507

classes

(see also abstract classes; PEAR; spe­

cific classes)

about, 10

access control for sections of web

sites, 283–297

repositories of reusable PHP classes,

504

client-side caching

controlling, 367–371

code

(see also source code)

coding standards, 446

deploying, 468–471

documenting, 448–453

maintaining multiple versions, 438–

441

reuse, 9

revising old code, 467–468

testing framework, 454–462

tracking revisions, 436–438

writing distributable code, 441–448

writing portable code, 33–38

code coverage reports, 463

command line

use of, 485, 486

communications

security, 495

composition

about, 25

compressing

database data, 174

files, 172–174

concatenation

strings, 78

Concurrent Versioning System (CVS),

437

configuration, 473–481

documentation about, 3

PEAR::Cache_Lite, 385–389

for portable code, 33

settings, 286

storing configuration information in

files, 163–165

configuration files

used in access control examples, 270

constructors

Auth class, 284

defined, 14

overriding, 22

content

searching for in XML, 409–412

content-disposition header, 170

content-length header, 171

Content-Type header, 170, 198

control (see access control; error hand­

ling)

COUNT function

rows returned from a SELECT call, 60

credentials

passing in DSN, 44

cron utility

access to, 485

cross-site request forgery (CSRF)

about, 493

cross-site scripting (XSS), 83

about, 489–491

session security, 281

cryptographic storage

security, 495

CURRENT_TIMESTAMP function, 108

508

D
data

compressing in databases, 174

outputting in table, 127–129, 130–133

data grids

customized, 134–139

data types

strings, 77

database connections

setting up, 311

database servers

port numbers, 44

database transactions

defined, 66

databases, 39–75

accessing, 41–44

adding or modifying data, 53–55

backing-up, 69–75

compressing data, 174

errors in SQL queries, 49–52

escape characters, 80

fetching data from tables, 44–49

flexible SQL statements, 57–59

INSERT's row number using autoincre­

menting field, 62–63

PDO, 40–41

permission systems, 339

rows affected by SQL queries, 59–61

searching tables, 63–64

SQL injection attacks, 55–57

storing sessions, 353–362

transactions, 65–67

DatabaseSession class, 354, 361

date function, 99, 101, 371

DATE_ADD function, 111

date_default_timezone_set function, 99

DATE_FORMAT function, 109

DATE_SUB function, 111

dates and times, 95–113

(see also HTTP dates)

calendars, 102–107

current, 98–99

date calculations using MySQL, 111–

112

days of the week, 101

formatting MySQL timestamps, 109–

110

number of days in month, 101–102

storing dates in MySQL, 107–109

Unix timestamps, 96–98

days

in a month, 101–102

of week, 101

defaults

error mode, 50

mode in PDO, 66

deploying

code, 468–471

destructors

defined, 14

dir pseudo-class, 161

direct object references

security, 491

directories

examining, 160–161

DirectoryIterator class, 174

display_errors directive, 240, 261, 477

displaying (see outputting)

distributed systems

revision control software, 437

docblocks

about, 449

509

documentation

(see also agile documentation)

code, 448–453

for PHP, 2–9

test suites as, 453

DOM

generating XML, 407

DOM functions

navigating XML, 405

DOM XML extension, 397

downloads

caching files with Internet Explorer,

372–373

DSN (Data Source Name)

about, 43

dynamic SQL

sprintf function, 59

dynamic web pages

caching, 363

E
E_ERROR error level, 240

E_NOTICE error level, 240

E_STRICT error level, 173, 181, 240, 293

E_USER_ERROR error level, 240, 242

E_USER_NOTICE error level, 240, 241

E_USER_WARNING error level, 240, 242

E_WARNING error level, 240

email, 179–196

adding attachments, 184–186

email injection attacks, 193–195

generating complex emails, 182–184

groups, 188–191

incoming email, 191–193

sending files, 171

sending HTML email, 186–188

sending simple email, 179–182

email injection attacks, 193–195

encapsulation

about, 13

environmental errors

defined, 237

environmental PHP errors

handling as exceptions, 260

ERRMODE_EXCEPTION, 51

ERRMODE_SILENT, 50

ERRMODE_WARNING, 50

error handling, 237–268

custom error handlers, 242–247

custom exception class, 252–257

custom exception handler, 257–260

displaying errors and exceptions, 261–

265

E_STRICT constant, 173

error levels reported, 238–240

handling as if they were exceptions,

260–261

logging and reporting, 247–248

redirecting to another page, 265–267

security, 493

settings, 239–241, 480

SQL queries, 49–52

triggering errors, 241–242

using exceptions for, 248–252

error notices

JpGraph, 224

error_log, 480

error_log directive, 241

error_log function, 263

error_reporting directive, 239, 477

escape characters

in databases, 80

exception class, 252–257

510

exception classes

defining, 300

exception handlers

implementing, 257–260

exception mode

errors in SQL queries, 51

exceptions

displaying, 261–265

handling errors as if they were excep­

tions, 260–261

using for error handling, 248–252

execution

settings, 475–479

EXIF information

extracting, 217–220

exif_read_data function, 218

Expires header, 371

Expires meta tag, 366

explode function, 86

extension, 481

extension_dir, 481

extensions

available from hosting service, 486

documentation about, 5

XML, 396–398

extracting

files, 173

F
fatal errors

handling as exceptions, 260

features

documentation about, 4

fetchObject method

prepare and execute, 49

fields (see auto-incrementing field; form

fields)

file execution attacks, 491

file handles

using, 153–155

file pointers

using, 153

file_get_contents function, 150

file_put_contents function, 156

files, 147–177

(see also specific files; ZIP utility)

accessing information about local

files, 157–159

accessing on remote servers, 166–167

caching downloads with Internet Ex­

plorer, 372–373

creating compressed ZIP/TAR files,

172–174

examining directories, 160–161

FTP, 167–169

managing downloads, 170–172

modifying local files, 155–156

outputting source code online, 161–

163

reading local files, 148–152

SPL, 174–177

storing configuration information in,

163–165

fonts (see TrueType fonts)

form fields

prepopulating, 80

formatting

dates, 96

MySQL timestamps, 109–110

output text, 88–90

strings, 81–82

511

forms (see HTML forms)

FTP (File Transfer Protocol)

using, 167–169

function calls

caching, 390–392

functions

(see also specific functions)

file information, 157

fwrite function, 156

G
galleries (see thumbnail galleries)

generating

(see also sending)

complex emails, 182–184

GNU Make, 470

graphical watermarks

displaying, 221

graphs

displaying, 223–230

grids (see data grids)

groups

email, 188–191

H
handles (see file handles; file pointers)

header lines

email injection attacks, 193

headers (see authentication headers; au­

thorization header; Expires header;

HTTP headers; request headers;

page expiry headers)

help (see documentation)

highlight_file function, 162

highlight_string function, 161

hinting (see type hinting)

hints

passwords, 319

hosting

checklist, 483–487

HTML

meta tags, 365

HTML email

sending, 186–188

HTML forms

building, 116–127

HTML tags

stripping from text, 82–83

HTML_QuickForm class, 117

HTML_Quickform package, 309, 325

HTML_Table class, 127

HTML_Table_Matrix class, 102

htmlentities function, 80

HTTP authentication

about, 271–277

HTTP Authentication package, 276

HTTP dates

calculation of, 371

HTTP headers

caching, 365

examining in web browsers, 371–372

file downloads, 170

output buffering, 377

HTTP response headers, 278

http.conf file

hotlinking images, 231

I

ignore_repeated_errors, 480

ignore_repeated_source, 480

imagecopyresampled function, 201

images, 197–236

512

charts and graphs, 223–230

EXIF information, 217–220

hotlinking, 230–234

human verification, 234–235

MIME type, 198–199

resizing, 202–213

thumbnail galleries, 214–217

thumbnails, 199–202

watermarks, 220–223

implode function, 87

include_path, 478

includes

settings, 475–479

incoming email

handling, 191–193

information leakage

security, 493

inheritance

about, 17

ini_alter, 474

ini_set, 474

injection flaws, 491

INSERT function

data into databases, 53

determining row number with

autoincrementing field, 62–63

installation

documentation about, 3

PEAR, 498–504

PHP on Apache web server, 485

Zend Framework, 395

interfaces

(see also object interfaces)

defined, 27

Internet Explorer

caching file downloads, 372–373

interpolation

(see also variable interpolation)

strings, 77

INTERVAL keyword, 111

J
jobs (see batch jobs)

JpGraph library, 223

L
LAMP

hosting support, 483

levels

errors, 238–240

LIKE operator

searching tables, 63

lines

arrays of, 86–88

Linux

dates, 97

hosting support, 483

session security, 280

listInsertId method

using, 62

local files

accessing information about, 157–159

modifying, 155–156

reading, 148–152

localhost

connecting to MySQL databases, 41

log_errors, 241, 480

logging

errors, 247–248

logic errors

defined, 238

513

login

magic quotes, 288

M
magic methods

about, 14

magic quotes

checking for, 37

magic_quotes_gpc, 288, 476

mail function, 180

Mail_mime package, 309, 325

max_execution_time, 478

MD5 algorithm

passwords, 286

security, 495

member variables (see properties)

memory_limit, 479

meta tags

caching, 365

methods

(see also abstract methods; magic

methods; static methods)

about, 11

overriding, 20

Microsoft Windows (see Windows)

MIME type

specifying, 198–199

mktime function, 97

mod_rewrite

"pretty" URLs, 141

hotlinking images, 231

modes (see exception mode; silent mode;

warning mode)

modifying

data in databases, 53–55

local files, 155–156

multi-processing module (MPM)

hosting support, 484

MultiViews

"pretty" URLs, 140

MyISAM engine

performance, 361

MySQL

calculating dates, 111–112

MyISAM engine performance, 361

stored procedure example, 68–69

storing dates, 107–109

MySQL databases

connecting to on localhost, 41

MySQL timestamps

formatting, 109–110

mysql_real_escape_string function, 80

MySQLDump class

operating system configuration, 70

using, 72

N
namespaces

choosing, 445

defined, 413

nodes

searching for in XML, 409–412

non-distributed systems

revision control software, 437

“notice” error messages, 186

NOW function, 108

O
object interfaces

about, 29

object oriented programming (OOP)

about, 9–33

514

using, 442

object type hinting, 249

objects

creating, 14

treating as strings, 16

open source

revision control software, 437

Open Web Application Security Project

(OWASP), 489

open_basedir, 477

operating systems

MySQLDump class, 70

output buffering

caching parts of pages, 378

displaying errors and exceptions, 261

server-side caching, 373–377

outputting

charts and graphs, 223–230

data in table, 127–129, 130–133

errors and exceptions, 261–265

formatted text, 88–90

source code online, 161–163

strings, 79–81

overloading

servers, 484

overriding

constructors, 22

methods and properties, 20

P
packet sniffers

data security, 270

page expiry headers

setting, 367

pages

caching parts of, 377–381

preventing web browsers from cach­

ing, 365–367

parsing

RSS feeds, 398–405

XML with XMLReader, 399

passing

credentials in DSN, 44

passwords

changing, 330–338

forgotten, 318–330

MD5 algorithm, 286

security, 494

PDO (PHP Data Object)

about, 40–41

auto-commit mode, 66

PEAR, 497–504

alternatives to, 504

installing, 498–504

PEAR Coding Standards, 446

PEAR package manager, 501–503

PEAR packages

PHP 5 E_STRICT compliance, 293

PEAR::Cache_Lite

configuration options, 385–389

server-side caching, 382–385

PEAR::HTML_QuickForm package, 297

PEAR::Mail class, 182

PEAR::Mail package, 180

PEAR::Mail_Mime class, 182, 184, 186,

188, 297

PEAR::Net_FTP class, 168

PEAR::Validate class, 90

performance

MyISAM engine, 361

permissions

files on Unix-based Web servers, 156

515

permissions systems

building, 339–353

Phing, 470

php.ini file

configuration, 473

date.timezone setting, 99

error handling settings, 242

error logging settings, 247

safe_mode, 486

phpDocumentor, 449

phpinfo function, 485

phpt testing framework, 456, 460

PHPUnit, 456, 461

pie charts

creating, 227

placeholders

date function, 100

pointers (see file pointers)

polymorphism

about, 27

port numbers

database servers, 44

portability

settings, 475–477

post_max_size, 479

prepare and execute methods

PDO database access, 46

SQL injection attack, 55

prepopulating

form fields, 80

preserve state, 277

"pretty" URLs, 139–145

printf function, 89

printing (see outputing)

private implementation

defined, 13

programming errors

defined, 237

properties

(see also static properties)

about, 11

overriding, 20

protected visibility

defined, 13

protecting

cache files, 385

prototypes

error handlers, 242

proxy servers

caching, 366

public interfaces (see APIs)

public visibility

defined, 13

purging

Cache_Lite cache, 389–390

Q
Query method

PDO database access, 45

R
read function, 356

readCache function, 378

readdir function, 160

readfile function, 152, 170

reading

local files, 148–152

realm

HTTP authentication, 276

redirecting

to another page, 265–267

516

refactoring

about, 467

register_globals, 36, 476

registration forms

example of, 317

registration systems

building, 297–318

relational databases

PHP support for, 39

remote servers

accessing files on, 166–167

replace operations

advanced, 84–86

report_memleaks, 480

reporting

(see also error handling)

errors, 247–248

repositories

layout, 438

reusable PHP classes, 504

request headers, 368

resellers

hosting services, 484

reserved words, 341

resetting

passwords, 325

resizing

images, 202–213

REST web services

consuming, 425–431

serving, 431–433

revision control software (RCS)

about, 436–438

RSS feeds

generating, 405–409

parsing, 398–405

rules (see validation rules)

S
safe_mode, 486

SAX

parsing RSS feeds, 404

XML extension, 397

scalar

strings, 77

scheduling

batch jobs, 485

screening

web site visitors, 297

scripts (see stored procedures)

handling incoming email, 191

hosting policy, 485

search operations

advanced, 84–86

searching

for nodes or content in XML, 409–412

tables, 63–64

security, 489–496

data transmission, 269

documentation about, 4

email injection attacks, 193–195

files, 148, 156, 165

hiding code, 163

sessions, 280

settings, 475–477

SELECT call

number of rows returned, 60

sending

(see also generating)

email to groups, 188–191

HTML email, 186–188

simple email, 179–182

517

servers

(see also Apache web server; database

servers; proxy servers; remote

servers; web servers)

displaying errors, 261

overloading, 484

session files, 280

swapping, 279

server-side caching

output buffering, 373–377

using PEAR::Cache_Lite for, 382–385

services (see web services; XML)

session class, 281–282

session management

security, 494

session.save_path, 481

session.use_cookies, 481

session_regenerate_id function, 494

sessions

storing, 279

using, 231, 277–281

set_error_handler function, 243, 257, 260

set_exception_handler function, 257

settingAllowOverride, 486

settings, 475–481

configuration, 286

error handling, 239–241, 242, 480

includes and execution, 475–479

miscellaneous, 481

security and portability, 475–477

short_open_tag, 476

SignUp class, 299

signup page

creating, 308

silent mode

errors in SQL queries, 50

SimpleTest, 456, 461

SimpleXML

parsing RSS feeds, 398

REST web services, 426

XML extension, 397

SOAP web services

consuming, 420–422

serving, 423–425

SOAP XML extension, 398

SoapClient class, 421

source code

outputting online, 161–163

spam legislation

about, 190

SPL (Standard PHP Library)

using, 174–177

sprintf function, 89

dynamic SQL, 59

SQL, 44–61

adding or modifying data in databases,

53–55

errors, 49–52

fetching data from tables, 44–49

flexible SQL statements, 57–59

rows affected by a query, 59–61

stored procedures, 67–69

SQL injection attacks

about, 491

prepare and execute methods, 55

protecting from, 55–57

SSH

access to, 484

SSL

security, 495

standards

coding, 446

static methods

about, 31

518

validating strings, 90

static properties

about, 31

stored procedures

cross-site scripting security exploit,

83

using with PDO, 67–69

storing

configuration information in files,

163–165

cryptographic data, 495

dates in MySQL, 107–109

sessions elsewhere from server, 279

sessions in databases, 353–362

str_replace function, 85

streams

accessing files, 166

string functions

using XML extension instead of, 396–

398

strings, 77–94

breaking up text into arrays of lines,

86–88

formatting, 81–82

outputting formatted text, 88–90

outputting safely, 79–81

reading files as, 150

search and replace, 84–86

stripping HTML tags from text, 82–83

treating objects as, 16

trimming white space, 88

validating submitted data, 90–94

wrapping text, 84

strip_quotes.php file, 91

stripping

HTML tags from text, 82–83

strtotime function, 101, 102

Structures_DataGrid class, 134

Subversion (SVN), 436, 437

swapping

servers, 279

symlinks

deploying code, 468

syntax errors

defined, 237

T
tables

fetching data, 44–49

outputting data, 127–129, 130–133

searching, 63–64

tags

deploying code, 468

revision control software, 438

TAR files

creating, 172–174

template caching

about, 376

ternary operators

reading files as arrays, 149

Test Driven Development (TDD)

defined, 462

test environments, 461

test pages

permission systems, 349

test suites

as documentation, 453

testing

code coverage, 463–467

text

arrays of lines, 86–88

outputting, 88–90

trimming white space, 88

wrapping, 84

519

text watermarks

displaying, 220

threaded multi-processing module

(MPM)

hosting support, 484

thumbnail galleries

creating, 214–217

thumbnail images

creating, 199–202

times (see dates and times)

timestamps (see MySQL timestamps;

Unix timestamps)

tracking

code revisions, 436–438

transactions

databases, 65–67

trigger_error function, 241

triggering

errors, 241–242

trimming

white space from text, 88

TrueType fonts

JpGraph, 225

type hinting

about, 25

types

data, 77

U
Unix

session security, 280

Unix timestamps

using, 96–98

UPDATE function

data into databases, 54

upgrades

hosting service policy, 486

uptime command, 484

URLs

"pretty", 139–145

access, 495

direct object reference attacks, 491

User class, 343

utilities (see cron utility; ZIP utility)

V
validation rules

forms, 120

variable interpolation

strings, 77

variables

constructing SQL statements, 57

verification

of images by humans, 234

versions

multiple code, 438–441

visibility

defined, 13

W
warning mode

errors in SQL queries, 50

watermarks

adding to images, 220–223

web browsers

(see also Internet Explorer)

examining HTTP headers, 371–372

preventing from caching pages, 365–

367

web hosting (see hosting)

web pages (see pages)

web servers

(see also Apache web server)

520

caching, 364

preventing web browsers from caching

pages, 365–367

web services, 412–434

(see also XML)

consuming REST, 425–431

consuming SOAP, 420–422

consuming XML-RPC services, 412–

416

serving REST, 431–433

serving SOAP, 423–425

serving XML-RPC, 416–420

week

day of, 101

WHERE clause

UPDATE and DELETE SQL com­

mands, 61

whitespace

trimming, 88

wildcard characters

about, 64

Windows

dates, 97

MySQLDump class, 72

wordwrap function, 84

wrapper class, 281

wrapping

text, 84

write function, 357

writeCache function, 378

WSDL

SOAP web services, 421, 424

X

XDebug, 463

XML, 395–412

extensions, 396–398

generating RSS feeds, 405–409

parsing RSS feeds, 398–405

REST web services, 426

searching for nodes or content, 409–

412

XMLReader

parsing XML, 399

XMLReader class, 397

XML-RPC web services

consuming, 412–416

serving, 416–420

XML-RPC XML extension, 398

xmlrpc_encode_request function, 414

XMLWriter class, 397

generating XML, 408

XPath

searching XML, 410

XPath XML extension, 397

XSL XML extension, 397

XXS (see cross-site scripting)

Z
Zend Framework

coding standards, 447

installing, 395

REST web service, 430

XML-RPC, 413

Zend_Feed class

SimpleXML, 403

Zend_XmlRpc_Server class, 416, 419

ZIP utility

backing up databases, 71

creating files, 172–174

	The PHP Anthology
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s Covered in this Book?
	Running the Code Examples
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Conventions Used in this Book
	Code Samples
	Tips, Notes, and Warnings

	Introduction
	Where do I get help?
	Solution
	RTFM: Read the Fine Manual
	I. Getting Started and II. Installation and Configuration
	III. Language Reference
	IV. Security
	V. Features
	VI. Function Reference
	PHP Extensions
	User Comments

	Other Resources

	What is OOP?
	Solution
	Classes Explained
	Encapsulation and Visibility
	Constructors and Destructors
	Magic Methods

	Creating Objects
	The $this Variable
	Treating an Object Like a String

	Inheritance
	Overriding Methods and Properties

	Object Aggregation and Composition
	Aggregation
	Composition
	Using Aggregation and Composition: Benefits and Pitfalls

	Polymorphism
	Abstract Classes and Methods
	Object Interfaces

	Static Properties and Methods

	How do I write portable PHP code?
	Solution
	Keeping Configuration Central
	Recycling and Reuse
	Portability Essentials
	Using the Full <?php ?> Tags
	Turning register_globals Off
	Checking for Magic Quotes

	Summary

	Using Databases with PDO
	What is PDO?
	How do I access a database?
	Solution
	Discussion
	The DSN in Detail
	Other Concepts

	How do I fetch data from a table?
	Solutions
	Using the Query Method
	Using the Prepare and Execute Methods

	Discussion
	Using Fetch Choices

	How do I resolve errors in my SQL queries?
	Solutions
	Using Silent Mode
	Using Warning Mode
	Using Exception Mode

	Discussion

	How do I add data to, or modify data in, my database?
	Solution
	INSERT Data into the Database
	UPDATE Data in the Database

	Discussion

	How do I protect my web site from an SQL injection attack?
	Solution
	Discussion

	How do I create flexible SQL statements?
	Solution
	Discussion

	How do I find out how many rows I’ve touched?
	Solutions
	Counting the Rows Returned
	Discussion

	Counting the Rows Affected

	How do I find out a new INSERT’s row number in an autoincrementing field?
	Solution
	Discussion

	How do I search my table?
	Solution
	Discussion

	How do I work with transactions?
	Solution
	Discussion

	How do I use stored procedures with PDO?
	Solution
	Discussion

	How do I back up my database?
	Solution
	Discussion
	Catering to Platform Differences

	Summary

	Strings
	How do I output strings safely?
	Solution

	How do I preserve formatting?
	Solutions

	How do I strip HTML tags from text?
	Solution
	Discussion

	How do I force text to wrap after a certain number of characters?
	Solution

	How do I perform advanced search and replace operations?
	Solutions

	How do I break up text into an array of lines?
	Solution
	Discussion

	How do I trim whitespace from text?
	Solution

	How do I output formatted text?
	Solution

	How do I validate submitted data?
	Solution
	Discussion

	Summary

	Dates and Times
	How do I use Unix timestamps?
	Solution
	Discussion

	How do I obtain the current date?
	Solution
	Discussion

	How do I find a day of the week?
	Solution

	How do I find the number of days in a month?
	Solution

	How do I create a calendar?
	Solution

	How do I store dates in MySQL?
	Solution
	Discussion

	How do I format MySQL timestamps?
	Solution

	How do I perform date calculations using MySQL?
	Solution

	Summary

	Forms, Tables, and Pretty URLs
	How do I build HTML forms with PHP?
	Solution

	How do I display data in a table?
	Solution

	How do I display data in a sortable table?
	Solution

	How do I create a customized data grid?
	Solution

	How do I make “pretty” URLs in PHP?
	Solutions
	Pretty URLs with AcceptPathInfo
	Pretty URLs with MultiViews
	Pretty URLs with mod_rewrite
	Handling Pretty URLs

	Discussion

	Summary

	Working with Files
	How do I read a local file?
	Solutions
	Reading a File as an Array
	Reading a File as a String
	Reading a File Directly to the Screen

	Discussion

	How do I use file handles?
	Solutions
	Handling Small Files
	Handling Larger Files

	Discussion

	How do I modify a local file?
	Solution
	Discussion

	How do I access information about a local file?
	Solution
	Discussion

	How do I examine directories with PHP?
	Solutions
	Using the readdir Function
	Using the dir Pseudo-Class

	How do I display PHP source code online?
	Solution
	Discussion

	How do I store configuration information in a file?
	Solution
	Discussion

	How do I access a file on a remote server?
	Solution
	Discussion

	How do I use FTP from PHP?
	Solutions
	Using PHP’s Built-in FTP Functions
	Using the PEAR::Net_FTP Class

	Discussion

	How do I manage file downloads with PHP?
	Solution
	Discussion

	How do I create compressed ZIP/TAR files with PHP?
	Solutions
	Compressing Simple Files
	Compressing Database Data

	How do I work with files using the Standard PHP Library in PHP 5?
	Solution
	Discussion

	Summary

	Email
	How do I send a simple email?
	Solutions
	Using the PHP mail Function
	Using the PEAR::Mail Package

	Discussion

	How do I simplify the generation of complex emails?
	Solution
	Discussion

	How do I add attachments to messages?
	Solution
	Discussion

	How do I send HTML email?
	Solution

	How do I mail a message to a group of people?
	Solution
	Discussion

	How do I handle incoming mail with PHP?
	Solution
	Discussion

	How can I protect my site against email injection attacks?
	Solution
	Discussion

	Summary

	Images
	How do I specify the correct image MIME type?
	Solution

	How do I create thumbnail images?
	Solution

	How do I resize images without stretching them?
	Solution

	How can I put together a simple thumbnail gallery?
	Solution

	How do I extract EXIF information from images?
	Solution

	How do I add a watermark to an image?
	Solutions
	Displaying a Text Watermark
	Displaying a Graphical Watermark

	How do I display charts and graphs with PHP?
	Solutions
	Creating a Bar Graph
	Creating a Pie Chart

	Discussion

	How do I prevent the hotlinking of images?
	Solutions
	Using Apache’s mod_rewrite
	Using PHP Sessions

	How do I create images that can be verified by humans only?
	Solution
	Discussion

	Summary

	Error Handling
	What error levels does PHP report?
	Solution

	What built-in settings does PHP offer for error handling?
	Solutions
	The error_reporting Directive
	The display_errors Directive
	The log_errors and error_log Directives

	How can I trigger PHP errors?
	Solution
	Discussion

	How do I implement a custom error handler with PHP?
	Solution
	Discussion

	How do I log and report errors?
	Solution

	How can I use PHP exceptions for error handling?
	Solution
	Discussion

	How do I create a custom Exception class?
	Solution
	Discussion

	How do I implement a custom exception handler with PHP?
	Solution
	Discussion

	How can I handle PHP errors as if they were exceptions?
	Solution
	Discussion

	How do I display errors and exceptions gracefully?
	Solution
	Discussion

	How do I redirect users to another page following an error condition?
	Solution
	Discussion

	Summary

	Access Control
	How do I use HTTP authentication?
	Solution
	Discussion

	How do I use sessions?
	Solution
	Discussion
	Session Security

	How do I create a session class?
	Solution

	How do I create a class to control access to a section of the site?
	Solution
	The Auth Class
	The Restricted Area

	Discussion
	Room for Improvement

	How do I build a registration system?
	Solution
	The SignUp Class
	The Signup Page

	Discussion

	How do I deal with members who forget their passwords?
	Solution
	The AccountMaintenance Class
	The Reset Password Page

	How do I let users change their passwords?
	Solution
	Modifying AccountMaintenance
	The Change Password Form

	Discussion

	How to do I build a permissions system?
	Solution
	Setting Up the Database
	The User Class
	The Permissions Test Page

	Discussion

	How do I store sessions in a database?
	Solution
	The DatabaseSession Class
	Using the DatabaseSession Class

	Summary

	Caching
	How do I prevent web browsers from caching a page?
	Solutions
	Using HTML Meta Tags
	Using HTTP Headers

	Discussion

	How do I control client-side caching?
	Solutions
	Setting a Page Expiry Header
	Acting on the Browser’s Request Headers

	Discussion

	How do I examine HTTP headers in my browser?
	Solution

	How do I cache file downloads with Internet Explorer?
	Solutions

	How do I use output buffering for server-side caching?
	Solution
	Discussion
	What About Template Caching?
	HTTP Headers and Output Buffering

	How do I cache just the parts of a page that change infrequently?
	Solution
	Discussion

	How do I use PEAR::Cache_Lite for server-side caching?
	Solution

	What configuration options does Cache_Lite support?
	Solution

	How do I purge the Cache_Lite cache?
	Solution
	Discussion

	How do I cache function calls?
	Solution

	Summary

	XML and Web Services
	Which XML technologies are available in PHP 5?
	Solution

	Why should I use PHP’s XML extensions instead of PHP string functions?
	Solution
	Discussion

	How do I parse an RSS feed?
	Solutions
	Parsing XML with XMLReader
	SimpleXML with Zend_Feed

	Discussion

	How do I generate an RSS feed?
	Solutions
	Generating XML Using the DOM
	Generating XML Using XMLWriter

	Discussion

	How do I search for a node or content in XML?
	Solution
	Discussion

	How can I consume XML-RPC web services?
	Solution
	PHP’s Native XML-RPC Extension

	How do I serve my own XML-RPC web services?
	Solution
	PHP’s Native XML-RPC Extension

	How can I consume SOAP web services?
	Solution
	Discussion

	How do I serve SOAP web services?
	Solution
	Discussion

	How can I consume REST services?
	Solution
	Using the Zend Framework

	How can I serve REST services?
	Solution
	Discussion

	Summary

	Best Practices
	How do I track revisions to my project’s code?
	Solution
	Discussion

	How can I maintain multiple versions of a single codebase?
	Solution
	Discussion

	How can I write distributable code?
	Solutions
	Using OOP
	Choosing a Namespace
	Choosing a Coding Standard

	Discussion

	How can I document my code for later reference by myself or others?
	Solution
	Discussion

	How can I ensure future changes to my code won’t break current functionality?
	Solutions
	Testing Using SimpleTest or PHPUnit
	Testing Using phpt

	Discussion

	How can I determine what remains to be tested?
	Solution

	I’ve reviewed some of my old code, and it’s horrible. How can I make it better?
	Solution
	Discussion

	How can I deploy code safely?
	Solutions
	Using Tags and Symlinks
	Using a Build System

	Discussion

	Summary

	Appendix A: PHP Configuration
	Configuration Mechanisms
	Key Security and Portability Settings
	Includes and Execution Settings
	Error-related Settings
	Miscellaneous Settings

	Appendix B: Hosting Provider Checklist
	General Issues
	Does the host support Linux and Apache?
	Does the host provide you with SSH access to the server?
	Is the host a reseller, or does it maintain servers itself?
	To what degree does the host “overload” the server?
	What’s the hosting provider’s policy on running scripts and programs from the command line?
	Does the host provide you access to cron, the Unix utility that allows you to schedule batch jobs?

	PHP-related Issues
	Can you see the output of phpinfo on the server you will actually be assigned to?
	Is PHP installed as an Apache module (not the CGI variant)?
	Is the Apache settingAllowOverride set to Options or All?
	Is PHP Safe Mode disabled?
	Check the upgrade policy of your host.
	Ask for a list of installed PHP extensions.
	Will PHP be available for use from the command line?
	What’s the host’s knowledge of PHP?

	Appendix C: Security Checklist
	Top Security Vulnerabilities
	Cross-site Scripting (XSS)
	Injection Flaws
	Malicious File Execution
	Insecure Direct Object Reference
	Cross-site Request Forgery (CSRF)
	Information Leakage and Improper Error Handling
	Broken Authentication and Session Management
	Insecure Cryptographic Storage
	Insecure Communications
	Failure to Restrict URL Access

	Appendix D: Working with PEAR
	Installing PEAR
	The PEAR Package Manager
	Installing Packages Manually
	Alternatives to PEAR

	Index

