

Summary of Contents
Preface .. xi
1. Getting Started with JavaScript .. 1
2. Working with Numbers .. 31
3. Working with Strings ... 45
4. Working with Arrays .. 65
5. Navigating the Document Object Model ... 79
6. Processing and Validating Forms ... 103
7. Working with Windows and Frames ... 127
8. Working with Cookies .. 143
9. Working with Dates and Times .. 151
10. Working with Images ... 167
11. Detecting Browser Differences .. 191
12. Using JavaScript with CSS ... 201
13. Basic Dynamic HTML ... 229
14. Time and Motion ... 267
15. DHTML Menus and Navigation .. 321
16. JavaScript and Accessibility .. 385
17. Using JavaScript with Flash .. 457
18. Building Web Applications with JavaScript ... 467
19. Object Orientation in JavaScript ... 515
20. Keeping up the Pace ... 535
Index ... 565

The JavaScript Anthology
101 Essential Tips, Tricks & Hacks

by James Edwards

and Cameron Adams

The JavaScript Anthology: 101 Essential Tips, Tricks & Hacks
by James Edwards and Cameron Adams

Copyright © 2006 SitePoint Pty. Ltd.

Editor: Georgina LaidlawExpert Reviewer: Bobby van der Sluis
Index Editor: Bill JohncocksExpert Reviewer: Derek Featherstone
Cover Design: Jess BentleyManaging Editor: Simon Mackie
Cover Layout: Alex WalkerTechnical Editor: Kevin Yank
Latest Update: December 2006Printing History:

First Edition: February 2006

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0-9752402-6-9
Printed and bound in the United States of America

About the Authors

James Edwards (aka brothercake1) is a freelance web developer based in the United
Kingdom, specializing in advanced DHTML programming and accessible web site devel-
opment. He is an outspoken advocate of standards-based development, a part-time forum
moderator, and author of the Ultimate Drop Down Menu2 system—the first commercial
DHTML menu to be WCAG-compliant.

Cameron Adams has a degree in law and one in science; naturally he chose a career in web
development. His business cards say, “Web Technologist” because he likes to have a hand
in graphic design, JavaScript, CSS, PHP, and anything else that takes his fancy that
morning. While running his own business—themaninblue.com3—he’s consulted and
worked for numerous government departments, nonprofit organizations, large corporations,
and tiny startups. Cameron lives in Melbourne, Australia, where, between coding mara-
thons, he likes to play soccer and mix some tunes for his irate neighbors.

About the Expert Reviewers

Bobby van der Sluis lives in the Netherlands and works at Blast Radius4 in Amsterdam,
where he manages the interface development department. He’s a client-side web techno-
logies and design specialist, occasionally writing about these topics on his personal web
site.5 Bobby is an evangelist of unobtrusive JavaScript, progressive enhancement, and the
use of best practices, and has contributed to many notable sites, including A List Apart
and CSS Zen Garden. He spends his scarce spare time with his wife Anita and newly-born
daughter, Sofie.

Derek Featherstone is a well-known instructor, author, speaker, and developer with expert-
ise in web accessibility consulting. Derek delivers technical training that is engaging, in-
formative, and immediately applicable. A high-quality instructor, he draws on his back-
ground as a former high school teacher, plus seven years running his web development
and accessibility consultancy Further Ahead.6 Derek blogs at boxofchocolates.ca.7

About the Technical Editor

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,
but is best known for his book, Build Your Own Database Driven Website Using PHP &

1 http://www.brothercake.com/
2 http://www.udm4.com/
3 http://themaninblue.com/
4 http://www.blastradius.com/
5 http://www.bobbyvandersluis.com/
6 http://www.furtherahead.com/
7 http://boxofchocolates.ca/

http://www.brothercake.com/
http://www.udm4.com/
http://themaninblue.com/
http://www.blastradius.com/
http://www.bobbyvandersluis.com/
http://www.bobbyvandersluis.com/
http://www.furtherahead.com/
http://boxofchocolates.ca/

MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy
theatre and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles
and community forums.

http://www.sitepoint.com/

For Kizzy—I missed @media
for all the right reasons.

—James

This is for Mum, Dad,
Darren, and Davina, who

gave me their love and support
throughout the writing of this

book, even though I had to
explain it all using plasticine

dinosaurs.

—Cameron

Table of Contents
Preface ... xi

Who Should Read this Book? .. xi
What’s in this Book? .. xii
The Book’s Web Site .. xv

The Code Archive ... xv
Updates and Errata ... xv

The SitePoint Forums ... xv
The SitePoint Newsletters .. xvi
Your Feedback ... xvi
Acknowledgements .. xvi

1. Getting Started with JavaScript .. 1
JavaScript Defined ... 1
JavaScript’s Limitations .. 2

Security Restrictions .. 3
JavaScript Best Practices .. 5
Providing for Users who Don’t Have JavaScript (Progressive Enhance-
ment) .. 5
Separating Content from Behavior (Unobtrusive Scripting) 8
Using Braces and Semicolons (Consistent Coding Practice) 11
Adding a Script to a Page ... 12

Putting HTML Comments Around Code 13
The language Attribute ... 14

Getting Multiple Scripts to Work on the Same Page 14
Hiding JavaScript Source Code ... 18
Debugging a Script ... 19

Understanding a Browser’s Built-in Error Reporting 20
Using alert ... 23
Using try-catch .. 24
Writing to the Page or Window .. 25
Using an External Debugger ... 26

Strict Warnings .. 26
Summary ... 29

2. Working with Numbers .. 31
Doing Math with JavaScript ... 31
Rounding a Number to x Decimal Places .. 33
Creating and Constraining Random Numbers 35
Converting a Number to a String .. 36
Formatting Currency Values ... 38

Converting a String to a Number .. 39
Converting Numbers to Ordinals (-st, -nd, -rd, -th) 42
Summary ... 43

3. Working with Strings .. 45
Including a Special Character in a String .. 45
Transforming the Character Case of a String 47
Encoding a URL ... 47
Comparing Two Strings .. 48
Finding a Substring within a String .. 51
Splitting a String into Substrings .. 52
Creating a Regular Expression ... 53
Testing whether a String Matches a Regular Expression 57
Testing whether a String Contains Only Numeric Data 58
Testing whether a String is a Valid Phone Number 59
Testing whether a String is a Valid Email Address 60
Searching and Replacing Text using a Regular Expression 61
Summary ... 63

4. Working with Arrays .. 65
Using Array-literals .. 66
Creating an Array of Arrays .. 66
Indexing an Array with Strings Instead of Numbers 69
Turning an Array into a String .. 71
Adding or Removing Members from an Array 72
Sorting an Array into Alphabetical or Numeric Order 75
Sorting a Multi-dimensional Array ... 76
Sorting an Array Randomly .. 77
Summary ... 78

5. Navigating the Document Object Model .. 79
Accessing Elements .. 82
Creating Elements and Text Nodes ... 87
Changing the Type of an Element ... 91
Removing an Element or Text Node .. 93
Reading and Writing the Attributes of an Element 95
Getting all Elements with a Particular Attribute Value 98
Adding and Removing Multiple Classes to/from an Element 100
Summary ... 102

6. Processing and Validating Forms .. 103
Reading and Writing the Data in a Text Field 103
Reading and Setting the State of a Checkbox 106

iv

The JavaScript Anthology

Reading and Setting the State of a Radio Button 109
Reading and Setting the Value of a Select Box 111
Validating a Mandatory Text Field .. 113
Validating a Numeric Field ... 114
Validating an Email Address Field ... 115
Checking for Unselected Radio Buttons .. 115
Stopping a Form Being Submitted Unless all its Fields are Valid 116
Validating a Form with an Unknown Number of Fields 117
Printing Inline Error Messages when Validating a Form 119
Making Form Fields Appear or Disappear, Based on the Value of
other Fields .. 121
Summary ... 125

7. Working with Windows and Frames ... 127
Using Popup Windows ... 128

What’s Wrong with Popups? .. 128
How Do I Minimize the Problems? .. 129

Opening Off-site Links in a New Window ... 133
Communicating Between Frames .. 135
Getting the Scrolling Position ... 137
Making the Page Scroll to a Particular Position 140
Getting the Viewport Size (the Available Space inside the Win-
dow) .. 141
Summary ... 142

8. Working with Cookies .. 143
Writing Cookies ... 143
Reading a Cookie ... 145
Setting a Cookie to Expire at a Specific Date and Time 146
Making a Cookie Accessible Only from a Specific Domain or
Path ... 147
Circumventing Browser Restrictions on the Number of Cookies you
can Use .. 148
Summary ... 150

9. Working with Dates and Times .. 151
Getting the Date and Time .. 151
Formatting a Date into a Sentence ... 154
Formatting the Time into a 12- or 24-hour Clock 157
Comparing Two Dates .. 159
Formatting the Difference Between Dates ... 164
Summary ... 166

v

10. Working with Images ... 167
Preloading Images .. 167
Swapping One Image for Another ... 169
Displaying an Image at Random ... 171
Making a Slideshow of Several Images .. 173
Making an Image Fade in or out ... 176
Making an Image-based Clock that Updates in Real Time 181
Making a Progress Indicator ... 186
Summary ... 189

11. Detecting Browser Differences ... 191
Identifying Support for a Particular Feature 192
Identifying a Particular Browser .. 194
Detecting Quirks Mode and Standards Mode 198
Summary ... 200

12. Using JavaScript with CSS ... 201
Changing the Style of a Single Element .. 201
Changing the Style of a Group of Elements 203
Retrieving the Computed Style of an Element 204
Making a Style Sheet Switcher ... 207

Maintaining Alternate Style Sheet States 212
Making a Style Sheet Switcher that Handles Multiple Media
Types ... 215
Reading and Modifying an Existing Style Sheet 217
Adding New Style Sheet Rules ... 220
Deleting a Rule from a Style Sheet ... 223
Creating a New Style Sheet .. 224
Summary ... 227

13. Basic Dynamic HTML ... 229
Handling Events .. 229

The Short Way: Using Event Handlers 230
The W3C Way (Event Listeners) .. 233

Finding the Size of an Element ... 245
Finding the Position of an Element ... 246
Detecting the Position of the Mouse Cursor 248
Displaying a Tooltip when you Mouse Over an Element 250
Sorting Tables by Column .. 257
Summary ... 266

14. Time and Motion ... 267
Using setTimeout and setInterval .. 267

vi

The JavaScript Anthology

Making an Object Move Along a Set Path ... 270
Making Animation Less Jerky ... 278

Animation Frame Times ... 279
Changing Between Frames .. 279
Complexity of the Animation ... 280
The Speed of the Computer ... 280
The Speed of the Browser ... 281

Implementing Drag-and-drop Behavior ... 281
Reordering a List Using Drag-and-drop Functionality 290
Making a Scrolling News Ticker ... 298
Creating Clip-based Transition Effects .. 305
Making a Slider Control ... 311
Summary ... 318

15. DHTML Menus and Navigation .. 321
Making a Drop-down or Fly-out Menu ... 323
Adding Arrows to Indicate the Presence of a Submenu 334
Adding Timers so the Menus Don’t Open and Close so Abruptly 338
Making Sure the Menus Stay Inside the Window 345
Making the Menus Display Over select Elements 354
Making a Folder Tree or Expanding Menu .. 361
Indicating Expanded Branches in a Menu ... 371
Allowing Only One Menu Branch to Be Open at Any Time 377
Opening the Current Sub-branch Automatically 378
Summary ... 383

16. JavaScript and Accessibility .. 385
Is JavaScript Inaccessible? .. 386

What is Accessibility? .. 386
Who are the Affected Users? .. 387

Making Scripts Accessible to the Keyboard 389
Using Device-independent Event Handlers 393
Making Scripts Accessible to the Keyboard as well as the Mouse 395

Rollovers and Revealing Content .. 396
Form Validation ... 398
Drag-and-drop Functionality .. 400
AJAX and other Remote Scripting Techniques 401

Making title Attribute Tooltips Display on Focus 402
Making a DHTML Menu Accessible to the Keyboard 411
Making a DHTML Menu Usable via the Keyboard 421
Making a DHTML Slider Control Accessible to the Keyboard 428
Making Scripts Accessible to Screen Readers 436

vii

JavaScript Behaviors ... 438
Tricks and Hacks .. 449
Towards Best Practice ... 453

Summary ... 456

17. Using JavaScript with Flash .. 457
Detecting whether Flash is Installed in a Browser 457
Communicating Between JavaScript and Flash 461

FSCommand .. 461
Flash/JavaScript Integration Kit .. 464

Summary ... 465

18. Building Web Applications with JavaScript 467
Retrieving Data Using XMLHttpRequest .. 468

Requesting Data from a Server ... 470
Parsing the Data ... 473
Caching ... 475
AJAX Frameworks .. 476

Retrieving Data without Using XMLHttpRequest 476
Creating Custom Dialogs (Such as Popup Forms) 481
Creating Editable Elements .. 489
Controlling Text Selections ... 496
Creating an Auto-complete Text Field ... 502
Summary ... 514

19. Object Orientation in JavaScript ... 515
What’s so Good about Object Orientation? 516

Abstraction .. 516
Encapsulation .. 516
Class Inheritance .. 517
Polymorphism .. 518

Object Based Code vs Object Oriented Code 518
Writing an Object Oriented Script .. 519
Creating Methods for an Object ... 521

Prototype-based Method Creation .. 522
Modelling Inheritance .. 526
Understanding Scope ... 528
Implementing Namespaces ... 531
Summary ... 533

20. Keeping up the Pace .. 535
Making Scripts Run Faster ... 536

Saving References to Objects you Use Frequently 536

viii

The JavaScript Anthology

Using Ternary Operators and Switch Statements 539
Optimizing Loops .. 542
Avoiding eval .. 543
Avoiding Strict Warnings ... 544
Optimizing for a Particular Browser .. 545

Writing Scripts Using Less Code ... 548
Dividing Tasks into Functions (or Using OO) 548
Using Arrays and Iteration to Avoid Code Repetition 550
Compacting Conditions and Return Statements 551

Optimizing Scripts for the Web .. 552
Removing Comments and Unnecessary Whitespace 552
Compacting the Names of Variables and Properties 555

Avoiding Memory Leaks .. 556
Avoiding Circular References .. 557
Cleaning Up After the Fact ... 558

Making Scripts Run Before the Load Event 560
Summary ... 563

Index ... 565

ix

x

Preface
To many people, the word “JavaScript” conjures up memories of annoying popups,
irritating mouse-trails, and frustrating no-right-click scripts. If you’ve ever been
on the receiving end of such a script, you’ll know how tedious they can be. Yet
JavaScript is a mature, professional scripting language that’s used on the majority
of modern web sites, and is a key component in almost all web-based applications.
Hang on! Are we talking about the same technology here?

As with so many histories, both perceptions are reasonably accurate: JavaScript
does have a dubious reputation, which it earned mainly in the first dot com boom
when it was used for little else than opening popups, shielding code from casual
scrutiny, and adding pointless whizz-bang effects. And in recent years, as both
the web development community and the world at large have become more aware
of accessibility issues, JavaScript has been singled out as a cause of many problems,
though in reality, it’s not the technology itself that’s at fault—it’s the poorly
planned and careless use that has given JavaScript this reputation.

Yet with the increasing popularity of remote scripting techniques (popularly re-
ferred to as “AJAX”), JavaScript is enjoying something of a renaissance. Designers,
developers, and programmers from many different disciplines are becoming inter-
ested in—and impressed by—what was once the domain of specialists. Browser
vendors and other technology companies are taking another look at the potential
of this powerful language, as the line between the Web and the desktop becomes
increasingly blurred.

JavaScript is a key component in the development of a raft of new applications,
and there’s never been a better time to take an interest in it.

Who Should Read this Book?
Anyone who’s involved or interested in building web sites or web applications
should read this book.

If you’re a webmaster looking for copy-and-paste solutions to everyday needs,
we have those solutions for you. If you’re already an experienced JavaScript
programmer, you’ll find in this book scripts and discussions that sit on the
bleeding edge of current practice. If you’re a designer with an interest in the
coding side of things, or a student who’s just beginning to get into it, you’ll find
many rich and beautiful examples to give you insight and ideas.

Whatever your current JavaScript knowledge, we hope you’ll find this book a
useful and inspirational resource for modern, best practice scripting.

What’s in this Book?
Chapter 1: Getting Started With JavaScript

This chapter, which is slightly more theoretical than the rest, provides an
overview of JavaScript’s capabilities and limitations, and introduces some
core best practices that we’ll be using through the rest of the book. It’s not
a beginners’ tutorial, nor a ground-up summary of the language, but it focuses
on finding the best ways to perform basic tasks, including practical solutions
for the problems that are encountered as we try to make scripts work together.

Chapter 2: Working with Numbers
This chapter looks at techniques for using and processing numbers in JavaS-
cript. It covers basic computation, number rounding, the generation and
constraint of random numbers, and the use of currency values, ordinals, and
other formatted numbers.

Chapter 3: Working with Strings
Text is the meat and drink of the Web, and processing text is one of the most
common tasks in web scripting. This chapter looks at ways of manipulating
strings to find information, store data, and prepare text for output, and in-
cludes a thorough introduction to regular expressions in JavaScript.

Chapter 4: Working with Arrays
This chapter introduces one the most powerful data-storage structures in
JavaScript: the array. We’ll talk about reading and writing data from an array,
sorting and processing arrays, and using multidimensional arrays. We’ll also
discuss a similar data structure: the object literal.

Chapter 5: Navigating the Document Object Model
The DOM is an interface for manipulating individual parts of a document.
This chapter introduces and explores the DOM, and looks at how to create
and read the data from elements, attributes, and text.

Chapter 6: Processing and Validating Forms
In this chapter, we look at reading and writing data from different kinds of
form widget, address the tasks of validating and processing form data, and
discuss techniques for improving the usability of form-based interfaces.

xii

Preface

Chapter 7: Working with Windows and Frames
This chapter takes a cautious look at manipulating windows and scripting
across frames. These are the most controversial parts of the language, as they
have the potential to create serious usability and accessibility barriers, so this
chapter is centered firmly on techniques that try to avoid or alleviate these
problems.

Chapter 8: Working with Cookies
Cookies are the simplest and most reliable method for maintaining state-
persistence in JavaScript—they allow pages and applications to “remember”
who you are and what you’re doing. In this chapter, we introduce cookies
and show you how to use them effectively.

Chapter 9: Working with Dates and Times
It won’t win any prizes for glamour, but this chapter shows you how to get
the date and time in JavaScript, how to compare and process dates and times,
and how to output the final data in different formats and conventions.

Chapter 10: Working with Images
Images are an important part of most web designs, and this chapter explores
the basic techniques involved in scripting for them. We move from simple
tasks like preloading, randomly selecting, swapping, and cross-fading images,
to more complex slide show, progress indicator, and image-based clock scripts.

Chapter 11: Detecting Browser Differences
This short chapter outlines techniques for dealing with different browsers
and rendering modes. In it, we explain when and where it’s appropriate to
use browser detection and object detection, and how you can combine these
techniques to get the most robust information.

Chapter 12: Using JavaScript with CSS
In this chapter, we look at how to read and write the styles from a single
element or group of elements, how to read and write CSS rules to an existing
or created style sheet, and how to build a style sheet switcher.

Chapter 13: Basic Dynamic HTML
DHTML uses HTML, the DOM, and CSS to bring static content to life, and
although the term DHTML is disparaged in some quarters, we still believe
it’s a useful and relevant way of describing this kind of scripting. In this
chapter, we cover event-handling in all its flavors, detecting the position and
size of an object, tracking the mouse, and making elements appear and dis-

xiii

What’s in this Book?

appear. We’ll also begin to look at rearranging the DOM dynamically with
a neat table-sorting script.

Chapter 14: Time and Motion
This chapter advances the ideas from Chapter 13 into more complex forms
of scripting that use motion and animation. We’ll look at timers in JavaScript,
and learn how to use them for both simple and more sophisticated animations.
We’ll also cover drag-and-drop functionality, and put it to use selecting and
sorting information, as well as creating scrollers, sliders, and transition effects.

Chapter 15: DHTML Menus and Navigation
This chapter enters the complex arena of DHTML menus with two major
scripts—a drop-down or fly-out menu, and a folder tree or expanding menu.
For each menu, we’ll create a core navigation structure using clean, semantic
code. Then, we’ll improve on each script with usability and accessibility en-
hancements, including submenu indicator arrows, open and close timers, and
automatic repositioning (so that a menu never runs off the page’s edge). This
chapter also includes solutions for the problem of menus overlapping select
elements in Windows IE 5 and IE 6.

Chapter 16: JavaScript and Accessibility
This chapter provides an overview of the current state of play regarding
JavaScript and accessibility. It’s focused on ideas and techniques for making
scripts accessible to the keyboard, and also touches on how scripting may
impact on people with learning or cognitive disabilities. We’ll also examine
a range of different scripts, including AJAX applications, to see how they
behave with screen readers.

Chapter 17: Using JavaScript with Flash
In this chapter, we look at the narrow alliance between these two technologies,
learning to detect whether a user has the Flash plugin, and mastering commu-
nication between JavaScript and Flash.

Chapter 18: Building Web Applications with JavaScript
This chapter delves into the exciting area of online application design, includ-
ing data retrieval using XMLHttpRequest, as well as the older technique of
using iframes. We’ll also talk about creating custom dialogs, building editable
elements like rich-text entry fields, and controlling and creating text selections
to generate an auto-complete search field.

xiv

Preface

Chapter 19: Object Orientation in JavaScript
Object oriented programming is generally considered the best approach to
large-scale programming projects, and in this chapter we introduce OOP,
exploring its core concepts and benefits. We’ll cover the practical techniques
involved in creating an object oriented or object based script, and we’ll talk
about scope, inheritance, and object namespacing.

Chapter 20: Keeping up the Pace
The final chapter looks at everyday techniques for writing faster, more efficient
code that’s shorter and uses less memory. We’ll also cover more brutal tech-
niques for optimizing and obfuscating production code, but with the warning
that some optimizations are more trouble than they’re worth!

The Book’s Web Site
Located at http://www.sitepoint.com/books/jsant1, the web site supporting this
book will give you access to the following facilities.

The Code Archive
As you progress through the text, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in this book. You can grab it on the book’s web site at
http://www.sitepoint.com/books/jsant1/code.php.

Updates and Errata
The Errata page on the book’s web site will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies. Visit it at http://www.sitepoint.com/books/jsant1/errata.php.

The SitePoint Forums
While we’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there’s no way that any book could teach you everything
you’ll ever need to know about using JavaScript in your web development projects.
If you have a question about anything in this book, the best place to go for a
quick answer is http://www.sitepoint.com/forums/—SitePoint’s vibrant and
knowledgeable community.

xv

The Book’s Web Site

http://www.sitepoint.com/books/jsant1
http://www.sitepoint.com/books/jsant1/code.php
http://www.sitepoint.com/books/jsant1/errata.php
http://www.sitepoint.com/forums/

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of web development. The long-running SitePoint
Tribune is a biweekly digest of the business and moneymaking aspects of the Web.
Whether you’re a freelance developer looking for tips to score that dream contract,
or a marketer striving to keep abreast of changes to the major search engines,
this is the newsletter for you. The SitePoint Design View is a monthly compilation
of the best in web design. From new CSS layout methods to subtle Photoshop
techniques, SitePoint’s chief designer shares his years of experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or you wish to contact us for any
other reason, the best place to write is books@sitepoint.com. We have a well-
manned email support system set up to track your inquiries, and if our support
staff are unable to answer your question, they send it straight to us. Suggestions
for improvement, as well as notices of any mistakes you may find, are especially
welcome.

Acknowledgements
I’d like to thank all those who helped and supported me while writing this book,
particularly to Eddie and Debi, Jon and Kim, who provided as much encourage-
ment as they did practical support. I’d also like to thank Dave Evans, a significant
influence from my early days as a developer.

—James Edwards

xvi

Preface

http://www.sitepoint.com/newsletter/

Getting Started with JavaScript1
As we hope to demonstrate in many practical solutions throughout this book,
JavaScript is an amazingly useful language that offers many unique benefits. With
a little consideration for how scripted functionality degrades, you can use JavaS-
cript to bring a whole range of functional, design and usability improvements to
your web sites.

Let’s begin with an introduction to JavaScript, exploring what it’s for, and how
we can use it.

JavaScript Defined
JavaScript is a scripting language that’s used to add interactivity and dynamic
behaviors to web pages and applications. JavaScript can interact with other
components of a web page, such as HTML and CSS, to make them change in
real time, or respond to user events.

You’ll undoubtedly have seen JavaScript in the source code of web pages. It might
have been inline code in an HTML element, like this:

It might have appeared as a script element linking to another file:

<script type="text/javascript" src="myscript.js"></script>

Or it may have had code directly inside it:

<script type="text/javascript">
function saySomething(message)
{
 alert(message);
}
saySomething('Hello world!');
</script>

Don’t worry about the differences between these snippets yet. There are quite a
few ways—both good and bad—in which we can add JavaScript to a web page.
We’ll look at these approaches in detail later in this chapter.

JavaScript was developed by Netscape and implemented in Netscape 2, although
it was originally called LiveScript. The growing popularity of another language,
Java, prompted Netscape to change the name in an attempt to cash in on the
connection, as JavaScript provided the ability to communicate between the
browser and a Java applet.

But as the language was developed both by Netscape, in its original form, and
by Microsoft, in the similar-but-different JScript implementation, it became clear
that web scripting was too important to be left to the wolves of vendor competi-
tion. So, in 1996, development was handed over to an international standards
body called ECMA, and JavaScript became ECMAScript or ECMA-262.

Most people still refer to it as JavaScript, and this can be a cause of confusion:
apart from the name and similarities in syntax, Java and JavaScript are nothing
alike.

JavaScript’s Limitations
JavaScript is most commonly used as a client-side language, and in this case
the “client” refers to the end-user’s web browser, in which JavaScript is interpreted
and run. This distinguishes it from server-side languages like PHP and ASP,
which run on the server and send static data to the client.

Since JavaScript does not have access to the server environment, there are many
tasks that, while trivial when executed in PHP, simply cannot be achieved with
JavaScript: reading and writing to a database, for example, or creating text files.
But since JavaScript does have access to the client environment, it can make de-

2

Chapter 1: Getting Started with JavaScript

cisions based on data that server-side languages simply don’t have, such as the
position of the mouse, or the rendered size of an element.

What About ActiveX?

If you’re already quite familiar with Microsoft’s JScript, you might be
thinking “but JavaScript can do some of these things using ActiveX,” and
that’s true—but ActiveX is not part of ECMAScript. ActiveX is a Windows-
specific mechanism for allowing Internet Explorer to access COM (the
Component Object Model at the heart of Windows scripting technology)
and generally only runs in trusted environments, such as an intranet. There
are some specific exceptions we’ll come across—examples of ActiveX controls
that run without special security in IE (such as the Flash plugin, and
XMLHttpRequest)—but for the most part, scripting using ActiveX is outside
the scope of this book.

Usually, the computer on which a client is run will not be as powerful as a server,
so JavaScript is not the best tool for doing large amounts of data processing. But
the immediacy of data processing on the client makes this option attractive for
small amounts of processing, as a response can be received straight away; form
validation, for instance, makes a good candidate for client-side processing.

But to compare server-side and client-side languages with a view to which is
“better” is misguided. Neither is better—they’re tools for different jobs, and the
functional crossover between them is small. However, increased interactions
between client-side and server-side scripting are giving rise to a new generation of
web scripting, which uses technologies such as XMLHttpRequest to make requests
for server data, run server-side scripts, and then manage the results on the client
side. We’ll be looking into these technologies in depth in Chapter 18.

Security Restrictions
As JavaScript operates within the realm of highly sensitive data and programs,
its capabilities have been restricted to ensure that it can’t be used maliciously.
As such, there are many things that JavaScript simply is not allowed to do. For
example, it cannot read most system settings from your computer, interact directly
with your hardware, or cause programs to run.

Also, some specific interactions that would normally be allowed for a particular
element are not permitted within JavaScript, because of that element’s properties.
For example, changing the value of a form <input> is usually no problem, but if
it’s a file input field (e.g., <input type="file">), writing to it is not allowed at

3

Security Restrictions

all—a restriction that prevents malicious scripts from making users upload a file
they didn’t choose.

There are quite a few examples of similar security restrictions, which we’ll expand
on as they arise in the applications we’ll cover in this book. But to summarize,
here’s a list of JavaScript’s major limitations and security restrictions, including
those we’ve already seen. JavaScript cannot:

❑ open and read files directly (except under specific circumstances, as detailed
in Chapter 18).

❑ create or edit files on the user’s computer (except cookies, which are discussed
in Chapter 8).

❑ read HTTP POST data.

❑ read system settings, or any other data from the user’s computer that is not
made available through language or host objects.1

❑ modify the value of a file input field.

❑ alter the display of a document that was loaded from a different domain.

❑ close or modify the toolbars and other elements of a window that was not
opened by script (i.e., the main browser window).

Ultimately, JavaScript might not be supported at all.

It’s also worth bearing in mind that many browsers include options that allow
greater precision than simply enabling or disabling JavaScript. For example, Opera
includes options to disallow scripts from closing windows, moving windows,
writing to the status bar, receiving right-clicks … the list goes on. There’s little
you can do to work around this, but mostly, you won’t need to—such options
have evolved to suppress “annoying” scripts (status bar scrollers, no-right-click
scripts, etc.) so if you stay away from those kinds of scripts, the issue will come
up only rarely.

1 Host objects are things like window and screen, which are provided by the environment rather
than the language itself.

4

Chapter 1: Getting Started with JavaScript

JavaScript Best Practices
JavaScript best practices place a strong emphasis on the question of what you
should do for people whose browsers don’t support scripting, who have scripting
turned off, or who are unable to interact with the script for another reason (e.g.,
the user makes use of an assistive technology that does not support scripting).

That final issue is the most difficult to address, and we’ll be focusing on solutions
to this problem in Chapter 16. In this section, I’d like to look at three core
principles of good JavaScript:

progressive enhancement providing for users who don’t have JavaScript

unobtrusive scripting separating content from behavior

consistent coding practice using braces and semicolon terminators

The first principle ensures that we’re thinking about the bigger picture whenever
we use a script on our site. The second point makes for easier maintenance on
our end, and better usability and graceful degradation2 for the user. The third
principle makes code easier to read and maintain.

Providing for Users who Don’t Have
JavaScript (Progressive Enhancement)

There are several reasons why users might not have JavaScript:

❑ They’re using a device that doesn’t support scripting at all, or supports it in
a limited way.

❑ They’re behind a proxy server or firewall that filters out JavaScript.

❑ They have JavaScript switched off deliberately.

The first point covers a surprisingly large and ever-growing range of devices, in-
cluding small-screen devices like PDAs, mid-screen devices including WebTV

2 Graceful degradation means that if JavaScript is not supported, the browser can naturally fall back
on, or “degrade” to, non-scripted functionality.

5

JavaScript Best Practices

and the Sony PSP, as well as legacy JavaScript browsers such as Opera 5 and
Netscape 4.

The last point in the list above is arguably the least likely (apart from other de-
velopers playing devil’s advocate!), but the reasons aren’t all that important: some
users simply don’t have JavaScript, and we should accommodate them. There’s
no way to quantify the numbers of users who fall into this category, because de-
tecting JavaScript support from the server is notoriously unreliable, but the figures
I’ve seen put the proportion of users who have JavaScript switched off between
5% and 20%, depending on whether you describe search engine robots as “users.”

Solution
The long-standing approach to this issue is to use the HTML noscript element,
the contents of which are rendered by browsers that don’t support the script
element at all, and browsers that support it but have scripting turned off.

Although it’s a sound idea, in practice this solution has become less useful over
time, because noscript cannot differentiate by capability. A browser that offers
limited JavaScript support is not going to be able to run a complicated script,
but such devices are script-capable browsers, so they won’t parse the noscript
element either. These browsers would end up with nothing.

A better approach to this issue is to begin with static HTML, then use scripting
to modify or add dynamic behaviors within that static content.

Let’s look at a simple example. The preferred technique for making DHTML
menus uses an unordered list as the main menu structure. We’ll be devoting the
whole of Chapter 15 to this subject, but this short example illustrates the point:

<ul id="menu">
 Home
 About
 Contact

<script type="text/javascript" src="menu.js"></script>

The list of links is plain HTML, so it exists for all users, whether or not they have
scripting enabled. If scripting is supported, our menu.js script can apply dynamic
behaviors, but if scripting isn’t supported, the content still appears. We haven’t
differentiated between devices explicitly—we’ve just provided content that’s dy-
namic if the browser can handle it, and static if not.

6

Chapter 1: Getting Started with JavaScript

This scripting approach is popularly referred to as progressive enhancement,
and it’s a methodology we’ll be using throughout this book.

Discussion
The “traditional” approach to this scenario would be to generate a separate, dy-
namic menu in pure JavaScript, and to have fallback static content inside a no-
script element:

<script type="text/javascript" src="menu.js"></script>

<noscript>

 Home
 About
 Contact

</noscript>

But, as we’ve already seen, a wide range of devices will fall though this net, because
JavaScript support is no longer an all-or-nothing proposition. The progressive
enhancement approach introduced in this solution provides default content to
all devices, and applies scripted functionality only if it works.

Don’t Ask!

Neither this technique nor the noscript element should be used to add a
message that reads, “Please turn on JavaScript to continue.” At best, such a
message is presumptuous (“Why should I?”); at worst it may be unhelpful
(“I can’t!”) or meaningless (“What’s JavaScript?”). Just like those splash
pages that say, “Please upgrade your browser,” these messages are as useful
to the average web user as a road sign that reads, “Please use a different car.”

Occasionally, you may be faced with a situation in which equivalent func-
tionality simply cannot be provided without JavaScript. In such cases, I think
it’s okay to have a static message that informs the user of this incompatibility
(in nontechnical terms, of course). But, for the most part, try to avoid
providing this kind of message unless it’s literally the only way.

7

Providing for Users who Don’t Have JavaScript (Progressive Enhancement)

Separating Content from Behavior
(Unobtrusive Scripting)

Separating content from behavior means keeping different aspects of a web page’s
construction apart. Jeffrey Zeldman famously refers to this as the “three-legged
stool” of web development3—comprising content (HTML), presentation (CSS),
and behavior (JavaScript)—which emphasizes not just the difference in each as-
pect’s functioning, but also the fact that they should be separated from one an-
other.

Good separation makes for sites that are easier to maintain, are more accessible,
and degrade well in older or lower-spec browsers.

Solution
At one extreme, which is directly opposed to the ideal of separating content from
behavior, we can write inline code directly inside attribute event handlers. This
is very messy, and generally should be avoided:

<div id="content"
 onmouseover="this.style.borderColor='red'"
 onmouseout="this.style.borderColor='black'">

We can improve the situation by taking the code that does the work and abstract-
ing it into a function:

<div id="content"
 onmouseover="changeBorder('red')"
 onmouseout="changeBorder('black')">

Defining a function to do the work for us lets us provide most of our code in a
separate JavaScript file:

File: separate-content-behaviors.js (excerpt)

function changeBorder(element, to)
{
 element.style.borderColor = to;
}

3 Zeldman, J. Designing with Web Standards. New Riders, 2003.

8

Chapter 1: Getting Started with JavaScript

But a much better approach is to avoid using inline event handlers completely.
Instead, we can make use of the Document Object Model (DOM) to bind the
event handlers to elements in the HTML document. The DOM is a standard
programming interface by which languages like JavaScript can access the contents
of HTML documents, removing the need for any JavaScript code to appear in
the HTML document itself. In this example, our HTML code would look like
the following:

<div id="content">

Here’s the scripting we’d use:

File: separate-content-behaviors.js

function changeBorder(element, to)
{
 element.style.borderColor = to;
}

var contentDiv = document.getElementById('content');

contentDiv.onmouseover = function()
{
 changeBorder('red');
};

contentDiv.onmouseout = function()
{
 changeBorder('black');
};

This approach allows us to add, remove, or change event handlers without having
to edit the HTML, and since the document itself does not rely on or refer to the
scripting at all, browsers that don’t understand JavaScript will not be affected by
it. This solution also provides the benefits of reusability, because we can bind
the same functions to other elements as needed, without having to edit the
HTML.

This solution hinges on our ability to access elements through the DOM, which
we’ll cover in depth in Chapter 5.

The Benefits of Separation

By practicing good separation of content and behavior, we gain not only a
practical benefit in terms of smoother degradation, but also the advantage
of thinking in terms of separation. Since we’ve separated the HTML and

9

Separating Content from Behavior (Unobtrusive Scripting)

JavaScript, instead of combining them, when we look at the HTML we’re
less likely to forget that its core function should be to describe the content of
the page, independent of any scripting.

Andy Clarke refers to the web standards trifle,4 which is a useful analogy,
A trifle looks the way a good web site should: when you look at the bowl,
you can see all the separate layers that make up the dessert. The opposite
of this might be a fruit cake: when you look at the cake, you can’t tell what
each different ingredient is. All you can see is a mass of cake.

Discussion
It’s important to note that when you bind an event handler to an element like
this, you can’t do it until the element actually exists. If you put the preceding
script in the head section of a page as it is, it would report errors and fail to work,
because the content div has not been rendered at the point at which the script
is processed.

The most direct solution is to put the code inside a load event handler. It will
always be safe there because the load event doesn’t fire until after the document
has been fully rendered:

window.onload = function()
{
 var contentDiv = document.getElementById('content');

 �
};

Or more clearly, with a bit more typing:

window.onload = init;

function init()
{
 var contentDiv = document.getElementById('content');

 �
}

The problem with the load event handler is that only one script on a page can
use it; if two or more scripts attempt to install load event handlers, each script
will override the handler of the one that came before it. The solution to this

4 http://www.stuffandnonsense.co.uk/archives/web_standards_trifle.html

10

Chapter 1: Getting Started with JavaScript

http://www.stuffandnonsense.co.uk/archives/web_standards_trifle.html

problem is to respond to the load event in a more modern way; we’ll look at this
shortly, in “Getting Multiple Scripts to Work on the Same Page”.

Using Braces and Semicolons (Consistent
Coding Practice)

In many JavaScript operations, braces and semicolons are optional, so is there
any value to including them when they’re not essential?

Solution
Although braces and semicolons are often optional, you should always include
them. This makes code easier to read—by others, and by yourself in future—and
helps you avoid problems as you reuse and reorganize the code in your scripts
(which will often render an optional semicolon essential).

For example, this code is perfectly valid:

File: semicolons-braces.js (excerpt)

if (something) alert('something')
else alert('nothing')

This code is valid thanks to a process in the JavaScript interpreter called semi-
colon insertion. Whenever the interpreter finds two code fragments that are
separated by one or more line breaks, and those fragments wouldn’t make sense
if they were on a single line, the interpreter treats them as though a semicolon
existed between them. By a similar mechanism, the braces that normally surround
the code to be executed in if-else statements may be inferred from the syntax,
even though they’re not present. Think of this process as the interpreter adding
the missing code elements for you.

Even though these code elements are not always necessary, it’s easier to remember
to use them when they are required, and easier to read the resulting code, if you
do use them consistently.

Our example above would be better written like this:

File: semicolons-braces.js (excerpt)

if (something) { alert('something'); }
else { alert('nothing'); }

11

Using Braces and Semicolons (Consistent Coding Practice)

This version represents the ultimate in code readability:

File: semicolons-braces.js (excerpt)

if (something)
{
 alert('something');
}
else
{
 alert('nothing');
}

Using Function Literals

As you become experienced with the intricacies of the JavaScript language,
it will become common for you to use function literals to create anonymous
functions as needed, and assign them to JavaScript variables and object
properties. In this context, the function definition should be followed by a
semicolon, which terminates the variable assignment:

var saySomething = function(message)
{
 �
};

Adding a Script to a Page
Before a script can begin doing exciting things, you have to load it into a web
page. There are two techniques for doing this, one of which is distinctly better
than the other.

Solution
The first and most direct technique is to write code directly inside a script ele-
ment, as we’ve seen before:

<script type="text/javascript">
function saySomething(message)
{
 alert(message);
}

12

Chapter 1: Getting Started with JavaScript

saySomething('Hello world!');
</script>

The problem with this method is that in legacy and text-only browsers—those
that don’t support the script element at all—the contents may be rendered as
literal text.

A better alternative, which avoids this problem, is always to put the script in an
external JavaScript file. Here’s what that looks like:

<script type="text/javascript" src="what-is-javascript.js"
 ></script>

This loads an external JavaScript file named what-is-javascript.js. The file
should contain the code that you would otherwise put inside the script element,
like this:

File: what-is-javascript.js

function saySomething(message)
{
 alert(message);
}

saySomething('Hello world!');

When you use this method, browsers that don’t understand the script element
will ignore it and render no contents (since the element is empty), but browsers
that do understand it will load and process the script. This helps to keep scripting
and content separate, and is far more easily maintained—you can use the same
script on multiple pages without having to maintain copies of the code in multiple
documents.

Discussion
You may question the recommendation of not using code directly inside the
script element. “No problem,” you might say. “I’ll just put HTML comments
around it.” Well, I’d have to disagree with that: using HTML comments to “hide”
code is a very bad habit that we should avoid falling into.

Putting HTML Comments Around Code
A validating parser is not required to read comments, much less to process them.
The fact that commented JavaScript works at all is an anachronism—a throwback

13

Putting HTML Comments Around Code

to an old, outdated practice that makes an assumption about the document that
might not be true: it assumes that the page is served to a non-validating parser.

All the examples in this book are provided in HTML (as opposed to XHTML),
so this assumption is reasonable, but if you’re working with XHTML (correctly
served with a MIME type of application/xhtml+xml), the comments in your
code may be discarded by a validating XML parser before the document is pro-
cessed by the browser, in which case commented scripts will no longer work at
all. For the sake of ensuring forwards compatibility (and the associated benefits
to your own coding habits as much as to individual projects), I strongly recom-
mend that you avoid putting comments around code in this way. Your JavaScript
should always be housed in external JavaScript files.

The language Attribute
The language attribute is no longer necessary. In the days when Netscape 4 and
its contemporaries were the dominant browsers, the <script> tag’s language
attribute had the role of sniffing for up-level support (for example, by specifying
javascript1.3), and impacted on small aspects of the way the script interpreter
worked.

But specifying a version of JavaScript is pretty meaningless now that JavaScript
is ECMAScript, and the language attribute has been deprecated in favor of the
type attribute. This attribute specifies the MIME type of included files, such as
scripts and style sheets, and is the only one you need to use:

<script type="text/javascript">

Technically, the value should be text/ecmascript, but Internet Explorer doesn’t
understand that. Personally, I’d be happier if it did, simply because javascript
is (ironically) a word I have great difficulty typing—I’ve lost count of the number
of times a script failure occurred because I’d typed type="text/javsacript".

Getting Multiple Scripts to Work on the
Same Page

When multiple scripts don’t work together, it’s almost always because the scripts
want to assign event handlers for the same event on a given element. Since each
element can have only one handler for each event, the scripts override one anoth-
er’s event handlers.

14

Chapter 1: Getting Started with JavaScript

Solution
The usual suspect is the window object’s load event handler, because only one
script on a page can use this event; if two or more scripts are using it, the last
one will override those that came before it.

We could call multiple functions from inside a single load handler, like this:

window.onload = function()
{
firstFunction();
secondFunction();

}

But, if we used this code, we’d be tied to a single piece of code from which we’d
have to do everything we needed to at load time. A better solution would provide
a means of adding load event handlers that don’t conflict with other handlers.

When the following single function is called, it will allow us to assign any number
of load event handlers, without any of them conflicting:

File: add-load-listener.js

function addLoadListener(fn)
{
 if (typeof window.addEventListener != 'undefined')
 {
 window.addEventListener('load', fn, false);
 }
 else if (typeof document.addEventListener != 'undefined')
 {
 document.addEventListener('load', fn, false);
 }
 else if (typeof window.attachEvent != 'undefined')
 {
 window.attachEvent('onload', fn);
 }
 else
 {
 var oldfn = window.onload;
 if (typeof window.onload != 'function')
 {
 window.onload = fn;
 }
 else
 {

15

Getting Multiple Scripts to Work on the Same Page

 window.onload = function()
 {
 oldfn();
 fn();
 };
 }
 }
}

Once this function is in place, we can use it any number of times:

addLoadListener(firstFunction);
addLoadListener(secondFunction);
addLoadListener(twentyThirdFunction);

You get the idea!

Discussion
JavaScript includes methods for adding (and removing) event listeners, which
operate much like event handlers, but allow multiple listeners to subscribe to a
single event on an element. Unfortunately, the syntax for event listeners is com-
pletely different in Internet Explorer than it is in other browsers: where IE uses
a proprietary method, others implement the W3C Standard. We’ll come across
this dichotomy frequently, and we’ll discuss it in detail in Chapter 13.

The W3C standard method is called addEventListener:

window.addEventListener('load', firstFunction, false);

The IE method is called attachEvent:

window.attachEvent('onload', firstFunction);

As you can see, the standard construct takes the name of the event (without the
“on” prefix), followed by the function that’s to be called when the event occurs,
and an argument that controls event bubbling (see Chapter 13 for more details
on this). The IE method takes the event handler name (including the “on” prefix),
followed by the name of the function.

To put these together, we need to add some tests to check for the existence of
each method before we try to use it. We can do this using the JavaScript operator
typeof, which identifies different types of data (as "string", "number",

16

Chapter 1: Getting Started with JavaScript

"boolean", "object", "array", "function", or "undefined"). A method that
doesn’t exist will return "undefined".

if (typeof window.addEventListener != 'undefined')
{
 � window.addEventListener is supported
}

There’s one additional complication: in Opera, the load event that can trigger
multiple event listeners comes from the document object, not the window. But
we can’t just use document because that doesn’t work in older Mozilla browsers
(such as Netscape 6). To plot a route through these quirks we need to test for
window.addEventListener, then document.addEventListener, then window.at-
tachEvent, in that order.

Finally, for browsers that don’t support any of those methods (Mac IE 5, in
practice), the fallback solution is to chain multiple old-style event handlers to-
gether so they’ll get called in turn when the event occurs. We do this by dynam-
ically constructing a new event handler that calls any existing handler before it
calls the newly-assigned handler when the event occurs.5

File: add-load-listener.js (excerpt)

var oldfn = window.onload;
if (typeof window.onload != 'function')
{
 window.onload = fn;
}
else
{
 window.onload = function()
 {
 oldfn();
 fn();
 };
}

Don’t worry if you don’t understand the specifics of how this works—we’ll explore
the techniques involved in much greater detail in Chapter 13. There, we’ll learn
that event listeners are useful not just for the load event, but for any kind of
event-driven script.

5 This technique was pioneered by Simon Willison
[http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/].

17

Getting Multiple Scripts to Work on the Same Page

http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/

Hiding JavaScript Source Code
If you’ve ever created something that you’re proud of, you’ll understand the desire
to protect your intellectual property. But JavaScript on the Web is an open-source
language by nature; it comes to the browser in its source form, so if the browser
can run it, a person can read it.

There are a few applications on the Web that claim to offer source-code encryp-
tion, but in reality, there’s nothing you can do to encrypt source-code that another
coder couldn’t decrypt in seconds. In fact, some of these programs actually cause
problems: they often reformat code in such a way as to make it slower, less effi-
cient, or just plain broken. My advice? Stay away from them like the plague.

But still, the desire to hide code remains. There is something that you can do to
obfuscate, if not outright encrypt, the code that your users can see.

Solution
Code that has been stripped of all comments and unnecessary whitespace is very
difficult to read, and as you might expect, extracting individual bits of function-
ality from such code is extremely difficult. The simple technique of compressing
your scripts in this way can put-off all but the most determined hacker. For ex-
ample, take this code:

File: obfuscate-code.js (excerpt)

var oldfn = window.onload;
if (typeof window.onload != 'function')
{
 window.onload = fn;
}
else
{
 window.onload = function()
 {
 oldfn();
 fn();
 };
}

We can compress that code into the following two lines simply by removing un-
necessary whitespace:

18

Chapter 1: Getting Started with JavaScript

File: obfuscate-code.js (excerpt)

var oldfn=window.onload;if(typeof window.onload!='function'){
window.onload=fn;}else{window.onload=function(){oldfn();fn();};}

However, remember that important word—unnecessary. Some whitespace is es-
sential, such as the single spaces after var and typeof.

Discussion
This practice has advantages quite apart from the benefits of obfuscation. Scripts
that are stripped of comments and unnecessary whitespace are smaller; therefore,
they’re faster loading, and may process more quickly.

But please do remember that the code must remain strictly formatted using
semicolon line terminators and braces (as we discussed in “Using Braces and
Semicolons (Consistent Coding Practice)”); otherwise, the removal of line breaks
will make lines of code run together, and ultimately cause errors.

Before you start compression, remember to make a copy of the script. I know it
seems obvious, but I’ve made this mistake plenty of times, and it’s all the more
galling for being so elementary! What I do these days is write and maintain scripts
in their fully spaced and commented form, then run them through a bunch of
search/replace expressions just before they’re published. Usually, I keep two
copies of a script, named myscript.js and myscript-commented.js, or something
similar.

We’ll come back to this subject in Chapter 20, where we’ll discuss this among a
range of techniques for improving the speed and efficiency of scripts, as well as
reducing the amount of physical space they require.

Debugging a Script
Debugging is the process of finding and (hopefully) fixing bugs. Most browsers
have some kind of bug reporting built in, and a couple of external debuggers are
also worth investigating.

19

Debugging a Script

Understanding a Browser’s Built-in Error
Reporting

Opera, Mozilla browsers (such as Firefox), and Internet Explorer all have decent
bug reporting functionality built in, but Opera and Mozilla’s debugging tools are
the most useful.

Opera
Open the JavaScript console from Tools > Advanced > JavaScript console. You
can also set it to open automatically when an error occurs by going to Tools
> Preferences > Advanced > Content, then clicking the JavaScript options
button to open its dialog, and checking Open JavaScript console on error.

Firefox and other Mozilla browsers
Open the JavaScript console from Tools > JavaScript console.

Internet Explorer for Windows
Go to Tools > Internet Options > Advanced and uncheck the option Disable
script debugging, then check the option Display a notification about every script
error, to make a dialog pop up whenever an error occurs.

Internet Explorer for Mac
Go to Explorer > Preferences > Web Browser > Web Content and check the
Show scripting error alerts option.

Safari doesn’t include bug reporting by default, but recent versions have a “secret”
Debug menu, including a JavaScript console, which you can enable by entering
the following Terminal command:6

$ defaults write com.apple.safari IncludeDebugMenu -bool true

You can also use an extension called Safari Enhancer,7 which includes an option
to dump JavaScript messages to the Mac OS Console; however, these messages
are not very helpful.

Understanding the various browsers’ console messages can take a little practice,
because each browser gives such different information. Here’s an example of an
error—a mistyped function call:

6 The $ represents the command prompt, and is not to be typed.
7 http://www.lordofthecows.com/safari_enhancer.php

20

Chapter 1: Getting Started with JavaScript

http://www.lordofthecows.com/safari_enhancer.php

function saySomething(message)
{
 �
 alert(message);
}
saySometing('Hello world');

Firefox gives a concise but very accurate report, which includes the line number
at which the error occurred, and a description, as shown in Figure 1.1.

Figure 1.1. The JavaScript errors console in Firefox

As Figure 1.2 illustrates, Opera gives an extremely verbose report, including a
backtrace to the event from which the error originated, a notification of the line
where it occurred, and a description.

A backtrace helps when an error occurs in code that was originally called by
other code; for example, where an event-handler calls a function that goes on to
call a second function, and it’s at this point that the error occurs. Opera’s console
will trace this process back through each stage to its originating event or call.

Internet Explorer gives the fairly basic kind of report shown in Figure 1.3. It
provides the number of the line at which the interpreter encountered the error
(this may or may not be close to the true location of the actual problem),8 plus

8 Internet Explorer is particularly bad at locating errors in external JavaScript files. Often, the line
number it will report as the error location will actually be the number of the line at which the script
is loaded in the HTML file.

21

Understanding a Browser’s Built-in Error Reporting

a summary of the error type, though it doesn’t explain the specifics of the error
itself.

Figure 1.2. The JavaScript console in Opera

Figure 1.3. The JavaScript console in Windows IE

22

Chapter 1: Getting Started with JavaScript

As you probably gathered, I’m not overly impressed by Internet Explorer’s error
reporting, but it is vastly better than nothing: at least you know that an error has
occurred.

Using alert
The alert function is a very useful means of analyzing errors—you can use it at
any point in a script to probe objects and variables to see if they contain the data
you expect. For example, if you have a function that has several conditional
branches, you can add an alert within each condition to find out which is being
executed:

File: debugging-dialogs.js

function checkAge(years)
{
 if (years < 13)
 {

alert('less than 13');

 � other scripting
 }
 else if (years >= 13 && years <= 21)
 {

alert('13 to 21');

 � other scripting
 }
 else
 {

alert('older');

 � other scripting
 }
}

Maybe the value for years is not coming back as a number, like it should. You
could add to the start of your script an alert that tests the variable to see what
type it is:

function checkAge(years)
{
 alert(typeof years);
 �

23

Using alert

In theory, you can put any amount of information in an alert dialog, although
a very long string of data could create such a wide dialog that some of the inform-
ation would be clipped or outside the window. You can avoid this by formatting
the output with escape characters, such as \n for a line break.

Using try-catch
The try-catch construct is an incredibly useful way to get a script just to “try
something,” leaving you to handle any errors that may result. The basic construct
looks like this:

File: debugging-trycatch.js (excerpt)

try
{
 � some code
}
catch (err)
{
 � this gets run if the try{} block results in an error
}

If you’re not sure where an error’s coming from, you can wrap a try-catch around
a very large block of code to trap the general failure, then tighten it around pro-
gressively smaller chunks of code within that block. For example, you could wrap
a try brace around the first half of a function (at a convenient point in the code),
then around the second half, to see where the error occurs; you could then divide
the suspect half again, at a convenient point, and keep going until you’ve isolated
the problematic line.

catch has a single argument (I’ve called it err in this case), which receives the
error object; we can query properties of that object, such as name and message,
to get details about the error.

Often, I use a for-in iterator to run through the entire object and find out what
it says:

File: debugging-trycatch.js (excerpt)

for (var i in err)
{
 alert(i + ': ' + err[i]);
}

24

Chapter 1: Getting Started with JavaScript

Writing to the Page or Window
If you’re examining a great deal of data while debugging, or you’re dealing with
data that’s formatted in a complicated way, it’s often better to write that data
directly to a page or popup window than to try to deal with lots of alert dialogs.
If you’re examining data in a loop, in particular, you could end up generating
hundreds of dialogs, each of which you’ll have to dismiss manually—a very tedious
process.

In these kinds of situations, we can use an element’s innerHTML property to write
the data to the page. Here’s an example in which we build a list using the contents
of an array (data), then write it into a test div:

File: debugging-writing.js (excerpt)

var test = document.getElementById('testdiv');

test.innerHTML += '';
for (var i = 0; i < data.length; i++)
{
 test.innerHTML += '' + i + '=' + data[i] + '';
}
test.innerHTML += '';

We can also write the data into a popup, which is useful if there’s no convenient
place to put it on the page:

File: debugging-writing.js (excerpt)

var win = window.open('', win, 'width=320,height=240');

win.document.open();
win.document.write('');
for (var i = 0; i < data.length; i++)
{
 win.document.write('' + i + '=' + data[i] + '')
}
win.document.write('');
win.document.close();

You can format the output however you like, and use it to structure data in any
way that makes it easier for you to find the error.

When you’re working with smaller amounts of data, you can gain a similar ad-
vantage by writing the data to the main title element:

25

Writing to the Page or Window

File: debugging-writing.js (excerpt)

document.title = '0 = ' + data[0];

This final approach is most useful when tracking data that changes continually
or rapidly, such as a value being processed by a setInterval function (an asyn-
chronous timer we’ll meet properly in Chapter 14).

Using an External Debugger
I can recommend two debuggers:

❑ Venkman9 for Mozilla and Firefox

❑ Microsoft Script Debugger10 for Windows Internet Explorer

External debuggers are a far more detailed way to analyze your scripts, and have
much greater capabilities than their in-browser counterparts. External debuggers
can do things like stopping the execution of the script at specific points, or
watching particular properties so that you’re informed of any change to them,
however it may be caused. They also include features that allow you to“step
through” code line by line, in order help find errors that may occur only briefly,
or are otherwise difficult to isolate.

External debuggers are complex pieces of software, and it can take time for de-
velopers to learn how to use them properly. They can be very useful for highlight-
ing logical errors, and valuable as learning tools in their own right, but they’re
limited in their ability to help with browser incompatibilities: they’re only useful
there if the bug you’re looking for is in the browser that the debugger supports!

Strict Warnings
If you open the JavaScript console in Firefox you’ll see that it includes options
to show Errors and Warnings. Warnings notify you of code that, though it is not
erroneous per se, does rely on automatic error handling, uses deprecated syntax,
or is in some other way untrue to the ECMAScript specification.11

For example, the variable fruit is defined twice in the code below:

9 http://www.mozilla.org/projects/venkman/
10 http://msdn.microsoft.com/scripting/
11 To see these warnings, it may be necessary to enable strict reporting by typing in the address

about:config and setting javascript.options.strict to true.

26

Chapter 1: Getting Started with JavaScript

http://www.mozilla.org/projects/venkman/
http://msdn.microsoft.com/scripting/
about:config

File: strict-warnings.js (excerpt)

var fruit = 'mango';

if (basket.indexOf('apple') != -1)
{
var fruit = 'apple';

}

We should have omitted the second var, because var is used to declare a variable
for the first time, which we’ve already done. Figure 1.4 shows how the JavaScript
console will highlight our error as a warning.

Figure 1.4. The JavaScript warnings console in Firefox

There are several coding missteps that can cause warnings like this. For example:

re-declaring a variable
This produces the warning, “redeclaration of var name,” as we just saw.

failing to declare a variable in the first place
This oversight produces the warning, “assignment to undeclared variable
name.”

This might arise, for example, if the first line of our code read simply fruit
= 'mango';

27

Strict Warnings

assuming the existence of an object
This assumption produces the warning “reference to undefined property
name.”

For example, a test condition like if (document.getElementById) assumes
the existence of the getElementById method, and banks on the fact that
JavaScript’s automatic error-handling capabilities will convert a nonexistent
method to false in browsers in which this method doesn’t exist. To achieve
the same end without seeing a warning, we would be more specific, using
if(typeof document.getElementById != 'undefined').

There are also some function-related warnings, and a range of other miscellaneous
warnings that includes my personal favorite, “useless expression,” which is pro-
duced by a statement within a function that does nothing:

File: strict-warnings.js (excerpt)

function getBasket()
{
 var fruit = 'pomegranate';
fruit;

}

For a thorough rundown on the topic, I recommend Alex Vincent’s article Tackling
JavaScript strict warnings.12

Warnings don’t matter in the sense that they don’t prevent our scripts from
working, but working to avoid warnings helps us to adopt better coding practice,
which ultimately creates efficiency benefits. For instance, scripts run faster in
Mozilla if there are no strict warnings, a subject we’ll look at again in Chapter 20.

Type Conversion Testing

Although we shouldn’t rely on type conversion to test a value that might be
undefined, it’s perfectly fine to do so for a value that might be null, because
the ECMAScript specification requires that null evaluates to false. So,
for example, having already established the existence of getElementById
using the typeof operator as shown above, it’s perfectly safe from then on
to test for individual elements as shown below, because getElementById
returns null for nonexistent elements in the DOM:

if (document.getElementById('something'))
{

12 http://javascriptkit.com/javatutors/serror.shtml

28

Chapter 1: Getting Started with JavaScript

http://javascriptkit.com/javatutors/serror.shtml
http://javascriptkit.com/javatutors/serror.shtml

 � the element exists
}

Summary
In this chapter, we’ve talked about best-practice approaches to scripting that will
make our code easier to read and manage, and will allow it to degrade gracefully
in unsupported devices. We’ve also begun to introduce some of the techniques
we’ll need to build useful scripts, including the ubiquitous load event listener
that we’ll use for almost every solution in this book!

We’ve covered some pretty advanced stuff already, so don’t worry if some of it
was difficult to take in. We’ll be coming back to all the concepts and techniques
we’ve introduced here as we progress through the remaining chapters.

29

Summary

30

Working with Numbers2
Numbers and mathematics come into most scripts at some point, be it in the
form of the simple arithmetic required to add up prices and work out sales tax,
the process of generating and using random numbers, or the more complex
mathematics involved in creating animation.

We’ll investigate some of the more hard-core concepts of working with numbers
in Chapter 14. In this chapter, we’ll meet the basic constructs for number-
crunching in JavaScript, and look at some fairly simple, but useful applications.

Doing Math with JavaScript
JavaScript provides syntax for basic arithmetic, as well as a range of properties
and methods for performing more complex mathematical tasks.

Solution
There are five arithmetic operators in JavaScript, each of which is represented
by a special character: multiplication (*), division (/), addition (+), subtraction
(-), and modulus (%).1

1 The modulus operator returns the remainder of a division, so 9 % 4 returns 1. We’ll use this later
in the chapter to calculate ordinals.

Here are some simple examples of the operators at work:

File: math-operators.js

var s = 7, t = 2;

alert(s + t); // 9
alert(s * t); // 14
alert(s - t); // 5
alert(s / t); // 3.5
alert(s % t); // 1

In addition to these basic operators, JavaScript has a built-in Math object that
provides a range of mathematical methods and properties. The most useful
methods are:

Math.ceil rounds a number upwards, so Math.ceil(4.2) returns 5

Math.floor rounds a number downwards, so Math.floor(4.7) returns 4

Math.round rounds a number to the nearest integer, so Math.round(4.2)
returns 4, while Math.round(4.7) returns 5

Math.pow raises one number to the power of another, so Math.pow(2,4)
returns 16

Math.sqrt returns the square root of a number, so Math.sqrt(9) returns
3

Math.random returns a pseudorandom number between zero and one

The properties that the Math object has to offer are all mathematical constants,
such as Math.E2 and Math.PI.3 You’re not likely to need these very often, but
they’re obviously invaluable for pure math calculations, and also for animation
and vector graphics projects, where advanced mathematics may be used to calcu-
late shapes and movement.

Discussion
Each JavaScript operator has an operator precedence, which controls the order
of execution when two or more operators are used in a single expression. When

2 This is Euler’s constant, which is the base of natural logarithms
[http://en.wikipedia.org/wiki/Euler's_constant].
3 This is the ratio of the circumference of a circle to its diameter.

32

Chapter 2: Working with Numbers

http://en.wikipedia.org/wiki/Euler's_constant

it comes to the arithmetic operators we’ve just seen, multiplication and division
have the highest level of operator precedence, followed by modulus, then by ad-
dition and subtraction.4

Consider this expression:

var n = 4 / 2 + 4 * 3;

If we performed each calculation in the order in which it appears above, the result
would be 18. However, the value that’s calculated by JavaScript and assigned to
n in this example is actually 14, because the results of the multiplication and di-
vision operations are calculated before the addition takes place. We can make this
order of calculation explicit by placing parentheses (round brackets) around the
portions of the expression that should be calculated first:

var n = (4 / 2) + (4 * 3);

Although in this example the parentheses do little more than clarify JavaScript’s
built-in operator precedence, parentheses can also change the order of evaluation.
We could force left-to-right evaluation of the original expression to obtain a value
of 18 by writing it like this:

var n = ((4 / 2) + 4) * 3;

Rounding a Number to x Decimal Places
In some applications, you may need to round the result to a certain number of
decimal places. For instance, you may want to display temperature values in 0.1
degree increments, even though your script has access to more precise values.

Solution
We can write a function that will round to any number of places, as follows:

File: round-number.js

function roundTo(base, precision)
{
 var m = Math.pow(10, precision);
 var a = Math.round(base * m) / m;

4 Since multiplication and division share the same precedence, these operations are evaluated left-to-
right. The same goes for addition and subtraction.

33

Rounding a Number to x Decimal Places

 return a;
}

So, for example, if we started with a number like n = 3.942487, we could call
roundTo(n, 0) to get 4, or roundTo(n, 3) to get 3.942.

Discussion
The Math.round method rounds a number to the nearest integer:

var n = Math.round(3.942487);

In this example, n is assigned the value 4. If we want to round a number to two
decimal places, we can simply multiply it by 100, round the result, then divide
by 100 again:

var n = 3.942487;
n = Math.round(n * 100) / 100;

Now, n has the value 3.94.

The same technique can be used to round to any number of decimal places, be-
cause each place equals a factor of ten. To refine this into a function, we need
one argument to round the number, and a second argument to specify the number
of decimal places to which the number will be rounded. We create our multiplier
by raising ten to the power of the number of decimal places.

In “Formatting Currency Values” in this chapter, we’ll see how to format a
rounded number to a string with a specified number of digits after the decimal
point (and trailing zeroes as necessary).

To Round, or not to Round?

If you’re performing financial calculations, remember that rounding is not
necessarily the right approach. The total of a shopping basket, for example,
should always be rounded down to the nearest penny. Depending on what
you’re doing, you may want to use either Math.floor or Math.ceil (to
round downwards or upwards, respectively), instead of Math.round.

34

Chapter 2: Working with Numbers

Creating and Constraining Random
Numbers

Random numbers can be used as the basis for any task that needs to have a ran-
dom or semi-random aspect.

Solution
We can obtain a random integer within specified limits using a combination of
the Math object’s random and round methods, which we saw in “Doing Math with
JavaScript”.

File: random-number.js

function randomBetween(min, max)
{
 return min + Math.floor(Math.random() * (max - min + 1));
}

So, for example, we could generate a number between four and six (inclusive) by
calling randomBetween(4, 6), or a number between one and 100 by calling
randomBetween(1, 100).

Discussion

Not Really Random, but Near Enough

A computer cannot generate a truly random number because computation
is deterministic: it follows an unbroken chain of cause and effect in which
no truly random events ever occur. Instead, it uses a set of complex algorithms
to generate what’s known as a pseudorandom number5—a number that
gives the appearance of randomness, and is good enough for any practical
purpose.

We begin with a pseudorandom number generated by Math.random:

return Math.random(); // a number between 0 and 1

5 http://en.wikipedia.org/wiki/Pseudorandomness

35

Creating and Constraining Random Numbers

http://en.wikipedia.org/wiki/Pseudorandomness

This produces a number between zero and one (excluding either of these limits).
If we multiply that by ten and use Math.floor to round down, we’ll end up with
an integer between zero and nine (inclusive):

return Math.floor(Math.random() * 10); // integer from 0 to 9

So, the number by which we multiply the output of Math.random determines the
upper limit. If we want an integer between zero and n (inclusive), we must mul-
tiply by n + 1.

If we add five to our sample result, we’ll get a number between five and 14:

return 5 + Math.floor(Math.random() * 10); // integer from 5 to 14

This final addition defines the lower limit, and shifts the range to the final upper
limit.

In our randomBetween function, we’re given the lower and upper limits we’re
shooting for. So, as well as adding the desired lower limit, we use both limits to
calculate the number by which we multiply the output of Math.random:

File: random-number.js (excerpt)

return min + Math.floor(Math.random() * (max - min + 1));

Converting a Number to a String
Once you’ve finished a calculation, you might want to turn the output into
something more readable, such as formatting a value to represent currency. To
do this, we must convert the number to a string.

Solution
The most direct means of converting a number to a string is to use the built-in
String constructor function:

File: number-to-string.js (excerpt)

var a = 10;
alert(typeof a);
a = String(a);
alert(typeof a);

36

Chapter 2: Working with Numbers

In this example, the first alert would display “number” and the second would
display “string.”

You can also use the toString method, which is provided for every number value
in JavaScript:

File: number-to-string.js (excerpt)

var a = 10;
a = a.toString();
alert(typeof a);

It doesn’t matter which approach you use: they both give the same result.

It’s a Date

If the input value to the String constructor is a Date object, the string
produced will be a human-readable representation of the date. We’ll learn
more about this feature in Chapter 9.

Another useful technique is string concatenation (joining strings together),
which returns a string even if some if the input values are numbers:

File: number-to-string.js (excerpt)

var a = 2468;
var s = a + ' motorway';

In this example, s has the value "2468 motorway".

Less is not Always More

The succinctness of this technique has led many developers to determine
that string concatenation is the most efficient means of converting a number
to a string. After all, it requires the least amount of code:

var a = 10 + '';

But, since the readability of code is usually more important than a few bytes
of JavaScript code, I don’t recommend this approach.

Discussion
Although the result of string concatenation is always a string, the + operator will
add numbers together until a string is encountered. This can produce unexpected

37

Converting a Number to a String

results in an expression involving string concatenation with multiple numbers.
Consider this code:

File: number-to-string.js (excerpt)

var a = 2000;
var b = 468;
var s = a + b + ' motorway';

This will still output "2468 motorway", because a + b is evaluated first as a nu-
meric addition. But look what happens if we change this expression:

File: number-to-string.js (excerpt)

var s = 'and its ' + a + b + ' motorway';

In this case, the result would be "and its 2000468 motorway", because the first
part of the expression that’s evaluated, 'and its ' + a, results in a string con-
catenation, which ensures that the remainder of the expression will continue as
a series of further concatenations.

Parentheses can be used to force the numeric addition to be performed first, in-
dependent of the string concatenations:

File: number-to-string.js (excerpt)

var s = 'and its ' + (a + b) + ' motorway';

This gives us the desired result, "and its 2468 motorway".

Formatting Currency Values
In “Rounding a Number to x Decimal Places”, we saw how to round a value to
a specified number of decimal places, but if you’re working with currency values,
you may need to format the output further, adding a decimal point and trailing
zeroes as necessary.

Solution
In order to display a currency value with trailing zeroes, we must first round the
value to the required number of decimal places (using the roundTo function from
“Rounding a Number to x Decimal Places”). We then convert that value to a
string so that we can add a decimal point, if it’s needed, as well as any trailing
zeroes that may be required:

38

Chapter 2: Working with Numbers

File: currency-format.js (excerpt)

function formatTo(base, precision)
{
 var a = roundTo(base, precision);
 var s = a.toString();

 var decimalIndex = s.indexOf(".");
 if (precision > 0 && decimalIndex < 0)
 {
 decimalIndex = s.length;
 s += '.';
 }
 while (decimalIndex + precision + 1 > s.length)
 {
 s += '0';
 }
 return s;
}

So, formatTo(3.942, 2) would give us "3.94", while formatTo(4.003, 2)
would give "4.00".

Discussion
After converting the rounded number to a string using the toString method
described in “Converting a Number to a String”, formatTo finds the position of
the decimal point (if any) in the resulting string. If there is no decimal point, and
one is required, a decimal point is added to the end of the string. The function
then determines the number of digits that are to follow the decimal point, and
adds zeroes to the end of the string until the required number of digits is produced.

Converting a String to a Number
There are many situations where a number value might be stored as a string—a
value read back from a form element, for example, will always come back as a
string (as we’ll see in Chapter 6). In general, you can treat a JavaScript string
that contains a number (and only a number) as if it were a number, and JavaScript
will perform the string-to-number conversion for you automatically. But sometimes
you need to extract a number from a string, or exercise more control over how
the conversion is done.

39

Converting a String to a Number

Solution
The most direct means of converting a string to a number is to use the built-in
Number constructor function:

File: string-to-number.js (excerpt)

var a = '10';
alert(typeof a);
a = Number(a);
alert(typeof a);

In this case, the first alert would display “string,” while the second would display
“number.”

Date in Milliseconds

If the input value to Number is a Date object, it returns the number of mil-
liseconds between January 1, 1970 (UTC6) and the specified date/time. We’ll
learn more about dealing with dates and times in Chapter 9.

Another handy technique is to use the parseInt and parseFloat functions,
which will attempt to find and return an integer or decimal number (respectively)
at the start of a string:

File: string-to-number.js (excerpt)

var a = '24.68motorway';

var i = parseInt(a, 10);
alert(i);

var f = parseFloat(a);
alert(f);

Note that parseInt takes the base of the number as its second argument, while
parseFloat always assumes that you’re working in base ten.

The first alert will display the number 24; the second will display 24.68.

6 For a full explanation of UTC, see Chapter 9.

40

Chapter 2: Working with Numbers

Discussion
If the first character of the input is not a digit or some other numerical character
(such as a minus sign or a decimal point), these functions will not be able to return
a number. In such cases, they’ll return the special value NaN (Not a Number).
Consider this example:

File: string-to-number.js (excerpt)

var s = 'route66';
var n = parseInt(s, 10);
alert(n);

Here, the value of s cannot be converted to a number, because it starts with a
non-numeric character, so n will have the value NaN.

You can test for the NaN value in your scripts using the isNaN function:

File: test-number-conversion.js

function testNumberConversion(input)
{
 var a = parseInt(input, 10);
 if (isNaN(a))
 {
 alert('"' + input + '" cannot be converted');
 }
 else
 {
 alert('"' + input + '" converts to ' + a);
 }
}

In fact, isNaN will return true for any value that isn’t a number. The isNaN
function is therefore useful whenever you need to test whether a value is not a
number, as an alternative to using the typeof operator we saw in earlier examples
(which returns "number" if the value is a number).

A Closer Look at parseInt

As mentioned previously, parseInt takes a second argument that specifies
the base of the number to be parsed from the string. This argument is in fact
optional, but I highly recommend that you always provide it.

Without this second argument, parseInt performs automatic radix detec-
tion; that is, it detects the base of a number by its format in the string. A

41

Converting a String to a Number

number beginning with 0 is considered to be octal (base eight), a number
beginning 0x or 0X is considered to be hexadecimal (base 16), and all other
numbers are considered to be decimal.

So, for example, if you were to call parseInt('08'), the input value would
be considered an octal number; but 8 is not an octal digit (because octal
numbering is 0–7), so the function would return a value of zero, not eight.

To avoid any confusion, always specify the base when using parseInt.

Converting Numbers to Ordinals (-st, -nd,
-rd, -th)

Ordinals define numbers as being part of an order or sequence: the words “first,”
“second,” and “third” are all examples of ordinals. There are many examples of
their use, including sports results, music charts, and dates, to name just a few.

Solution
English ordinals follow a predictable, if not beautifully simple, set of rules:

❑ “st” is appended to 1 and numbers that are one greater than a multiple of
ten, except for 11 and numbers that are 11 greater than a multiple of 100.

❑ “nd” is appended to 2 and numbers that are two greater than a multiple of
ten, except for 12 and numbers that are 12 greater than a multiple of 100.

❑ “rd” is appended to 3 and numbers that are three greater than a multiple of
ten, except for 13 and numbers that are 13 greater than a multiple of 100.

❑ “th” is appended to everything else.

To find the appropriate ordinal for a number, we convert these rules into a set
of conditions:

File: get-ordinal.js

function getOrdinal(n)
{
 var ord = 'th';

 if (n % 10 == 1 && n % 100 != 11)
 {

42

Chapter 2: Working with Numbers

 ord = 'st';
 }
 else if (n % 10 == 2 && n % 100 != 12)
 {
 ord = 'nd';
 }
 else if (n % 10 == 3 && n % 100 != 13)
 {
 ord = 'rd';
 }

 return ord;
}

Discussion
Since most ordinals end in “th,” it’s simplest to assume that this is the suffix we
want, unless we know otherwise.

The most valuable tool in JavaScript’s arsenal for tackling this task is the modulus
operator (%), which returns the remainder of a division. For example, we can find
out if a number n is 12 greater than a multiple of 100 by checking if n % 100
equals 12.

The first if statement in the function, therefore, checks if n is one greater than
a multiple of ten (n % 10 == 1, which includes 1 itself), but isn’t 11 greater than
a multiple of 100 (n % 100 != 11, which includes 11 itself), in which case it re-
turns the “st” suffix. The remaining if statements follow the same pattern to
check for the conditions under which the “nd” and “rd” suffixes should be re-
turned.

0th?

The question of whether “th” is the correct suffix for zero is debatable. Or-
dinals were invented long before the concept of zero-based numbering: as
with Roman numerals, they would originally have been used for counting
physical things, for which you can’t count zero instances!

Summary
In this chapter, we’ve seen how to do basic arithmetic, introduced some of the
more useful methods that are available from JavaScript’s Math object, and turned
our hand to a few commonly-used tasks. Many of the techniques we’ve learned

43

Summary

here will come in handy as we progress through the book, especially when it
comes to working with dates and times (Chapter 9), and later, in our work with
Dynamic HTML (Chapter 13 and Chapter 14).

44

Chapter 2: Working with Numbers

Working with Strings3
HTML is a text-based format, so if you’re reading or writing data on a web page,
it’s inevitable that you’re going to have to deal with text. Sometimes you’ll create
text yourself, while at other times it will be returned automatically by another
function, but any time you handle text in JavaScript, it will be stored in an object
called a string. This chapter explores the ways in which you can manipulate
strings to find information, store data, and prepare text for output.

Including a Special Character in a String
The nature of the syntax that JavaScript uses to declare strings prevents us from
including some characters simply by typing them literally into the code. For ex-
ample, if the start and end of a string is marked with double quotes ("), you can’t
type a string that contains an actual quotation mark, as this special character
would be misinterpreted as a string start/end marker. Other special characters
mark the location of formatting devices such as tabs or new lines.

Solution
Special characters are preceded by a backslash. Whenever a backslash is included
in a string, JavaScript considers the backslash itself, and the character that follows
it, to be a special character sequence, and performs the necessary translation. If

it helps you, think of the backslash character as indicating that the “alternative
meaning” of the following character should be used. For instance, the line feed
character is represented by “n,” but in order to be recognized as a line feed, and
not the character “n,” it must be escaped using a backslash:

File: special_character.js (excerpt)

var a = "First line.\nSecond line.";

If the variable a were printed, it would appear like this:

First line.
Second line.

Discussion
Special characters can be used in a number of circumstances. Sometimes, we can
turn letters of the alphabet into control characters by escaping them. At other
times, characters may be used as special syntax for a function, in which case they
must be escaped in order to represent their literal notation. Table 3.1 describes
a few of the more common special characters.

Table 3.1. String special characters

DescriptionCharacter

Line feed. This is used to indicate a new line. Different operating
systems use varying combinations of \n and \r to mark the ends of
lines, so you must be careful when working with strings containing
new lines, such as textarea values.

\n

Carriage return.\r

Tab space.\t

When a string is opened with a single quote, using an escaped single
quote inside the string allows that single quote to be part of the
string without causing the string to close.

\'

When a string is opened with a double quote, using an escaped
double quote inside the string allows that double quote to be part
of the string without causing the string to close.

\"

Of course, to print an actual backslash, you have to escape its
meaning as the escape character by preceding it with another back-
slash.

\\

46

Chapter 3: Working with Strings

Transforming the Character Case of a
String

String data is rarely presented in the form in which you want it. However, if your
string is in uppercase when you need it in lowercase characters, JavaScript can
help ease your worries.

Solution
JavaScript includes two string object methods that can transform strings into all
lowercase or uppercase characters. To make your string all uppercase, use the
toUpperCase method:

File: transform_string_case.js (excerpt)

var a = "very big letters";
var b = a.toUpperCase();

The value of the variable b will now be "VERY BIG LETTERS".

To make your string all lowercase, use the toLowerCase method:

File: transform_string_case.js (excerpt)

var c = "VERY SMALL LETTERS";
var d = c.toLowerCase();

The value of the variable d will now be "very small letters".

Encoding a URL
URLs reserve a number of characters for special syntax. To include these characters
as part of an actual URL—particularly in the case of CGI GET parameters—you
must encode them with a per cent sign (%) followed by the equivalent ASCII
character code.

Solution
The escape function saves you from figuring out which characters to encode and
what to encode them to. If you pass a string to this function, it returns a duplicate
string with all sensitive characters converted to their URL-safe equivalents. As a

47

Transforming the Character Case of a String

common example, you might need to pass a URL as a parameter in the query
string of another URL:

File: encode_url.js (excerpt)

var a = "http://www.sitepoint.com/directory name/?param=value";
var b = escape(a);

The value of the variable b will now be

"http%3A//www.sitepoint.com/directory%20name/%3Fparam%3Dvalue"

This value has a number of URL special characters that have been escaped
properly, so it can be included safely in the query string of another URL.

If you wish to decode an encoded URL, escape’s inverse function, unescape,
can do that for you:

File: encode_url.js (excerpt)

var c = "http%3A//www.sitepoint.com/directory%20name/" +
 "%3Fparam%3Dvalue";
var d = unescape(c);

The value of the variable d will now be

"http://www.sitepoint.com/directory name/?param=value"

Comparing Two Strings
Checking the text in a string against a given value is one of the most common
methods for determining the path a program should follow. String comparison
can be used to find elements with certain attributes, to validate form fields, to
parse data … the list goes on.

Solution
We can compare two strings using the equality operator: ==. This is the same
operator that’s used to compare numeric values; similarly, if we place one of the
two strings for comparison on either side of the operator, JavaScript will decide
whether they’re equal, and return an appropriate Boolean value:

48

Chapter 3: Working with Strings

File: compare_string.js (excerpt)

var a = "Cameron";
var b = "James";

if (a == b)
{
 var identity = "same";
}
else
{
 var identity = "different";
}

The value of the variable identity will now be "different".

The same program could be phrased in terms of a negative comparison: are these
two strings unequal? To do this, you would use the inequality operator: != like
so:

var a = "Cameron";
var b = "James";

if (a != b)
{
 var identity = "different";
}
else
{
 var identity = "same";
}

The value of the variable identity will now be "different".

Discussion
The comparison operators used above are available for comparing any two data
types, whether they’re numbers, strings, or objects. However, the data types we
use in a comparison do not have to be the same in order to be considered equal.

If a comparison is performed between two different data types, JavaScript will
try to transform one of the arguments so that the pair are comparable. For in-
stance, if one argument is a number and the other a string, the string will be
transformed into a number, and a comparison made between the two numbers:

49

Comparing Two Strings

var a = 42;
var b = "42";

var comparison;
if (a == b)
{
 var comparison = "same";
}
else
{
 var comparison = "different";
}

The value of the variable comparison will now be "same".

This is a handy shortcut in most cases, but sometimes you’ll want to do a strict
comparison that requires identical data types. To do this, you can use the strict
equality, or identity operator: ===. When this operator is used to compare two
values, no transformation is performed:

var a = 42;
var b = "42";

var comparison;
if (a === b)
{
 var comparison = "same";
}
else
{
 var comparison = "different";
}

The value of the variable comparison will now be "different".

The identity operator is paired by the non-identity operator: !==:

var a = 42;
var b = "42";

if (a !== b)
{
 var comparison = "different";
}
else
{

50

Chapter 3: Working with Strings

 var comparison = "same";
}

The value of the variable comparison will now be "different".

Finding a Substring within a String
Although string comparison allows you to find identical strings, it’s sometimes
more useful to check if a piece of text is part of a larger string, and to know exactly
where that text is located within the string.

Solution
We can find a particular piece of text within a string using JavaScript’s indexOf
method. This method takes one argument—the text you want to find—and returns
the index of that text:

File: find_substring.js (excerpt)

var a = "This sentence contains a substring.";
var b = a.indexOf("sentence");

The value of the variable b is now 5.

String Index Numbering

String index numbering starts at 0, so although the text “sentence” starts on
the sixth character, its index will be 5.

If the text you’re searching for doesn’t occur in the string, the method will return
an index of -1.

Discussion
Because indexOf returns a unique value when it does not find a substring, this
makes it a handy tool for testing for the existence of required data:

if (name.indexOf("Adams") == -1)
{
 var author = false;
}
else
{

51

Finding a Substring within a String

 var author = true;
}

indexOf will always find the first occurrence of the text you specify. It is possible
to find the last occurrence of text in a string using the method lastIndexOf,
which operates in much the same manner:

var a = "First word, last word";
var b = a.lastIndexOf("word");

The value of the variable b is now 17.

Splitting a String into Substrings
Strings often contain more information than you need. One example is the URL
of a web page. JavaScript is able to find and extract any part of a URL, whether
you need the root domain name, CGI variables, or the anchor reference.

Solution
If you want to extract one continuous piece of text from within a string, the
substring method can be used to obtain it. This method takes two arguments:
the string index that specifies the start of the text fragment, and the string index
that specifies the end of the text fragment plus one.

Plus One

It’s important to note that the value of the second argument is actually one
greater than the index of the final character of the fragment.

File: split_string_into_substrings.js (excerpt)

var a = "Bytes and bits";
var b = a.substring(10, 13);

The value of the variable b is now "bit".

Discussion
We rarely encounter a situation in which we know exactly the contents of the
string we’re operating on, and where the substring we want begins. In the following
example, substring, in combination with indexOf, is able to find and extract
the URL’s anchor reference:

52

Chapter 3: Working with Strings

File: split_string_into_substrings.js (excerpt)

var url = "http://www.sitepoint.com/javascript.htm#chapter_3";
var hash = url.indexOf("#");
var anchor = url.substring(hash + 1, url.length);

The value of the variable anchor is now "chapter_3".

Determining String Length

We can determine the length of a string by reading its length property.
The length is the total number of characters in the string, which means that
its value is one greater than the index of the last character in the string.

As previously mentioned, indexOf will find only the first occurrence of the text
that you’re searching for. If you want to find and manipulate multiple occurrences
of the same text, you may be better off using regular expressions, which are ex-
plained in the next solution.

Aside from singular values, strings are also an extremely versatile and portable
method of storing multiple data items. If your string is actually a list of items
separated by a delimiter, JavaScript allows you to extract all of those items with
just one method call. The split method takes one argument—the delimiter
text—and divides up the string based on that delimiter. It then returns an array
containing each of the items that were in the string:

File: split_string_into_substrings.js (excerpt)

var c = "Chico,Groucho,Gummo,Harpo,Zeppo";
var d = c.split(",");

The variable d is now an array, where d[0] is "Chico", d[1] is "Groucho", d[2]
is "Gummo", d[3] is "Harpo" and d[4] is "Zeppo". For more information on arrays
and how they store multiple data values, see Chapter 4.

Creating a Regular Expression
Regular expressions comprise a widely used search-and-replace syntax that’s
available across many programming languages. The popularity of regular expres-
sions is largely due to their concise and powerful nature, and it is for this reason
that they’re also available in JavaScript.

53

Creating a Regular Expression

Solution
We have two ways to create a regular expression in JavaScript. The first approach
uses a regular expression literal, where the regular expression pattern is delimited
by two forward slashes:

var a = /pattern.*/;

Escape the Forward Slash!

To include a forward slash as part of a regular expression literal, you must
escape it using a preceding backslash (\/); otherwise, it will mark the end
of the pattern.

The second way to create a regular expression is to instantiate a new RegExp object
by giving the pattern string to its constructor as an argument:

var a = new RegExp("pattern.*");

Regular Expressions vs the RegExp Constructor

It’s easier to read regular expression literals than the code required by the
RegExp constructor. They also provide better runtime performance. However,
if you must construct a regular expression dynamically using string input,
you’ll have to use the RegExp constructor.

Mac Memory Leak

Internet Explorer 5.0 for the Mac suffers a memory leak when the RegExp
constructor is used to create regular expressions. Therefore, in a complex
script that involves the repeated creation of regular expressions, you may
receive an “out of memory” error in this browser. It’s generally safer to use
regular expression literals unless you really must use the constructor method.

JavaScript regular expressions can also include three modifiers that affect the
manner in which the pattern is matched:

g (global) By default, JavaScript only matches the first occur-
rence of the regular expression pattern. This flag
indicates that all occurrences of the pattern should
be matched.

i (case insensitive) By default, JavaScript matches only text that has
the exact same case as the regular expression pattern.

54

Chapter 3: Working with Strings

This flag allows text to be matched irrespective of
its case.

m (multi-line) This flag specifies that a string should be treated as
multiple lines, where a new line is created by includ-
ing either a carriage return (\r) or a line feed (\n).
This means that the end of string anchor ($) and
the start of string anchor (^) will also match the end
and start of a line.

To include modifiers with the special regular expression definition syntax, include
the flags after the closing forward slash. Multiple modifiers are written consecut-
ively, without separation:

var a = /pattern.*/gim;

If you’re instantiating a RegExp object, include the modifiers as a second argument
to the constructor:

var a = new RegExp("pattern.*", "gim");

Discussion
Although—or perhaps because—regular expressions are extremely powerful, they
are notoriously hard to decipher. Even after you have a handle on regular expres-
sion syntax, it’s always a good idea to comment exactly what your regular expres-
sions do (or are meant to do).

Essentially, a regular expression represents a pattern that uses ordinary characters
and special characters. For instance, if you wanted a pattern that matched the
string “JavaScript,” your regular expression pattern could be:

JavaScript

However, by including special characters, your pattern could also be:

Java.*

55

Creating a Regular Expression

Table 3.2. Regular expression special characters

DescriptionCharacter

This is the wildcard character. It matches any single character except
line break characters (\r and \n). When the m modifier is included

. (dot)

with the regular expression, the dot is also meant to match line
break characters; however, its implementation across browsers is
inconsistent, so it cannot be used reliably in this manner.

An asterisk requires that the preceding character appear zero or
more times. When matching, the asterisk will be greedy, including

* (asterisk)

as many characters as possible. For example, for the string "a word
here, a word there," the pattern "a.*word" will match "a word here,
a word." In order to make a minimal match, use the question mark
character (explained below).

This character requires that the preceding character appears one
or more times. When matching, the plus will be greedy (see above).

+ (plus)

This character allows the preceding character to be optional. If
placed after a plus, an asterisk, or another question mark, it dictates

? (question
mark)

that the match for this preceding symbol will include as few char-
acters as possible.

The caret matches the start of the string. This does not include
any characters—it considers merely the position itself. If the m

^ (caret)

modifier is included in the regular expression, the caret will also
match the start of a line.

A dollar character matches the end of the string. This does not in-
clude any characters—it considers merely the position itself. If the

$ (dollar)

m modifier is included in the regular expression, the dollar will also
match the end of a line.

The pipe causes the regular expression to match either the pattern
on the left of the pipe, or the pattern on the right.

| (pipe)

This character starts a grouping of the characters contained between
the opening round bracket and its corresponding closing round

((round
bracket)

bracket. As such, you can apply a modifier like *, +, or ? to an entire
group of characters by placing it after the closing bracket. You can
also refer to a bracketed portion of a regular expression to obtain
the portion of the string that it matched.

56

Chapter 3: Working with Strings

DescriptionCharacter

This character starts a character class. A character class matches
one character out of those specified by the class. The class can in-
clude an explicit list of characters, e.g., [aqz] (which is the same
as a|q|z), or a range of characters, e.g., [a-z] (which is the same
as a|b|c|d|e…). A character class can also match one character
that's not specified by the class, provided a caret is included after
the opening square bracket (e.g., [^a] will match any character
except "a").

[(square
bracket)

Both the dot (.) and asterisk (*) are special characters that have a specific
meaning inside a regular expression. By including them in the pattern Java.*, that
pattern matches not only the string “JavaScript,” but “Javascript,” “JavaHouse,”
“Java, the most populous island in the world,” and a multitude of other possible
character combinations. Table 3.2 lists some of the most commonly used regular
expression special characters.

If you wish to use one of these special characters as a literal character to be
matched by the regular expression pattern, escape it by placing a backslash (\)
before it, as we saw when including special characters previously in this chapter.

For a more extensive listing of regular expression syntax, visit RegularExpres-
sions.info,1 and for more information on regular expressions in JavaScript, see
Kevin Yank’s SitePoint article Regular Expressions in JavaScript.2

Testing whether a String Matches a
Regular Expression

Although indexOf allows you to test easily whether or not a string contains a
literal piece of text, regular expressions offer a far more flexible range of pattern-
matching capabilities, including the ability to test for the existence of multiple
patterns of text in the same string.

1 http://www.regularexpressions.info/
2 http://www.sitepoint.com/article/expressions-javascript/

57

Testing whether a String Matches a Regular Expression

http://www.regularexpressions.info/
http://www.regularexpressions.info/
http://www.sitepoint.com/article/expressions-javascript/

Solution
Once a regular expression pattern has been created, the test method allows a
string to be compared to that pattern. This method takes a string as its argument,
and returns a Boolean value that indicates whether or not the string matched the
pattern. This allows test to be used as a condition inside control structures, such
as an if statement:

File: regular_expression_test.js (excerpt)

var string = "Want to test a string? Use a regular expression!";
var pattern = /test.*regular/;

if (pattern.test(string))
{
 var result = "Matched";
}
else
{
 var result = "Not matched";
}

The value of the variable result is now "Matched".

Testing whether a String Contains Only
Numeric Data

The regular expression syntax contains special characters for detecting particular
character types. Using one of these, we can determine whether a string contains
only numbers.

Solution
Used in a regular expression pattern, the \d special character matches only digits
(i.e., 0–9). We can use \d to create a pattern that matches both integers and
floating point numbers, but nothing else:

File: numerical_data_test.js (excerpt)

var numericalString = "3.14159265";
var characterString = "3 point 1";
var pattern = /^-?\d+(\.\d+)?$/;

58

Chapter 3: Working with Strings

var a = pattern.test(numericalString);
var b = pattern.test(characterString);

The value of the variable a will now be true, and the value of the variable b will
now be false.

Discussion
If we break down the regular expression used above, it reads something like this:

^-? At the start of the string, you may have a minus sign.

\d+ Then, you’ll have one or more digits.

(\.\d+)? Then, you may optionally have a period (full stop) followed by one
or more digits.

$ Then, the string must end.

Allowing only a minus sign, numbers, and one period in the string precludes the
string from containing any non-numerical data.

Testing whether a String is a Valid Phone
Number

A North American phone number can be generalized to the form (XXX)
XXX-XXXX, where X represents a digit. Phone numbers in other countries vary
slightly, but usually conform to a similar pattern. Using this pattern, we can write
a regular expression that matches phone numbers.

Solution
Because the length of phone numbers varies from country to country, it is inad-
visable to place any restrictions on the length of a phone number, but we can
ensure it meets a generalized form:

File: phone_number_test.js (excerpt)

var telephoneString = "(03) 9555 5555";
var emailString = "bill@microsoft.com";
var pattern = /^(\(\d+\) ?)?(\d+[\-])*\d+$/;

59

Testing whether a String is a Valid Phone Number

var a = pattern.test(telephoneString);
var b = pattern.test(emailString);

The value of the variable a will now be true, and the value of the variable b will
now be false.

Discussion
We can dissect the regular expression used above to discern its exact meaning:

^(\(\d+\) ?)? At the start of the string, you may optionally have an open
round bracket, followed by one or more numbers, followed
by a closed round bracket, optionally followed by a space.

(\d+[\-])* You may then have zero or more groups of one or more digits.
Each of these groups must be followed by a space or a hyphen.

\d+$ Finally, the string must end with one or more digits.

This pattern allows for an optional area code with round brackets followed by
groups of digits, each separated by a space or a hyphen. This is quite a loose
pattern, but so, too, are the standards for telephone numbers around the world.
If you require a specific format, you should be able tailor this pattern to your
needs fairly easily.

Testing whether a String is a Valid Email
Address

The technical specification for the format of an email address is quite complex,
but 99.9% of email addresses can be matched by a regular expression that won’t
spill over onto two lines.

Solution
The first half of an email address has a greater set of possible characters than the
second half, which is limited by its need to be a domain name. The two are divided
by the ubiquitous “at“ symbol:

60

Chapter 3: Working with Strings

File: email_address_test.js (excerpt)

var validEmail = "anakin36@tatooine.com";
var invalidEmail = "darth@thedeathstar";
var pattern = /^[\w\.\-]+@([\w\-]+\.)+[a-zA-Z]+$/;

var a = pattern.test(validEmail);
var b = pattern.test(invalidEmail);

The value of the variable a will now be true, and the value of the variable b will
be false.

Discussion
A few different parts go into defining this pattern:

^[\w\.\-]+ The \w special character indicates a “word” character, which
can be any upper- or lowercase character or number. At the
start of the string, you must have any combination of word
characters, full stops, and hyphens.

@ Then you must have an “at” symbol.

([\w\-]+\.)+ Then you must have at least one group of word characters or
hyphens, followed by a full stop (the domain and subdomain
names).

[a-zA-Z]+$ Finally, the string must end with one or more alphabetical
characters (the top-level domain).

This pattern strikes the right balance between freedom and restriction. It is pos-
sible for the only requirements to be an “@” sandwiched between two strings,
but this is quite a trivial check, and ultimately unhelpful in validation.

Searching and Replacing Text using a
Regular Expression

As well as matching strings with patterns, regular expressions can also be used to
replace and manipulate text within a string.

61

Searching and Replacing Text using a Regular Expression

Solution
JavaScript supplies another ready-made regular expression method that allows
you to replace text. The string method replace takes two arguments: a regular
expression pattern, and the replacement text for that pattern. It will then match
the text inside the string with the pattern and replace the matched text with the
replacement text:

File: search_replace_regular_expression.js (excerpt)

var pattern = /closures/;
var string = "JavaScript programmers love closures";
var result = string.replace(pattern, "bananas");

The value of the variable result is now "JavaScript programmers love bana-
nas".

Don’t Forget the g!

Remember, if you want to search for and replace every occurrence of the
pattern in a string, you must include the g modifier with the regular expres-
sion, to make it global: /closures/g

Discussion
In addition to the straight replacement of a literal piece of text, replace is also
able to manipulate the matched text using back-references and callback func-
tions.

Back-references refer to the text matched by the regular expression pattern, and
allow you to use parts of that text inside the replacement string. Back-references
are created using round brackets in the regular expression pattern, and are refer-
enced using $x, where x is the number of the back-reference you want to include
(the first one is “$1,” and they increment left to right through the pattern):

File: search_replace_regular_expression.js (excerpt)

var pattern = /JavaScript (.*) closures/;
var string = "JavaScript programmers love closures";
var result = string.replace(pattern, "Visual Basic $1 debugging");

The value of the variable result is now "Visual Basic programmers love
debugging".

62

Chapter 3: Working with Strings

A further enhancement to the replace method is its ability to accept a callback
function as its second argument. By passing a callback function as the second
argument, we can have the matched text manipulated by that function, and re-
turned as the replacement text. Several arguments are supplied to the callback
function when it’s invoked, including:

1. the text that matched the pattern

2. each of the back-references that were captured in the pattern, as separate
arguments

3. the offset within the string where the full match occurred

4. the entire text of the string

Using this callback function you can, for example, transform the matched text
to lowercase and insert it as a replacement in the original string:

File: search_replace_regular_expression.js (excerpt)

function transformToLowercase(theString)
{
 return theString.toLowerCase();
}

var string = "Element names should be LOWERCASE.";
var pattern = /LOWERCASE/;
var result = string.replace(pattern, transformToLowercase);

The value of the variable result is now "Element names should be lowercase."

Are Callback Functions Allowed?

Some browsers, including Safari 2.0 and Internet Explorer 5.0, do not allow
callback functions to be passed to the replace method.

Summary
This chapter has taught you about one of the most basic data types in JavaScript:
the string. The methods explained above will be used repeatedly throughout the
rest of this book. As the underlying structure of a web page relies heavily on
strings to store its content, this chapter has given you the foundation you need
to start accessing and manipulating the HTML on your own pages.

63

Summary

64

Working with Arrays4
Arrays are incredibly useful constructs; it’s impossible to say too many good
things about them (though I’ll try)!

An array is a “group” or “list” of data. It’s a more convenient way to store and
structure information than is defining lots of variables with slightly different
names, like this:

var planets0 = 'mercury';
var planets1 = 'venus';
var planets2 = 'earth';

alert(planets1); // alerts 'venus'

Instead of the above, we can use an array to structure the data like this:

var planets = new Array('mercury', 'venus', 'earth');

alert(planets[1]); // alerts 'venus'

We refer to the members of an array using a number in square brackets, starting
from zero. In this example, the planet Mercury is planets[0], while our own
corner of the cosmos is planets[2].

This convenience alone makes arrays invaluable, but they also offer considerable
power for manipulating data, as we’ll see in this chapter.

Using Array-literals

Solution
An array-literal is a normal array that’s written in a way that’s quicker to type
and less code-intensive. Here’s an example:

File: array-literal.js (excerpt)

var planets = ['mercury', 'venus', 'earth'];

This is exactly the same as the code below:

var planets = new Array('mercury', 'venus', 'earth');

This kind of shortcut syntax is provided by the language, making common con-
structs more convenient.

Creating an Array of Arrays
The members of an array can be anything—numbers, strings, functions, even
other arrays—and, within an array, you can mix different types of data freely.

Solution
An array of arrays is known as a matrix or multi-dimensional array. As you
might expect, it’s constructed like this:

File: array-of-arrays.js (excerpt)

var planets = new Array(
 new Array('mercury', 'venus', 'earth'),
 new Array('uranus', 'neptune', 'pluto')
);

You can also construct a multi-dimensional array using array-literal syntax, like
this:

File: array-of-arrays.js (excerpt)

var planets = [
 ['mercury', 'venus', 'earth'],
 ['uranus', 'neptune', 'pluto']
];

66

Chapter 4: Working with Arrays

Items in a multi-dimensional array are addressed in the same way as single arrays,
but for one difference: we address each item using multiple values, starting from
the outermost array. For example, the value 'pluto' is located at index 1 of the
outermost array, and index 2 of the nested array, so we would refer to it as
planets[1][2].

We can insert additional arrays inside those, nesting them as deeply as we like,
and refer to their items using further bracketed numbers.

Discussion
A two-dimensional array is like a “grid” or “table” of data. For example, motor-
racing results could be presented in a table like Table 4.1.

Table 4.1. Motor race results

1:45:15.556McLarenFinK Raikkonen1

+13.8WilliamsGerN Heidfeld2

+18.4WilliamsAusM Webber3

+36.4RenaultSpaF Alonso4

+36.6McLarenColJP Montoya5

Those same results can be stored in a matrix:

File: array-of-arrays.js (excerpt)

var results = [
 [1, 'K Raikkonen', 'Fin', 'McLaren', '1:45:15.556'],
 [2, 'N Heidfeld', 'Ger', 'McLaren', '+13.8'],
 [3, 'M Webber', 'Aus', 'Williams', '+18.4'],
 [4, 'F Alonso', 'Spa', 'Renault', '+36.4'],
 [5, 'JP Montoya', 'Col', 'McLaren', '+36.6']
];

To iterate through a matrix, we use nested for loops:

File: array-of-arrays.js (excerpt)

for (var i = 0; i < results.length; i++)
{
 for (var j = 0; j < results[i].length; j++)
 {
 alert('results[' + i + '][' + j + '] = ' + results[i][j]);

67

Creating an Array of Arrays

 }
}

Within the innermost loop, we can identify groups of data simply by evaluating
i and/or j. For example, if i is zero, we know that these are the details of the
winner:

for (var i = 0; i < results.length; i++)
{
 for (var j = 0; j < results[i].length; j++)
 {
 if (i == 0)
 {
 alert('Winner: ' + results[i][j]);
 }
 }
}

If j is 1, we know that these are the drivers’ names:

for (var i = 0; i < results.length; i++)
{
 for (var j = 0; j < results[i].length; j++)
 {
 if (j == 1)
 {
 alert('Driver: ' + results[i][j]);
 }
 }
}

We can use this loop/evaluation structure to identify any single item, or group
of items, within a “row” or “column” (to complete the analogy, i is the “row” or
outer array index, and j is the “column” or inner array index, so column three
of row zero would equate to results[0][3]).

You can, of course, go deeper than this—arrays within arrays within arrays, as
deep as you like—but my analogy breaks down there as I wrestle to conceive a
four-dimensional table! I hoped I’ve made the point: you can extend multi-dimen-
sional arrays as far as you need to!

68

Chapter 4: Working with Arrays

Indexing an Array with Strings Instead
of Numbers

We can index an array using strings, instead of numbers. This is often useful
when we use multidimensional arrays to group related data.

Solution
To put together an array with string indexes, we can’t construct and populate it
in one fell swoop. We have to create the array, then index and populate it:

File: index-with-strings.js (excerpt)

var planets = [];

planets['inner'] = ['mercury', 'venus', 'earth'];
planets['outer'] = ['uranus', 'neptune', 'pluto'];

Now, we could reference 'venus' as planets['inner'][1], and 'pluto' as
planets['outer'][2].

Discussion
The length property does not include string-indexed array members, so we can’t
iterate through such an array using a numerical for loop. The alert dialog in
the following example will never fire, because planets.length is zero:

var planets = [];

planets['inner'] = ['mercury', 'venus', 'earth'];
planets['outer'] = ['uranus', 'neptune', 'pluto'];

for (var i = 0; i < planets.length; i++)
{
 alert(planets[i]);
}

Instead, we can use an in enumerator (which we first saw in Chapter 1) to iterate
through the array as if it were an object:

69

Indexing an Array with Strings Instead of Numbers

File: index-with-strings.js (excerpt)

for (var i in planets)
{
 alert(planets[i]);
}

Of course, an array is just another type of object, and the members of an array
are just a subset of that object’s properties—namely, those properties that have
a numeric index. The length property is merely the total of that subset, which
is why string-indexed members aren’t included.

The in Enumerator

An in enumerator will expose all the custom properties and methods of an
object—not necessarily just the ones you’re using to store data. If, for ex-
ample, you bind a new method to the Array object (we’ll do so later in this
chapter), that method will be included whenever you use an in enumerator
on any array. If that’s a problem, you can use the typeof comparator to test
the data type, for example, to ignore functions:

for (var i in planets)
{
 if (typeof planets[i] != 'function')
 {
 � planets[i] is a value we're interested in
 }
}

In fact, string-indexed members of an array are literally the same as named
properties of that array object. We could just as easily write them like this:

var planets = [];

planets.inner = ['mercury', 'venus', 'earth'];
planets.outer = ['uranus', 'neptune', 'pluto'];

The syntax for an object-literal (a new Object written using shortcut syntax) is
very similar. Here, again, is the same data, all of which, with an object-literal,
can be constructed at once:

var planets = {
 'inner': ['mercury', 'venus', 'earth'],
 'outer': ['uranus', 'neptune', 'pluto']
};

70

Chapter 4: Working with Arrays

An object-literal uses curly-braces to surround the data; each property name is
delimited from its value with a colon, while complete pairs are separated with a
comma:

File: index-with-strings.js (excerpt)

var myData = {'name1': value1, 'name2': value2, …};

The quote marks around the property names are not actually required, but I
usually include them anyway for visual consistency. The properties themselves
can be anything—strings, numbers, functions, arrays, other objects—and you can
mix data types freely here, as well.

Using objects as data structures in this way is known as Object-based scripting.
This is not the same as object-oriented scripting; however, it’s a good way to get
an understanding of the principles of Object Orientation, besides being a useful
technique in its own right. For more about this, see Chapter 19.

Turning an Array into a String
JavaScript provides a number of methods for processing arrays. One of the most
useful is the ability to turn an array into a string.

Solution
The join method concatenates all the members of an array into a string, along
with a separator. If the separator argument is omitted, a comma is used by default:

File: array-into-string.js

var planets = ['mercury', 'venus', 'earth'];

var word = planets.join('');
alert(word);

var list = planets.join();
alert(list);

var sentence = planets.join(' then ');
alert(sentence);

Now, word is 'mercuryvenusearth', list is 'mercury,venus,earth', and
sentence is 'mercury then venus then earth'.

71

Turning an Array into a String

Discussion
Just as you can join an array into a string, you can also split a string into an array.
For details see “Splitting a String into Substrings” in Chapter 3.

Adding or Removing Members from an
Array

Arrays allow the addition or removal of members at any position.

Solution

IE 5.0 Support Snafu

Neither push nor splice are supported in Internet Explorer 5.0 for Win-
dows, but don’t worry—we have a cure for that in the discussion section!

The push method adds one or more new members to the end of an array:

File: add-remove-members.js (excerpt)

var planets = ['mercury', 'venus', 'earth'];
planets.push('mars', 'jupiter');
alert(planets);

Now, planets contains 'mercury', 'venus', 'earth', 'mars', and 'jupiter',
in that order.

The splice method can remove members from an array. We simply need to
specify the location and the number of members to remove:

File: add-remove-members.js (excerpt)

var planets = ['mercury', 'venus', 'earth', 'mars', 'jupiter'];
planets.splice(2, 2);
alert(planets);

This leaves us with 'mercury', 'venus', and 'jupiter'.

splice can also add any new members that are supplied as extra arguments:

72

Chapter 4: Working with Arrays

File: add-remove-members.js (excerpt)

var planets = ['mercury', 'mars', 'jupiter'];
planets.splice(1, 0, 'venus', 'earth');
alert(planets);

This gives us 'mercury', 'venus', 'earth', 'mars', and 'jupiter'.

This method can even remove and replace members at the same time:

File: add-remove-members.js (excerpt)

var planets = ['mercury', 'venus', 'earth', 'saturn'];
planets.splice(0, 3, 'mars', 'jupiter');
alert(planets);

This leaves us with 'mars', 'jupiter', and 'saturn'.

As you can see from these examples, the first argument to splice is the index at
which to start; the second argument identifies how many members to remove
(this can be zero); further arguments are optional, and list any new members that
are to be added to the array at that point.

Discussion
Neither push nor splice is natively supported in Internet Explorer 5.0 for
Windows, which could be rather unfortunate, considering how useful they are.

However, we can achieve the most basic push functionality using the array length
property to add one member at a time to the end of an array. The length of our
array is one greater than the index of the final item, since numbering starts from
zero. Therefore, it identifies the index of the next item to add:

File: add-remove-members.js (excerpt)

var planets = ['mercury', 'venus', 'earth'];
planets[planets.length] = 'mars';
alert(planets);

For any task more complex than this, we really do need push and splice, but in
fact, we can use the same basic technique to recreate those methods ourselves!

Prototyping

For greatest convenience, we can bind our recreations directly to the Array
class. (When we say new Array, we’re creating a “new” instance of the

73

Adding or Removing Members from an Array

Array class; binding a method to that class affects all instances of it.) This
is called prototyping, and is one of the core techniques of Object Orientation
in JavaScript, but frankly, it’s a bit far off-topic to warrant discussion here.
See Chapter 19 to find out more about how this works.

You can copy and use these working examples as they are: simply paste this code
before your other scripting, then use push and splice as normal. Although these
methods will override the existing methods in browsers that already support them,
that won’t cause any problems. These are faithful reproductions that behave and
return the same way:

File: add-remove-members.js (excerpt)

Array.prototype.push = function()
{
 for (var i = 0; i < arguments.length; i++)
 {
 this[this.length] = arguments[i];
 }
 return arguments[i - 1];
};
Array.prototype.splice = function(a, b)
{
 var tmp = [];
 for (var i = a + b; i < this.length; i++)
 {
 tmp[tmp.length] = this[i];
 }

 var rem = [];
 for (i = a; i < a + b; i++)
 {
 rem[rem.length] = this[i];
 }

 this.length = a;

 for (i = 2; i < arguments.length; i++)
 {
 this[this.length] = arguments[i];
 }

 for(i = 0; i < tmp.length; i++)
 {
 this[this.length] = tmp[i];
 }

74

Chapter 4: Working with Arrays

 return rem;
};

Sorting an Array into Alphabetical or
Numeric Order

Sorting by letter or number allows you to order data by particular criteria. You
could order names alphabetically, or phone numbers by area code.

Solution
The sort method will sort an array into alphabetical order:

File: sort-array.js (excerpt)

var planets = ['mercury', 'venus', 'earth', 'mars', 'jupiter'];
planets.sort();

This gives us 'earth', 'jupiter', 'mars', 'mercury', and 'venus'.

But a dictionary sort won’t work with numbers, because the alphabetical order
of numbers is not the same as their numeric order. For example, “10” would be
sorted before “2.”

Fortunately, sort also takes an optional argument: a reference to a comparison
function that defines the sorting criteria. Using a comparison function allows for
numeric sorting:

File: sort-array.js

function compare(a, b)
{
 return a - b;
}

var gravities = [0.38, 0.91, 1, 0.38, 2.54];
gravities.sort(compare);

The gravities array is now in numeric order: 0.38, 0.38, 0.91, 1, 2.54.

75

Sorting an Array into Alphabetical or Numeric Order

Discussion
The default behavior of sort is to sort an array lexicographically (in dictionary
order). The optional argument is a reference to a function that defines the pair-
sorting criteria:

function compare(a, b)
{
 � comparison code
}

If this function is specified, the array is sorted by its return value:

❑ If it returns less than 0, sort a before b.

❑ If it returns 0, leave a and b unchanged with respect to each other.

❑ If it returns greater than 0, sort b before a.

To sort an array numerically, we simply subtract b from a. Let’s take two values,
for example: a = 3 and b = 6. If we subtract b from a, the result is -3, which is
less than zero, so a is sorted before b. Hence, subtracting b from a sorts an array
numerically, while subtracting a from b sorts it into reverse-numeric order.

Sorting a Multi-dimensional Array
It’s often useful to be able to sort a multi-dimensional array by the value of only
one of its member indices.

Solution
If we put our planet names and gravity data together into a multi-dimensional
array, we can sort it so that the planets are listed in order of gravitational pull:

File: sort-matrix.js

function compare(a, b)
{
 return a[1] - b[1];
}

var planets = [
 ['mercury', 0.38],

76

Chapter 4: Working with Arrays

 ['venus', 0.91],
 ['earth', 1],
 ['mars', 0.38],
 ['jupiter', 2.54]
];

planets.sort(compare);

Here, the second item (the gravity figure) is used to sort the main array, while
the first item (the planet name) merely comes along for the ride, as it were. The
array is now ordered like this:

 ['mercury', 0.38],
 ['mars', 0.38],
 ['venus', 0.91],
 ['earth', 1],
 ['jupiter', 2.54]

Another use for this kind of sorting is to order sports or contest results for which
you have stored names and scores in a multi-dimensional array: you can sort the
data by name or score as required.

Discussion
JavaScript uses a stable sort algorithm, which means that the relative order of
a and b does not change if a and b are equal. But in the multi-dimensional example
above, the arguments being compared are not direct sorting criteria—we’re sorting
by a member of an array, not the array itself, and none of the arrays is exactly
equal to another.

Therefore, we cannot guarantee a stable sort: whether the Mercury array is sorted
before the Mars array is something that could vary between browsers. In fact, all
browsers place Mercury first, except for Firefox and other Mozilla browsers, which
sort Mars before Mercury.

Sorting an Array Randomly
Random sorting is particularly useful for gaming applications, such as mixing up
contestants’ names in a lottery or sweepstakes, or “shuffling” a virtual deck of
cards.

77

Sorting an Array Randomly

Solution
We’ve seen how a comparison function can control the outcome of a sort accord-
ing to whether it returns a sum greater or less than zero. If that outcome is de-
termined randomly, the result will be a random sort:

File: sort-randomly.js

function compare(a, b)
{
 if (Math.random() * 2 > 1) { return 1; }
 else { return -1; }
}

In this case, our if-else condition has an even chance, but if necessary, we could
weight the odds by adjusting the range of the random number. For more about
this, see “Creating and Constraining Random Numbers” in Chapter 2.

Summary
When I first learned JavaScript, I had great difficulty getting my head around
the value of arrays. I couldn’t see the benefit of them, and remember saying,
“Why not just use lots of variables with different names?” My brother, a far more
experienced programmer than I, laughed at this and replied, “You’ll learn!”

I did, and I hope I’ve passed on the enthusiasm I gained. Arrays are not merely
convenient structures; they allow us to organize and sort data with far more power
than is possible with individual variables.

78

Chapter 4: Working with Arrays

Navigating the Document Object
Model5

Browsers give JavaScript programs access to the elements on a web page via the
Document Object Model (DOM)—an internal representation of the headings,
paragraphs, lists, styles, IDs, classes, and all the other data to be found in the
HTML on your page.

The DOM can be thought of as a tree consisting of interconnected nodes. Each
tag in an HTML document is represented by a node; any tags that are nested
inside that tag are nodes that are connected to it as children, or branches in the
tree. Each of these nodes is called an element node.1 There are several other
types of nodes; the most useful are the document node, text node, and attribute
node. The document node represents the document itself, and is the root of the
DOM tree. Text nodes represent the text contained between an element’s tags.
Attribute nodes represent the attributes specified inside an element’s opening
tag. Consider this basic HTML page structure:

<html>
 <head>
 <title>Stairway to the stars</title>
 </head>
 <body>
 <h1 id="top">Stairway to the stars</h1>

1 Strictly speaking, each element node represents a pair of tags—the start and end tags of an element
(e.g., <p> and </p>)—or a single self-closing tag (e.g.,
, or
 in XHTML).

 <p class="introduction">For centuries, the stars have been
 more to humankind than just burning balls of gas …</p>
 </body>
</html>

The DOM for this page could be visualized as Figure 5.1.

Every page has a document node, but its descendents are derived from the content
of the document itself. Through the use of element nodes, text nodes, and attribute
nodes, every piece of information on a page is accessible via JavaScript.

The DOM isn’t just restricted to HTML and JavaScript, though. Here’s how the
W3C DOM specification site2 explains the matter:

The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically ac-
cess and update the content, structure and style of documents.

So, even though the mixture of JavaScript and HTML is the most common
combination of technologies in which the DOM is utilized, the knowledge you
gain from this chapter can be applied to a number of different programming
languages and document types.

In order to make you a “master of your DOMain,” this chapter will explain how
to find any element you’re looking for on a web page, then change it, rearrange
it, or erase it completely.

2 http://www.w3.org/DOM/

80

Chapter 5: Navigating the Document Object Model

http://www.w3.org/DOM/
http://www.w3.org/DOM/

Figure 5.1. The DOM structure of a simple HTML page, visualized
as a tree hierarchy

81

Accessing Elements
Access provides control, control is power, and you’re a power programmer, right?
So you need access to everything that’s on a web page. Fortunately, JavaScript
gives you access to any element on a page using just a few methods and properties.

Solution
Although it’s possible to navigate an HTML document like a road map—starting
from home and working your way towards your destination one node at a
time—this is usually an inefficient way of finding an element because it requires
a lot of code, and any changes in the structure of the document will usually mean
that you have to rewrite your scripts. If you want to find something quickly and
easily, the method that you should tattoo onto the back of your hand is
document.getElementById.

Assuming that you have the correct markup in place, getElementById will allow
you immediately to access any element by its unique id attribute value. For in-
stance, imagine your web page contains this code:

File: access_element.html (excerpt)

<p>
 Journey to the stars
</p>

You can use the a element’s id attribute to get direct access to the element itself:

File: access_element.js (excerpt)

var elementRef = document.getElementById("sirius");

The value of the variable elementRef will now be referenced to the a element—any
operations that you perform on elementRef will affect that exact hyperlink.

getElementById is good for working with a specific element; however, sometimes
you’ll want to work with a group of elements. In order to retrieve a group of ele-
ments on the basis of their tag names, you can use the method
getElementsByTagName.

As can be seen from its name, getElementsByTagName takes a tag name and re-
turns all elements of that type. Assume that we have this HTML code:

82

Chapter 5: Navigating the Document Object Model

File: access_element2.html (excerpt)

 Sirius

 Canopus

 Arcturus

 Vega

We can retrieve a collection that contains each of the hyperlinks like so:

File: access_element2.js (excerpt)

var anchors = document.getElementsByTagName("a");

The value of the variable anchors will now be a collection of a elements. Collec-
tions are similar to arrays in that each of the items in a collection is referenced
using square bracket notation, and the items are indexed numerically starting at
zero. The collection returned by getElementsByTagName sorts the elements by
their source order, so we can reference each of the links thus:

anchors[0] the a element for “Sirius”

anchors[1] the a element for “Canopus”

anchors[2] the a element for “Arcturus”

anchors[3] the a element for “Vega”

Using this collection you can iterate through the elements and perform an oper-
ation on them, such as assigning a class using the element nodes’ className
property:

File: access_element2.js (excerpt)

var anchors = document.getElementsByTagName("a");

for (var i = 0; i < anchors.length; i++)
{

83

Accessing Elements

 anchors[i].className = "starLink";
}

Unlike getElementById, which may be called on the document node only, the
getElementsByTagName method is available from every single element node. You
can limit the scope of the getElementsByTagName method by executing it on a
particular element. getElementsByTagName will only return elements that are
descendents of the element on which the method was called.

If we have two lists, but want to assign a new class to the links in one list only,
we can target those a elements exclusively by calling getElementsByTagName on
their parent list:

File: access_element3.html (excerpt)

<ul id="planets">

 Mercury

 Venus

 Earth

 Mars

<ul id="stars">

 Sirius

 Canopus

 Arcturus

 Vega

To target the list of stars, we need to obtain a reference to the parent ul element,
then call getElementsByTagName on it directly:

84

Chapter 5: Navigating the Document Object Model

File: access_element3.js (excerpt)

var starsList = document.getElementById("stars");
var starsAnchors = starsList.getElementsByTagName("a");

The value of the variable starsAnchors will be a collection of the a elements
inside the stars unordered list, instead of a collection of all a elements on the
page.

DOM 0 Collections

Many “special” elements in an HTML document can be accessed by even
more direct means. The body element of the document can be accessed as
document.body. A collection of all the forms in a document may be found
in document.forms. All of the images in a document may be found in
document.images.

In fact, most of these collections have been around since before the DOM
was standardized by the W3C, and are commonly referred to as DOM 0
properties.

Because the initial implementations of these features were not standardized,
these collections have occasionally proven unreliable in browsers that are
moving towards standards compliance. Early versions of some Mozilla
browsers (e.g., Firefox), for example, did not support these collections on
XHTML documents.

Today’s browsers generally do a good job of supporting these collections;
however, if you do run into problems, it’s worth trying the more verbose
getElementsByTagName method of accessing the relevant elements. Instead
of document.body, for example, you could use:

var body = document.getElementsByTagName("body")[0];

Discussion
If you really need to step through the DOM hierarchy element by element, each
node has several properties that enable you to access related nodes:

node.childNodes a collection that contains source-order references to
each of the children of the specified node, including
both elements and text nodes

node.firstChild the first child node of the specified node

85

Accessing Elements

node.lastchild the last child node of the specific node

node.parentNode a reference to the parent element of the specified
node

node.nextSibling the next node in the document that has the same
parent as the specified node

node.previousSibling the previous element that’s on the same level as the
specified node

If any of these properties do not exist for a specific node (e.g., the last node of a
parent will not have a next sibling), they will have a value of null.

Take a look at this simple page:

File: access_element4.html (excerpt)

<div id="outerGalaxy">
 <ul id="starList">
 <li id="star1">
 Rigel

 <li id="star2">
 Altair

 <li id="star3">
 Betelgeuse

</div>

The list item with ID star2 could be referenced using any of these expressions:

document.getElementById("star1").nextSibling;
document.getElementById("star3").previousSibling;
document.getElementById("starList").childNodes[1];
document.getElementById("star1").parentNode.childNodes[1];

Whitespace Nodes

Some browsers will create whitespace nodes between the element nodes in
any DOM structure that was interpreted from a text string (e.g., an HTML
file). Whitespace nodes are text nodes that contain only whitespace (tabs,
spaces, new lines) to help format the code in the way it was written in the
source file.

86

Chapter 5: Navigating the Document Object Model

When you’re traversing the DOM node by node using the above properties,
you should always allow for these whitespace nodes. Usually, this means
checking that the node you’ve retrieved is an element node, not just a
whitespace node that’s separating elements.

There are two easy ways to check whether a node is an element node or a
text node. The nodeName property of a text node will always be "#text",
whereas the nodeName of an element node will identify the element type.
However, in distinguishing text nodes from element nodes, it’s easier to
check the nodeType property. Element nodes have a nodeType of 1,
whereas text nodes have a nodeType of 3. You can use this knowledge as a
test when retrieving elements:

File: access_element4.js (excerpt)

var star2 = document.getElementById("star1").nextSibling;

while (star2.nodeType == "3")
{
 star2 = star2.nextSibling;
}

Using these DOM properties, it’s possible to start your journey at the root html
element, and end up buried in the legend of some deeply-nested fieldset—it’s
all just a matter of following the nodes.

Creating Elements and Text Nodes
JavaScript doesn’t just have the ability to modify existing elements in the DOM;
it can also create new elements and place them anywhere within a page’s structure.

Solution
createElement is the aptly named method that allows you to create new elements.
It only takes one argument—the type (as a string) of the element you wish to
create—and returns a reference to the newly-created element:

File: create_elements.js (excerpt)

var newAnchor = document.createElement("a");

The variable newAnchor will be a new a element, ready to be inserted into the
page.

87

Creating Elements and Text Nodes

Specifying Namespaces in Documents with an XML
MIME Type

If you’re coding JavaScript for use in documents with a MIME type of ap-
plication/xhtml+xml (or some other XML MIME type), you should use
the method createElementNS, instead of createElement, to specify the
namespace for which you’re creating the element:

var newAnchor = document.createElementNS(
 "http://www.w3.org/1999/xhtml", "a");

This distinction applies to a number of DOM methods, such as
removeElement/removeElementNS and getAttribute/getAttributeNS;
however, we won’t use the namespace-enhanced versions of these methods
in this book.

Simon Willison provides a brief explanation of working with JavaScript and
different MIME types3 on his web site.

The text that goes inside an element is actually a child text node of the element,
so it must be created separately. Text nodes are different from element nodes,
so they have their own creation method, createTextNode:

File: create_elements.js (excerpt)

var anchorText = document.createTextNode("monoceros");

If you’re modifying an existing text node, you can access the text it contains via
the nodeValue property. This allows you to get and set the text inside a text
node:

var textNode = document.createTextNode("monoceros");
var oldText = textNode.nodeValue;
textNode.nodeValue = "pyxis";

The value of the variable oldText is now "monoceros", and the text inside
textNode is now "pyxis".

You can insert either an element node or a text node as the last child of an existing
element using its appendChild method. This method will place the new node
after all of the element’s existing children.

Consider this fragment of HTML:

3 http://simon.incutio.com/archive/2003/06/15/javascriptWithXML

88

Chapter 5: Navigating the Document Object Model

http://simon.incutio.com/archive/2003/06/15/javascriptWithXML
http://simon.incutio.com/archive/2003/06/15/javascriptWithXML

File: create_elements.html (excerpt)

<p id="starLinks">
 Sirius
</p>

We can use DOM methods to create and insert another link at the end of the
paragraph:

File: create_elements.js (excerpt)

var anchorText = document.createTextNode("monoceros");

var newAnchor = document.createElement("a");
newAnchor.appendChild(anchorText);

var parent = document.getElementById("starLinks");
var newChild = parent.appendChild(newAnchor);

The value of the variable newChild will be a reference to the newly inserted ele-
ment.

If we were to translate the state of the DOM after this code had executed into
HTML code, it would look like this:

<p id="starLinks">
 Sirius<a>monoceros
</p>

We didn’t specify any attributes for the new element, so it doesn’t link anywhere
at the moment. The process for specifying attributes is explained shortly in
“Reading and Writing the Attributes of an Element”.

Discussion
There are three basic ways by which a new element or text node can be inserted
into a web page. The approach you use will depend upon the point at which you
want the new node to be inserted: as the last child of an element, before another
node, or as the replacement for a node. The process of appending an element as
the last child was explained above. You can insert the node before an existing
node using the insertBefore method of its parent element, and you can replace
a node using the replaceChild method of its parent element.

89

Creating Elements and Text Nodes

In order to use insertBefore, you need to have references to the node you’re
going to insert, and to the node before which you wish to insert it. Consider this
HTML code:

File: create_elements2.html (excerpt)

<p id="starLinks">
 Sirius
</p>

We can insert a new link before the existing one by calling insertBefore from
its parent element (the paragraph):

File: create_elements2.js (excerpt)

var anchorText = document.createTextNode("monoceros");

var newAnchor = document.createElement("a");
newAnchor.appendChild(anchorText);

var existingAnchor = document.getElementById("sirius");
var parent = existingAnchor.parentNode;
var newChild = parent.insertBefore(newAnchor, existingAnchor);

The value of the variable newChild will be a reference to the newly inserted ele-
ment.

If we were to translate into HTML the state of the DOM after this operation, it
would look like this:

<p id="starLinks">
<a>monocerosSirius

</p>

Instead, we could replace the existing link entirely using replaceChild:

File: create_elements3.js (excerpt)

var anchorText = document.createTextNode("monoceros");

var newAnchor = document.createElement("a");
newAnchor.appendChild(anchorText);

var existingAnchor = document.getElementById("sirius");
var parent = existingAnchor.parentNode;
var newChild = parent.replaceChild(newAnchor, existingAnchor);

The DOM would then look like this:

90

Chapter 5: Navigating the Document Object Model

<p id="starLinks">
<a>monoceros

</p>

Changing the Type of an Element
Are your ordered lists feeling a bit unordered? Do your headings have paragraph
envy? Using a little JavaScript knowledge, it’s possible to change the type of an
element entirely, while preserving the structure of its children.

Solution
There’s no straightforward, simple way to change the type of an element. In order
to achieve this feat you’ll have to perform a bit of a juggling act.

Let’s assume that we want to change this paragraph into a div:

File: change_type_of_element.js (excerpt)

<p id="starLinks">
 Sirius
 Achanar
 Hadar
</p>

We need to create a new div, move each of the paragraph’s children into it, then
swap the new element for the old:

File: change_type_of_element.js (excerpt)

var div = document.createElement("div");
var paragraph = document.getElementById("starLinks");

for (var i = 0; i < paragraph.childNodes.length; i++)
{
 var clone = paragraph.childNodes[i].cloneNode(true);

 div.appendChild(clone);
}

paragraph.parentNode.replaceChild(div, paragraph);

The only unfamiliar line here should be the point at which a clone is created for
each of the paragraph’s children. The cloneNode method produces an identical
copy of the node from which it’s called. By passing this method the argument

91

Changing the Type of an Element

true, we indicate that we want all of that element’s children to be copied along
with the element itself. Using cloneNode, we can mirror the original element’s
children under the new div, then remove the paragraph once we’re finished
copying.

While cloning nodes is useful in some circumstances, it turns out that there’s a
cleaner way to approach this specific problem. We can simply move the child
nodes of the existing paragraph into the new div. DOM nodes can belong only
to one parent element at a time, so adding the nodes to the div also removes
them from the paragraph:

File: change_type_of_element2.js (excerpt)

var div = document.createElement("div");
var paragraph = document.getElementById("starLinks");

while (paragraph.childNodes.length > 0) {
 div.appendChild(paragraph.firstChild);
}

paragraph.parentNode.replaceChild(div, paragraph);

Take Care Changing the Node Structure of the DOM

The elements in a collection are updated automatically whenever a change
occurs in the DOM—even if you copy that collection into a variable before
the change occurs. So, if you remove from the DOM an element that was
contained in a collection with which you had been working, the element
reference will also be removed from the collection. This will change the length
of the collection as well as the indexes of any elements that appear after the
removed element.

When performing operations that affect the node structure of the
DOM—such as moving a node to a new parent element—you have to be
careful about iterative processes. The code above uses a while loop that
only accesses the first child of the paragraph, because each time a child is
relocated, the length of the childNodes collection will decrease by one, and
all the elements in the collection will shift along. A for loop with a counter
variable would not handle all the children correctly because it would assume
that the contents of the collection would remain the same throughout the
loop.

92

Chapter 5: Navigating the Document Object Model

Discussion
There’s no easy way to copy the attributes of an element to its replacement.4 If
you want the new element to have the same id, class, href, and so on, you’ll
have to copy the values over manually:

File: change_type_of_element.js (excerpt)

div.id = paragraph.getAttribute("id");
div.className = paragraph.className;

Removing an Element or Text Node
Once an element has outlived its usefulness, it’s time to give it the chop. You
can use JavaScript to remove any element cleanly from the DOM.

Solution
The removeChild method removes any child node from its parent, and returns
a reference to the removed object.

Let’s start off with this HTML:

File: remove_element.html (excerpt)

<p>
 Sirius
</p>

We could use removeChild to remove the hyperlink from its parent paragraph
like so:

File: remove_element.js (excerpt)

var anchor = document.getElementById("sirius");
var parent = anchor.parentNode;
var removedChild = parent.removeChild(anchor);

The variable removedChild will be a reference to the a element, but that element
will not be located anywhere in the DOM: it will simply be available in memory,
much as if we had just created it using createElement. This allows us to relocate
it to another position on the page, it we wish, or we can simply let the variable

4 If you look at the DOM specification, it looks like there is. Unfortunately, Internet Explorer’s support
for the relevant properties and methods is just not up to the task.

93

Removing an Element or Text Node

disappear at the end of the script, and the reference will be lost altogether—ef-
fectively deleting it. Following the above code, the DOM will end up like this:

<p>
</p>

Of course, you don’t need to assign the return value from removeChild to a
variable. You can just execute it and forget about the element altogether:

var anchor = document.getElementById("sirius");
var parent = anchor.parentNode;
parent.removeChild(anchor);

Discussion
If the element that you’re deleting has children that you wish to preserve (i.e.,
you just want to “unwrap” them by removing their parent), you must rescue
those children to make sure they stay in the document when their parent is re-
moved. You can achieve this using the already-mentioned insertBefore method,
which, when used on elements that are already contained in the DOM, first re-
moves them, then inserts them at the appropriate point.

The paragraph in the following HTML contains multiple children:

File: remove_element2.html (excerpt)

<div id="starContainer">
 <p id="starLinks">
 Aldebaran
 Castor
 Pollux
 </p>
</div>

We can loop through the paragraph’s childNodes collection, and relocate each
of its children individually before removing the element itself:

File: remove_element2.js (excerpt)

var parent = document.getElementById("starLinks");
var container = document.getElementById("starContainer");

while (parent.childNodes.length > 0)
{
 container.insertBefore(parent.childNodes[0], parent);
}

94

Chapter 5: Navigating the Document Object Model

container.removeChild(parent);

The page’s DOM will now look like this:

<div id="starContainer">
 Aldebaran
 Castor
 Pollux
</div>

Reading and Writing the Attributes of an
Element

The most frequently used parts of an HTML element are its attributes—its id,
class, href, title, or any of a hundred other pieces of information that can be
included in an HTML tag. JavaScript is able not only to read these values, but
write them as well.

Solution
Two methods exist for reading and writing an element’s attributes. getAttribute
allows you to read the value of an attribute, while setAttribute allows you to
write it.

Consider this HTML:

File: read_write_attributes.html (excerpt)

 Antares

We would be able to read the attributes of the element like so:

File: read_write_attributes.js (excerpt)

var anchor = document.getElementById("antares");
var anchorId = anchor.getAttribute("id");
var anchorTitle = anchor.getAttribute("title");

The value of the variable anchorId will be "antares", and the value of the variable
anchorTitle will be "A far away place".

95

Reading and Writing the Attributes of an Element

To change the attributes of the hyperlink, we use setAttribute, passing it the
name of the attribute to be changed, and the value we want to change it to:

File: read_write_attributes2.js (excerpt)

var anchor = document.getElementById("antares");

anchor.setAttribute("title", "Not that far away");

var newTitle = anchor.getAttribute("title");

The value of the variable newTitle will now be "Not that far away".

Discussion
In its journey from the free-roaming Netscape wilderness to the more tightly
defined, standards-based terrain of the modern age, the DOM standard has picked
up a fair amount of extra syntax for dealing with HTML. One of the most pervas-
ive of these extras is the mapping between DOM properties and HTML attributes.

When a document is parsed into its DOM form, special attribute nodes are created
for an element’s attributes. These nodes are not accessible as “children” of that
element: they are accessible only via the two methods mentioned above. However,
as a throwback to the original DOM implementations (called DOM 0, where the
zero suggests these features came prior to standards), current DOM specs contain
additional functionality that’s specific to HTML. In particular, attributes are
accessible directly as properties of an element. So, the href attribute of a hyperlink
is accessible through link.getAttribute("href") as well as through link.href.

This shortcut syntax is not only cleaner and more readable: in some situations
it is also necessary. Internet Explorer 6 and versions below will not propagate
changes made via setAttribute to the visual display of an element. So any
changes that are made to the class, id, or style of an element using
setAttribute will not affect the way it’s displayed. In order for those changes
to take effect, they must be made via the element node’s attribute-specific prop-
erties.

To further confuse matters, the values that are returned when an attribute-specific
property is read vary between browsers, the most notable variations occurring in
Konqueror. If an attribute doesn’t exist, Konqueror will return null as the value
of an attribute-specific property, while all other browsers will return an empty
string. In a more specific case, some browsers will return link.getAttrib-
ute("href") as an absolute URL (e.g., "http://www.example.com/ant-

96

Chapter 5: Navigating the Document Object Model

ares.html"), while others return the actual attribute value (e.g., "antares.html").
In this case, it’s safer to use the dot property, as it consistently returns the absolute
URL across browsers.

So, what’s the general solution to these problems?

The basic rule is this: if you are certain that an attribute has been assigned a
value, it’s safe to use the dot property method to access it. If you’re unsure
whether or not an attribute has been set, you should first use one of the DOM
methods to ensure that it has a value, then use the dot property to obtain its
value.

For reading an unverified attribute, use the following:

var anchor = document.getElementById("sirius");

if (anchor.getAttribute("title") &&
 anchor.title == "Not the satellite radio")
{
 �
}

This makes sure that the attribute exists, and is not null, before fetching its
value.

For writing to an unverified attribute, use the following code:

var anchor = document.getElementById("sirius");

anchor.setAttribute("title", "");
anchor.title = "Yes, the satellite radio";

This code makes sure that the attribute is created correctly first, and is then set
in such a way that Internet Explorer will not have problems if the attribute affects
the visual display of the element.

This rule has a few exceptions for attributes whose existence you can guarantee.
The most notable of these “must-have” attributes are style and class, which
will always be valid for any given element; thus, you can immediately reference
them as dot properties (element.style and element.className respectively).

class is one of two attributes that get a little tricky, because class is a reserved
word in JavaScript. As a property, it is written element.className, but using

97

Reading and Writing the Attributes of an Element

getAttribute/setAttribute, we write element.getAttribute("class"), except
in Internet Explorer, where we still use element.getAttribute("className").

The other attribute that we have to watch out for is the for attribute of a label.
It follows the same rules as class, but its property form is htmlFor. Using
getAttribute/setAttribute, we write element.getAttribute("for"), but in
Internet Explorer it’s element.getAttribute("htmlFor").

Getting all Elements with a Particular
Attribute Value

The ability to find all the elements that have a particular attribute can be pretty
handy when you need to modify all elements that have the same class or title,
for example.

Solution
In order to find elements with a particular attribute value, we need to check every
element on the page for that attribute. This is a very calculation-intensive opera-
tion, so it shouldn’t be undertaken lightly. If you wanted to find all input ele-
ments with type="checkbox", you’re better off limiting your search to input
elements first:

var inputs = document.getElementsByTagName("input");

for (var i = 0; i < inputs.length; i++)
{
 if (inputs.getAttribute("type") == "checkbox")
 {
 �
 }
}

This will require less calculation than iterating through every element on the page
and checking its type. However, the function presented in this solu-
tion—getElementsByAttribute—is ideal when you need to find a number of
elements of different types that have the same attribute value.

The easiest way to check every element on a page is to loop through the collection
returned by getElementsByTagName("*"). The only problem with this method
is that Internet Explorer 5.0 and 5.5 do not support the asterisk wildcard for tag

98

Chapter 5: Navigating the Document Object Model

selection. Luckily, these browsers support the document.all property, which is
an array containing all the elements on the page. getElementsByAttribute
handles this issue with a simple code branch, then proceeds to check the elements
for a given attribute value, adding matches to an array to be returned:

File: get_elements_by_attribute.js (excerpt)

function getElementsByAttribute(attribute, attributeValue)
{
 var elementArray = new Array();
 var matchedArray = new Array();

 if (document.all)
 {
 elementArray = document.all;
 }
 else
 {
 elementArray = document.getElementsByTagName("*");
 }

 for (var i = 0; i < elementArray.length; i++)
 {
 if (attribute == "class")
 {
 var pattern = new RegExp("(^|)" +
 attributeValue + "(|$)");

 if (pattern.test(elementArray[i].className))
 {
 matchedArray[matchedArray.length] = elementArray[i];
 }
 }
 else if (attribute == "for")
 {
 if (elementArray[i].getAttribute("htmlFor") ||
 elementArray[i].getAttribute("for"))
 {
 if (elementArray[i].htmlFor == attributeValue)
 {
 matchedArray[matchedArray.length] = elementArray[i];
 }
 }
 }
 else if (elementArray[i].getAttribute(attribute) ==
 attributeValue)
 {

99

Getting all Elements with a Particular Attribute Value

 matchedArray[matchedArray.length] = elementArray[i];
 }
 }

 return matchedArray;
}

A lot of the code in getElementsByAttribute deals with the browser differences
in attribute handling that were mentioned earlier in this chapter, in “Reading
and Writing the Attributes of an Element”. The necessary techniques are used
if the required attribute is class or for. As an added bonus when checking for
a match on the class attribute, if an element has been assigned multiple classes,
the function automatically checks each of these to see whether it matches the
required value.

Adding and Removing Multiple Classes
to/from an Element

Combining multiple classes is a very useful CSS technique. It provides a very
primitive means of inheritance by allowing a number of different styles to be
combined on the one element, allowing you to mix and match different effects
throughout a site. They’re particularly useful in situations like highlighting ele-
ments: a class can be added that highlights an element without disturbing any
of the other visual properties that may have been applied to the element by other
classes. However, if you are assigning classes in JavaScript you have to be careful
that you don’t inadvertently overwrite previously assigned classes.

Solution
The class for any element is accessible via its className property. This property
allows you both to read and write the classes that are currently applied to that
element. Because it’s just one string, the most difficult part of working with
className is that you need to deal with the syntax it uses to represent multiple
classes.

The class names in an element’s className property are separated by spaces.
The first class name is not preceded by anything, and the last class name is not
followed by anything. This makes it easy to add a class to the class list naively:
just concatenate a space and the new class name to the end of className. How-
ever, you’ll want to avoid adding a class name that already exists in the list, as

100

Chapter 5: Navigating the Document Object Model

this will make removing the class harder. You’ll also want to avoid using a space
at the beginning of the className value, because this will cause errors in Opera
7:

File: add_remove_classes.js (excerpt)

function addClass(target, classValue)
{
 var pattern = new RegExp("(^|)" + classValue + "(|$)");

 if (!pattern.test(target.className))
 {
 if (target.className == "")
 {
 target.className = classValue;
 }
 else
 {
 target.className += " " + classValue;
 }
 }

 return true;
}

First, addClass creates a regular expression pattern containing the class to be
added. It then uses this pattern to test the current className value. If the class
name doesn’t already exist, we check for an empty className value (in which
case the class name is assigned to the property verbatim), or we append to the
existing value a space and the new class name.

Separating Classes

Some regular expression examples for finding classes use the word boundary
special character (\b) to separate classes. However, this will not work with
all valid class names, such as those containing hyphens.

The process for removing a class uses a regular expression pattern that’s identical
to the one we use to add a class, but we don’t need to perform as many checks:

File: add_remove_classes.js (excerpt)

function removeClass(target, classValue)
{
 var removedClass = target.className;
 var pattern = new RegExp("(^|)" + classValue + "(|$)");

101

Adding and Removing Multiple Classes to/from an Element

 removedClass = removedClass.replace(pattern, "$1");
 removedClass = removedClass.replace(/ $/, "");

 target.className = removedClass;

 return true;
}

After removeClass has executed the replacement regular expression on a copy
of the className property’s value, it cleans up the resulting value by removing
any trailing space (which is created when we remove the last class in a multiple
class className), then assigns it back to the target’s className.

Summary
This chapter introduced the basic but powerful tools that you’ll need in order to
manipulate the Document Object Model. It’s important that you understand the
DOM—the skeleton beneath everything you see in a browser—as you manipulate
any web page. Knowing how to create, edit, and delete parts of the DOM is crucial
to understanding the remainder of this book. Once you’ve mastered these tech-
niques, you’ll be well on your way to becoming a proficient JavaScript programmer.

102

Chapter 5: Navigating the Document Object Model

Processing and Validating Forms6
Forms are the bane of most web developers’ existences. Forms defy the laws of
styling, stick out like a sore thumb, and require reams of back-end code. Yet they
are the only way for users to communicate vital details about themselves to your
web site, which makes forms indispensable for communication, shopping, and a
host of other interactive purposes.

JavaScript cannot replace the back-end logic that processes form data, but it can
function as a superb usability aid. Using just a bit of client-side scripting, you
can turn a five-page interrogation into a rewarding experience for your users.
Whether you’re helping them to discover errors in their data, or guiding them
to complete the right sections, JavaScript can make tedious form entry just that
little bit more bearable.

Reading and Writing the Data in a Text
Field

Text fields can be used for almost any type of data: searches, names, numbers,
dates—whatever you can think of. Accordingly, there are countless situations in
which you’ll want to manipulate the data they contain.

Solution
Before you can access the data that a text field contains, you have to find that
exact text field. The easiest way to do this in an HTML document is to use a
special DOM collection called forms. The forms collection is an array that con-
tains “shortcuts” to each of the form elements on a web page. Each of these
shortcuts has a sub-collection, called elements, which allows you to access each
of the elements in a form.

Have a look at this form, which is illustrated in Figure 6.1:

File: read_write_text_field.html (excerpt)

<form id="contactForm" action="">
 <fieldset>
 <legend>Contact Details</legend>
 <label for="firstName">
 First name:
 </label>
 <input id="firstName" name="firstName" value="Arthur">
 <label for="lastName">
 Last name:
 </label>
 <input id="lastName" name="lastName" value="Dent">
 </fieldset>
</form>

Figure 6.1. Simple form with two text fields

You could access the form using its source order index—because it’s the first form
in the document, its index will be 0—but the forms collection is also an associative
array that automatically associates a form’s id with the form itself. This means
that you can also use the id of the form as an index to the forms collection:

104

Chapter 6: Processing and Validating Forms

File: read_write_text_field.js (excerpt)

var formByIndex = document.forms[0];
var formById = document.forms["contactForm"];

In the above code, both variables point to the same form element contained in
the HTML document above.

Index Tip

If you have multiple forms on a page, it’s safest to use the id of a form as
an index to the forms collection. Otherwise, if the order of the forms changes
in the document source, you will have to change any numerical indices in
your JavaScript code to match it.

Avoid Accessing Forms from the document Object

Although it’s possible to access a form directly from the document object
(document.formId), this is an extremely inefficient method of locating an
element, as it requires the browser to search the entire DOM tree for the
corresponding node.

To access the elements contained within a form, you just access its individual
elements collection either by index or name/id:

File: read_write_text_field.js (excerpt)

var firstNameElement = document.forms["contactForm"].elements[0];
var lastNameElement =
 document.forms["contactForm"].elements["lastName"];

You can use a shortcut to the elements collection by accessing the form as you
would a two-dimensional array:

var firstNameElement = document.forms["contactForm"]["firstName"];

Once you’ve found the text field that you want to access, finding out what data
it contains is a simple matter of reading its value property. The value is a read-
writable property, so if you wish to change the data in a text field, just assign a
string directly to value:

File: read_write_text_field.js (excerpt)

var contactForm = document.forms["contactForm"];
var oldValue = contactForm["firstName"].value;
contactForm["firstName"].value = "Zaphod";

105

Reading and Writing the Data in a Text Field

The value of the variable oldValue is now "Arthur"; as you can see in Figure 6.2,
the text field’s new value is "Zaphod".

Figure 6.2. Changing the first text field value

Discussion
Although the forms collection is a tidy way of accessing form elements on a web
page, it is a construct specific to HTML and XHTML. An alternative technique,
which also works with XML documents that aren’t XHTML, is to use the standard
(DOM) methods to access the attribute values of document elements. See
Chapter 5 for details on how to access elements by navigating the DOM.

Reading and Setting the State of a
Checkbox

Checkboxes provide the user with an easy, one-click choice: on or off. Because
they don’t take any text input from the user, JavaScript handles checkbox prop-
erties differently than text fields. You have to understand these differences before
you can begin to modify them.

Solution
In order to read or set whether a checkbox is checked, you need to access its
checked property. This Boolean value determines the checked state of the specific
checkbox. Consider this form:

106

Chapter 6: Processing and Validating Forms

File: read_set_checkbox.html (excerpt)

<form id="characterForm" action="">
 <fieldset>
 <legend>Characters</legend>
 <p>
 My favorite character is:
 </p>
 <input type="checkbox" id="checkbox1" name="checkbox1"
 value="Marvin">
 <label for="checkbox1">
 Marvin
 </label>
 <input type="checkbox" id="checkbox2" name="checkbox2"
 value="Trillian">
 <label for="checkbox2">
 Trillian
 </label>
 </fieldset>
</form>

Let’s suppose that the user manipulates the checkboxes to reflect Figure 6.3.

Figure 6.3. Two checkboxes with different checked states

We can read the current checked state of these checkboxes like so:

File: read_set_checkbox.js (excerpt)

var checkbox1 = document.forms["characterForm"]["checkbox1"];
var checkbox2 = document.forms["characterForm"]["checkbox2"];
var checkedState1 = checkbox1.checked;
var checkedState2 = checkbox2.checked;

107

Reading and Setting the State of a Checkbox

The value of the variable checkedState1 is now true, while the value of the
variable checkedState2 is false.

Changing the checked property of a checkbox will be reflected visually on the
web page. Suppose you executed the following code:

File: read_set_checkbox2.js (excerpt)

var checkbox1 = document.forms["characterForm"]["checkbox1"];
var checkbox2 = document.forms["characterForm"]["checkbox2"];
checkbox1.checked = false;
checkbox2.checked = true;

The web page would change from the state above to that shown in Figure 6.4.

Figure 6.4. After the checkboxes’ checked property has changed

Discussion
The value of a checkbox or radio button is distinctly different than whether it is
checked or not. When users click on a checkbox, they’re not changing the actual
value of that checkbox in the same way that they change the value of a text field:
they are merely changing its state.

Imagine that the state of the inputs is that shown in Figure 6.5.

108

Chapter 6: Processing and Validating Forms

Figure 6.5. Two checkboxes with different checked states

In this case, checkbox1’s value is "Marvin" and it is checked, but checkbox2’s
value is still "Trillian" even though it is not checked. The difference between
the two is that when the form is submitted, the CGI parameters sent to the
server will include checkbox1 but not checkbox2.

Most of the time you’ll want the capacity to change a checkbox’s state, as above.
But if you want to read or write the value for a checkbox, it is much the same as
reading or writing a text field’s value:

File: read_set_checkbox3.js (excerpt)

var checkbox1 = document.forms["characterForm"]["checkbox1"];
var oldValue = checkbox1.value;
checkbox1.value = "Ford";

The value of the variable oldValue is now "Marvin", and the checkbox’s new
value is "Ford".

Reading and Setting the State of a Radio
Button

Although an individual radio button offers users the same binary options as a
checkbox, radio buttons differ slightly because you can group a series of them
together, and only one of that group may be checked at any one time.

109

Reading and Setting the State of a Radio Button

Solution
Radio buttons are slightly different from checkboxes. Because a radio button is
really one of a group of buttons, only one of which can be checked at any time,
these buttons are accessed as one object.

Consider this form:

File: read_set_radio_button.html (excerpt)

<form id="characterForm" action="">
 <fieldset>
 <legend>Characters</legend>
 <p>
 My favorite character is:
 </p>
 <input type="radio" id="characterA" name="character"
 value="Marvin">
 <label for="characterA">
 Marvin
 </label>
 <input type="radio" id="characterB" name="character"
 value="Trillian">
 <label for="characterB">
 Trillian
 </label>
 </fieldset>
</form>

Here, each of the radio buttons that has the name attribute character will be
stored under the same form element:

File: read_set_radio_button.js (excerpt)

var characterGroup = document.forms["characterForm"]["character"];

The variable characterGroup is now a collection that represents the group of
radio buttons with the name attribute character. So, to access the first radio
button in the group, you provide its array index to the collection:

var characterGroup = document.forms["characterForm"]["character"];
var character1 = characterGroup[0];

This is really just one extra layer of access: once you’ve located the particular radio
button you need, it has the same value and checked properties as a checkbox:

110

Chapter 6: Processing and Validating Forms

File: read_set_radio_button.js (excerpt)

var characterGroup = document.forms["characterForm"]["character"];
var currValue = characterGroup[0].value;
var currChecked = characterGroup[0].checked;

One trick to remember when working with radio buttons is that you cannot de-
termine which radio button (if any) is checked by reading just one property. You
must loop through each of the radio buttons in a group, and read the checked
property of each, to determine which is checked:

File: read_set_radio_button2.js (excerpt)

var characterGroup = document.forms["characterForm"]["character"];

for (var i = 0; i < characterGroup.length; i++)
{
 if (characterGroup[i].checked == true)
 {
 alert("Your favorite character is " +
 characterGroup[i].value);
 }
}

You needn’t worry about having to do this when writing the checked property of
a radio button, though. When you change a radio button’s checked property to
true, it will automatically set all others to false.

Reading and Setting the Value of a Select
Box

Select boxes are similar to radio buttons in that they enable the user to select
one option from a predefined set. However, the methods available for dealing
with their values differ from those available to radio buttons.

Solution
Although the select box is another group of options—like a set of radio buttons—it
has some shortcuts that abstract the need to access its array of options.

The value property of a select element allows you automatically to read the
value of the currently selected option, and if you set value to the value of one
of the options, that option will automatically be set.

111

Reading and Setting the Value of a Select Box

Consider this form:

File: read_set_select.html (excerpt)

<form id="characterForm" action="">
 <fieldset>
 <legend>Characters</legend>
 <label for="character">
 My favorite character is:
 </label>
 <select id="character" name="character">
 <option value="A">Marvin</option>
 <option value="B" selected="selected">Trillian</option>
 <option value="C">Slartibartfast</option>
 </select>
 </fieldset>
</form>

Imagine that a user selects the second option in this form, as shown in Figure 6.6.

Figure 6.6. Selecting the second option in the select box

In this case, the value of the select box will correspond to the value of the second
option:

File: read_set_select.js (excerpt)

var character = document.forms["characterForm"]["character"];
var selectValue = character.value;

The value of the variable selectValue is now "B".

We can also set the value of the select box to the value of the third option:

File: read_set_select2.js (excerpt)

var character = document.forms["characterForm"]["character"];
character.value = "C";

112

Chapter 6: Processing and Validating Forms

Now, the select box looks like Figure 6.7.

Figure 6.7. The select box after it is changed by JavaScript

Discussion
If you require direct access to each of a select box’s option elements, this is still
available through the select’s secondary array. In conjunction with the
selectedIndex property, this array allows you to read and set the options of a
select box using only array indices:

File: read_set_select3.js (excerpt)

var character = document.forms["characterForm"]["character"];
var oldValue = character[character.selectedIndex].value;
character.selectedIndex = 2;

Starting from Figure 6.6 above, this code sets the value of the variable oldValue
to "B", and selects the third option in the select box.

Validating a Mandatory Text Field
When users have to fill out a text field, it’s best to provide them with a gentle
reminder, in case they forget to complete it.

Solution
An empty text field is simply one that has no value. To detect this, you can check
whether the field’s value is equal to an empty string:

113

Validating a Mandatory Text Field

File: validate_mandatory_text_field.js (excerpt)

if (textField.value == "")
{
 � error…

Going one step further, if you wish to detect a field that may not be empty, but
contains only whitespace (such as spaces and tabs), you can use a regular expres-
sion test, like those we saw in Chapter 3:

File: validate_mandatory_text_field2.js (excerpt)

if (textField.value == "" || /^\s+$/.test(textField.value))
{
 � error…

Validating a Numeric Field
HTML forms don’t have a field type that can only contain numbers, so the best
we can do is to use a text field and validate it to make sure it only contains
numbers.

Solution
The value of a text field will always be a string data type, even if you only want
numbers to be entered into it. Therefore, the easiest way to test that a text field
contains only numbers is to use the parseInt function and compare it to the
original string (for details of the parseInt function, see Chapter 2). If the text
field contains any non-numeric characters, its value will be different from the
integer that is returned by parseInt:

File: validate_numerical_field.js (excerpt)

if (textField.value != parseInt(textField.value, 10))
{
 � error…

If your field is allowed to accept floating point numbers, use the parseFloat
function:

File: validate_numerical_field2.js (excerpt)

if (textField.value != parseFloat(textField.value, 10))
{
 � error…

114

Chapter 6: Processing and Validating Forms

Validating an Email Address Field
The hardest part of validating an email address is defining the syntax to which
valid email addresses adhere.

Solution
It’s easy to check a text field using the regular expression we defined in “Testing
whether a String is a Valid Email Address” in Chapter 3 for testing email ad-
dresses:

File: validate_email_field.js (excerpt)

if (!/^[\w\.\-]+@([\w\-]+\.)+[a-zA-Z]+$/.test(textField.value))
{
 � error…

Checking for Unselected Radio Buttons
While it is easy to test whether a checkbox has been checked, it’s slightly more
difficult to determine whether any of the radio buttons in a group has been selec-
ted.

Solution
To detect whether a user has selected an option from a group of radio buttons,
you have to check each of the radio buttons individually. If none of their checked
properties is true, then the user hasn’t selected an option:

File: check_unselected_radio_buttons.js (excerpt)

var characterGroup = document.forms["characterForm"]["character"];
var characterSelected = false;

for (var i = 0; i < characterGroup.length; i++)
{
 if (characterGroup[i].checked == true)
 {
 characterSelected = true;
 break;
 }
}

115

Validating an Email Address Field

if (!characterSelected)
{
 � error…

The variable characterSelected keeps track of whether any of the radio buttons
has been selected. If a selected radio button is not found, that variable will still
be false when the for loop finishes, in which case you can execute some code
to handle it.

break

The break command is a special instruction that tells the JavaScript program
to break out of the current program loop (or switch statement) and pass
control to the next statement beyond the loop or switch. In the situation
above, once we find a checked radio button, we don’t need to test the rest
of the buttons, so we can stop the loop. While this isn’t strictly necessary,
it saves needless calculation and makes our program more efficient.

Stopping a Form Being Submitted Unless
all its Fields are Valid

The whole point about validating a field is to make sure that invalid data doesn’t
reach the server. So, when a form is submitted with errors, you’ve got to stop
that submission dead in its tracks!

Solution
When a user submits a form, it triggers an event before sending the data off to
the server. This and other events are explained further in Chapter 13, but for
now, the event we’re interested in is submit. We’ll use this to validate all of a
form’s relevant fields before it sends any data.

When the web page loads, the onsubmit event handler must be set to divert the
form’s submission to our own function:

File: stop_form_submit.js (excerpt)

document.forms[0].onsubmit = validateFields;

The function validateFields will be executed before the form is submitted; inside
it, we’ll check whether the data in the required fields is valid or not. If the data
in all the fields is valid, the function should return true, allowing the submission

116

Chapter 6: Processing and Validating Forms

process to continue as normal. Otherwise, the return value should be false,
which will abort the form’s submission:

File: stop_form_submit.js (excerpt)

function validateFields()
{
 var firstName = document.forms[0].elements["firstName"];

 if (firstName.value != "")
 {
 /* Continue with submission */
 return true;
 }
 else
 {
 alert("Please fill in your first name");

 /* Abort submission */
 return false;
 }
}

You can perform as many checks on the form data as you like before you submit
the form. These checks could involve using some of the validation techniques
described in the previous tip, or other checks that you want to make on the form’s
fields.

To alert the user to any errors in the form, it’s easiest to use an alert dialog box,
as above, but the creation of inline error messages can be far more effective, as
we’ll see later in this chapter.

Validating a Form with an Unknown
Number of Fields

Solution
Creating a script that validates a form can be quite tedious, particularly if the
form has a lot of fields that need to be checked. The solution is to have a script
that automatically goes through all of a form’s elements and validates them ap-
propriately.

117

Validating a Form with an Unknown Number of Fields

Using the elements collection of a form, it is easy enough to loop through all of
a form’s fields, but the validating function still has to know what to do with each
field—whether it is simply required, or it must contain numeric data, an email
address, and so on. The only way to get around this is to write a field’s validation
criteria into the HTML code.

Out of all of a field’s attributes, its class is the most appropriate place to store
the validation type. So, if a text field is a required field, you could assign it a class
called checkRequired, like so:

File: validate_form.html (excerpt)

<input type="text" class="checkRequired" …>

The validating function can parse the className of that form field to determine
which checks it should apply. For instance, assume we have HTML that includes
these validation markers:

File: validate_form.html (excerpt)

<form id="contactForm">
 <fieldset>
 <legend>Contact Details</legend>
 <label for="firstName">
 First name:
 </label>
 <input type="text" id="firstName" name="firstName"

class="checkRequired">
 <label for="lastName">
 Last name:
 </label>
 <input type="text" id="lastName" name="lastName"

class="checkRequired">
 <label for="email">
 Email address:
 </label>
 <input type="text" id="email" name="email"

class="checkRequired checkEmail">
 <label for="message">
 Message:
 </label>
 <textarea id="message" name="message"></textarea>
 </fieldset>
</form>

The validating function can handle each of the fields appropriately:

118

Chapter 6: Processing and Validating Forms

File: validate_form.js (excerpt)

function validateFields()
{
 var elements = document.forms["contactForm"].elements;
 var emailPattern = /^[\w\.\-]+@([\w\-]+\.)+[a-zA-Z]+$/;

 for (var i = 0; i < elements.length; i++)
 {
 if (/(^|)checkRequired(| $)/.test(elements[i].className) &&
 elements[i].value == "")
 {
 elements[i].focus();
 alert("Please fill out this field.");
 return false;
 }

 if (/(^|)checkEmail(| $)/.test(elements[i].className) &&
 !emailPattern.test(elements[i].value))
 {
 elements[i].focus();
 alert("Please fill in a valid email address.");
 return false;
 }
 }

 return true;
}

If we add any more fields to the form, we don’t have to modify the JavaScript:
it will check them automatically!

Printing Inline Error Messages when
Validating a Form

Earlier, we saw how to validate different form fields according to the types of
data they required from the user. Then, we used alert boxes to inform the user
of any errors, but inline messages are a more usable way of presenting errors.
They provide a permanent indication of the error that the user has to correct,
and they can be more proximate to the field that the user should be focused on.

119

Printing Inline Error Messages when Validating a Form

Solution
Instead of printing an error message to an alert box, we can insert the same text
in an appropriate place on the page. Take a look at this form:

File: print_inline_error_messages.html (excerpt)

<form id="contactForm" action="">
 <fieldset>
 <legend>Contact Details</legend>
 <label for="firstName">
 First name:
 </label>
 <input id="firstName" name="firstName">
 <label for="lastName">
 Last name:
 </label>
 <input id="lastName" name="lastName" value="Dent">
 </fieldset>
</form>

Error messages are best placed inside the label that’s associated with the erro-
neous form field, like so:

File: print_inline_error_messages.js (excerpt)

var firstName = document.forms["contactForm"]["firstName"];

if (firstName.value == "")
{
 var errorSpan = document.createElement("span");
 var errorMessage = document.createTextNode(
 "Please enter a first name");

 errorSpan.appendChild(errorMessage);
 errorSpan.className = "errorMsg";

 var fieldLabel = firstName.previousSibling;

 while (fieldLabel.nodeName.toLowerCase() != "label")
 {
 fieldLabel = fieldLabel.previousSibling;
 }

 fieldLabel.appendChild(errorSpan);
}

120

Chapter 6: Processing and Validating Forms

Once we find that the first name field is invalid, we need to create the HTML
element that will contain the error message and insert it into the correct place.
The process we used to do this above is outlined in more detail in Chapter 8, but
it also requires a knowledge of the markup used on the original page. Because we
know that the label is before the text field, we can navigate to it using the
previousSibling property of the text field, then insert the error message at the
end of the label text.

With appropriate CSS styling of the errorMsg class, our page looks like Figure 6.8
after an error has been found.

Figure 6.8. An inline error message displayed after a user submits
an invalid text field

Making Form Fields Appear or Disappear,
Based on the Value of other Fields

Often, parts of a form will have to be filled out only if a user gives a particular
answer to one of the previous questions. Displaying all these non-applicable sec-
tions on a page can confuse users pretty quickly, or at least tax their brains a little
more than is necessary. To eliminate this confusion, it’s often a good idea to
display optional areas only as required.

Solution
The display of page elements is governed by their style properties, and under a
development regime that separates scripting from styling, all style properties
should be controlled with CSS. What does this mean when it comes to showing
and hiding form elements? It means that we should not use JavaScript directly
to show or hide an element. Instead, we should modify its class, and let the
CSS decide how it should be displayed.

121

Making Form Fields Appear or Disappear, Based on the Value of other Fields

Let’s take the example in Figure 6.9, where the answer to a radio button question
requires the user to elaborate further.

Figure 6.9. A form question that depends upon a previous answer

The HTML code for this form would look something like this:

File: fields_appear_disappear.html (excerpt)

<form action="">
 <fieldset>
 <legend>Characters</legend>
 <p>
 Have you read The Hitchhiker's Guide to the Galaxy?
 </p>
 <input type="radio" name="read" id="readYes" />
 <label for="readYes">
 Yes
 </label>
 <input type="radio" name="read" id="readNo" />
 <label for="readNo">
 No
 </label>
 <div id="optional">
 <label for="character">
 Who was your favorite character?
 </label>
 <select id="character" name="character">
 <option value="A">Marvin</option>
 <option value="B">Trillian</option>
 <option value="C">Ford</option>

122

Chapter 6: Processing and Validating Forms

 </select>
 </div>
 </fieldset>
</form>

Because we’re using JavaScript to display the optional question, we should also
use JavaScript to hide it initially. If the hidden content was hard-coded to make
it hidden initially, users without JavaScript would never be able to see it. Instead,
the hiding can be done on page load:

File: fields_appear_disappear.js (excerpt)

addLoadListener(init);

function init()
{
 var optional = document.getElementById("optional");
 optional.className = "hidden";

To hide the optional question, we’ll locate it off the left-hand side of the screen
using an appropriate CSS rule. This makes the question “invisible” to visual
browsers, but still accessible to screen readers. The css-discuss Wiki has more
details on this method of hiding content.1 Here’s how it’s done:

File: fields_appear_disappear.css (excerpt)

.hidden
{
 position: absolute;
 left: -1500em;
}

The combination of class and CSS hides the optional question when the page
loads, as shown in Figure 6.10.

Figure 6.10. The optional question remains hidden on page load

1 http://css-discuss.incutio.com/?page=ScreenreaderVisibility

123

Making Form Fields Appear or Disappear, Based on the Value of other Fields

http://css-discuss.incutio.com/?page=ScreenreaderVisibility
http://css-discuss.incutio.com/?page=ScreenreaderVisibility

To make the question visible, we need to remove the class when the user clicks
Yes. In order to capture this change, we can detect when a user clicks on the Yes
button using the onclick event handler:

File: fields_appear_disappear.js (excerpt)

function init()
{
 �
 var readYes = document.getElementById("readYes");
 readYes.onclick = showOptional;
}

function showOptional()
{
 var optional = document.getElementById("optional");
 optional.className = "";

 return true;
}

The optional question will now display. Of course, if a user clicks Yes, then clicks
No, we want the optional question to disappear. In this case, we reverse the pro-
cess:

File: fields_appear_disappear.js (excerpt)

function init()
{
 �
 var readNo = document.getElementById("readNo");
 readNo.onclick = hideOptional;

 return true;
}

function hideOptional()
{
 var optional = document.getElementById("optional");
 optional.className = "hidden";

 return true;
}

Using this method, you can show and hide as many form elements as you want.
You could even change the CSS to disable the optional question, instead of hiding
it, as depicted in Figure 6.11.

124

Chapter 6: Processing and Validating Forms

Figure 6.11. Changing the CSS can make an optional question
look disabled

Summary
Forms can be daunting for both the user and the developer, but by applying and
adapting the tips I’ve described to you here, you’ll have full access to every form
element on the page. With the power to read, set, validate, show, and hide all
your form elements, there’s nothing stopping you from making your forms a
pain-free experience.

125

Summary

126

Working with Windows and
Frames7

This chapter is about simple window and frame manipulation, including tasks
like opening popups, communicating between frames,1 and finding out the page’s
scrolling position.

Plenty of people feel that window manipulation is akin to the Dark Side. They
believe that a window is part of the user’s GUI, not the document, and since
JavaScript is a document scripting language, it has no business manipulating
windows.

I’m generally inclined to agree, yet I know that opinion is sometimes a luxury.
If your clients ask for something specific, you can’t necessarily change their minds,
or have the freedom to turn down work on the basis of such a principle. In this
chapter, we’ll cover a range of practical window and frame manipulation tasks
while remaining sensitive to the usability and accessibility issues that can arise
from their use.

Note, though, that there are limits, and some varieties of window scripting are
particularly unfriendly. We won’t be dealing with aggressive tactics like closing
or modifying the user’s primary window, moving windows around the screen, or
opening full-screen or “chromeless” windows. These are exactly the kinds of abuses
that have given JavaScript a bad name.

1 The techniques involved in reading data from an iframe will be covered in Chapter 18.

Through most of this chapter we’ll be looking closely at the properties and
methods of the window object. These are implemented by different browsers in
a variety of ways, most of which have been in use since the days before JavaScript
was standardized.

We’ll have quite a few code branches to deal with, but we’ll avoid the dreaded
browser sniffing by careful use of object detection, the process of detecting an
object or feature to test for compatibility, rather than detecting specific browsers.

Using Popup Windows
Should you use popup windows? The most considered answer I have is this: not
if you can help it. Popup windows have gained a bad reputation from marketers’
aggressive use of them, but even requested popups can be barriers to good usability.

I won’t say that popups are never appropriate, but I will say that they’re seldom
so. Nevertheless, there are situations where popping open a new window is argu-
ably the most appropriate solution: an online survey might be one example, as
the format may make the content more approachable; DHTML games are another,
as the viewport may need to be of a known size.

I’ll qualify my opinion by discussing the problems that popups create, then
providing a pragmatic method for using them that mitigates these problems as
much as possible.

What’s Wrong with Popups?
The main problem with most popup window scripts is that they don’t consider
the needs of the user—they address only the needs of the designer. The results?
We’ve all seen them:

❑ popups that are generated from links, though those links do nothing when
scripting is not available

❑ popup windows that don’t have a status bar, so you can’t necessarily tell
whether the document has loaded or stalled, is still loading, etc.

❑ popups that don’t give users the ability to resize the window, and popups that
fail to generate scrollbars for content that might scale outside the window

❑ windows that are “chromeless,” or open to the full size of the user’s screen

128

Chapter 7: Working with Windows and Frames

These issues are not just questions of usability, but of accessibility as well. For
example, screen-reader users may not be notified by their devices that a new
window has opened. This could obviously cause confusion if they then attempted
to go back in the browser history (they can’t). The same thing might happen for
a sighted user if a window opens at full-size: you and I may be familiar with using
the taskbar to monitor open windows, but not all computer users are—they may
not even realize that a new window has popped up.

If you’re going to use popups, looking out for issues like these, and being generally
sensitive to their impacts, will make your popups friendlier to users, and less of
a strain on your conscience.

Also, bear in mind that, from a developer’s perspective, popup windows are not
guaranteed to work: most browsers now include options to suppress popup win-
dows, and in some cases, suppression occurs even if the popup is generated in
response to a user event.

You may be able to allow for this as you would for situations in which scripting
was not supported: by ensuring that the underlying trigger for the popup still
does something useful if the popup fails. Or you might have your code open a
window and then check its own closed property, to see if it’s actually displayed
(we’ll look at this technique in the next solution).

But neither of these approaches is guaranteed to work with every browser and
popup blocker out there, so for this as much as the usability reasons, it’s simpler
and better to avoid using popups whenever you can.

How Do I Minimize the Problems?
What we need to do is establish some golden rules for the ethical use of popups:

❑ Make sure any triggering link degrades properly when scripting is not available.

❑ Always include the status bar.

❑ Always include a mechanism to overflow the content: either allow window
resizing, or allow scrollbars to appear, or both.

❑ Don’t open windows that are larger than 640x480 pixels.

129

How Do I Minimize the Problems?

By limiting the size of popups, you ensure that they’re smaller than users’
primary windows on the vast majority of monitors. This increases the likeli-
hood that the user will realize that the popup is a new window.

Solution
Here’s a generic popup function that’s based on the guidelines above:

File: make-popup.js (excerpt)

function makePopup(url, width, height, overflow)
{
 if (width > 640) { width = 640; }
 if (height > 480) { height = 480; }

 if (overflow == '' || !/^(scroll|resize|both)$/.test(overflow))
 {
 overflow = 'both';
 }

 var win = window.open(url, '',
 'width=' + width + ',height=' + height
 + ',scrollbars=' + (/^(scroll|both)$/.test(overflow) ?
 'yes' : 'no')
 + ',resizable=' + (/^(resize|both)$/.test(overflow) ?
 'yes' : 'no')
 + ',status=yes,toolbar=no,menubar=no,location=no'
);

 return win;
}

As well as limiting the window size, this script refuses to create a popup that
doesn’t have an overflow, so if you don’t specify "scroll", "resize", or "both"
for the overflow argument, the default setting of "both" will be used.

The Ternary Operator

This script uses a shortcut expression called a ternary operator to evaluate
each of the overflow options. The ternary operator uses ? and : characters
to divide the two possible outcomes of an evaluation, and is equivalent to a
single pair of if..else conditions. Consider this code:

if (outlook == 'optimistic') { glass = 'half-full'; }
else { glass = 'half-empty'; }

130

Chapter 7: Working with Windows and Frames

That code is equivalent to the markup below:

glass = (outlook == 'optimistic' ? 'half-full' :
 'half-empty');

The parentheses are not required, but you may find they make the expression
easier to read.

For more about this and other useful shortcuts, see Chapter 20.

Once you have the popup function in place, you can call it in a variety of ways.
For example, you could use a regular link:

File: make-popup.html (excerpt)

Online survey

If scripting is not available, this will work just like any other link, but if scripting
is available, the script can trigger a click event handler that passes its href to
the makePopup function, along with the other settings. The return value of the
handler depends on whether or not the window is actually opened; browsers that
block the popup will follow the link as normal:

File: make-popup.js (excerpt)

document.getElementById('survey_link').onclick = function()
{
 var survey = makePopup(this.href, 640, 480, 'scroll');

 return survey.closed;
};

In general, if you have a script that requires that a window be generated, you can
call the makePopup function directly with a URL:

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');

If you need to close that window later in your script, you can do so by using the
close method on the stored window reference:

cpanel.close();

Discussion
The window.open method can take a number of arguments—in addition to the
URL and window name—which specify whether the window should have partic-
ular decorations, such as the menu bar, tool bar, or address (location) bar. These

131

How Do I Minimize the Problems?

arguments are passed as a comma-delimited string to the third argument of
window.open:

var win = window.open('page.html', 'winName',
 'width=640,height=480,'
 + 'scrollbars=yes,resizable=yes,status=yes,'
 + 'toolbar=no,menubar=no,location=no');

In our makePopup function, the menubar, toolbar, and location arguments are
all preset to no because these elements are rarely useful for popup win-
dows—they’re navigational tools, after all. Popups are mostly used for one-page
interfaces, or those in which history navigation is discouraged, such as our survey
example, or the logon procedure for a bank’s web site.

You can change those arguments if you need to, but the status argument should
always be set to yes, because turning it off undermines good usability. (I
know—I’ve mentioned it already, but I’m saying it again because it’s important!)

The resizable argument may not have any effect—in some browsers, either by
design or as a result of user preferences, it’s not possible to create non-resizable
windows, even if you set this value to no. In fact, in Opera 8 for Mac OS X, it’s
not possible to create custom-sized windows at all—a created window will appear
as a new tab in the current window. That specific exception might not be signi-
ficant in itself, but it serves to illustrate the general point that control over the
properties of a created window is not absolutely guaranteed.

Once a new window is open, you can bring it into focus using the object’s focus
method. This isn’t usually necessary—generally, it happens by default—but the
technique may be useful when you’re scripting with multiple windows:

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');
cpanel.focus();

Alternatively, you may want to open a popup but keep the focus in the primary
window (thereby creating a so-called “popunder”). You can take the focus away
from a window using its blur method:

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');
cpanel.blur();

However, in that case you can’t predict where the focus will go to next, so it’s
more reliable to refocus the primary window:

132

Chapter 7: Working with Windows and Frames

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');
self.focus();

Opening Off-site Links in a New Window
In the strict versions of HTML 4 and XHTML 1, the target attribute for links
no longer exists. One interpretation of this is that web pages simply shouldn’t
open links in new windows; another is that targeting doesn’t have universal se-
mantics and therefore shouldn’t be defined in HTML.2

There are other interpretations, and the arguments are long (and sometimes te-
dious), but suffice it to say that you may find yourself needing a solution to this
problem. Whatever your personal views may be, it’s a common request of web
development clients.

Solution
This script identifies links by the rel attribute value external. The rel attribute
is a way of describing the relationship between a link and its target,3 so its use
for identifying links that point to another site is semantically non-dubious:

File: offsite-links.html (excerpt)

Google
 (offsite)

If each external link is identified like that, a single document.onclick event
handler can process clicks on all such links:

File: offsite-links.js

document.onclick = function(e)
{
 var target = e ? e.target : window.event.srcElement;

 while (target && !/^(a|body)$/i.test(target.nodeName))
 {
 target = target.parentNode;

2 The CSS 3 working draft includes a set of target properties for link presentation
[http://www.w3.org/TR/2004/WD-css3-hyperlinks-20040224/], which could eventually see this
mechanism handed to CSS instead. Personally, I hope this never gets past the draft stage, because
it’s nothing to do with CSS: interface control is no more appropriate in a design language than it is
in a semantic markup language!
3 http://www.w3.org/TR/REC-html40/struct/links.html#h-12.1.2

133

Opening Off-site Links in a New Window

http://www.w3.org/TR/REC-html40/struct/links.html#h-12.1.2
http://www.w3.org/TR/2004/WD-css3-hyperlinks-20040224/

 }

 if (target && target.getAttribute('rel')
 && target.rel == 'external')
 {
 var external = window.open(target.href);

 return external.closed;
 }
}

Discussion
Using a single, document-wide event handler is the most efficient approach—it’s
much better than iterating through all the links and binding a handler to each
one individually. We can find out which element was actually clicked by referen-
cing the event target property. For more about events and event properties, see
Chapter 13, but here’s a brief summary of the situation.

Two completely different event models are employed by current browsers. The
script establishes which one should be used by looking for e—the event argument
that’s used by Mozilla browsers, and has been adopted by most other browsers—as
opposed to the window.event object used by Internet Explorer. It then saves the
object property that’s appropriate to the model in use: either target for Mozilla
and like browsers, or srcElement for IE.

The target object (if it’s not null) can be one of three things: a link element
node, an element or text node inside a link, or some other node. We want the
first two cases to be handled by our script, but clicks arising from the last situation
may be safely ignored. What we do is follow the trail of parent nodes from the
event target until we either find a link, or get to the body element.

Once we have a unified target link, we need simply to check for a rel attribute
with the correct value; if it exists, we can open a window with the link’s href,
and if all of that is successful (as judged by the new window object’s closed
property), the handler will return false, preventing the original link from being
followed.

Passing a link to window.open without defining arguments will create a window
with default decorations—as will a link with target="_blank".

134

Chapter 7: Working with Windows and Frames

The First Test

We use getAttribute as the first test for rel because attribute-specific
properties are only reliable if you know for certain that the attribute in
question has been assigned a value. We can’t go straight to testing
target.rel against a string, because it might be null or undefined. This
was discussed in more detail in “Reading and Writing the Attributes of an
Element” in Chapter 5.

Communicating Between Frames
If you’re working in a framed environment, it may be necessary to have scripts
communicate between frames, either reading or writing properties, or calling
functions in different documents.

If you have a choice about whether or not to use frames, I’d strongly advise against
doing so, because they have many serious usability and accessibility problems,
quite apart from the fact that they’re conceptually broken (they create within
the browser states that cannot be addressed4). But as with your use of popups,
in some cases you may not have a choice about your use of frames. So if you
really must use them, here’s what you’ll need to do.

Solution
Let’s begin with a simple frameset document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">
<html>
 <head>
 <title>A frameset document</title>
 </head>
 <frameset cols="200, *">
 <frame src="navigation.html" name="navigationFrame">
 <frame src="content.html" name="contentFrame">
 <noframes>
 <p>This frameset document contains:</p>

 Site navigation
 Main content

4 http://www.456bereastreet.com/archive/200411/who_framed_the_web_frames_and_usability/

135

Communicating Between Frames

http://www.456bereastreet.com/archive/200411/who_framed_the_web_frames_and_usability/
http://www.456bereastreet.com/archive/200411/who_framed_the_web_frames_and_usability/

 </noframes>
 </frameset>
</html>

We can use four references for cross-frame scripting:

❑ window or self refers to the current framed page.

❑ parent refers to the page that contains the frame that contains the current
page.

❑ top refers to the page at the very top of the hierarchy of frames, which will
be the same as parent if there’s only one frameset in the hierarchy.

❑ The frames collection is an associative array of all the frames in the current
page.

Let’s say we have a script in contentFrame that wants to communicate the page
in navigationFrame. Both pages are contained in a single frameset—the only
one in the hierarchy—so we could successfully make any of the following refer-
ences from within contentFrame:

❑ parent.frames[0]

❑ top.frames[0]

❑ parent.frames['navigationFrame']

❑ top.frames['navigationFrame']

The frames collection is an associative array (like the forms collection we saw
in Chapter 6), so each element can be accessed by either index or name. It’s
generally best to use the name (unless you have a good reason not to) so that
you won’t have to edit your code later if the frame order changes. By the same
token, parent references in a complex nested frameset can change if the hierarchy
changes, so I generally recommend that developers always start referencing from
top. Of the above options, the reference I prefer, then, is top.frames['naviga-
tionFrame'].

Now that we have a reference to the frame, we can call a function in the other
framed page:

136

Chapter 7: Working with Windows and Frames

File: frames-navigation.js (excerpt)

var navframe = top.frames['navigationFrame'];
navframe.callMyFunction();

Alternatively, we can get a reference to the other framed document, and work
with the DOM from there:

File: frames-navigation.js (excerpt)

var navdoc = navframe.document;
var menu = navdoc.getElementById('menulist');

Discussion
Communication between frames is only allowed for documents in the same do-
main—for security reasons, it’s not possible to work with a document that was
loaded from a different domain than the script. It wouldn’t do, for example, for
a malicious site owner to load a site that you visit regularly into a frame, and
steal the personal data you enter there.

In fact, some browsers let users disallow all scripts from communicating between
frames, just to eradicate any possibility of a cross-site scripting vulnerability, and
there’s no way to work around this preference if your script finds itself running
in a browser so configured.

If you do have users who are complaining of problems (and they can’t or won’t
change their settings to allow cross-frame scripting), the safest thing to do is
simply to avoid cross-frame scripting altogether.

Alternative methods of passing data between pages are discussed in Chapter 6
and Chapter 8.

Getting the Scrolling Position
Page scrolling is one of the least-standardized properties in JavaScript: three vari-
ations are now in use by different versions of different browsers. But with a few
careful object tests, we can reliably get a consistent value.

Solution
There are three ways of getting this information. We’ll use object tests on each
approach, to determine the level of support available:

137

Getting the Scrolling Position

File: get-scrolling-position.js (excerpt)

function getScrollingPosition()
{
 var position = [0, 0];

 if (typeof window.pageYOffset != 'undefined')
 {
 position = [
 window.pageXOffset,
 window.pageYOffset
];
 }

 else if (typeof document.documentElement.scrollTop
 != 'undefined' && document.documentElement.scrollTop > 0 ||
 document.documentElement.scrollLeft > 0))
 {
 position = [
 document.documentElement.scrollLeft,
 document.documentElement.scrollTop
];
 }

 else if (typeof document.body.scrollTop != 'undefined')
 {
 position = [
 document.body.scrollLeft,
 document.body.scrollTop
];
 }

 return position;
}

The function can now be called as required. Here’s a simple demonstration, using
a window.onscroll event handler, that gets the figures and writes them to the
title bar:

File: get-scrolling-position.js (excerpt)

window.onscroll = function()
{
 var scrollpos = getScrollingPosition();
 document.title = 'left=' + scrollpos[0] + ' top=' +
 scrollpos[1];
};

138

Chapter 7: Working with Windows and Frames

The Problem with scroll

scroll is not the most reliable of events: it may not fire at all in Konqueror
or Safari 1.0, or when the user navigates with a mouse wheel in Firefox. And
if it does fire, it may do so continually and rapidly (as it does in Internet
Explorer), which can be slow and inefficient if the scripting you set to respond
to the event is very complex.

If you have difficulties of this kind, you may find it better to use the
setInterval function instead of an onscroll event handler.
setInterval will allow you to call the function at a predictable interval,
rather than in response to an event. You can find out more about this kind
of scripting in Chapter 14, but here’s a comparable example:

window.setInterval(function()
{
 var scrollpos = getScrollingPosition();
 document.title = 'left=' + scrollpos[0] + ' top=' +
 scrollpos[1];
}, 250);

Discussion
The only real complication here is that IE 5 actually does recognize the
documentElement.scrollTop property, but its value is always zero, so we have
to check the value as well as looking for the existence of the property.

Otherwise, it doesn’t really matter to us which browser is using which property;
all that matters is that our script gets through one of the compatibility tests and
returns a useful value. However, the properties used by each browser are shown
here for reference:

❑ window.pageYOffset is used by Firefox and other Mozilla browsers, Safari,
Konqueror, and Opera.

❑ document.documentElement.scrollTop is used by IE 6 in standards-compliant
mode.

❑ document.body.scrollTop is used by IE 5, and IE 6 in “Quirks” mode.

This list doesn’t tell the complete story, but it’s intended primarily to describe
the ordering of the tests. More recent Mozilla browsers (such as Firefox) also
support documentElement.scrollTop and body.scrollTop, by the same render-

139

Getting the Scrolling Position

ing mode rules as IE 6. Safari and Konqueror support body.scrollTop in either
mode. Opera supports all three properties in any mode!

But none of this is important for you to know—browser vendors add these mul-
tiple properties to allow for scripts that are unaware of one property or another,
not to provide arbitrary choices for the sake of it. From our perspective, the im-
portant point is to settle on a set of compatibility tests that ensures our script
will work as widely as possible.

Rendering Modes

“Standards” mode and “Quirks” mode are the two main rendering modes
in use by current browsers. These modes affect various aspects of the output
document, including which element is the canvas (<body> or <html>), and
how CSS box sizes are calculated. For more on rendering modes, see
Chapter 11.

Making the Page Scroll to a Particular
Position

All current browsers implement the same (nonstandard) methods for scrolling a
page. At least something here is simple!

Solution
There are two methods that can be used to scroll the page (or rather, the window
or frame), either by a particular amount (window.scrollBy), or to a particular
point (window.scrollTo):

File: scroll-page.js (excerpt)

//scroll down 200 pixels
window.scrollBy(0, 200);

File: scroll-page.js (excerpt)

//scroll across 200 pixels
window.scrollBy(200, 0);

File: scroll-page.js (excerpt)

//scroll to 300 from the edge and 100 from the top
window.scrollTo(300, 100);

140

Chapter 7: Working with Windows and Frames

File: scroll-page.js (excerpt)

//scroll to the beginning
window.scrollTo(0, 0);

These examples say: scroll down by 200 pixels, then across by 200 pixels, then
to a point that’s 300 pixels from the left and 100 pixels from the top, then back
to the top corner.

Getting the Viewport Size (the Available
Space inside the Window)

The details of the viewport size are needed for many kinds of scripting, wherever
available space is a factor in the script’s logic. This solution provides a utility
function for getting the viewport size We’ll be seeing the function again quite a
few times throughout this book!

Solution
The properties we need are implemented in three different ways, like the properties
we saw for page scrolling in the previous section (“Making the Page Scroll to a
Particular Position”). As was the case in that example, we can use object testing
to determine which implementation is relevant, including the test for a zero-value
that we need in IE 5 (this test is required for the same reason: because, though
the property exists, it isn’t what we want):

File: get-viewport-size.js (excerpt)

function getViewportSize()
{
 var size = [0, 0];

 if (typeof window.innerWidth != 'undefined')
 {
 size = [
 window.innerWidth,
 window.innerHeight
];
 }
 else if (typeof document.documentElement != 'undefined'
 && typeof document.documentElement.clientWidth !=
 'undefined' && document.documentElement.clientWidth != 0)
 {

141

Getting the Viewport Size (the Available Space inside the Window)

 size = [
 document.documentElement.clientWidth,
 document.documentElement.clientHeight
];
 }
 else
 {
 size = [
 document.getElementsByTagName('body')[0].clientWidth,
 document.getElementsByTagName('body')[0].clientHeight
];
 }

 return size;
}

The function returns an array of the width and height, so we can call it whenever
we need that data:

File: get-viewport-size.js (excerpt)

window.onresize = function()
{
 var size = getViewportSize();
 alert('Viewport size: [' + size[0] + ', ' + size[1] + ']');
};

Summary
We’ve covered the basics of window and frame manipulation from a pragmatist’s
point of view in this chapter. We’ve also talked about principles and techniques
that we can use to ensure that scripts like this are as user-friendly and as accessible
as we can make them. Doubtless, this kind of work will remain controversial,
and clearly we do need some kind of targeting mechanism, because even though
the use of frames is slowly dying out, the advent of ever more sophisticated inter-
faces keeps these issues alive.

I rather like the XLink standard’s show attribute, which has values like new and
replace.5 These suggest a target process (open a new window, and replace the
contents of the current window, respectively) but they don’t actually define spe-
cific behaviors. They leave it up to the user agent to control what actually happens,
so, for example, new could be used to open tabs instead of windows.

5 http://www.w3.org/TR/xlink/#show-att

142

Chapter 7: Working with Windows and Frames

http://www.w3.org/TR/xlink/#show-att
http://www.w3.org/TR/xlink/#show-att

Working with Cookies8
Unless you want to use some unreliable IP detection and database storage tech-
niques, cookies are the only way in which you can share user data between two
non-sequential web pages. While CGI parameters require you to pass user data
between every page on which the parameters are used, cookies allow you to store
data on users’ systems and retrieve it minutes, hours, or even days later. This
makes cookies perfect for remembering things like users’ login names, which
pages they visited last, what they dropped into their shopping carts, and when
they did so.

Although server-side code is the most robust method of dealing with cookies,
sometimes you need to manipulate cookies on the client side. Luckily, JavaScript
can read and write the cookies in exactly the same way servers do.

Writing Cookies
Any script—be it server- or client-side—can only read cookies that were set by a
web page from the same domain, so cast aside those fantasies of finding out what
someone bought on Amazon. If you can read only cookies that you write, you’d
better learn how to write them!

Solution
Cookies are stored in the document object’s cookie property. This property is
actually a string that’s automatically generated by the browser when the page
loads. It concatenates all the valid cookie information stored for the current
browser address, and makes it available to JavaScript via the DOM.

Within the cookie property, cookies are separated by a semicolon (;), and tradi-
tionally each cookie consists of a name/value pair separated by an equality sign
(=). An example cookie string looks like this:

fur=blue; food=biscuits; name=Cookie_Monster

The first step in creating a cookie is to create a string that reflects the name of
your cookie, followed by =, followed by the value of the cookie:

File: write_cookie.js (excerpt)

var cookieName = "login";
var cookieValue = "choc_chip";
var theCookie = cookieName + "=" + cookieValue;

Avoid Spaces and Punctuation

When you create your cookie string, make sure that the name or value of
the cookie does not include spaces, commas, or semicolons. These characters
can cause errors not only with the parsing of the cookie string, but with the
sending of cookie data via HTTP headers. The easiest way to avoid entering
these characters into document.cookie is to pass your cookie value to the
escape function. This will escape special characters, turning them into their
ASCII code equivalents. To read a cookie with escaped characters, you have
to reverse the escaping process using the unescape function. Don’t escape
the = that separates the name and value, though: it needs to be present to
delimit these two components of the cookie.

Once you’ve created your cookie string, you have to store it in the browser’s
cookie jar. Even though document.cookie is really just one string, it exhibits
special behavior when JavaScript tries to write a cookie to it. Assigning a cookie
string to document.cookie does not overwrite the entire property, as it would
for a normal string. Instead, the cookie string is added to document.cookie. If
the cookie name already exists, the new value automatically replaces the current
one:

144

Chapter 8: Working with Cookies

File: write_cookie.js (excerpt)

document.cookie = theCookie;

Your data is now a cookie! Imagine that document.cookie was originally:

fur=blue; food=biscuits; name=Cookie_Monster

Now, it’s:

fur=blue; food=biscuits; name=Cookie_Monster; login=choc_chip

You can only add one cookie at a time, so even though you can replicate the
cookie-semicolon-cookie syntax, you cannot concatenate a number of cookie
strings together and add them to document.cookie in one go.

Reading a Cookie
It’s no good writing a cookie unless you can access it again. The browser automat-
ically fills document.cookie with all the valid cookies for the current domain, so
there’s no chance that you’ll read something you’re not meant to. However, you
can still read the data you set at another time, or from another part of your web
site.

Solution
There’s nothing glamorous about getting cookies out of document.cookie—you
have to parse the string yourself and collect your own values. But, once you un-
derstand the syntax of the cookie property, it’s fairly easy to break the process
into a couple of split method calls:

File: read_cookie.js (excerpt)

function getCookie(searchName)
{
 var cookies = document.cookie.split(";");

 for (var i = 0; i < cookies.length; i++)
 {
 var cookieCrumbs = cookies[i].split("=");
 var cookieName = cookieCrumbs[0];
 var cookieValue = cookieCrumbs[1];

 if (cookieName == searchName)
 {

145

Reading a Cookie

 return cookieValue;
 }
 }
 return false;
}

In the getCookie function, a split is performed at two levels: the first time, to
find each cookie, then, again, to break up the cookie name and its value. It’s then
a cinch to compare the current cookie name with the one we want.

Let’s use the example cookie we created above:

File: read_cookie.js (excerpt)

var monsterName = getCookie("name");

The value of the variable monsterName is now "Cookie_Monster".

Setting a Cookie to Expire at a Specific
Date and Time

As well as specifying the value of a cookie when you set it, a number of options
can be appended to the end of the cookie string that will affect the way the
cookie is handled. One of these options allows you to set a date and time at which
the cookie will expire.

Solution
By default, cookies are erased once a browser session ends. Alternatively, you can
set an expiry date for a cookie, enabling it to exist for a given period of time.

An expiry date is added to the end of the cookie; it must be set apart from the
rest of the cookie string by a semicolon, followed by the string expires=. The
date must be specified in a special GMT string format, which takes the following
form:

Weekday, DD-Mon-YYYY HH:MM:SS GMT

However, there are easier ways to create this awkward string than calculating the
exact day of the week on which June 3, 2010 falls.

146

Chapter 8: Working with Cookies

The Date class allows you to specify a more friendly date format, then convert
it to a GMT string (for more information on working with dates in JavaScript,
see Chapter 9):

File: set_cookie_expire_date.js (excerpt)

var date = new Date("June 3, 2010");
var cookieDate = date.toGMTString();

Once you have the expiry date, attach it to the end of the cookie string, then assign
it to document.cookie:

File: set_cookie_expire_date.js (excerpt)

theCookie += ";expires=" + cookieDate;
document.cookie = theCookie;

Your cookie data will now be available well into the foreseeable future.

Making a Cookie Accessible Only from a
Specific Domain or Path

Although cookies from one domain may not read cookies set by another domain,
there are some subtleties of cookie access that you can control. These include
both the subdomains and directory paths from which a cookie may be read.

Solution
By default, when a cookie is set, it will be readable only by other pages within
the full domain. So, if a page at http://javascript.sitepoint.com/ wrote a
cookie, a page at http://php.sitepoint.com/ would not be able to read it. In
order to allow all the subdomains of sitepoint.com to read a cookie, the domain
must be set when the cookie is created. To do this, we add ;domain=domainName
to the end of the cookie string:

File: cookie_specific_domain.js (excerpt)

theCookie += ";domain=sitepoint.com";
document.cookie = theCookie;

That cookie is now able to be read by pages from all the subdomains of site-
point.com, including http://www.sitepoint.com and http://javascript.site-
point.com.

147

Making a Cookie Accessible Only from a Specific Domain or Path

As an additional access restriction, by default, cookies are only readable by pages
within the current directory, or a subdirectory of the current directory. So, if
http://www.sitepoint.com/scripts/cookie_monster.htm wrote a cookie,
http://www.sitepoint.com/kermit.htm would not be able to read it.

To set the highest level path that’s allowed to read a cookie, we add
;path=pathName to the end of the cookie string:

File: cookie_specific_domain.js (excerpt)

theCookie += ";path=/";
document.cookie = theCookie;

That cookie is now readable by all pages in or under the root directory; that is,
all of the pages on the web site.

Discussion
By default, all cookies are sent to servers over an unsecured channel. If you wish
a cookie to be transmitted only to a secure server, i.e., one that uses https://,
you must attach the secure option to the end of your cookie:

theCookie += ";secure";
document.cookie = theCookie;

The cookie will now be transmitted only if it is requested over a secure channel;
otherwise, it will not be sent at all.

Circumventing Browser Restrictions on
the Number of Cookies you can Use

Cookies were only designed to store small snippets of data that were relevant to
a web site. They were not designed to act as large-scale data repositories. There-
fore, some restrictions have been placed upon cookies’ storage capacity.

Solution
The string that stores the cookies for a particular host is allowed to store just
4KB of data—4096 characters. In practice, this is not that much of a hindrance,
as 4KB represents more than enough data for most of the tasks to which cookies
are applied. However, a second restriction on cookies allows a maximum of twenty

148

Chapter 8: Working with Cookies

cookies to be used per domain or server. This can affect some web sites, but if
you’re reaching this limit, there’s a method you can use to alleviate its restrictions:
use sub-cookies.

The sub-cookie storage method involves storing a number of values inside a single
cookie. So, within document.cookie, three levels of parsing will be required to
get a value. The storage syntax of these sub-cookies is entirely up to you, but it’s
important that you standardize the syntax, and avoid using your chosen separating
characters within names and values. A common scheme is to use colons (:) as
sub-cookie name/value separators, and slashes (/) as sub-cookie separators. This
makes the raw document.cookie look like this:

monsterCookie=fur:blue/food:biscuits/name:Cookie_Monster

However, if you’re using colons as name/value separators, you’ll want to escape
the cookie value to make sure it doesn’t conflict with the cookie syntax:

File: circumvent_browser_restrictions.js (excerpt)

var cookieName = "monsterCookie";
var cookieValue = "fur:blue/food:biscuits/name:Cookie_Monster";

cookieValue = escape(cookieValue);

var theCookie = cookieName + "=" + cookieValue;

document.cookie = theCookie;

After the cookie value is escaped, document.cookie will actually look like this:

monsterCookie=fur%3Ablue/food%3Abiscuits/name%3ACookie_Monster

When you’re reading the cookie back in, and looking for a sub-cookie value,
you’ll have to unescape the cookie value, then parse it, to access the sub-cookies.
If we put all the parsing layers together, we get a function like this:

File: circumvent_browser_restrictions.js (excerpt)

function getSubCookie(cookieName, subCookieName)
{
 var cookies = document.cookie.split(";");

 for (var i = 0; i < cookies.length; i++)
 {
 var cookieCrumbs = cookies[i].split("=");

 cookieCrumbs[0] = cookieCrumbs[0].replace(/^\s+/, "");

149

Circumventing Browser Restrictions on the Number of Cookies you can Use

 if (cookieCrumbs[0] == cookieName)
 {
 var cookieValue = cookieCrumbs[1];
 cookieValue = unescape(cookieValue);
 var subCookies = cookieValue.split("/");

 for (var j = 0; j < subCookies.length; j++)
 {
 var subCookieCrumbs = subCookies[j].split(":");

 if (subCookieCrumbs[0] == subCookieName)
 {
 return subCookieCrumbs[1];
 }
 }
 }
 }

 return false;
}

Summary
Now that you know how to read and write cookies using JavaScript, you’ll be
able to use them to share data across many pages of your web site, and recall
important details for users when they return to your site.

In Chapter 12 we’ll use cookies to remember the alternate style sheet each user
selects, but these principles can just as easily be used to alleviate repetitive form
data entry, or to remember users’ preferences. Cookies let you fast-track your
users’ progress toward their goals without having them lift a finger!

150

Chapter 8: Working with Cookies

Working with Dates and Times9
Date and time are not the most glamorous of concepts, but these types of data
are required frequently for a whole variety of applications. Whether you want to
display the date on a page, add a timestamp to a log entry, or calculate how much
time will elapse before an event occurs, being able to work effectively with date
and time is a necessary and useful skill.

JavaScript provides a Date object from which all other date- and time-related
methods derive. We can use these methods to extract various parts of the
date—the month, the day, or the number of seconds elapsed in the minute, for
example—and then to format that data into the desired output.

Getting the Date and Time
This first solution introduces the Date object, and shows you some very quick
and easy ways to create a formatted date and time.

Solution
We begin with a new instance of the Date object:

File: get-date-and-time.js (excerpt)

var today = new Date();

The today variable is a Date object for the current date, measured in milliseconds
since the UTC epoch (midnight on 1 January, 1970), according to local time.

What’s “Local” Time?

Local time is the current time wherever your user is located (i.e., based on
the internal clock of the host computer, and the time settings of the host
operating system). UTC (Coordinated Universal Time)1 is the international
standard for time, a more accurately maintained parallel to Greenwich Mean
Time.

The actual value you get from this raw Date is curious, in that you can compare
it against another Date numerically (as though it were the number of milliseconds),
yet if you output the value, you’ll generally get a formatted string! The actual
output will vary in different browsers, but will be something like an RFC 2822
formatted date, such as “Mon, 19 Jun 2006 11:33:55 GMT+0100.”

If you want to use this output, you shouldn’t rely on the object-to-string conversion
occurring automatically. Rather, call the Date’s toString method, which produces
the formatted date string:

File: get-date-and-time.js

var today = new Date();
var sentence = today.toString();

alert(sentence);

There are two other methods that perform a similar conversion. toGMTString
formats the date according to Internet GMT conventions (the format used by
cookies, as we saw in Chapter 8). toLocaleString produces a regional output
that varies according to the locale of the user. For example, when you’re noting
a date in the USA, the convention for doing so requires that the month appears
before the day (06/19/2006), while in other countries (such as the UK), the day
precedes the month (19/06/2006):

File: get-date-and-time2.js (excerpt)

var today = new Date();
var gmt = today.toGMTString();
var locale = today.toLocaleString();

alert(gmt);
alert(locale);

1 Yes, I know the letters don’t match.

152

Chapter 9: Working with Dates and Times

So gmt would produce a value like "Mon, 19 Jun 2006 10:57:17 GMT," while
locale, applied in the UK, would produce a value like "19/06/2005 11:57:17."

Discussion
Basic formatting like this is useful when you need a quick solution, but it doesn’t
offer any real control over the output. However, the Date class provides a range
of methods for extracting individual parts of the date and time. We can use these
methods together to create whatever custom format we want.

We’ll be using many of these methods through this chapter, but before we begin,
here’s a summary of the most useful:

getFullYear returns the year as a four-digit number

There is also a getYear method, but that returns a two-
digit number and isn’t Y2K safe.

getMonth returns the month as an integer between 0 and 11

getDate returns the date as an integer between 1 and 31

getDay returns the day as an integer between 0 and 6, where 0
is Sunday

getHours returns the hour as an integer between 0 and 23

getMinutes returns the minutes as an integer between 0 and 59

getSeconds returns the seconds as an integer between 0 and 59

getTime returns the number of milliseconds since the UTC epoch

getTimezoneOffset returns the difference in minutes between local time and
GMT

getDate: an Exception to the Rule

Notice that the value returned from getDate is one or higher, while other
values start at zero. It’s worth keeping an eye out for that difference, because
it can easily trip you up if you’re associating the numbers with items in an
array.

153

Getting the Date and Time

The methods shown here return a value relative to the user’s local time, but there
are equivalents for returning a UTC time value. These follow a predictable naming
convention: getUTCFullYear, getUTCMonth, getUTCDate, and so on.

There are also equivalent setter methods, such as setFullYear and setDate,
which set (rather than get) the corresponding properties of a Date object. These
may not be useful if the date you’re working with is always now (a Date object
created with no arguments, as in the earlier example), but the JavaScript Date
object is far more powerful. You can modify the date/time of an existing object,
or simply create a new object to represent a given time in the past or future, by
passing that date as a string argument when you create it.

Formatting a Date into a Sentence
Using some of the methods outlined in the previous discussion, we can create a
formatted date that’s more precisely tailored to our needs. We can come up with
terse or conversational sentences, dates that are incredibly accurate or fairly
broad—whatever we need.

In this solution, we’ll use object prototyping to bind new methods directly to
the Date class. This makes the functionality more flexible and convenient to use,
because we can call our own formatting functions as if they were native methods
of the Date class. We first saw prototyping in Chapter 4, and it’s covered in detail
in Chapter 19, but you don’t need to understand its finer details to use this
solution.

Solution
We’ll define two new methods for the Date class in this solution. The first does
most of the work; the second is there to assist the first:

File: format-date.js (excerpt)

Date.prototype.getDateString = function(str)
{
 var dnames = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday'];

 var mnames = ['January', 'February', 'March', 'April',
 'May', 'June', 'July', 'August', 'September',
 'October', 'November', 'December'];

 str = str.replace('%day', dnames[this.getDay()]);

154

Chapter 9: Working with Dates and Times

 str = str.replace('%date', this.getDate());
 str = str.replace('%ordinal', this.getDateOrdinal());
 str = str.replace('%month', mnames[this.getMonth()]);
 str = str.replace('%year', this.getFullYear());

 return str;
};

Date.prototype.getDateOrdinal = function()
{
 var n = this.getDate();

 var ord = 'th';

 if (n % 10 == 1 && n % 100 != 11)
 {
 ord = 'st';
 }
 else if (n % 10 == 2 && n % 100 != 12)
 {
 ord = 'nd';
 }
 else if (n % 10 == 3 && n % 100 != 13)
 {
 ord = 'rd';
 }

 return ord;
};

To use the getDateString method, pass it a string that contains tokens for each
of the components of the date sentence: the day (%day), date (%date), ordinal
(%ordinal), month (%month), and year (%year). Any other text passes through
unchanged.

For example, a fully-formatted sentence might look like this:

File: format-date-example.js (excerpt)

var today = new Date();
var sentence = today.getDateString(
 '%day the %date%ordinal of %month %year');

alert(sentence);

155

Formatting a Date into a Sentence

This script produces an output something like, "Monday the 19th of June
2006." Alternatively, you could create a more compact date, in either US or UK
format:

var today = new Date();
var us = today.getDateString('%month %date%ordinal %year');
var uk = today.getDateString('%date%ordinal %month %year');

So the value of us would be "June 19th 2005", while that of uk would be "19th
June 2005".

Discussion
The getDateString method is pretty straightforward: it’s just a series of string
replacements that convert tokens (such as %year) into values returned from the
relevant Date method (such as getFullYear). The names of days and months
are stored in arrays whose indexes correspond with the numbers returned by
getMonth and getDay, so for example, we can return the name of the current
month as mnames[this.getMonth()].

The getDateOrdinal method in this example is almost identical to the
getOrdinal function we developed in “Converting Numbers to Ordinals (-st, -
nd, -rd, -th)” in Chapter 2.

These two methods are designed to provide dates in a friendly, sentence-style
format, but it’s also useful in many applications to format dates using international
standard notation (ISO 8601),2 which is the format YYYYMMDD. We can drop
in another method for this purpose while we’re at it.

Creating a date in ISO 8601 format is simply a case of concatenating the date
numbers into a string, and adding leading zeros to the month and day as necessary
(to get results like "20270504" instead of "202754"). We also need to add a 1 to
the month number, so that, say, January is "01" and not "00":

File: format-date.js (excerpt)

Date.prototype.getISODate = function()
{
 var mth = this.getMonth() + 1;
 mth = (mth < 10 ? '0' : '') + mth;

 var date = this.getDate();

2 http://www.cl.cam.ac.uk/~mgk25/iso-time.html

156

Chapter 9: Working with Dates and Times

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

 date = (date < 10 ? '0' : '') + date;

 return this.getFullYear() + mth + date;
};

Formatting the Time into a 12- or
24-hour Clock

Opinion varies on whether 12- or 24-hour clocks are easier to read, and individual
preferences have as much to do with familiarity as anything else. Fortunately, we
can provide either format as required.

As with the previous solution, binding a method directly to the Date class makes
it more flexible and convenient to use.

Solution
Outputting the time as a 24-hour clock is fairly simple, but we have to do a bit
of extra calculation to format the output correctly for 12-hour clocks:

File: format-time.js

Date.prototype.getTimeString = function(clock)
{
 var str = '';
 var hrs = this.getHours();

 if (clock == 12)
 {
 var meridian = hrs < 12 ? 'am' : 'pm';

 hrs = hrs % 12;
 if (hrs == 0) { hrs = 12; }
 str += hrs;
 }
 else
 {
 str += (hrs < 10 ? '0' : '') + hrs;
 }

 str += ':';
 var mins = this.getMinutes();
 str += (mins < 10 ? '0' : '') + mins;

157

Formatting the Time into a 12- or 24-hour Clock

 if (clock == 12) { str += meridian; }

 return str;
};

To use the getTimeString method, simply specify whether to use a 12- or 24-
hour clock, and the method will do the rest:

File: format-time-example.js (excerpt)

var today = new Date();
var now12 = today.getTimeString(12);
var now24 = today.getTimeString(24);

alert('12 hour time: ' + now12);
alert('24 hour time: ' + now24);

The returned string has the hours and minutes delimited with colons; if a 12-
hour clock is specified, it includes a meridian token ("am" or "pm"), while for a
24-hour clock the hours include a leading zero (as required).

So now12 would be something like "2:27pm", while at the same time, now24 would
say "14:37". Midnight is represented by the same convention, as "12:00am" or
"00:00" respectively.

Discussion
The value we get from getHours is a number between zero and 23, so if we’re
using a 24-hour clock, formatting this number is simply a case of adding a leading
zero as required, then concatenating that string to the result. Adding the minutes
uses exactly the same approach—the figure, plus a leading zero as required.

But if we’re using a 12-hour clock, some extra computation is required. We first
need to calculate the meridian by testing whether the hours figure is 12 or
greater. We then calculate the hour within that meridian by dividing the hours
figure by 12 and taking the remainder (resulting in a number between zero and
11). Finally, if the hour is zero, we assign a replacement value of 12, because
midnight on a 12-hour clock is 12:00 a.m., and noon is 12:00 p.m.

If you’d like to ascertain the number of seconds as well, add this extra code—it
should come after the minutes value is processed, but before the meridian is added
at the end:

158

Chapter 9: Working with Dates and Times

 str += ':';
 var secs = this.getSeconds();
 str += (secs < 10 ? '0' : '') + secs;

Now that we have custom formatting methods for both date (from “Formatting
a Date into a Sentence”) and time, we can use them together, passing the output
of getTimeString as part of the input to getDateString:

File: format-time-example.js (excerpt)

var message = today.getDateString('Created at '
 + today.getTimeString(24)
 + ', on %day, %month the %date%ordinal');
alert(message);

This will produce an output like, "Created at 15:04, on Monday, June the
19th." But perhaps you’d prefer something more elaborate:

var message = today.getDateString('Inscribed at '
 + today.getTimeString(12)
 + ', on this very %day, the %date%ordinal day of %month'
 + ', in the calendar year %year');

This produces the sentence, "Inscribed at 3:04pm, on this very Monday,
the 19th day of June, in the calendar year 2005."

Comparing Two Dates
So far we’ve been working with today’s date, by creating a Date object with no
argument. But if we include a date string as an argument to the Date constructor,
it will create a date object for the specified date and time.

This will allow us to input two dates as strings; we’ll then be able to work with
them as Date objects.

Solution
This function compares two dates and returns the number of years, months, and
days between them as an array of three numbers:

File: get-time-between.js (excerpt)

function getTimeBetween(from, until)
{
 var past = from == '' ? new Date() : new Date(from);

159

Comparing Two Dates

 var future = until == '' ? new Date() : new Date(until);

 if (past >= future)
 {
 var tmp = past;
 past = future;
 future = tmp;
 }

 var between = [
 future.getFullYear() - past.getFullYear(),
 future.getMonth() - past.getMonth(),
 future.getDate() - past.getDate()
];

 if (between[2] < 0)
 {
 between[1]--;
 var ynum = future.getFullYear();

 var mlengths = [
 31,
 (ynum % 4 == 0 && ynum % 100 != 0 || ynum % 400 == 0) ?
 29 : 28,
 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
];

 var mnum = future.getMonth() - 1;
 if (mnum < 0) { mnum += 12; }

 between[2] += mlengths[mnum];
 }

 if (between[1] < 0)
 {
 between[0]--;
 between[1] += 12;
 }

 return between;
}

To use the function, we specify a date in the past and a date in the future using
a compatible format, such as "19 Jun, 2006". If you specify an empty string for
either argument, the current date will be used.

160

Chapter 9: Working with Dates and Times

Compatible Date Formats

The compatible formats are those that are understood by the Date object
itself: either "19 Jun, 2006", or "Mon, 19 Jun 2006 15:04:00
GMT+0100". The object also understands US time-zone abbreviations (such
as PST), and assumes GMT if none is specified (and midnight GMT if no
time is specified).

Here’s the code we’d use to get the number of years, months, and days between
now and a specified event:

File: get-time-between-example.js (excerpt)

var until = getTimeBetween('', '10 Jun, 2014');
alert(until[0] + 'years ' + until[1] + 'months ' + until[2] +
 'days');

We’d use this script to get the number of years, months, and days that had passed
since an event:

File: get-time-between-example.js (excerpt)

var since = getTimeBetween('10 Jun, 2003', '');
alert(since[0] + 'years ' + since[1] + 'months ' + since[2] +
 'days');

If you specify a future date first, the arguments will just be swapped over—you’ll
still get the time from the earlier date to the later date.

In the next solution, we’ll take these numbers and turn them into a nicely-
formatted sentence.

Discussion
The first step in the script is to create a Date object for each of the input dates.
Although the values are objects, we can still compare them as though they were
numbers (the number of milliseconds since the UTC epoch), and use that com-
parison to work out which date occurs in the future (it’s the larger amount of
time).

Once we know the order of the two dates, we can subtract the years, months,
and days in the latter date from their corresponding values in the earlier date,
using the relevant Date methods.

161

Comparing Two Dates

Yet the final solution is not quite as simple as that! We have two specific issues
to deal with.

Suppose we have dates of "22 Jun, 2005" and "22 May, 2006". We’d get a
year difference of one, but a month difference of -1, and obviously that can’t be
right—we can’t have a negative difference. What we actually have is a difference
of 11 months (and zero years), so we’ll need to adjust our result: if the difference
between the number of months is negative, we must add 12 to this number to
get the correct positive value, and subtract one from the number of years in order
to compensate. This is the same principle as “borrowing from the column to the
left” when subtracting large numbers on paper.

The same situation can occur between months and days, but the adjustment is
slightly more complex to derive. If we had dates of "22 Jun, 2006" and "19
Jul, 2006", we’d get a month difference of one and a day difference of -3, but
when we “borrow a month’s worth of days” we need to do a bit of extra work,
because different months have different numbers of days.

We need to know how many days are in the month before our future month, be-
cause that’s where those remainder days will come from. To calculate this figure,
we need to know if the future year is a leap year. That’s the purpose of the ternary
expression in the second (February) member of the mlengths array, which has a
condition that expresses the rules for leap years:

File: get-time-between.js (excerpt)

var ynum = future.getFullYear();

var mlengths = [
 31,

(ynum % 4 == 0 && ynum % 100 != 0 || ynum % 400 == 0) ?
 29 : 28,
 31,30,31,30,31,31,30,31,30,31
];

The final point to note is that we have to do the days/months conversion before
the months/years conversion, because adjusting the value for months may affect
the value for years. And we have our answer!

This handy ability to pass a date string to the Date constructor has many other
uses. Want to know on which day of the week a particular date falls?

162

Chapter 9: Working with Dates and Times

File: get-time-between.js (excerpt)

function getDayName(thedate)
{
 var dnames = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday'];

 var today = new Date(thedate);

 return dnames[today.getDay()];
}

File: get-time-between-example.js (excerpt)

var dayname = getDayName('1 Jan, 2050');
alert('1 Jan, 2050 is a ' + dayname);

Suppose we want to work with the date in a certain number of days. We can con-
struct a Date object using a number (the number of milliseconds since the UTC
epoch) instead of a string, and we can obtain that number for the current date
using the getTime method of Date. Once we have the current date in milliseconds,
and we’ve converted the number of additional days to milliseconds, we simply
need to pass the result to a new Date object:

File: get-time-between.js (excerpt)

function dateInSomeDays(n)
{
 var today = new Date();

 var seconds = today.getTime();
 seconds += n * 86400000;

 return new Date(seconds);
}

File: get-time-between-example.js (excerpt)

var future = dateInSomeDays(15);
alert('In 15 days, it will be a ' + getDayName(future));

future is a Date object set to 15 days in the future, which we can format or
process as normal.

Date Limits

Creating dates at a specific point in time is in fact a limited proposition,
though in practice you’re unlikely to come up against those limits. The range

163

Comparing Two Dates

in which we can create dates stretches +/- 100 million days from the UTC
epoch, which is roughly 275,000 years from 1970!

Formatting the Difference Between Dates
Numbers are all very well, but they’re not much use to other people if we don’t
describe what they are!

Solution
In “Comparing Two Dates”, earlier in this chapter, we obtained an array that
contained the number of years, months, and days between two dates. Now we’re
going to format those numbers into a coherent string:

File: format-time-between.js (excerpt)

function formatTimeBetween(difference)
{
 var str = ''

 if (difference[0] > 0)
 {
 str += difference[0] + ' year';
 str += difference[0] == 1 ? '' : 's';
 if (difference[1] > 0)
 {
 str += difference[2] > 0 ? ', ' : ' and ';
 }
 else
 {
 str += difference[2] > 0 ? ' and ' : '';
 }
 }

 if (difference[1] > 0)
 {
 str += difference[1] + ' month';
 str += difference[1] == 1 ? '' : 's';
 str += difference[2] > 0 ? ' and ' : '';
 }

 if (difference[2] > 0)
 {
 str += difference[2] + ' day';
 str += difference[2] == 1 ? '' : 's';

164

Chapter 9: Working with Dates and Times

 }

 return str;
}

This function takes a single argument—the array of three numbers returned by
getTimeBetween—and returns a string that’s formatted according to its content.

Let’s look into the past from now:

File: format-time-between.js (excerpt)

var since = getTimeBetween('10 Jun, 2003', '');
since = formatTimeBetween(since) + ' since Kizzy was born';
alert(since);

Or forwards, from now into the future:

File: format-time-between.js (excerpt)

var until = getTimeBetween('', '8 Sep, 2014');
until = formatTimeBetween(until) + ' until secondary school';
alert(since);

Or between any two arbitrary dates:

File: format-time-between.js (excerpt)

var between = getTimeBetween('10 Jun, 2006', '25 Dec, 2006');
between = formatTimeBetween(between) + ' from birthday to xmas';
alert(between);

Discussion
The script needs to work out which delimiter should be used for each part of the
string to ensure that, for example, a difference array of [1, 0, 3] would produce
"1 year and 3 days", rather than "1 year, 0 months and 3 days".

In this case, the delimiter is the word “and,” which comes between years and
days. If there were a nonzero number of months, “and” would come instead
between the number of months and days. In fact, if any of the figures is zero,
the structure of the output sentence will be affected. So, as we consider the de-
limiter text (if any) to use after each figure, we need to check the values of the
other figures.

We also need to add “s” to plural figures, but that’s straightforward enough: it’s
a simple case of ascertaining whether the value is one!

165

Formatting the Difference Between Dates

I structured the code in this solution to make it easier to read, but it could be
expressed in fewer (though more obscure) lines of code if we made greater use of
ternary operators:

function formatTimeBetween(difference)
{
 var str = ''
 if (difference[0] > 0)
 {
 str += difference[0]
 + ' year' + (difference[0] == 1 ? '' : 's')
 + (difference[1] > 0
 ? (difference[2] > 0 ? ', ' : ' and ')
 : (difference[2] > 0 ? ' and ' : '')
);
 }
 if (difference[1] > 0)
 {
 str += difference[1]
 + ' month' + (difference[1] == 1 ? '' : 's')
 + (difference[2] > 0 ? ' and ' : '');
 }
 if (difference[2] > 0)
 {
 str += difference[2]
 + ' day' + (difference[2] == 1 ? '' : 's');
 }
 return str;
}

Summary
Personally, I don’t believe time really exists at all, but that’s not a very useful
philosophy when you’re late for work!

In this chapter, we’ve examined some of the more useful Date methods, seen how
to compare dates to one another, and looked at various ways of formatting dates
and times. Though they’re not particularly glamorous, these tools will stand you
in good stead for your future JavaScript development.

166

Chapter 9: Working with Dates and Times

Working with Images10
In the early days of the Web, modifying images was almost the only thing you
could do with any degree of visual control in a browser. Happily, those days are
long gone, but even now images are a staple ingredient of any design that can’t
be represented with text, boxes, and solid colors alone.

We won’t be using the old DOM 0 collection document.images in this chapter,
because we don’t need it. It’s generally more future-safe to avoid these old collec-
tions, but that’s not always possible—we did use document.forms in Chapter 4,
because it provided information that we couldn’t easily derive otherwise (see
Chapter 4 for a detailed discussion).

Preloading Images
JavaScript has a built-in Image class that can be used to preload images. When
you create an Image object and set its src, the browser makes a request for that
image, thereby saving it into the cache. Subsequent calls for the same image will
draw it from the cache instead of loading it afresh.

Solution
The basic code that preloads an image looks like this:

var img = new Image();
img.src = 'chewbacca.gif';

If we have several images to preload, we can cache them more efficiently using a
for loop. And if all the images have the same file extension, we can make our
code more efficient by adding that extension when we create the image src, in-
stead of storing the extension as part of each file’s name:

File: preload-images.js (excerpt)

var imgNames = ['luke', 'obi-wan', 'chewbacca', 'han'];
var imgObjects = [];

for (var i = 0; i < imgNames.length; i++)
{
 imgObjects[i] = new Image();
 imgObjects[i].src = imgNames[i] + '.gif';
}

Discussion
Notice that we’re storing each Image object to an array as we go along, rather
than reusing the same reference for each iteration. We do so because image
loading is asynchronous (the load request is made, but the script carries on
without waiting). If we reused a single variable for all iterations, we could end
up storing only the final image in the cache, as each request would be overwritten
by the next.

We avoid this possibility by using an array to save the images—we have a unique
reference for each image, so the times and orders in which they’re loaded don’t
matter. This solution also provides a convenient set of references to our cached
Image objects, which could be useful later on.

However, once you’ve preloaded an image, you don’t actually need that same
reference to be able to use the image from the cache. Give any img element on
your page a src that’s identical to the src of an already-loaded image, and that
image will be found and shared in the cache. The same is true if you need to
preload images for background-image swapping, or other CSS effects: once you’ve
preloaded an image using this method, any further uses of that image will be
drawn from the cache (providing that the browser’s cache has not been disabled).

168

Chapter 10: Working with Images

Swapping One Image for Another
Image swapping is a well-known technique, and some of its applications are almost
irrelevant today. Mouseover-driven image swapping is a good example: the same
effect can be achieved more easily and cleanly using a block-level link and some
CSS pseudo-classes. For more information on this technique, see Chapter 4 of
The CSS Anthology: 101 Tips, Tricks & Hacks,1 also published by SitePoint.

Nonetheless, there are many uses for programmatic image changing that remain
relevant, and we’ll look at some of the more interesting applications as we progress
through this chapter. This solution introduces the basic technique.

Solution
We can perform an image swap by changing the src property of an image. We’ll
begin with a static img, so that we have an image in our page by default:

File: swap-image.html (excerpt)

<p>
 Luke's father is

</p>

Now, we need to identify that image in the DOM, and change it to some other
image, updating the alt text as we go.

As is the case with any DOM script, we can’t do this until the DOM is ready (we
discussed this in Chapter 5). To trigger it, we’ll use the addLoadListener construct
from Chapter 1 (as a better alternative to window.onload):

addLoadListener(window.onload = function()
{
 var img = document.getElementById('father');

 img.src = 'chewbacca.gif';
 img.alt = 'Chewbacca';
});

1 http://www.sitepoint.com/books/cssant1/

169

Swapping One Image for Another

http://www.sitepoint.com/books/cssant1/

Discussion
When you perform an image swap, the new image is loaded into the placeholder
of the first. So, if you’ve defined width and height attributes on the original
 tag, the new image will be displayed at those same dimensions.

However, we can resize an image after swapping it: we load the new image into
an Image object, read the width and height properties from that object, then
set the corresponding properties of the img element in the document.

Of course, we can’t read those values until the new image has loaded, so we can’t
just slap the image into the page and allow it to load in its own time. Instead, we
can preload the image using the technique we’ve just seen, bind an onload handler
to read the image’s width and height once it has loaded, then perform the image
swap with the correct dimensions, as follows:

File: swap-image.js (excerpt)

addLoadListener(function()
{
 var img = document.getElementById('father');

 var newimg = new Image();

 newimg.onload = function()
 {
 img.src = newimg.src;
 img.width = newimg.width;
 img.height = newimg.height;
 }

 newimg.src = 'chewbacca.gif';
});

Note that we set up the onload handler before assigning the file name to the src
property. If we had assigned the src first, the load event might occur before the
onload event handler were in place to respond to it.2

Beware of this

More experienced coders might think to refer to newimg using the special
variable this within the onload event handler. Within event handlers,

2 In particular, this can happen with cached images in Safari.

170

Chapter 10: Working with Images

this generally provides a reference to the object that the handler was as-
signed to.

Unfortunately, due to an apparent bug in Safari 1.3 and 2.0, this points
to window in onload event handlers for Image objects. We must therefore
continue to refer to the image as newimg in the above example.

Our final output will change, as Figure 10.1 illustrates.

Figure 10.1. Before and after the image swap

Displaying an Image at Random
Displaying a random image is a trick that comes in handy for promotional as
well as decorative purposes–it’s often used for tasks like selecting a banner advert-
isement, or choosing a random product shot to display on an ecommerce site.

Solution
The process of presenting a random image is just like a regular image swap, but
instead of having a single, named image, we choose an image at random from a
group of images stored in an array. We start with the same static img as before:

File: random-image.html (excerpt)

<p>
 Luke's father is

</p>

Next, the script defines a choice of images (with corresponding alt text), and
selects one of them using a constrained random number (a technique we saw in
“Creating and Constraining Random Numbers” in Chapter 2):

171

Displaying an Image at Random

File: random-image.js (excerpt)

addLoadListener(function()
{
 var people = [
 ['darth', 'Darth Vader'],
 ['palpatine', 'Emperor Palpatine'],
 ['boba', 'Boba Fett'],
 ['chewbacca', 'Chewbacca']
];

 var n = Math.floor(Math.random() * people.length);

 var img = document.getElementById('father');

 img.src = people[n][0] + '.gif';
 img.alt = people[n][1];
});

Discussion
We don’t preload the selection of images because we’ll only need one of them,
once, but this solution does assume that the new image is the same size as the
original. If that’s not the case, we could preload the image and read its properties
before doing the switch, as we saw in “Swapping One Image for Another”.

We could also add weighting to the choice, so that some options are given pref-
erence over others. Weighted random selections are especially useful to those
who write games and puzzles, and can be achieved in several ways.

If we simply want to make a choice, using a random number as part of an if
condition will do the trick:

if (Math.floor(Math.random() * 4)) == 0)
{
 � do something here
}

Here we’ve said, “if a random number between zero and three (inclusive) is zero,”
we’ll perform the given action—that’s a one-in-four probability.

But in this instance, what we want is to weight the outcome of a random selection,
so we select a constrained number, then modify it according to a degree of
probability:

172

Chapter 10: Working with Images

var n = Math.floor(Math.random() * 4);

if (n > 0 && Math.floor(Math.random() * 2) == 0)
{
 n = 0;
}

Here we’ve said, “if a random number, n, between zero and three (inclusive) is
not zero, and a different random number between zero and one (inclusive) is zero,
then set n to zero.” So, when n is first generated, there’s a one-in-four chance
that it will be each of the possible values: 0, 1, 2, or 3. But there’s a one-in-two
chance that the values 1, 2, and 3 will be reset to zero, so the probability of each
of these values occurring is reduced to one-in-eight. We add a probability of
three-in-eight to the original one-in-four probability of the value 0 occurring, to
get five-in-eight. The resulting probability distribution for this example is shown
in Table 10.1.

Table 10.1. Probability distribution

ProbabilityValue of n

62.5%0

12.5%1

12.5%2

12.5%3

Making a Slideshow of Several Images
If you have a group of photographs to display, you might decide to offer them
as an automated slideshow.

Solution
For this solution, we’ll be dealing with high-resolution photographs, and since
each image is likely to be quite large, we could be hanging around a long time
waiting to preload them all. So instead of caching all the images in advance, we’re
going to stagger the loading: if we load the next image while the previous one is
being displayed, we’ll spare our viewers from sitting there watching the photos
download line by agonizing line.

The only HTML we need is for the default photograph:

173

Making a Slideshow of Several Images

File: slideshow.html (excerpt)

<img id="photo" src="photos/cliffs.jpg"
 alt="A view of the cliffs from the beach at Colwyn Bay">

The slideshow scripting looks like this:

File: slideshow.js (excerpt)

// length of slideshow timer (seconds)
var timer = 5;

// array of photo names
var photos = [
 ['cliffs', 'A view of the cliffs from the beach at Colwyn Bay'],
 ['moon', 'A full moon shining over the sea'],
 ['landscape', 'A barren desert landscape with very few trees'],
 ['river', 'The river Yangtze snaking off into the distance'],
 ['cave', 'The candle-shaped view from inside Merlin\'s cave'],
 ['beach', 'A small, stony beach at Crackington Haven']
];

var img, count = 1;

function startSlideshow()
{
 img = document.getElementById('photo');
 window.setTimeout('cueNextSlide()', timer * 1000);
}

function cueNextSlide()
{
 var next = new Image();

 next.onerror = function()
 {
 alert('Failed to load next image');
 };

 next.onload = function()
 {
 img.src = next.src;
 img.alt = photos[count][1];

 img.width = next.width;
 img.height = next.height;

 if (++count == photos.length) { count = 0; }

174

Chapter 10: Working with Images

 window.setTimeout('cueNextSlide()', timer * 1000);
 };

 next.src = 'photos/' + photos[count][0] + '.jpg';
}

addLoadListener(startSlideshow);

The first two values define the duration for which each slide remains on screen
(in seconds), and the array of photos, respectively. Each member of the photos
array is itself an array that contains the image name and its corresponding alt
text. Since all the images are of the same file type (.jpg), we can shorten our
code by adding that extension at the end of each image request, rather than
storing it as part of the filename.

Discussion
The slideshow animation is controlled using a built-in JavaScript function called
setTimeout, which is used to call a function once, after a set time period. The
basic syntax looks like this:

window.setTimeout('functionName()', delay);

Here, functionName is the name of the function to call (you can even supply argu-
ments, if required), and delay is the length of the delay in milliseconds. We’ll be
using this again later in the chapter, but for more details about setTimeout and
its uses, please see Chapter 14.

Using Intuitive Values

We define the speed of our slideshow animation as a value in seconds, then
convert it to milliseconds within the function, rather than defining it initially
as a value in milliseconds. We do this simply because it’s easier to deal with
the timeframes in seconds than in milliseconds. When you’re setting up
global variables to configure your script like this, it’s a good idea to make
them as intuitive as possible.

With each iteration we load the next photo, then cue the start of the next iteration
from that image’s load event. Since each iteration is delayed on a timer, the im-
age’s loading time can be absorbed into the overall delay. Obviously, we can’t
predict exactly how long each iteration will take, but we can estimate the time
interval based on the average size of the images. An estimate is fine, because no
one’s likely to notice the small differences in the loading times of the various

175

Making a Slideshow of Several Images

slides, and you can be absolutely confident that an image will never be displayed
before it’s fully loaded.

A further consideration when changing each image is that the next one might
not (in fact, it probably won’t) be the same size as the previous one. But, since
we preload each image before it’s displayed, that’s no problem, either: we read
the width and height properties from the Image object, then change the dimen-
sions of our photo accordingly when we swap it.

Making an Image Fade in or out
Fading images is a cool trick (provided it’s used judiciously!), and one that’s
surprisingly easy to implement in most browsers. To create the effect, we’ll use
a combination of standard and proprietary properties.

Solution
Let’s begin with the two images we’d like to fade between:

We also need some static CSS to define the initial opacity of those images (IE’s
opacity filter takes an integer between zero and 100, while the opacity models
used by other browsers use a floating-point number between 0 and 1). Both images
are absolutely positioned, so that they’re superimposed, and since the after
image has zero opacity, only before will be visible by default:

File: fade-image.css

#before
{
 opacity:1;
 -moz-opacity:1;
 -khtml-opacity:1;
 filter: alpha(opacity=100);
}

#after
{
 opacity:0;
 -moz-opacity:0;
 -khtml-opacity:0;
 filter: alpha(opacity=0);

176

Chapter 10: Working with Images

}

#before, #after
{
 position: absolute;
 left: 10px;
 top: 10px;
}

If Opacity is not Supported …

In browsers that don’t support opacity, like Opera 8.5, both images will be
displayed by default. But, as they’re superimposed, and the after image
will appear on top, only that image will actually be visible to users of these
browsers. This is the same visual state we’ll reach at the end of our scripted
transition.

With the CSS locked in, we can add some scripting to create the fade animations.
First, we’ll use an initialization function that detects which opacity model is in
use, defines a reference to the object we want to fade, and determines the number
of opacity steps that will be used in the animation, based on the requested dura-
tion of the fade, and a global fps (frames per second) variable:

File: fade-image.js (excerpt)

var fps = 10;

function fade(img, time, dir)
{
 img = document.getElementById(img);
 var steps = time * fps;

 if (typeof img.style.opacity != 'undefined')
 {
 var otype = 'w3c';
 }
 else if (typeof img.style.MozOpacity != 'undefined')
 {
 otype = 'moz';
 }
 else if (typeof img.style.KhtmlOpacity != 'undefined')
 {
 otype = 'khtml';
 }
 else if (typeof img.filters == 'object')
 {

177

Making an Image Fade in or out

 otype = (img.filters.length > 0
 && typeof img.filters.alpha == 'object'
 && typeof img.filters.alpha.opacity == 'number')
 ? 'ie' : 'none';
 }
 else { otype = 'none'; }

 if (otype != 'none')
 {
 if (dir == 'out') { dofade(steps, img, 1, false, otype); }
 else { dofade(steps, img, 0, true, otype); }
 }
}

The fade function then calls dofade. Which arguments it passes to this function
depend on the value of dir (the fade direction argument). It’s this function that
actually controls the animation:

File: fade-image.js (excerpt)

function dofade(steps, img, value, targetvisibility, otype)
{
 value += (targetvisibility ? 1 : -1) / steps;
 if (targetvisibility ? value > 1 : value < 0)
 value = targetvisibility ? 1 : 0;

 setfade(img, value, otype);

 if (targetvisibility ? value < 1 : value > 0)
 {
 setTimeout(function()
 {
 dofade(steps, img, value, targetvisibility, otype);
 }, 1000 / fps);
 }
}

To avoid undue repetition in our code, the actual application of opacity is abstrac-
ted into another function, setfade:

File: fade-image.js (excerpt)

function setfade(img, value, otype)
{
 switch(otype)
 {
 case 'ie':

178

Chapter 10: Working with Images

 img.filters.alpha.opacity = value * 100;
 break;

 case 'khtml':
 img.style.KhtmlOpacity = value;
 break;

 case 'moz':
 img.style.MozOpacity = (value == 1 ? 0.9999999 : value);
 break;

 default:
 img.style.opacity = (value == 1 ? 0.9999999 : value);
 }
}

Finally, we’re ready to use the script! To do so, we call the fade function with
the necessary arguments—the id of the image object, the fade duration (in
seconds), and the fade direction ('in' or 'out'):

File: fade-image.js (excerpt)

addLoadListener(function()
{
 fade('before', 5, 'out');
 fade('after', 5, 'in');
});

In supporting browsers, our images will cross-fade nicely from one to the other,
as shown in Figure 10.2.

Figure 10.2. A cross-fade between two images

Discussion
The fade function starts by defining the variables we need for our animation:
img is a reference to the image we’re fading, and steps is the number of animation

179

Making an Image Fade in or out

frames that are needed to complete the animation in the specified time at the
target frame rate (fps).

Once we’ve identified our animation properties, we use feature detection to find
out which opacity model is being used by the browser. There are four different
models: the standard opacity property supported in recent versions of Mozilla
and Safari; the MozOpacity property of earlier Mozilla builds; the KhtmlOpacity
of earlier Safari builds; and finally, the filters.alpha.opacity used by Internet
Explorer 5.5 or later.

Looking into Opacity

The opacity property is defined in CSS 3,3 but only very recent browser
builds implement this standard syntax. The earlier opacity models of Mozilla
and KHTML browsers were implemented before the standards were stable,
and therefore used vendor-specific prefixes4 (-moz- and -khtml-) to avoid
any conflicts with the standards. Internet Explorer has had opacity much
longer than any of its counterparts—since the release of IE 5.5—but its im-
plementation uses a vendor-specific property name (filter), which unfor-
tunately means that a standard property with the same name can never be
safely implemented by the standards.

We need to do some additional drilling in Internet Explorer to weed out IE 5.0
for Windows and IE 5 for Mac, neither of which supports filters or opacity,
though both return values for these properties, nonetheless:

File: fade-image.js (excerpt)

else if (typeof img.filters == 'object')
{
 otype = (img.filters.length > 0
 && typeof img.filters.alpha == 'object'
 && typeof img.filters.alpha.opacity == 'number')
 ? 'ie' : 'none';
}

Finally, once we’ve calculated all the values we need, we can pass them to the
animation function, dofade. This function increments or decrements the opacity
of the image, then uses setTimeout to call dofade for the next step of the anim-
ation after a delay.

3 http://www.w3.org/TR/2003/CR-css3-color-20030514/#transparency
4 http://www.w3.org/TR/CSS21/syndata.html#q4

180

Chapter 10: Working with Images

http://www.w3.org/TR/2003/CR-css3-color-20030514/#transparency
http://www.w3.org/TR/CSS21/syndata.html#q4

We Have Closure

This example’s setTimeout syntax uses a closure around the call to the
fade function. This allows us to pass its arguments directly from the parent
scope, instead of having to store them in global variables. For more about
scope and inheritance, see Chapter 19.

But, when we actually apply the opacity values (in the setfade function), we
have one more browser quirk to deal with—surprisingly, with Firefox. It has an
unfortunate rendering issue with animated opacity, which can cause a visual
“popping” effect when the opacity is set to 1. But if we set the value to just below
1—to 0.9999999, for example—we can avoid the issue without making any visible
difference to the effect.

Cross-fade or Straight Fade?

If you look closely at Figure 10.2, you’ll see that our cross-fade effect has an
unfortunate side-effect. As one image fades out and the other fades in, the
white page background is visible through our semitransparent images. This
washes out the colors in both images during the animation.

A more seamless and attractive fade effect can be achieved by performing a
straight fade: fade in the “after” image on top of the “before” image, leaving
the “before” image fully opaque for the duration of the animation. The colors
will transition smoothly to the “after” image without passing through that
awkward semitransparent limbo.

Of course, you can only get away with a straight fade if your images have
identical dimensions; otherwise, you could end up with the “before” image’s
edges protruding from the sides of your “after” image as it fades in. When
you’re dealing with images of different sizes, a cross-fade, as we have created
in this solution, is the best choice. To make the transparency during the
transition less jarring, try setting your images against a black background.

Making an Image-based Clock that
Updates in Real Time

An image-based clock is another one of those things that looks impressive—and
comes in handy—yet is surprisingly easy to make. The numbers are simply images,
so you can use any fonts or symbols you like to create the clock face, as the ex-
ample in Figure 10.3 shows.

181

Making an Image-based Clock that Updates in Real Time

Figure 10.3. An LCD-style clock with a six-digit display

Solution
The basic approach here is to work out the current time (using some of the
methods we saw in Chapter 9), then convert it into individual digits. We can
then apply those digits to a series of numbered images (0.gif, 1.gif, and so on),
to create the visual display.

Once again, we begin with a layout of static images:

File: image-clock.html (excerpt)

<dl id="clock">
 <dt>Current time:</dt>
 <dd>

 </dd>
</dl>

With a little CSS, this code could produce Figure 10.3.

But, in the interests of improved accessibility, I recommend that we generate the
img elements with server-side code, so that it can show the time at page load if
JavaScript is not supported.

Each of the digit images is a placeholder for a number between zero and nine.
We need to cache those images first, so that there’s not a pause before the time
is fully displayed:

File: image-clock.js (excerpt)

var digits = [];
for (var i = 0; i < 10; i++)
{
 digits[i] = new Image();

182

Chapter 10: Working with Images

 digits[i].src = 'digits/' + i + '.gif';
}

Next, we must create a function that works out the time as a six-digit array, and
applies those digits to the images:

File: image-clock.js (excerpt)

function displayTime()
{
 var now = new Date();
 var time = [];

 var hrs = now.getHours();
 hrs = (hrs < 10 ? '0' : '') + hrs;
 time[0] = hrs.charAt(0);
 time[1] = hrs.charAt(1);

 var mins = now.getMinutes();
 mins = (mins < 10 ? '0' : '') + mins;
 time[2] = mins.charAt(0);
 time[3] = mins.charAt(1);

 var secs = now.getSeconds();
 secs = (secs < 10 ? '0' : '') + secs;
 time[4] = secs.charAt(0);
 time[5] = secs.charAt(1);

 for (var i = 0; i < time.length; i++)
 {
 var digit = document.getElementById('d' + i);
 digit.src = digits[time[i]].src;
 digit.alt = time[i];
 }
}

Finally we’re ready to call the displayTime function. We call it immediately, so
that the current time is updated straight away, then call it once per second, with
setInterval, so that it runs perpetually:

File: image-clock.js (excerpt)

addLoadListener(function()
{
 displayTime();
 setInterval('displayTime()', 1000);
});

183

Making an Image-based Clock that Updates in Real Time

Discussion
We’re calculating each part of the time so that it always results in a two-digit
string. Then, we copy those characters into an array using the charAt method,
which returns the character at a particular index of a string. We always end up
with a six-character array, and once we have that, we can convert each value into
an image src. Using numbers for the image names keeps the script nice and
simple: when it all boils down, our clock really is just a bunch of image swaps on
a timer.

It’s interesting to note how the time is worked out in each iteration: we don’t
just add one second to the elapsed time; instead, we recalculate the current time
afresh. Why do that, you may wonder, when it’s easier just to add one second?

We recalculate the time in order to avoid problems with processor latency.
Applications take turns for a “slice” of CPU time, and the actual time that each
application has to wait will vary slightly. A 1000 millisecond timeout may take
1002 milliseconds, for instance, or 1004, and that latency would gradually send
the clock out of sync. Querying the system time freshly for each interval avoids
this problem. It means that the clock is never exactly right (it will always be a few
thousandths of a second slow or fast) but, overall, it stays in time with the system
clock.

We can use the same principle to make a stopwatch that, similarly, is far more
accurate than simply adding to a counter every second. We can make a stopwatch
using the same script—almost! The difference is that, instead of displaying the
current time, it displays the time elapsed since the first iteration.

To modify our existing script to do that, we first need a variable for the start
time. This must be declared globally (so it’s accessible to the displayTime func-
tion), then defined at initialization:

File: image-stopwatch.js (excerpt)

var start;
�
addLoadListener(function()
{
 start = new Date();

 displayTime();
 setInterval('displayTime()', 1000);
});

184

Chapter 10: Working with Images

Within displayTime, we need to calculate the time values in a different way.
Instead of representing the current time, the values must represent the current time
minus the start time. We can do this by obtaining the start and current time in
milliseconds (with the getTime method), subtracting one from the other, and
then repeatedly dividing that difference to get the various components of the
elapsed time:

File: image-stopwatch.js (excerpt)

var diff = (new Date().getTime() - start.getTime()) % 360000000;
var time = [];

var hrs = Math.floor(diff / 3600000);
hrs = (hrs < 10 ? '0' : '') + hrs;
time[0] = hrs.charAt(0);
time[1] = hrs.charAt(1);
diff -= hrs * 3600000;

var mins = Math.floor(diff / 60000);
mins = (mins < 10 ? '0' : '') + mins;
time[2] = mins.charAt(0);
time[3] = mins.charAt(1);
diff -= mins * 60000;

var secs = Math.floor(diff / 1000);
secs = (secs < 10 ? '0' : '') + secs;
time[4] = secs.charAt(0);
time[5] = secs.charAt(1);
diff -= secs * 1000;

You could also include milliseconds by adding the necessary img elements:

File: image-stopwatch.html (excerpt)

Now, we calculate the extra values in displayTime, just after the seconds are
calculated:

File: image-stopwatch.js (excerpt)

var millis = diff;
millis = (millis < 10 ? '0' : '') + millis;
time[6] = millis.charAt(0);
time[7] = millis.charAt(1);

185

Making an Image-based Clock that Updates in Real Time

You would also need to increase the speed of the setInterval, but there’s no
need to do it every millisecond—quite apart from that activity being incredibly
processor-intensive, you’d never be able to see the difference anyway. Once every
50 milliseconds is quite sufficient:

File: image-stopwatch.js (excerpt)

setInterval('displayTime()', 50);

Making a Progress Indicator
When you’re preloading lots of images, a progress indicator can be a useful way
to show users that something is actually happening. On an application level, it’s
an essential usability tool (can you imagine a browser with no status bar?). Thus,
although this solution is based around image preloading, it can be used more
generally for displaying progress within any web application or situation in which
progress can be distilled into a number of states over time.

The end result of this solution is depicted in Figure 10.4.

Figure 10.4. A status bar showing 50% progress

Solution
We’re going to indicate progress by updating the width of a styled span, and
changing its inner text to give both visual and textual information. The default
HTML looks like this:

File: progress-indicator.html (excerpt)

<p id="indicator">
 0%
</p>

It’s styled with this basic CSS:

File: progress-indicator.css (excerpt)

#indicator
{
 width: 200px;
 border: 1px solid #000;

186

Chapter 10: Working with Images

 background: #fff;
 color: #000;
}

#progress
{
 display: block;
 width: 0;
 background: #ccc;
}

We’ll write our script with these styles in mind by changing the width of the
span, where 0 reflects no progress and 200px shows that the process is complete.
Since the text is also updated to display the progress as a percentage figure, we
can use that data to extract the current progress from the indicator.

For a flexible solution let’s define two functions to increment the indicator by,
or set it to, a particular amount:

File: progress-indicator.js (excerpt)

function progressBy(n)
{
 var prog = document.getElementById('progress');

 var current = parseInt(prog.firstChild.nodeValue, 10);
 current += n;
 if (current > 100) { current = 100; }

 prog.style.width = (current * 2) + 'px';
 prog.firstChild.nodeValue = current + '%';
}

function progressTo(n)
{
 var prog = document.getElementById('progress');

 prog.style.width = (n * 2) + 'px';
 prog.firstChild.nodeValue = n + '%';
}

We can use these functions programmatically to control the progress indicator.
For example, we could set it to 50%:

progressTo(50);

187

Making a Progress Indicator

Or increase it by 10%:

progressBy(10);

Using this control, we can make an image loader that includes progress informa-
tion. We simply add to each image an onload handler that increases the value
of the indicator:

File: progress-indicator.js (excerpt)

addLoadListener(function()
{
 var photoNames = ['mountains', 'cliffs', 'moon'];
 var photoObjects = [];

 for (var i = 0; i < photoNames.length; i++)
 {
 photoObjects[i] = new Image();
 photoObjects[i].src = 'photos/' + photoNames[i] + '.jpg';

 photoObjects[i].onload = function()
 {
 progressBy(Math.ceil(100 / photoNames.length));
 };
 }
});

Discussion
The progressBy function should be able to accept values that add up to imprecise
amounts (e.g., not exactly 100%), but it can’t know whether a value that’s less
than that equates to completion. However, we can assert the opposite—that a
value greater than 100 equates to completion—since our values are a percentage
of completion, and by definition that can’t be greater than 100.

So what we’ll do is cap any figure that’s greater than 100; we can see from our
image loader exactly why this is necessary.

We’re calculating the progress at each load event as a percentage of the total
number of images, but since we have an odd number of images, we’re using
Math.ceil to round that value up to an integer. Rounding it down would produce
a total that was less than 100, but of course rounding it up produces a total that’s
greater than 100 (in this case, 102%). We’re relying on the figure being capped
in progressBy—this ensures that the total it displays on completion is correct.

188

Chapter 10: Working with Images

Loading a Single Image

If we were loading a single, very large image, this approach wouldn’t work:
we don’t have a number of states over time that we can pass to the progress
indicator, because the browser doesn’t give us that information. The best
approach to loading a single large image would probably be to use an anim-
ated GIF—maybe something like an hourglass animation—which was then
removed or replaced when the main image had loaded.

Summary
Using the techniques provided in this chapter, you should now be able to imple-
ment any kind of image manipulation you require. Having worked through these
solutions, you should also have a sound general approach for calculating and
displaying image loading progress.

189

Summary

190

Detecting Browser Differences11
As we saw way back in Chapter 1, the divergent threads from which the current
incarnation of JavaScript is derived at least partially explain why different browsers
implement JavaScript in different ways. Factors such as backwards compatibility,
misinterpretation of the specification, and the natural evolution that occurs in
competitive markets cause every browser’s implementation of JavaScript to have
its own peculiarities.

Yet these differences are nowhere near as damaging as out-of-the-loop observers
would have us believe. The core features of the language are remarkably stable
among modern browsers (i.e., above version 4 of Netscape and Internet Explorer).
However, there are certain areas in which some browsers’ continued support for
outdated functions makes developing two versions of code unavoidable. Event
handling, which we’ll examine in Chapter 13, is one such example.

This chapter explains how to cut through the tangle of browsers and ensure that
your code runs successfully wherever you intend it to.

Identifying Support for a Particular
Feature

To prevent your scripts from falling over in older browsers, it’s often necessary
to make sure that those browsers don’t try to execute your code. However, to try
to use browser detection techniques is to fight a losing battle. The list of browsers
and browser versions is always growing, so it’s almost impossible to keep detection
scripts up to date, and user agent strings can be counterfeited, making browser
detection much harder than it ought to be.

In most cases, by detecting a certain browser, you’re trying to make sure that the
client will run your code properly. Instead of dealing with browsers on the basis
of what they appear to be, it’s better to focus on what they can do. Detecting
whether the user’s browser has a particular feature is a simple and foolproof way
to ascertain exactly what you want to know, and is far preferable to obtaining
the browser’s name alone.

Solution
The differences between browsers’ varying implementations of JavaScript mean
that some features may be implemented using different processes, or not at all.
By detecting whether a function or property exists before you use it, you can
ensure that all compatible browsers will execute your code, while incompatible
browsers will remain unaffected.

The easiest way to detect whether a function or property exists in your current
browser is to use the typeof operator. By passing any JavaScript value, object,
class, method, or property to this operator, you are able to determine its type. If
we pass to typeof an operand that doesn’t exist in the browser, the type "un-
defined" will result.

For instance, we can test whether the current browser supports the
XMLHttpRequest class like so:

File: feature-detection.js (excerpt)

var xmlHttpExists = typeof XMLHttpRequest;

192

Chapter 11: Detecting Browser Differences

In Mozilla, Opera 8, or Safari 1.2, the value of the variable xmlhttpexists will
be "object" or "function". However, in Internet Explorer 6 and other older
browsers, the value of xmlhttpexists will be "undefined".1

This method of detection also works for functions, methods, and properties, as
well as classes. When you test functions and methods, omit the braces that follow
their names; otherwise, the script will try to identify the value that’s returned by
the function or method, which will cause an error if the function or method
doesn’t exist:

File: feature-detection.js (excerpt)

var byIdExists = typeof document.getElementById;

These tests allow us to provide alternative branches of code for browsers that
don’t support particular features:

File: feature-detection.js (excerpt)

if (typeof document.designMode != undefined)
{
 document.designMode = "on";
}
else
{
 return false;
}

Don’t Test without typeof

It’s possible to detect the existence of a feature without using typeof, as
the following code shows:

if (feature)
{
 �
}

However, this isn’t an entirely safe test. We’re trying to check whether feature
exists, not what its value is. If the value of feature happens to be false, the
condition in the code above will evaluate to false, even though feature ac-
tually exists. Furthermore, if the value of feature is the number 0, the condition
will also evaluate to false, because JavaScript treats 0 as false when
evaluating a condition.

1 For a cross-browser implementation of XMLHttpRequest see Chapter 18.

193

Identifying Support for a Particular Feature

For these reasons, it’s safer to use typeof whenever you are testing for the
existence of a feature.

Identifying a Particular Browser
While the detection of a particular feature is the most robust way to deal with
browser differences, sometimes a browser will implement a feature improperly,
or with irreparable bugs. In these instances, feature detection won’t suffice, so
we have to rely upon specific browser detection to weed them out.

Solution
Because of certain browsers’ abilities to mimic the user agent strings of other
browsers, it’s best to use feature differentiation to identify a particular browser
where possible. However, in some cases the only recourse is to rely on the
navigator object, which provides information on a number of aspects of the
browser, including the user agent string (navigator.userAgent) and the browser
vendor (navigator.vendor).

The function below uses known profiles of feature support and user agent inform-
ation to identify browsers correctly, even if they’re spoofing (using another
browser’s user agent string):

File: indentify-browser.js

function identifyBrowser()
{
 var agent = navigator.userAgent.toLowerCase();

 if (typeof navigator.vendor != "undefined" &&
 navigator.vendor == "KDE" &&
 typeof window.sidebar != "undefined")
 {
 return "kde";
 }
 else if (typeof window.opera != "undefined")
 {
 var version = parseFloat(
 agent.replace(/.*opera[\/]([^ $]+).*/, "$1"));

 if (version >= 7)
 {
 return "opera7";
 }

194

Chapter 11: Detecting Browser Differences

 else if (version >= 5)
 {
 return "opera5";
 }

 return false;
 }
 else if (typeof document.all != "undefined")
 {
 if (typeof document.getElementById != "undefined")
 {
 var browser = agent.replace(/.*ms(ie[\/][^ $]+).*/, "$1").
 replace(/ /, "");

 if (typeof document.uniqueID != "undefined")
 {
 if (browser.indexOf("5.5") != -1)
 {
 return browser.replace(/(.*5\.5).*/, "$1");
 }
 else
 {
 return browser.replace(/(.*)\..*/, "$1");
 }
 }
 else
 {
 return "ie5mac";
 }
 }

 return false;
 }
 else if (typeof document.getElementById != "undefined")
 {
 if (navigator.vendor.indexOf("Apple Computer, Inc.") != -1)
 {
 if (typeof window.XMLHttpRequest != "undefined")
 {
 return "safari1.2";
 }

 return "safari1";
 }
 else if (agent.indexOf("gecko") != -1)
 {

195

Identifying a Particular Browser

 return "mozilla";
 }
 }
 return false;
}

Firstly, Konqueror is detected using the unique navigator.vendor property of
"KDE". Versions of Konqueror prior to 3.2 offered some incomplete functionality,
so we need only worry about returning a value for this version and those that
came after it. To do so, we detect the window.sidebar object, which is only
available in version 3.2 onwards.

We check for Opera next. Although it has the propensity to identify itself as
other browsers, Opera is the only browser that has the window.opera object, so
this is an easy way to identify it. After using this condition, we can safely parse
the user agent string, as Opera’s version information is included there even if the
browser is masquerading as Mozilla or Internet Explorer. The two major milestone
releases for which we need to check are Opera 5 and Opera 7, so any version
number that’s greater than or equal to 7 will return "opera7", and anything
between that and Opera 5 will return "opera5".

Once we have detected Opera clients, it’s safe to run a test for document.all.
This is an Internet Explorer property, but it was reproduced by Opera for the
sake of compatibility. No other browser makes document.all available, so it’s a
good way to separate Internet Explorer from its competitors. Again, once inside
the condition, it’s safe to parse the user agent string for "msie". At this stage, we
can differentiate between Internet Explorer for Windows and Internet Explorer
for Mac OS. The latter doesn’t have the document.uniqueID property that other
versions of Internet Explorer include, so if that property doesn’t exist, we know
that the client is IE 5 for Mac. The version number is cut down to the integer,
except for 5.5, as this has quite a few differences from version 5.

After the Internet Explorer code block, we filter out all ancient browsers by re-
quiring document.getElementById. Any browser that doesn’t support this
method probably won’t support much in the way of modern JavaScript, so it’s
safe to exclude such browsers. If that method is supported, we need to distinguish
between the remaining significant candidates: Mozilla and Safari.

Although Safari is fairly similar to Mozilla (even going so far as to include the
word “gecko” in its user agent string), it always has the navigator.vendor value
of "Apple Computer, Inc.". Version 1.2 of Safari boasted notable improvements
over its predecessors, including bug fixes to its rendering capabilities, and support

196

Chapter 11: Detecting Browser Differences

for XMLHttpRequest, so it’s worthwhile testing for this version in case we need
it.

With Safari out of the way, it’s safe to look for "gecko" in the user agent, and
pronounce the browser to be Mozilla if "gecko" is present. There are so many
different variations of the Mozilla/Gecko engine that it’s not really feasible to
check for different versions of this, but if you require it, you can always interrogate
navigator.userAgent within your own code.

Any browser that’s not mentioned above can be assumed to have inadequate
JavaScript or DOM support, and false will be returned.

By calling identifyBrowser, you’ll receive a string that tells you the browser
type and version (if applicable), as listed in Table 11.1.

Table 11.1. Browser identification strings

identifyBrowser stringBrowser

falseUnsupported browsers

"kde"Konqueror 3.2 and above

"opera5"Opera 5 and Opera 6

"opera7"Opera 7 and above

"ie5"Internet Explorer 5

"ie5mac"Internet Explorer 5 for Mac

"ie5.5"Internet Explorer 5.5

"ie6", "ie7", etc.Internet Explorer 6 and above

"mozilla"Mozilla/Firefox

"safari1"Safari 1.0 and 1.1

"safari1.2"Safari 1.2+

Discussion
In addition to identifying the browser, sometimes it’s helpful to know which
operating system the browser is running on. This information is included in the
user agent string, so it’s fairly easy to check that string for any matching operating
systems:

197

Identifying a Particular Browser

File: indentify-os.js

function identifyOS()
{
 var agent = navigator.userAgent.toLowerCase();

 if (agent.indexOf("win") != -1)
 {
 return "win";
 }
 else if (agent.indexOf("mac") != -1)
 {
 return "mac";
 }
 else
 {
 return "unix";
 }

 return false;
}

Detecting Quirks Mode and Standards
Mode

If you’re familiar with CSS, you’ll probably be familiar with Quirks mode and
Standards mode. Modern browsers use these two modes to handle the same page
differently, employing either the rules that were used by older versions of the
browser, or more up-to-date, standards-compliant rules. The mode can affect the
way that a page is displayed, so it can be useful to know which mode the browser
is using before you change the dimensions or visual properties of elements on
the page.

Solution
You can determine whether browsers are handling a document using Standards
or Quirks mode by reading the document.compatMode property. If they’re running
in Quirks mode, most browsers will assign a value of "BackCompat" to this
property (although Opera uses the value "QuirksMode"); browsers in Standards
mode will return "CSS1Compat" (at present). Based on this, it’s safest to test for
"CSS1Compat" and, if this is not returned, to assume that the browser is running
in Quirks mode:

198

Chapter 11: Detecting Browser Differences

File: quirksmode.js (excerpt)

function detectQuirksMode()
{
 if (typeof document.compatMode != "undefined" &&
 /CSS.Compat/.test(document.compatMode))
 {
 return false;
 }

 return true;
}

In a document that is rendered in Quirks mode, detectQuirksMode will return
true; otherwise, it will return false.

Discussion
The toggle between Quirks and Standards modes is based upon the DOCTYPE
declaration at the top of a page. HTML documents without a DOCTYPE will be
handled in Quirks mode automatically, but the presence of a DOCTYPE does
not exclude the possibility that a document will be rendered in Quirks mode.

For information on the effects of DOCTYPEs, see Holly Bergevin’s article on the
subject.2

Most of the differences between Quirks mode and Standards mode are related
to CSS. So if your JavaScript deals with the styling of elements, it will have to
deal appropriately with CSS rules. Quirks mode is generally more lenient—it
doesn’t enforce rules such as the requirement for units on nonzero values—but
perhaps the most important discrepancy is the difference in box model calcula-
tions, specifically in the way element dimensions are calculated. A more thorough
breakdown of the differences between Quirks mode and Standards mode is
available in Eric Meyer’s article on the topic.3

Omitting a DOCTYPE from a page will have little effect on the execution of your
JavaScript, though. The only browser that’s affected is Internet Explorer 6, which
rearranges some of the properties that are used to ascertain window and page
dimensions (as noted in Chapter 7).

2 http://www.communitymx.com/content/article.cfm?cid=85FEE
3 http://www.ericmeyeroncss.com/bonus/render-mode.html

199

Detecting Quirks Mode and Standards Mode

http://www.communitymx.com/content/article.cfm?cid=85FEE
http://www.communitymx.com/content/article.cfm?cid=85FEE
http://www.ericmeyeroncss.com/bonus/render-mode.html

Summary
Although there are differences between the browsers that access your client-side
code, this chapter has shown you how to structure your code to handle those
differences gracefully.

Whether you need to subtly test for new functionality, or you require the brute
force method of individual browser selection, these scripts will let you execute
your JavaScript correctly now—and well into the future.

200

Chapter 11: Detecting Browser Differences

Using JavaScript with CSS12
Traditionally, JavaScript and CSS form two separate aspects of web page archi-
tecture: behavior and style. However, the inclusion of CSS in the DOM, and
JavaScript’s ability to manipulate DOM elements, means that the line that divides
the two can easily become blurred. The benefits, though, justify such blurring:
using CSS and JavaScript, we are able to modify a page’s style dynamically and
in immediate response to user interaction.

This chapter explains several techniques that we can use to affect the CSS that’s
applied to documents, to gain selective control over individual elements, or facil-
itate broad-brush changes across the entire page.

Changing the Style of a Single Element
Although the DOM’s style syntax might seem verbose when compared with CSS,
JavaScript makes it easy to implement incremental style changes to, for instance,
the size, positioning, or color of an element.

Solution
The DOM provides a style object as a property of every element. The style
object represents the style attribute in an element’s HTML tag, and contains
the various CSS properties, providing us very granular control over an element’s

style. The syntax of the style object closely mirrors the syntax used in CSS.
Properties that contain hyphens are replaced with camel casing, so font-size
becomes fontSize and margin-top becomes marginTop.

Accessing float

Because the word “float” is already reserved in JavaScript, it’s not possible
to access an object’s floatCSS property using style.float. In fact,
browsers use different terms for the float property: Internet Explorer uses
style.styleFloat, while all other browsers use the W3C-specified
style.cssFloat.

A complete list of the standard DOM CSS 2 properties interface can be
found in the W3C’s DOM CSS Recommendation.1

To set a style via the style object, we must assign a valid CSS string value to
the property we wish to affect. As an example, consider the CSS-styled heading
shown in Figure 12.1.

Figure 12.1. A heading styled with CSS

We can change that heading text to white, and the background color to black,
using JavaScript:

File: style_single_element.js (excerpt)

var heading = document.getElementById("heading");

heading.style.color = "#FFFFFF";
heading.style.backgroundColor = "#000000";

The heading now looks like Figure 12.2.

1 http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSS2Properties

202

Chapter 12: Using JavaScript with CSS

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSS2Properties

Figure 12.2. The heading after its styles have been modified using
JavaScript

Discussion
The style object is a direct representation of an element’s style attribute.
Suppose we specified the following inline styles in our HTML:

<h1 id="heading"
style="color: #FFFFFF; background-color: #000000;">

 A Stylish Heading
</h1>

We can immediately access those values using the style object:

var heading = document.getElementById("heading");

var headingColor = heading.style.color;
var headingBGColor = heading.style.backgroundColor;

The value of the variable headingColor is now "#FFFFFF"; the value of the
variable headingBGColor is now "#000000".

But, if a property has been set in some other manner—such as via a linked style
sheet, or a <style> tag in the head of the document—those values will not be
reflected in the corresponding property within the style object.

If you wish to obtain the current styles of an element, irrespective of their source,
skip one section to “Retrieving the Computed Style of an Element”.

Changing the Style of a Group of
Elements

CSS is designed to allow groups of elements to be styled easily with a single se-
lector. In Chapter 5, we saw how to add classes to, and remove them from ele-

203

Changing the Style of a Group of Elements

ments; this knowledge will allow you to apply pre-written CSS to elements via
JavaScript. However, if you want to create your styles on the fly, things become
complicated: the current state of style sheet handling in browsers causes a few
problems, as we’ll see later in this chapter.

This solution is a more straightforward—but calculation-intensive—solution that
we can achieve using some of the basic principles we’ve already explored.

Solution
We know that we can change the style of an individual element using its style
object. Extending this, we can modify the style of a group of elements by changing
the style of each element individually.

To change the style of every paragraph on a page so that the text is red, we need
first to get a collection that contains every paragraph. Then, we can iterate through
each of the paragraphs, changing their styles. We can do this easily using the
getElementsByTagName method:

File: style_group_elements.js (excerpt)

var paragraphs = document.getElementsByTagName("p");

for (var i = 0; i < paragraphs.length; i++)
{
 paragraphs[i].style.color = "#FF0000";
}

As you can see above, to modify a group of elements, all we require is to have
those elements in a collection that we can iterate through. Using
getElementsByTagName, and the custom function getElementsByAttribute,
which we saw in Chapter 5, it’s easy to obtain the group of elements we want to
change, and to modify their styles using a for loop.

Retrieving the Computed Style of an
Element

We can specify the style of an element within an HTML document in three ways:
using inline styles, style declarations in the head of the page, and external CSS
files. Although an element’s visual appearance is calculated initially by combining
all of these sources and determining which style rules will apply, only the inline

204

Chapter 12: Using JavaScript with CSS

styles are accessible via an element’s style object. If you specify CSS styles in
any other location, the corresponding style object property will be blank.

The computed style of an element takes into account all of the sources from
which an element can receive its styling, and calculates the values for that ele-
ment’s CSS properties. These computed styles are accessible via JavaScript, but
not through the style object—it takes a bit more code to get to them.

Solution
Current versions of Internet Explorer do not implement the DOM standard
method for retrieving the computed styles of an element, so we need to use a
code branch to get this information in a cross-browser fashion.

Under the W3C DOM, an element’s computed styles can be retrieved from a
document’s rendering space—document.defaultView—using the
getComputedStyle method. When this method is supplied with an element ref-
erence, it returns a CSSStyleDeclaration object that behaves similarly to an
element’s child style object. It’s a little complex, perhaps, but it boils down to
this:

var heading = document.getElementById("heading");
var computedStyle = document.defaultView.getComputedStyle(heading,
 null);
var computedFontFamily = computedStyle.fontFamily;

The value of the variable computedFontFamily is now "sans-serif".

Internet Explorer likes to make things a bit easier. Using the proprietary element
property currentStyle, we can retrieve the computed style with the syntax we
applied to the style object:

var heading = document.getElementById("heading");
var computedFontFamily = heading.currentStyle.fontFamily;

The value of the variable computedFontFamily is now "sans-serif".

If we combine these approaches, we can create a cross-browser function for re-
trieving the computed style:

File: retrieve_computed_style.js (excerpt)

function retrieveComputedStyle(element, styleProperty)
{
 var computedStyle = null;

205

Retrieving the Computed Style of an Element

 if (typeof element.currentStyle != "undefined")
 {
 computedStyle = element.currentStyle;
 }
 else
 {
 computedStyle = document.defaultView.getComputedStyle(element,
 null);
 }

 return computedStyle[styleProperty];
}

Beware of Inconsistent Values

Even though retrieveComputedStyle creates a cross-browser method for
obtaining the value of a computed style, the value that you receive mightn’t
be consistent across browsers.

Internet Explorer’s currentStyle object will return the specified style value
for the element exactly as it was written in the source. Suppose you have a
style selector like this:

#heading
{
 width: 10em;
}

In this case, the property heading.currentStyle.width will return
"10em".

The W3C-specified method getComputedStyle normalizes all values to
predefined units. This means that dimension units such as ems, millimeters,
points, and percentages will automatically be converted into pixels, hex color
values will be converted into rgb(x,x,x), and so on.

The computed style value returned by getComputedStyle for the width
of the object specified above will always be returned in pixels, but it will vary
depending upon the value of an em as calculated for that particular element.

It’s arguable which method is best, but you should be aware of this difference
if you choose to work with computed styles.

206

Chapter 12: Using JavaScript with CSS

Making a Style Sheet Switcher
Alternative style sheets are one of the most impressive examples of the power of
CSS; they give a page the ability to change costumes in the blink of an eye. Al-
though style sheet switching can be implemented on the server side, JavaScript
offers a far more fluid and seamless solution.

Solution
We can link to countless alternative style sheets from the head of a document.
The style sheets are not applied to the page unless they are specifically selected
either by the user, or JavaScript.

The Importance of link

Although there are numerous ways to specify styles, style switching only
works with style sheets that are referenced via link elements.

Imagine that we’ve specified some alternate style sheets like this:

File: style_sheet_switcher.html (excerpt)

<head>
 �
 <link id="styleSerif" rel="alternate stylesheet" type="text/css"
 href="css/text_serif.css" title="Serif Text">
 <link id="styleInverted" rel="alternate stylesheet"
 type="text/css" href="css/inverted.css"
 title="Inverted Color Scheme">
 �
</head>

We can make a style switcher by looking through all the link elements on the
page, finding the ones that are style sheets with titles, and turning on the one
we need:

File: style_sheet_switcher.js (excerpt)

function switchStyleSheet(title)
{
 var links = document.getElementsByTagName("link");

 for (var i = 0; i < links.length; i++)
 {
 var rel = links[i].getAttribute("rel");

207

Making a Style Sheet Switcher

 var linkTitle = links[i].getAttribute("title");

 if (/(^|)stylesheet(|$)/.test(rel) && linkTitle != null &&
 linkTitle != "")
 {
 links[i].disabled = true;

 if (linkTitle == title)
 {
 links[i].disabled = false;
 }
 }
 }
}

switchStyleSheet starts by getting a collection of all the link elements on the
page. link elements are general pointers to resources—not necessarily to style
sheets—so, as we cycle through the collection, we check for rel attributes that
contain the keyword stylesheet, along with a title attribute. Any linked style
sheet without a title attribute is actually a persistent style sheet; we don’t want
to disable these. We want to disable only those style sheets that have titles.

The normal style-switching behavior ensures that only one titled style sheet is
active at any time. So, as we cycle through each of the titled style sheets, we turn
them off by setting their disabled property to true. The disabled property is
a Boolean that indicates whether the style sheet in question is being applied to
the page. A value of true means that the style sheet isn’t being applied, while
false means it is applied. Right after we set disabled to true, we check
whether the title of that style sheet matches the one we want. The title of
the style sheet we want to make active is passed to switchStyleSheet as its only
argument. We compare this argument to the title of the style sheet in question,
and, if the two match, set disabled to false.

Setting disabled to true

Some browsers will not activate an alternate style sheet unless you first set
the disabled property to true. Once this has been done, the style sheet
can be switched on and off.

This is automatically handled in switchStyleSheet, because we initially
set disabled to true for every style sheet anyway.

After we’ve cycled through all the link elements, we end up with our selected
style sheet activated, and all the other alternate style sheets disabled.

208

Chapter 12: Using JavaScript with CSS

Imagine that our page looks like Figure 12.3 when all alternate styles are turned
off.

Figure 12.3. The default page with no alternative styles applied

Now, let’s switch on the serif text style sheet:

switchStyleSheet("Serif Text");

Now, the page appears as in Figure 12.4.

Figure 12.4. The page with a serif style sheet applied

209

Making a Style Sheet Switcher

To ensure clean, accessible markup, we can allow users to activate
switchStyleSheet via an element such as a hyperlink or a select box that’s
created dynamically using JavaScript:

File: style_sheet_switcher.js (excerpt)

addLoadListener(initStyleSwitcher);

function initStyleSwitcher()
{
 if (identifyBrowser() != "ie5mac")
 {
 var links = document.getElementsByTagName("link");
 var newSelect = document.createElement("select");
 var defaultOption = document.createElement("option");

 defaultOption.setAttribute("value", "");
 defaultOption.appendChild(document.createTextNode(
 "Select an alternate style sheet"));
 newSelect.appendChild(defaultOption);

 for (var i = 0; i < links.length; i++)
 {
 var rel = links[i].getAttribute("rel");
 var linkTitle = links[i].getAttribute("title");

 if (/(^|)stylesheet(|$)/.test(rel) && linkTitle != null
 && linkTitle != "")
 {
 var newOption = document.createElement("option");
 newOption.setAttribute("value", linkTitle);
 newOption.appendChild(document.createTextNode(linkTitle));
 newSelect.appendChild(newOption);
 }
 }

 newSelect.onchange = function()
 {
 switchStyleSheet(this.value);
 return true;
 };

 document.getElementsByTagName("body")[0].appendChild(
 newSelect);

 return true;
 }

210

Chapter 12: Using JavaScript with CSS

 return false;
}

initStyleSwitcher cycles through the link elements on the page looking for
titled style sheets. When it finds one, it adds that style sheet as one of the options
in a select element. After all the link elements have been parsed, that select
element is added to the end of the page. Using a simple event handler, any changes
to the select list are captured, and switchStyleSheet is called with the corres-
ponding value, causing the page’s style sheets to switch.

We use the identifyBrowser function from Chapter 11 to exclude Internet Ex-
plorer 5 for Mac because it doesn’t handle the dynamic creation of select lists
very well. As such, it’s better to simply disable the switcher on this browser.

Discussion
There are actually three types of style sheet:

persistent
Persistent styles are applied at all times. A persistent style sheet is set when
a link’s rel attribute is set to stylesheet and it has no title attribute.

preferred
Preferred styles are turned on by default, but are turned off when an alternate
style sheet is activated. A preferred style sheet is set when a link’s rel attrib-
ute is set to stylesheet and it has a title attribute.

alternate
Alternate styles are turned off by default and must be selected in order to be
activated. An alternate style sheet is set when a link’s rel attribute is set to
alternate stylesheet (or stylesheet alternate) and it has a title at-
tribute.

Although JavaScript is capable of enabling and disabling any of these types of
styles, to keep our style sheet switcher compatible with the behavior offered by
the style sheet switchers that are built into some browsers, we modify only the
status of preferred and alternate style sheets.

This approach has implications for the way we structure our CSS, because pre-
ferred and alternate style sheets will always be applied in combination with any
persistent style sheets. This might mean that you need to include in an alternate

211

Making a Style Sheet Switcher

style sheet some rules that reverse the effects contained in a persistent style sheet,
or that you choose not to have any persistent style sheets at all.

It’s also possible to apply multiple alternate style sheets simultaneously, though
this is not normally desirable.

If we were to set the disabled property of both the Serif Text style sheet and
the Inverted Color Scheme style sheet to false, our page display would combine
the two, as shown in Figure 12.5.

Figure 12.5. The page with both serif text and inverted color style
sheets applied

Maintaining Alternate Style Sheet States
Allowing your users to change the style of a page with the flick of a switch is a
great idea, but it’s fairly useless if every time they go to some other page the styles
have reverted to the defaults again.

As we saw in Chapter 8, the easiest way to maintain persistence on the client
side is to write cookies that monitor users’ preferences no matter where they are
in the site. Once this cookie is written, we can check what style the user has se-
lected and apply it automatically to the current page.

212

Chapter 12: Using JavaScript with CSS

Whenever a user switches styles, we have to write a new value for the cookie:

File: style_sheet_switcher.js (excerpt)

function switchStyleSheet(title, media)
{
 �
 document.cookie = "stylesheet=" + title;
}

Simple! Now, when a page loads, we have to set the correct style sheet. The best
way to do this is on the server side—by writing the correct preferred style
sheet—but as an alternative we can include a call to switchStyleSheet in a script
that occurs after the <link> tags in the HTML source. Because the script occurs
after the <link> tags, it will execute only once the <link> tags have loaded, so
we can be sure that we won’t get errors saying that those style sheets don’t exist.
This method is preferable to using a load event listener because the document/win-
dow load event only fires after all the page content—including images—has
loaded. This often means that most of the page will already be displayed before
the load event fires, which would create a flicker in the display as our script up-
dated the page style.

Though this source order execution of the script helps to minimize flickering
between styles, it’s by no means perfect: it means that our script is no longer in-
dependent of the HTML source. However, it’s the best solution we have at the
moment:

File: style_sheet_switcher.js (excerpt)

stylesheetCookie = getCookie("stylesheet");

if (stylesheetCookie != "")
{
 switchStyleSheet(stylesheetCookie);
}

Currently, most browsers that natively handle style switching do not also maintain
the style state between different pages. This shortcoming can be rectified by the
application of a little background script that regularly checks the alternate style
sheets and writes any changes to the style sheet cookie. Then, when a user visits
another page, that person’s browser-native choice will be maintained.

Time-based functionality is explained in the next chapter, but if you put the
script below into action, it will cycle through every two seconds, checking to see
which is the currently selected style sheet:

213

Maintaining Alternate Style Sheet States

File: style_sheet_switcher.js (excerpt)

addLoadListener(checkStyleSheet);

function checkStyleSheet()
{
 if (typeof document.styleSheetLinks == "undefined")
 {
 document.styleSheetLinks = [];

 var links = document.getElementsByTagName("link");

 for (var i = 0; i < links.length; i++)
 {
 var rel = links[i].getAttribute("rel");
 var linkTitle = links[i].getAttribute("title");

 if (/(^|)stylesheet(|$)/.test(rel) && linkTitle != null
 && linkTitle != "")
 {
 document.styleSheetLinks[document.styleSheetLinks.length]
 = links[i];
 }
 }
 }

 for (var i = 0; i < document.styleSheetLinks.length; i++)
 {
 if (document.styleSheetLinks[i].disabled == false)
 {
 document.cookie = "stylesheet=" +
 document.styleSheetLinks[i].getAttribute("title");
 break;
 }
 }

 setTimeout("checkStyleSheet()", 2000);
}

Because this is a repetitive function, checkStyleSheet creates as a child of the
document a special object that is an array of the alternate style sheets on the page.
By using this object we avoid having to search for all the style sheets every time
checkStyleSheet is called. Instead, on successive executions, checkStyleSheet
simply runs through the array of style sheets and checks whether disabled is set
to false in any of them. If a user selects a style sheet through the browser, that
selection will change the disabled property for that style sheet, and we will detect

214

Chapter 12: Using JavaScript with CSS

it. We can then write the style sheet value to a cookie, and store the user’s choice
for retrieval when they visit another page.

The execution time of two seconds is a reasonable period that balances the per-
formance cost of the calculation against its ability to capture users’ actions. Of
course, you can change this time to suit your own applications.

Making a Style Sheet Switcher that
Handles Multiple Media Types

One of the advantages of style sheets is that they can style a document specifically
to suit the display medium that is being used to view them. Both style sheets and
alternate style sheets have a media attribute that allows us to specify the media
to which that style sheet applies, with options including screen, projection,
print, speech, and braille. Using this attribute, we can also provide different
style switchers for different media.

Solution
Due to a browser bug in Internet Explorer for Windows, the style switcher we
used in the previous solution has to be modified slightly to handle different media
types. Internet Explorer does not apply alternate style sheets that have a media
attribute; however, it does apply them correctly if they are preferred style sheets.
So, to activate them, we need to change the rel attribute as well as the disabled
property:

File: style_sheet_switcher_media_types.js (excerpt)

function switchStyleSheet(title, media)
{
if (typeof media == "undefined" || media == "")

 {
 media = ".*";
 }

 var mediaPattern = new RegExp("(^|,)\s*" + media + "\s*(,|$)");

 var links = document.getElementsByTagName("link");

 for (var i = 0; i < links.length; i++)
 {
 var rel = links[i].getAttribute("rel");

215

Making a Style Sheet Switcher that Handles Multiple Media Types

 var linkTitle = links[i].getAttribute("title");

 if (/(^|)stylesheet(|$)/.test(rel) && linkTitle != null &&
 linkTitle != "")
 {

var styleMedia = links[i].getAttribute("media");
 if (styleMedia == null || styleMedia == ""
 || styleMedia == "all"
 || mediaPattern.test(styleMedia))
 {
 links[i].disabled = true;

links[i].rel = "alternate stylesheet";

 if (linkTitle == title)
 {
 links[i].disabled = false;

links[i].rel = "stylesheet";
 }

}
 }
 }

 document.cookie = "stylesheet=" + title;
}

This extended function first checks to see whether a media argument has been
passed to it. If not, it matches on all styles with the specified title attribute, ir-
respective of media type. The extra if statement makes sure that the media type
matches, or is a global type (i.e., it’s unspecified or specified as all). Our
switching code then updates the disabled and rel properties of each link ele-
ment.

Consider this page:

File: style_sheet_switcher_media_types.html (excerpt)

<head>
 �
 <link id="styleBig" rel="alternate stylesheet" type="text/css"
 href="css/text_big.css" title="Big Text" media="screen">
 <link id="styleBigP" rel="alternate stylesheet" type="text/css"
 href="css/text_big.css" title="Big Text" media="print">
 �
</head>

We execute the extended switchStyleSheet function like so:

216

Chapter 12: Using JavaScript with CSS

switchStylesheetStyleSheet("Big Text", "print");

The resulting changes will not be visible immediately in the browser, but when
we print the page, the style switch will be reflected.

Reading and Modifying an Existing Style
Sheet

Although the style object allows you to modify the styles of an element one by
one, the most efficient way to modify the styles of many elements simultaneously
is to alter the CSS rules contained in your page’s style sheets. CSS has its own
special syntax for selecting the elements to which a set of style properties should
apply, but JavaScript has full access to these rules, allowing you to change them
at will.

Solution

DOM Style Sheet Support in Flux

Dealing with the contents of style sheets is one of the areas of DOM support
that is most in flux. Currently, Opera 8.0 and below do not support the
reading or manipulation of style sheets at all, and the browsers that do sup-
port it have their own individual quirks.

If a browser does allow the manipulation of style sheets, the
document.styleSheets collection will contain references to each of the external
style sheets (specified via <link> tags or <style> tags with src attributes), as
well as to inline styles included between <style> and </style> tags. These style
sheets are indexed according to their HTML source order.

Safari document.styleSheets Collection Quirk

Safari does not include alternate style sheets in the document.styleSheets
collection, so this will affect the collection’s index numbers in this browser.

Each element in document.styleSheets offers as a property a collection that
allows you to access the rules contained in the corresponding style sheet, indexed
according to their source order. The W3C Standard defines this property as
cssRules, while Internet Explorer for Windows implements it as rules. This
difference can easily be abstracted using a simple test:

217

Reading and Modifying an Existing Style Sheet

File: read_modify_existing_style_sheet.js (excerpt)

if (typeof document.styleSheets != "undefined")
{
 var printStyleSheet = document.styleSheets[1];
 var printRules = null;

 if (typeof printStyleSheet.rules != "undefined")
 {
 printRules = printStyleSheet.rules;
 }
 else
 {
 printRules = printStyleSheet.cssRules;
 }
}

Once we have a consistent pointer to the rules collection, the CSS selector for
a particular rule can be accessed using the selectorText property, and its style
properties can be accessed using its style property. This follows the same syntax
as the style object that we used to access an individual element’s style properties
earlier in this chapter.

Imagine we have a style sheet that looks like this:

File: read_modify_existing_style_sheet.css

p {
 font-family: "Comic Sans MS", sans-serif;
 font-weight: bold;
}

a {
 text-decoration: underline;
}

Here, we cannot modify the selector text because selectorText is read-only;
however, we can change any of the style properties. So, for example, we can
change all hyperlinks to have an overline:

File: read_modify_existing_style_sheet.js (excerpt)

if (typeof document.styleSheets != "undefined")
{
 var printStyleSheet = document.styleSheets[1];
 var printRules = null;

 if (typeof printStyleSheet.rules != "undefined")

218

Chapter 12: Using JavaScript with CSS

 {
 printRules = printStyleSheet.rules;
 }
 else
 {
 printRules = printStyleSheet.cssRules;
 }

printRules[1].style.textDecoration = "overline";
}

Alternatively, instead of hard-coding the index number of the rule we want to
change, we could check each rule’s selector to find the one we want:

File: read_modify_existing_style_sheet2.js (excerpt)

for (var i = 0; i < printRules.length; i++)
{
 if (printRules[i].selectorText.toLowerCase() == "a")
 {
 printRules[i].style.textDecoration = "overline";

 break;
 }
}

IE Tag Name Quirk

Internet Explorer automatically converts to uppercase all tag names in the
CSS selectors, so a becomes A and h2 becomes H2. However, classes and
other strings retain their case. This can cause problems with string matching,
so be careful to take into account character case differences. This is why the
toLowerCase conversion method is used above.

Discussion
Unfortunately, for slightly more complex selectors, the indexing of the rules col-
lection varies wildly between browsers.

Consider grouped selectors, such as:

h2, h3, h4
{
 font-weight: bold;
}

219

Reading and Modifying an Existing Style Sheet

Internet Explorer for Windows divides each of the components into its own rule,
so effectively, it becomes three rules:

h2
{
 font-weight: bold;
}

h3
{
 font-weight: bold;
}

h4
{
 font-weight: bold;
}

Mozilla 1.6 and below also see three different rules; more recent versions see one
rule; Safari sees just the first selector, ignoring the remainder. There are quite a
few other differences in the ways different browsers represent selector syntax,
including classes and precedent operators. Details of a few of these discrepancies
are explained atQuirksMode.org2.

At this point in time, if you’re attempting to modify style sheets in a cross-browser
fashion, it’s safest to use the simplest rules possible—probably straightforward
tag name or ID selection.

Adding New Style Sheet Rules
While the previous tip explained how to modify the properties of a style sheet
rule, we can’t modify the selector for a predefined rule using that process. In order
to create a new rule, we have to use a dedicated method that’s available via the
DOM.

2 http://www.quirksmode.org/dom/changess.html

220

Chapter 12: Using JavaScript with CSS

http://www.quirksmode.org/dom/changess.html

Solution

A Sans-Safari Solution

Although Safari appears to support the DOM functions used here, it doesn’t
actually implement any of their functionality—calling them does nothing.
As such, it’s not possible to add new style sheet rules in this browser.

The W3C Standards advocate that, to add a rule to an existing style sheet, we
should use the insertRule method of the style sheet object. However, the process
isn’t quite that simple. Internet Explorer has chosen to use a completely different
method, addRule, which takes an entirely different syntax.

insertRule takes two arguments: a string containing both the selector and style
properties, and the index at which you want to insert the rule.

addRule takes three arguments: a selector string, a style properties string, and an
index (although the index is optional).

The easiest way to reconcile these differences is to write an abstracting function:

File: add_new_style_sheet_rules.js (excerpt)

function addStyleRule(styleSheet, selector, properties, index)
{
 if (typeof styleSheet.addRule != "undefined")
 {
 styleSheet.addRule(selector, properties, index);
 }
 else if (typeof styleSheet.insertRule != "undefined")
 {
 if (typeof index == "undefined")
 {
 index = styleSheet.cssRules.length;
 }

 styleSheet.insertRule(selector + " {" + properties + "}",
 index);
 }

 return true;
}

The first if statement in this function addresses the Internet Explorer approach
to adding style sheet rules, by checking for the existence of addRule, then execut-

221

Adding New Style Sheet Rules

ing the method. If only three arguments were supplied to addStyleRule (i.e., no
index was supplied), Internet Explorer will automatically append the rule to the
end of the style sheet.

The alternative to the Internet Explorer approach is to use the W3C’s insertRule
method, which is handled in the else part of the conditional. Because an index
is required by this method, we must detect whether one was passed to
addStyleRule; if not, we calculate the index of the last style rule by getting the
length of the style sheet’s cssRules array. Once this is done, we can call
insertRule with the appropriate arguments.

If we want to add to a style sheet a new rule that overlines hyperlinks when
they’re moused over, we can use this new function:

File: add_new_style_sheet_rules.js (excerpt)

if (typeof document.styleSheets != "undefined")
{
 addStyleRule(document.styleSheets[0], "a:hover",
 "text-decoration: overline");
}

Safari Workaround

Safari will report typeof styleSheet.addRule or typeof
styleSheet.insertRule as "function", but it hasn’t actually implemen-
ted either of these functions. Calling them will not produce an error, nor will
it achieve anything.

If you’re really worried about this, you can add an extra exclusion to the
condition around the addStyleRule call, using our browser detection
function identifyBrowser from Chapter 11:

if (typeof document.styleSheets != "undefined" &&
 identifyBrowser().indexOf("safari") == -1)
{
 addStyleRule(document.styleSheets[0], "a:hover",
 "text-decoration: overline");
}

We can add multiple style properties to the one rule by adding to the list inside
the property string (separating properties with semicolons, of course):

222

Chapter 12: Using JavaScript with CSS

File: add_new_style_sheet_rules2.js (excerpt)

if (typeof document.styleSheets != "undefined")
{
 addStyleRule(document.styleSheets[0], "body",

"background-color: #000000; color: #FFFFFF;");
}

Deleting a Rule from a Style Sheet
Like adding a rule, deleting a rule from a style sheet requires a dedicated DOM
method. Again, Internet Explorer uses a different method from the W3C Standard,
so a bit of massaging is required to get it to work properly.

Solution

Safari: Style Sheet Rules Stay!

Although Safari appears to support the DOM method deleteRule that’s
used here, it doesn’t actually implement any of its functionality—calling it
does nothing. It’s not possible to delete style sheet rules in this browser.

The W3C Standard method for deleting a style rule is deleteRule. Internet Ex-
plorer’s method is removeRule. Both are executed on the style sheet itself and,
luckily, they both use the same argument: the index of the rule to delete. If we
wanted to remove the first rule in the style sheet, here’s how we do it:

File: delete_rule_style_sheet.js (excerpt)

if (typeof document.styleSheets != "undefined")
{
 var printStyleSheet = document.styleSheets[0];

 if (typeof printStyleSheet.removeRule != "undefined")
 {
 printStyleSheet.removeRule(0);
 }
 else if (typeof printStyleSheet.deleteRule != "undefined")
 {
 printStyleSheet.deleteRule(0);
 }
}

223

Deleting a Rule from a Style Sheet

Creating a New Style Sheet
Usually, it will suffice to add a new style rule to an existing style sheet. However,
in rare cases you may want to create a new style sheet and add rules to this,
particularly if you want to use a media type that isn’t specified in any of the ex-
isting style sheets.

Because we’re creating an inline style sheet from scratch, we aren’t restricted by
the DOM structures required for accessing external files, so this method will work
in browsers that don’t support the addStyleRule function we created earlier, in
“Adding New Style Sheet Rules”.

Solution
The W3C Standards specify a method for creating a new style sheet, but curiously,
the newly created style sheets can’t be associated with a document. That’s kind
of pointless, don’t you think?

Thankfully, it’s possible to create a new style element on a page, then add to it
via the document.styleSheets collection. As the style element is a normal
DOM element, we can append text nodes to its contents. This enables us to
create style rules for browsers that don’t support the standard DOM style func-
tions:

File: create_new_style_sheet.js (excerpt)

addLoadListener(initNewStyleSheet);

function initNewStyleSheet()
{
 var styleSheet = createNewStyleSheet();

 addHeadStyleRule(styleSheet, "body",
 "background-color: #000000; color: #FFFFFF;");

 return true;
}

function createNewStyleSheet(media)
{
 var isSafari = /safari/.test(identifyBrowser());

 var styleSheet = document.createElement("style");

224

Chapter 12: Using JavaScript with CSS

 styleSheet.setAttribute("type", "text/css");

 if (typeof media == "undefined")
 {
 styleSheet.setAttribute("media", "all");
 }
 else
 {
 styleSheet.setAttribute("media", media);
 }

 styleSheet = document.getElementsByTagName("head")[0].
 appendChild(styleSheet);

 if (typeof document.styleSheets != "undefined" &&
 document.styleSheets.length > 0 && !isSafari)
 {
 styleSheet = document.styleSheets[
 document.styleSheets.length - 1];
 }

 return styleSheet;
}

function addHeadStyleRule(styleSheet, selector, properties)
{
 var isSafari = /safari/.test(identifyBrowser());

 if (typeof styleSheet.addRule != "undefined" && !isSafari)
 {
 styleSheet.addRule(selector, properties);
 }
 else if (typeof styleSheet.insertRule != "undefined" &&
 !isSafari)
 {
 styleSheet.insertRule(selector + " {" + properties + "}",
 styleSheet.cssRules.length);
 }
 else
 {
 styleSheet.appendChild(document.createTextNode(selector +
 " {" + properties + "}"));
 }

 return true;
}

225

Creating a New Style Sheet

Here, the addLoadListener function we saw in Chapter 1 is used to schedule
the addition of a new style sheet when the page loads. initNewStyleSheet creates
a new style sheet by calling createNewStyleSheet, then adds a rule to style the
page’s body element by calling addHeadStyleRule. Let’s look at how both these
custom functions work.

createNewStyleSheet adds a new style element to the head of the current
document. It adds this element as the last child, so any styles that are specified
inside this new style sheet will override other styles specified in the head. Although
createNewStyleSheet sets the type attribute statically, it does allow you to
specify for the style sheet a media type that’s passed in when the function is
called. You can supply any valid media type—for example, all, print, screen,
projection, and so on—but if one is not supplied, it defaults to all. The return
value from the function is a reference to the style sheet; this allows us to add
style rules to it later. A code branch appears here because the different rule addi-
tion models require different references. Browsers that support
document.styleSheets require a reference through this object, whereas less ad-
vanced browsers can use only a normal DOM node reference. The one exception
is Safari, which has a document.styleSheets object, but does not properly im-
plement any of the standard DOM style functions. It’s for this reason that we
call the function identifyBrowser (which we saw in Chapter 11) at the start of
createNewStyleSheet, and we specifically exclude Safari from returning a
document.styleSheets reference.

After the style sheet has been created, we end up with a unique reference to it.
This is assigned to the variable styleSheet, and is passed to the function
addHeadStyleRule when we want to create a new style rule. Even though they
both take the same arguments, and addHeadStyleRule builds upon the
addStyleRule function we created earlier, addHeadStyleRule is different from
addStyleRule because it’s designed specifically to add style rules to the head of
the document (i.e., not to external files). It’s for this reason that we are able to
provide backwards compatibility for browsers that don’t have special native
functions for handling style sheets.

Firstly, addHeadStyleRule has to check for Safari, to make sure that browser
doesn’t try and execute either of the DOM style functions. Then, we try to add
the specified style rule using Internet Explorer’s addRule method, or the standard
insertRule function. If either of these methods isn’t available, we resort to the
basic approach: a text node containing an appropriately formatted style rule is
appended to the contents of the style element. To simplify matters for this case,
no index is provided to either of the other two methods: we just append the rule
to the very end of the style sheet.

226

Chapter 12: Using JavaScript with CSS

With this cascade of feature detection, we can now add styles in every modern
browser. And you thought it couldn’t be done!

Summary
Determining the visual display of elements on a page is one of the most crucial
aspects of interface design. As this chapter has shown, not only can JavaScript
determine the behavior of an interface, but, via CSS, it can also change the way
that an interface appears.

This makes JavaScript doubly useful: it can apply the logic and calculations re-
quired to power an application, as well as specifying the form of that application.
This makes JavaScript a truly formidable application development environment.

227

Summary

228

Basic Dynamic HTML13
Dynamic HTML isn’t a single piece of technology that you can point to and say,
“This is DHTML.” The term is a descriptor that encompasses all of the techno-
logies that combine to make a web page dynamic: the technologies that let you
create new elements without refreshing the page, change the color of those ele-
ments, and make them expand, contract, and zoom around the screen.

DHTML uses HTML, the DOM, and CSS in combination with a client-side
scripting language—JavaScript—to bring life to what was traditionally a static
medium. In previous chapters, we learned that we can use JavaScript to manipulate
parts of a page to achieve some very handy results. DHTML provides solutions
to much more complex problems by assembling these parts into a coherent
whole—one that satisfies real-world needs, rather than programming puzzles.

This chapter explores a few of the tools we need in order to create effective user
interfaces with DHTML. It then discusses a couple of simple widgets in prepara-
tion for the more complex modules we’ll consider throughout the rest of this
book.

Handling Events
Any interaction that users have with a web page—whether they’re moving the
mouse or tapping the keyboard—will cause the browser to generate an event.

Sometimes, we want our code to respond to this interaction, so we listen for these
events, which let us know when we should execute our code.

Solution
There are two ways to handle events: the short way, and the W3C way. Each has
its pros and cons, but both allow you to execute a specified function when an
event occurs on a particular element.

The Short Way: Using Event Handlers
The shorter way of handling an event is to use the DOM 0 event handlers that
are assigned as shortcut properties of every element. Much as we saw in Chapter 5
when we discussed DOM 0 attribute shortcuts, these event handlers are not future-
proof. However, they do offer some advantages over standard W3C event
listeners:

❑ Every browser that’s currently in operation supports DOM 0 event handlers
without the need for code branching.

❑ Each function executed by a DOM 0 event handler has access to the exact
element to which the event handler was assigned. (As you’ll see later, this is
not always available in W3C event listeners.)

The main problem with utilizing DOM 0 event handlers is that they are not de-
signed to work with multiple scripts. Every time you assign a DOM 0 event
handler, you overwrite any previously assigned handler for that event. This can
interfere with the operation of multiple scripts that require event handling on
the same element. With W3C event listeners, you can apply any number of event
listeners on the same element, and enjoy the ability to remove any of them at
any time.

If you can be certain that your code will not interfere with someone else’s event
handling (e.g., you’re placing events on elements that are created dynamically in
your own script), it will be safe to use DOM 0 event handlers. But—all things
being equal—it is safer to use the W3C event listeners wherever practical, as we
do in this book.

A number of DOM 0 event handlers are available via the browser; Table 13.1
lists the most commonly used handlers.

230

Chapter 13: Basic Dynamic HTML

Table 13.1. DOM 0 event handlers

Indicated ActionW3C DOM
Event

DOM 0 Event
Handler

Remove focus from an element by clicking out-
side or tabbing away from it.

bluronblur

Focus the cursor on an element.focusonfocus

Remove focus from an element after changing
its content.

changeonchange

Move the mouse pointer over an element.mouseoveronmouseover

Move the mouse pointer out of an element.mouseoutonmouseout

Move the mouse pointer while it is over an ele-
ment.

mousemoveonmousemove

Press a mouse button while the pointer is over
an element.

mousedownonmousedown

Release a mouse button while the pointer is over
an element.

mouseuponmouseup

Press and release the main mouse button or
keyboard equivalent (Enter key) while the
pointer is over an element.

clickonclick

Double-click the main mouse button while the
pointer is over an element.

dblclickondblclick

Press a keyboard key while an element has focus.keydownonkeydown

Release a keyboard key while an element has
focus.

keyuponkeyup

Press and release a keyboard key while an ele-
ment has focus.

keypressonkeypress

Request that a form be submitted.submitonsubmit

Finish loading a page and all associated assets
(e.g., images).

loadonload

Request a new page to replace the currently-
displayed page, or close the window.

unloadonunload

In using DOM 0 event handlers, once you have a reference to the element whose
events you want to handle, it’s a simple matter of assigning a handling function
to the appropriate property:

231

The Short Way: Using Event Handlers

File: handle_events.js (excerpt)

var mylink = document.getElementById("mylink");

mylink.onclick = engage;
�
function engage()
{
 alert("Engage!");

 return false;
}

You’ll note that, in the function assignment (mylink.onclick = engage;), par-
entheses do not follow the function name. Their inclusion would execute the
function immediately, and assign the return value as the event handler. By omitting
the parentheses, you can assign the function itself to the handler. This also means
that you cannot supply arguments directly to the handling function: the function
must obtain its information through other means.

Anonymous Functions

Instead of supplying a reference to a named function, you can supply an
anonymous function for an event handler:

var mylink = document.getElementById("mylink");

mylink.onclick = function()
{
 alert("Engage!");

 return false;
}

Depending on whether you need to reuse the handling function (and your
own coding preferences), this can be an easier way of writing event handling
code.

The return value of the handling function determines whether the default action
for that event occurs. So, in the preceding code, if mybutton were a hyperlink,
its default action when clicked would be to navigate to its href location. By re-
turning false, the engage function does not allow the default action to occur,
and the hyperlink navigation will not take place. If the return value were true,
the default action would occur after the event handling function’s code had ex-
ecuted.

232

Chapter 13: Basic Dynamic HTML

When an event occurs, detailed information about the how, why, and where of
that event is written to an event object. In Internet Explorer, this takes the form
of a global window.event object, but in other browsers the object is passed as an
argument to the event-handling function. This difference is fairly easy to address
within the handling function:

File: handle_events2.js (excerpt)

function engage(event)
{
if (typeof event == "undefined")

 {
 event = window.event;
 }

 alert("The screen co-ordinates of your click were: " +
 event.screenX + ", " + event.screenY);

 return false;
}

The event object allows you to find out a range of details, such as which element
was clicked, whether any keys were pressed, the coordinates of the event (e.g.,
where the cursor was located when the mouse button was clicked), and the type
of event that triggered the function. Quite a few of the event property names are
consistent across browsers, but a few differ. The Mozilla event properties can be
viewed at the Gecko DOM Reference,1 while the Internet Explorer event proper-
ties can be seen at MSDN.2 For properties whose names vary between browsers,
the potential for associated problems can normally be rectified with a little object
detection; we’ll discuss this in detail later in this chapter.

The W3C Way (Event Listeners)
Although the DOM 0 event handlers are quick and easy, they do have limitations
(aside from the fact that eventually they will become deprecated). The main ad-
vantage of the W3C event listeners is that they natively support the addition
and removal of multiple handling functions for the same event on a single element.
Event listeners also have the capability to respond to events in several phases
(though most browsers don’t yet support this capability).

1 http://www.mozilla.org/docs/dom/domref/dom_event_ref.html
2 http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/obj_event.asp

233

The W3C Way (Event Listeners)

http://www.mozilla.org/docs/dom/domref/dom_event_ref.html
http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/obj_event.asp

In the W3C specification, an event can be added to an element using the element’s
addEventListener method, but Internet Explorer for Windows chooses to use
a method called attachEvent, which has a slightly different syntax.3

To add an event listener in every browser except Internet Explorer, you would
write code similar to this:

var mylink = document.getElementById("mylink");

mylink.addEventListener("click", engage, false);

To support Internet Explorer, you’d need this code:

var mylink = document.getElementById("mylink");

mylink.attachEvent("onclick", engage);

As well as the differing function names, it’s important to note that Internet Ex-
plorer uses the DOM 0 handler name for the event—"onclick"—rather than
the true event name: "click". The extra argument that’s supplied to
addEventListener specifies whether the listener is applied during the capture
(true) or bubble (false) event propagation phase. Event propagation is explained
in more detail in the discussion below, but bubble is really the most useful choice,
and ensures the same behavior in standards-compliant browsers as in Internet
Explorer.

The differences between these two approaches are fairly easy to work around
using an abstracting function. We can also provide a fallback for browsers that
don’t support W3C event listeners at the same time:

File: handle_events3.js (excerpt)

function attachEventListener(target, eventType, functionRef,
 capture)
{
 if (typeof target.addEventListener != "undefined")
 {
 target.addEventListener(eventType, functionRef, capture);
 }
 else if (typeof target.attachEvent != "undefined")
 {
 target.attachEvent("on" + eventType, functionRef);
 }

3 Internet Explorer for Mac doesn’t support either of these event models, so we have to rely on the
DOM 0 handlers to work with events in this browser.

234

Chapter 13: Basic Dynamic HTML

 else
 {
 eventType = "on" + eventType;

 if (typeof target[eventType] == "function")
 {
 var oldListener = target[eventType];

 target[eventType] = function()
 {
 oldListener();

 return functionRef();
 };
 }
 else
 {
 target[eventType] = functionRef;
 }
 }
}

The first two if statements deal with the standards-based and Internet Explorer
methods respectively, but the catch-all else deals with older browsers that don’t
support either of these methods, particularly Internet Explorer 5 for Mac. In this
last case, a DOM 0 event handler is used, but to ensure that multiple functions
can be used to handle a single event for a particular element, a closure is used to
execute any existing functions that are attached to the event.

Closures are an advanced feature of JavaScript that relates to scoping (which
you can read about in Chapter 19). Closures allow an inner function to reference
the variables of the containing function even after the containing function has
finished running. Simon Willison has explained their usage in relation to event
handlers in some detail.4 Suffice it to say that closures allow us to stack multiple
event handlers in browsers that don’t support W3C event listeners.

The cross-browser code for assigning an event listener is as follows:

File: handle_events3.js (excerpt)

var mylink = document.getElementById("mylink");

attachEventListener(mylink, "click", engage, false);

4 http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/

235

The W3C Way (Event Listeners)

http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/
http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/

Not (quite) the Genuine Article

Although the DOM 0 event handler fallback mimics the ability to add mul-
tiple event listeners for one event type on an element, it does not provide
exact replication of the W3C event model, because specific handlers cannot
be removed from an element.

Whereas DOM 0 handlers allowed the cancellation of an element’s default action
by returning false, W3C event listeners achieve this goal slightly differently. To
cancel a default action in this model, we need to modify the event object. Internet
Explorer requires you to set its returnValue property to false; standards-based
implementations offer the preventDefault method to do the same thing. We
can create a small function that figures out the difference for us:

File: handle_events4.js (excerpt)

function stopDefaultAction(event)
{
 event.returnValue = false;

 if (typeof event.preventDefault != "undefined")
 {
 event.preventDefault();
 }
}

We can call this function whenever we want to cancel the default action:

File: handle_events4.js (excerpt)

function engage(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 alert("Engage!");

stopDefaultAction(event);

 return false;
}

You still need to return false after executing stopDefaultAction in order to
ensure that browsers that don’t support the W3C event model will also prevent
the default action.

236

Chapter 13: Basic Dynamic HTML

Safari and W3C Event Listeners

Due to a bug in Safari, it’s impossible to cancel the default action of clicking
a hyperlink in that browser when using W3C event listeners. To achieve the
cancellation, you’ll have to use DOM 0 event handlers with a return value
of false.

Checking for attachEvent

Internet Explorer for Windows actually passes an event object to the event-
handling function when attachEvent is used to attach an event listener.
However, we still need to check for the existence of this object for any
browsers that use the old event model.

One of the advantages of using W3C event listeners is that you can remove an
individual listener from an element without disturbing any other listeners on the
same event. This is not possible using the DOM 0 handlers.

Internet Explorer uses the detachEvent method, while the standards-compliant
browsers instead specify a method called removeEventListener. Each of these
methods operates fairly similarly to its listener-adding counterpart: an event type
must be supplied along with the function that was assigned to handle that event
type. The standard method also demands to know whether the event handler
was registered to respond during the capture or bubble phase.

Here’s a function that supports this approach across browsers:

File: handle_events5.js (excerpt)

function detachEventListener(target, eventType, functionRef,
 capture)
{
 if (typeof target.removeEventListener != "undefined")
 {
 target.removeEventListener(eventType, functionRef, capture);
 }
 else if (typeof target.detachEvent != "undefined")
 {
 target.detachEvent("on" + eventType, functionRef);
 }
 else
 {
 target["on" + eventType] = null;
 }
}

237

The W3C Way (Event Listeners)

The W3C Event Model and Anonymous Functions

The W3C event model doesn’t allow for the removal of anonymous functions,
so if you need to remove an event listener, hang onto a reference to the
function in question.

In browsers that don’t support W3C event listeners, this function removes all
event handlers on the given event: it’s not possible to remove just one of them
and leave the others.

Discussion

Referencing the Target Element

Quite often, you’ll want to use the object that was the target of an event inside
the event handler itself. With DOM 0 event handlers, the use of the special
variable this inside a handling function will refer to the event target object.
Consider this code:

File: handle_events6.js (excerpt)

var mylink = document.getElementById("mylink");

mylink.onclick = engage;
�
function engage()
{
 var href = this.getAttribute("href");

 alert("Engage: " + href);

 return false;
}

Here, this refers to the link with ID mylink. We can use it to get the link’s href
attribute.

However, if you use W3C event listeners, the target of the event is stored as part
of the event object, under different properties in different browsers. Internet
Explorer stores the target as srcElement, while the standards model stores it as
target. But the element to which these properties point isn’t necessarily the
element to which the event listener was assigned. It is, in fact, the deepest element
in the hierarchy affected by the event. Take a look at the following HTML.

238

Chapter 13: Basic Dynamic HTML

File: handle_events6.html (excerpt)

<p>
 These are the voyages of the <a id="mylink"
 href="enterprise.html">starship Enterprise.
</p>

If a click event listener were placed on the paragraph and a user clicked on the
link, the paragraph’s click event handler would be executed, but the event target
that was accessible through the above-mentioned properties would be the hyper-
link. Some browsers (most notably, Safari) even go so far as to count the text
node inside the link as the target node.

We can write a function that returns the event target irrespective of which
property has been implemented, but this does not solve the problem of finding
the element to which we originally applied the event listener.5 Often, the best
resolution to this quandary is to iterate upwards from the event target provided
by the browser until we find an element that’s likely to be the element to which
we attached an event listener. To do this, we can perform checks against the
element’s tag name, class, and other attributes.

The abstracting event target function would look like this:

File: handle_events7.js (excerpt)

function getEventTarget(event)
{
 var targetElement = null;

 if (typeof event.target != "undefined")
 {
 targetElement = event.target;
 }
 else
 {
 targetElement = event.srcElement;
 }

 while (targetElement.nodeType == 3 &&
 targetElement.parentNode != null)
 {
 targetElement = targetElement.parentNode;

5 The W3C Standard specifies another property called currentTarget, which lets you get the
element to which the listener was assigned, but there is no Internet Explorer equivalent. Browsers
that support currentTarget also set up the event handler-style this variable with the same
value, but again, without Internet Explorer support, this isn’t particularly useful.

239

The W3C Way (Event Listeners)

 }

 return targetElement;
}

The if-else retrieves the event target across browsers; the while loop then finds
the first non-text-node parent if the target reported by the browser happens to
be a text node.

If we want to retrieve the element that was clicked upon, we then make a call to
getEventTarget:

File: handle_events7.js (excerpt)

var mylink = document.getElementById("mylink");

attachEventListener(mylink, "click", engage, false);
�
function engage(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while(target.nodeName.toLowerCase() != "a")
 {
 target = target.parentNode;
 }

 var href = target.getAttribute("href");

 alert("Engage: " + href);

 return true;
}

Because we know, in this case, that the event-handling function will be attached
only to links (<a> tags), we can iterate upwards from the event target, checking
for a node name of "a". The first one we find will be the link to which the
handler was assigned; this ensures that we aren’t working with some element inside
the link (such as a strong or a span).

240

Chapter 13: Basic Dynamic HTML

Obviously, this method of target finding is not ideal, and cannot be 100% accurate
unless you have knowledge of the exact HTML you’ll be working with. Recently,
much effort has gone into resolving this problem, and quite a few of the proposed
solutions offer the same this variable as is available under DOM 0 event handlers,
and in browsers that support the W3C Standard for event listeners (not Internet
Explorer).

One such solution is to make the event listening function a method of the target
object in Internet Explorer. Then, when the method is called, this will naturally
point to the object for which the method was called. This requires both the
attachEventListener and detachEventListener to be modified:

File: handle_events8.js (excerpt)

function attachEventListener(target, eventType, functionRef,
 capture)
{
 if (typeof target.addEventListener != "undefined")
 {
 target.addEventListener(eventType, functionRef, capture);
 }
 else if (typeof target.attachEvent != "undefined")
 {

var functionString = eventType + functionRef;
 target["e" + functionString] = functionRef;

 target[functionString] = function(event)
 {
 if (typeof event == "undefined")
 {
 event = window.event;
 }
 target["e" + functionString](event);
 };

 target.attachEvent("on" + eventType, target[functionString]);
 }
 else
 {
 eventType = "on" + eventType;

 if (typeof target[eventType] == "function")
 {
 var oldListener = target[eventType];

 target[eventType] = function()

241

The W3C Way (Event Listeners)

 {
 oldListener();

 return functionRef();
 }
 }
 else
 {
 target[eventType] = functionRef;
 }
 }
}

function detachEventListener(target, eventType, functionRef,
 capture)
{
 if (typeof target.removeEventListener != "undefined")
 {
 target.removeEventListener(eventType, functionRef, capture)
 }
 else if (typeof target.detachEvent != "undefined")
 {

var functionString = eventType + functionRef;

 target.detachEvent("on" + eventType, target[functionString]);

 target["e" + functionString] = null;
 target[functionString] = null;
 }
 else
 {
 target["on" + eventType] = null;
 }
}

This line of thinking was well represented in entries to Peter Paul Koch’s improved
addEvent competition.6

Another solution by Dean Edwards totally eschews the W3C event model in favor
of implementing DOM 0 event handlers with independent add and remove
abilities.7

6 http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html
7 http://dean.edwards.name/weblog/2005/10/add-event/

242

Chapter 13: Basic Dynamic HTML

http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html
http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html
http://dean.edwards.name/weblog/2005/10/add-event/
http://dean.edwards.name/weblog/2005/10/add-event/

Although both of these solutions may prove to be well written and robust, they’re
largely untested as of this writing, so we’ll stick with the approach whose flaws
we know and can handle: the one presented in the main solution. Besides, in
practice, the process of iterating to find an event’s target isn’t as unreliable as it
may appear to be.

What is Event Bubbling, and How do I Control it?

You may have noticed that we needed to supply a third argument to the W3C
Standard addEventListener method, and that a capture argument was included
in our attachEventListener function to cater for this. This argument determines
the phase of the event cycle in which the listener operates.

Suppose you have two elements, one nested inside the other:

<p>
 Nameless Ensign
</p>

When a user clicks on the link, click events will be registered on both the para-
graph and the hyperlink. The question is, which one receives the event first?

The event cycle contains two phases, and each answers this question in a different
way. In the capture phase, events work from the outside in, so the paragraph
would receive the click first, then the hyperlink. In the bubble phase, events
work from the inside out, so the anchor would receive the click before the para-
graph.

Internet Explorer and Opera only support bubbling, which is why attachEvent
doesn’t require a third argument. For browsers that support addEventListener,
if the third argument is true, the event will be caught during the capture phase;
if it is false, the event will be caught during the bubble phase.

In browsers that support both phases, the capture phase occurs first and is always
followed by the bubble phase. It’s possible for an event to be handled on the
same element in both the capture and bubbling phases, provided you set up
listeners for each phase.

These phases also highlight the fact that nested elements are affected by the same
event. If you no longer want an event to continue propagating up or down the
hierarchy (depending upon the phase) after an event listener has been triggered,
you can stop it. In Internet Explorer, this involves setting the cancelBubble

243

The W3C Way (Event Listeners)

property of the event object to true; in the W3C model, you must instead call
its stopPropagation method:

File: handle_events9.js (excerpt)

function stopEvent(event)
{
 if (typeof event.stopPropagation != "undefined")
 {
 event.stopPropagation();
 }
 else
 {
 event.cancelBubble = true;
 }
}

If we didn’t want an event to propagate further than our event handler, we’d use
this code:

File: handle_events9.js (excerpt)

var mylink = document.getElementById("mylink");

attachEventListener(mylink, "click", engage, false);

var paragraph = document.getElementsByTagName("p")[0];

attachEventListener(paragraph, "click", engage, false);

function engage(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 alert("She canna take no more cap'n!");

stopEvent(event);

 return true;
}

Although we have assigned the engage function to listen for the click event on
both the link and the paragraph that contains it, the function will only be called

244

Chapter 13: Basic Dynamic HTML

once per click, as the event’s propagation is stopped by the listener the first time
it is called.

Finding the Size of an Element
There are so many variables that affect the size of an element—content length,
CSS rules, font family, font size, line height, text zooming … the list goes on.
Add to this the fact that browsers interpret CSS dimensions and font sizes incon-
sistently, and you can never predict the dimensions at which an element will be
rendered. The only consistent way to determine an element’s size is to measure
it once it’s been rendered by the browser.

Solution
You can tell straight away that it’s going to be useful to know exactly how big an
element is. Well, the W3C can’t help: there’s no standardized way to determine
the size of an element. Thankfully, the browser-makers have more or less settled
on some DOM properties that let us figure it out.

Although box model differences mean that Internet Explorer includes padding
and borders inconsistently as part of an element’s CSS dimensions, the
offsetWidth and offsetHeight properties will consistently return an element’s
width—including padding and borders—across all browsers.

Let’s imagine that an element’s dimensions were specified in CSS like this:

File: find_size_element.css

#enterprise
{
 width: 350px;
 height: 150px;
 margin: 25px;
 border: 25px solid #000000;
 padding: 25px;
}

We can determine that element’s exact pixel width in JavaScript by checking the
corresponding offsetWidth and offsetHeight properties:

245

Finding the Size of an Element

File: find_size_element.js (excerpt)

var starShip = document.getElementById("enterprise");
var pixelWidth = starShip.offsetWidth;
var pixelHeight = starShip.offsetHeight;

In Internet Explorer 6, Opera, Mozilla, and Safari, the variable pixelWidth will
now be set to 450, and the variable pixelHeight will be set to 250. In Internet
Explorer 5/5.5, pixelWidth will be 350 and pixelHeight 150, because those are
the dimensions at which the broken box model approach used in those browsers
will render the element. The values are different across browsers, but only because
the actual rendered size differs as well. The offset dimensions consistently calculate
the exact pixel dimensions of the element.

If we did not specify the dimensions of the element, and instead left its display
up to the default block rendering (thus avoiding the box model bugs), the values
would be comparable between browsers (allowing for scrollbar width differences,
fonts, etc.).

Attaining the Correct Dimensions

In order to correctly determine the dimensions of an element you must wait
until the browser has finished rendering that element, otherwise the dimen-
sions may be different from those the user ends up seeing. There’s no guar-
anteed way to ensure that a browser has finished rendering an element, but
it’s normally safe to assume that once a window’s load event has fired, all
elements have been rendered.

Discussion
It is possible to retrieve the dimensions of an element minus its borders, but in-
cluding its padding. These values are accessed using the clientWidth and
clientHeight properties, and for the example element used above their values
would be 300 and 100 in Internet Explorer 5/5.5, and 400 and 200 in all other
browsers.

There is no property that will allow you to retrieve an element’s width without
borders or padding.

Finding the Position of an Element
Knowing the exact position of an element is very helpful when you wish to posi-
tion other elements relative to it. However, because of different browser sizes,

246

Chapter 13: Basic Dynamic HTML

font sizes, and content lengths, it’s often impossible to hard-code the position
of an element before you load a page. JavaScript offers a method to ascertain any
element’s position after the page has been rendered, so you can know exactly
where your elements are located.

Solution
The offsetTop and offsetLeft properties tell you the distance between the top
of an element and the top of its offsetParent. But what is offsetParent? Well,
it varies widely for different elements and different browsers. Sometimes it’s the
immediate containing element; other times it’s the html element; at other times
it’s nonexistent.

Thankfully, the solution is to follow the trail of offsetParents and add up their
offset positions—a method that will give you the element’s accurate absolute
position on the page in every browser.

If the element in question has no offsetParent, then the offset position of the
element itself is enough; otherwise, we add the offsets of the element to those of
its offsetParent, then repeat the process for its offsetParent (if any):

File: find_position_of_element.js (excerpt)

function getPosition(theElement)
{
 var positionX = 0;
 var positionY = 0;

 while (theElement != null)
 {
 positionX += theElement.offsetLeft;
 positionY += theElement.offsetTop;
 theElement = theElement.offsetParent;
 }

 return [positionX, positionY];
}

IE 5 for Mac Bug

Internet Explorer 5 for Mac doesn’t take the body’s margin or padding into
account when calculating the offset dimensions, so if you desire accurate
measurements in this browser, you should have zero margins and padding
on the body.

247

Finding the Position of an Element

Discussion
The method above works for simple and complex layouts; however, you may run
into problems when one or more of an element’s ancestors has its CSS position
property set to something other than static (the default).

There are so many possible combinations of nested positioning and browser dif-
ferences that it’s almost impossible to write a script that takes them all into ac-
count. If you are working with an interface that uses a lot of relative or absolute
positioning, it’s probably easiest to experiment with specific cases and write special
functions to deal with them. Here are just a few of the differences that you might
encounter:

❑ In Internet Explorer for Windows and Mozilla/Firefox, any element whose
parent is relatively positioned will not include the parent’s border in its own
offset; however, the parent’s offset will only measure to the edge of its border.
Therefore, the sum of these values will not include the border distance.

❑ In Opera and Safari, any absolutely or relatively positioned element whose
offsetParent is the body will include the body’s margin in its own offset.
The body’s offset will include its own margin as well.

❑ In Internet Explorer for Windows, any absolutely positioned element inside
a relatively positioned element will include the relatively positioned element’s
margin in its offset. The relatively positioned element will include its margin
as well.

Detecting the Position of the Mouse
Cursor

When working with mouse events, such as mouseover or mousemove, you will
often want to use the coordinates of the mouse cursor as part of your operation
(e.g., to position an element near the mouse). The solution explained below is
actually a more reliable method of location detection than the element position
detection method we discussed in “Finding the Position of an Element”, so if it’s
possible to use the following solution instead of the previous one, go for it!

248

Chapter 13: Basic Dynamic HTML

Solution
The event object contains everything you need to know to work with the position
of the cursor, although a little bit of object detection is required to ensure you
get equivalent values across all browsers.

The standard method of obtaining the cursor’s position relative to the entire page
is via the pageX and pageY properties of the event object. Internet Explorer doesn’t
support these properties, but it does include some properties that are almost the
ones we want. clientX and clientY are available in Internet Explorer, though
they measure the distance from the mouse cursor to the edges of the browser
window. In order to find the position of the cursor relative to the entire page, we
need to add the current scroll position to these dimensions. This technique was
covered in Chapter 7; let’s use the getScrollingPosition function from that
solution to retrieve the required dimensions:

File: detect_mouse_cursor.js (excerpt)

function displayCursorPosition(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var scrollingPosition = getScrollingPosition();
 var cursorPosition = [0, 0];

 if (typeof event.pageX != "undefined" &&
 typeof event.x != "undefined")
 {
 cursorPosition[0] = event.pageX;
 cursorPosition[1] = event.pageY;
 }
 else
 {
 cursorPosition[0] = event.clientX + scrollingPosition[0];
 cursorPosition[1] = event.clientY + scrollingPosition[1];
 }

 var paragraph = document.getElementsByTagName("p")[0];

 paragraph.replaceChild(document.createTextNode(
 "Your mouse is currently located at: " + cursorPosition[0] +
 "," + cursorPosition[1]), paragraph.firstChild);

249

Detecting the Position of the Mouse Cursor

 return true;
}

clientX/clientY are valid W3C DOM event properties that exist in most
browsers, so we can’t rely on their existence as an indication that we need to use
them. Instead, within our event handler, we test for the existence of pageX. Inter-
net Explorer for Mac does have pageX, but it’s an incorrect value, so we must
also check for x. x is actually a nonstandard property, but most browsers support
it (the exceptions being Opera 8+ and Internet Explorer). It’s okay that Opera
8+ doesn’t support x, because the else statement is actually a cross-browser
method for calculating the mouse cursor position except in Safari, which incorrectly
gives clientX the same value as pageX. That’s why we still need to use both
methods of calculating the cursor position.

Displaying a Tooltip when you Mouse
Over an Element

Tooltips are a helpful feature in most browsers, but they can be a bit restrictive
if you plan to use them as parts of your interface. If you’d like to use layers that
appear when you want them to, aren’t truncated, and can contain more than
plain text, why not make your own enhanced tooltips?

Solution
For this example, we’ll apply a class, hastooltip, on all the elements for which
we’d like tooltips to appear. We’ll get the information that’s going to appear in
the tooltip from each element’s title attribute:

File: tooltips.html (excerpt)

<p>
 These are the voyages of the <a class="hastooltip"
 href="enterprise.html" title="USS Enterprise (NCC-1701) …">
 starship Enterprise.
</p>

From our exploration of browser events earlier in this chapter, you’ll probably
already have realized that we need to set up some event listeners to let us know
when the layer should appear and disappear.

250

Chapter 13: Basic Dynamic HTML

Tooltips classically appear in a fixed location when you mouse over an element,
and disappear when you mouse out. Some implementations of JavaScript tooltips
also move the tooltip as the mouse moves over the element, but I personally find
this annoying. In this solution, we’ll focus on the mouseover and mouseout events:

File: tooltips.js (excerpt)

addLoadListener(initTooltips);

function initTooltips()
{
 var tips = getElementsByAttribute("class", "hastooltip");

 for (var i = 0; i < tips.length; i++)
 {
 attachEventListener(tips[i], "mouseover", showTip, false);
 attachEventListener(tips[i], "mouseout", hideTip, false);
 }

 return true;
}

We’ve already coded quite a few of the functions in this script, including
addLoadListener from Chapter 1, getElementsByAttribute from Chapter 5,
and the attachEventListener function that we created earlier in this chapter,
so the bulk of the code is in the event listener functions:

File: tooltips.js (excerpt)

function showTip(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (target.className == null ||
 !/(^|)hastooltip(|$)/.test(target.className))
 {
 target = target.parentNode;
 }

 var tip = document.createElement("div");
 var content = target.getAttribute("title");

251

Displaying a Tooltip when you Mouse Over an Element

 target.tooltip = tip;
 target.setAttribute("title", "");

 if (target.getAttribute("id") != "")
 {
 tip.setAttribute("id", target.getAttribute("id") + "tooltip");
 }

 tip.className = "tooltip";
 tip.appendChild(document.createTextNode(content));

 var scrollingPosition = getScrollingPosition();
 var cursorPosition = [0, 0];

 if (typeof event.pageX != "undefined" &&
 typeof event.x != "undefined")
 {
 cursorPosition[0] = event.pageX;
 cursorPosition[1] = event.pageY;
 }
 else
 {
 cursorPosition[0] = event.clientX + scrollingPosition[0];
 cursorPosition[1] = event.clientY + scrollingPosition[1];
 }

 tip.style.position = "absolute";
 tip.style.left = cursorPosition[0] + 10 + "px";
 tip.style.top = cursorPosition[1] + 10 + "px";
 document.getElementsByTagName("body")[0].appendChild(tip);

 return true;
}

After getting a cross-browser event object, and iterating from the base event target
element to one with a class of hastooltip, showtip goes about creating the
tooltip (a div). The content for the tooltip is taken from the title attribute of
the target element, and placed into a text node inside the tooltip.

To ensure that the browser doesn’t display a tooltip of its own on top of our en-
hanced tooltip, the title of the target element is then cleared—now, there’s
nothing for the browser to display as a tooltip, so it can’t interfere with the one
we’ve just created. Don’t worry about the potential accessibility issues caused by
removing the title: we’ll put it back later.

252

Chapter 13: Basic Dynamic HTML

Controlling Tooltip Display in Opera

Opera still displays the original title even after we set it to an empty string.
If you wish to avoid tooltips appearing in this browser, you’ll have to stop
the default action of the mouseover using the stopDefaultAction function
from “Handling Events”, the first section of this chapter. Be aware that this
will also affect other mouseover behavior, such as the status bar address
display for hyperlinks.

To provide hooks for the styling of our tooltip, we assign the tooltip element an
ID that’s based on the target element’s ID (targetIDtooltip), and set a class
of tooltip. Although this approach allows for styles to be applied through CSS,
we are unable to calculate the tooltip’s position ahead of time, so we must use
the coordinates of the mouse cursor, as calculated when the event is triggered,
to position the tooltip (with a few extra pixels to give it some space).

All that remains is to append the tooltip element to the body, so it will magically
appear when we mouse over the link! With a little bit of CSS, it could look like
Figure 13.1.

Figure 13.1. A dynamically generated layer that appears on
mouseover

When the mouse is moved off the element, we delete the tooltip from the docu-
ment, and it will disappear:

File: tooltips.js (excerpt)

function hideTip(event)
{
 if (typeof event == "undefined")
 {

253

Displaying a Tooltip when you Mouse Over an Element

 event = window.event;
 }

 var target = getEventTarget(event);

 while (target.className == null ||
 !/(^|)hastooltip(|$)/.test(target.className))
 {
 target = target.parentNode;
 }

 if (target.tooltip != null)
 {
 target.setAttribute("title",
 target.tooltip.childNodes[0].nodeValue);
 target.tooltip.parentNode.removeChild(target.tooltip);
 }

 return false;
}

Earlier, in showTip, we created a reference to the tooltip element as a property
of the target element. Having done that, we can remove it here without needing
to search through the entire DOM. Before we remove the tooltip, we retrieve its
content and insert it into the title of the target element, so we can use it again
later.

Do those Objects Exist?

You should check that objects created in other event listeners actually exist
before attempting to manipulate them, because events can often misfire, and
you can’t guarantee that they will occur in a set order.

Discussion
One problem with the code above is that if the target element is close to the right
or bottom edge of the browser window, the tooltip will be cut off. To avoid this,
we need to make sure there’s enough space for the tooltip, and position it accord-
ingly.

By checking, in each dimension, whether the mouse position is less than the
browser window size minus the tooltip size, we can tell how far to move the layer
in order to get it onto the screen:

254

Chapter 13: Basic Dynamic HTML

File: tooltips2.js (excerpt)

function showTip(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (target.className == null ||
 !/(^|)hastooltip(|$)/.test(target.className))
 {
 target = target.parentNode;
 }

 var tip = document.createElement("div");
 var content = target.getAttribute("title");

 target.tooltip = tip;
 target.setAttribute("title", "");

 if (target.getAttribute("id") != "")
 {
 tip.setAttribute("id", target.getAttribute("id") + "tooltip");
 }

 tip.className = "tooltip";
 tip.appendChild(document.createTextNode(content));

 var scrollingPosition = getScrollingPosition();
 var cursorPosition = [0, 0];

 if (typeof event.pageX != "undefined" &&
 typeof event.x != "undefined")
 {
 cursorPosition[0] = event.pageX;
 cursorPosition[1] = event.pageY;
 }
 else
 {
 cursorPosition[0] = event.clientX + scrollingPosition[0];
 cursorPosition[1] = event.clientY + scrollingPosition[1];
 }

 tip.style.position = "absolute";

255

Displaying a Tooltip when you Mouse Over an Element

 tip.style.left = cursorPosition[0] + 10 + "px";
 tip.style.top = cursorPosition[1] + 10 + "px";
tip.style.visibility = "hidden";

 document.getElementsByTagName("body")[0].appendChild(tip);

var viewportSize = getViewportSize();

 if (cursorPosition[0] - scrollingPosition[0] + 10 +
 tip.offsetWidth > viewportSize[0] - 25)
 {
 tip.style.left = scrollingPosition[0] + viewportSize[0] - 25 -
 tip.offsetWidth + "px";
 }
 else
 {
 tip.style.left = cursorPosition[0] + 10 + "px";
 }

 if (cursorPosition[1] - scrollingPosition[1] + 10 +
 tip.offsetHeight > viewportSize[1] - 25)
 {
 if (event.clientX > (viewportSize[0] - 25 - tip.offsetWidth))
 {
 tip.style.top = cursorPosition[1] - tip.offsetHeight - 10 +
 "px";
 }
 else
 {
 tip.style.top = scrollingPosition[1] + viewportSize[1] -
 25 - tip.offsetHeight + "px";
 }
 }
 else
 {
 tip.style.top = cursorPosition[1] + 10 + "px";
 }

 tip.style.visibility = "visible";

 return true;
}

This function is identical to the previous version until we get to the insertion of
the tooltip element. Just prior to inserting the element, we set its visibility to
"hidden". This means that when it’s placed on the page, the layer will occupy

256

Chapter 13: Basic Dynamic HTML

the same space it would take up if it were visible, but the user won’t see it on the
page. This allows us to measure the tooltip’s dimensions, then reposition it without
the user seeing it flash up in its original position.

In order to detect whether the layer displays outside of the viewport, we use the
position of the cursor relative to the viewport. This could theoretically be obtained
by using clientX/clientY, but remember: Safari gives an incorrect value for this
property. Instead, we use our cross-browser values inside cursorPosition and
subtract the scrolling position (which is the equivalent of clientX/clientY). The
size of the viewport is obtained using the getViewportSize function we created
in Chapter 7, then, for each dimension, we check whether the cursor position
plus the size of the layer is greater than the viewport size (minus an allowance
for scrollbars).

If part of the layer is going to appear outside the viewport, we position it by
subtracting its dimensions from the viewport size; otherwise, it’s positioned
normally, using the cursor position.

The only other exception to note is that if the layer would normally appear outside
the viewport in both dimensions, when we are positioning it vertically, it is
automatically positioned above the cursor. This prevents the layer from appearing
directly on top of the cursor and triggering a mouseout event. It also prevents
the target element from being totally obscured by the tooltip, which would prevent
the user from clicking on it.

Measuring Visible Tooltip Dimensions

In order for the dimensions of the tooltip to be measured it must first be
appended to the document. This will automatically make it appear on the
page, so to prevent the user seeing it display in the wrong position, we need
to hide it. We do so by setting its visibility to "hidden" until we have
finalized the tooltip’s position.

We can’t use the more familiar display property here, because objects with
display set to "none" are not rendered at all, so they have no dimensions
to measure.

Sorting Tables by Column
Tables can be a mine of information, but only if you can understand them
properly. Having the ability to sort a table by its different columns allows users

257

Sorting Tables by Column

to view the data in a way that makes sense to them, and ultimately provides the
opportunity for greater understanding.

Solution
To start off, we’ll use a semantically meaningful HTML table. This will provide
us with the structure we need to insert event listeners, inject extra elements, and
sort our data:

File: sort_tables_by_columns.html (excerpt)

<table class="sortableTable" cellspacing="0"
 summary="Statistics on Star Ships">
 <thead>
 <tr>
 <th class="c1" scope="col">
 Star Ship Class
 </th>
 <th class="c2" scope="col">
 Power Output (Terawatts)
 </th>
 <th class="c3" scope="col">
 Maximum Warp Speed
 </th>
 <th class="c4" scope="col">
 Captain's Seat Comfort Factor
 </th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class="c1">
 USS Enterprise NCC-1701-A
 </td>
 <td class="c2">
 5000
 </td>
 <td class="c3">
 6.0
 </td>
 <td class="c4">
 4/10
 </td>
 </tr>

258

Chapter 13: Basic Dynamic HTML

First, we need to set up event listeners on each of our table heading cells. These
will listen for clicks to our columns, and trigger a sort on the column that was
clicked:

File: sort_tables_by_columns.js (excerpt)

function initSortableTables()
{
 if (identifyBrowser() != "ie5mac")
 {
 var tables = getElementsByAttribute("class", "sortableTable");

 for (var i = 0; i < tables.length; i++)
 {
 var ths = tables[i].getElementsByTagName("th");

 for (var k = 0; k < ths.length; k++)
 {
 var newA = document.createElement("a");
 newA.setAttribute("href", "#");
 newA.setAttribute("title",
 "Sort by this column in descending order");

 for (var m = 0; m < ths[k].childNodes.length; m++)
 {
 newA.appendChild(ths[k].childNodes[m]);
 }

 ths[k].appendChild(newA);

 attachEventListener(newA, "click", sortColumn, false);
 }
 }
 }

 return true;
}

Internet Explorer 5 for Mac has trouble dealing with dynamically generated table
content, so we have to specifically exclude it from making any of the tables sort-
able.

Only tables with the class sortableTable will be turned into sortable tables,
so initSortableTable navigates the DOM to find the table heading cells in
these tables. Once they’re found, the contents of each heading cell are wrapped
in a hyperlink—this allows keyboard users to select a column to sort the table

259

Sorting Tables by Column

by—and an event listener is set on these links to monitor click events, and ex-
ecute sortColumn in response. The title attribute of each link is also set,
providing the user with information on what will happen when the link is clicked.

The sortColumn function is fairly lengthy, owing to the fact that it must navigate
and rearrange the entire table structure each time a heading cell is clicked:

File: sort_tables_by_columns.js (excerpt)

function sortColumn(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var targetA = getEventTarget(event);

 while (targetA.nodeName.toLowerCase() != "a")
 {
 targetA = targetA.parentNode;
 }

 var targetTh = targetA.parentNode;
 var targetTr = targetTh.parentNode;
 var targetTrChildren = targetTr.getElementsByTagName("th");
 var targetTable = targetTr.parentNode.parentNode;
 var targetTbody = targetTable.getElementsByTagName("tbody")[0];
 var targetTrs = targetTbody.getElementsByTagName("tr");
 var targetColumn = 0;

 for (var i = 0; i < targetTrChildren.length; i++)
 {
 targetTrChildren[i].className = targetTrChildren[i].className.
 replace(/(^|)sortedDescending(|$)/, "$1");
 targetTrChildren[i].className = targetTrChildren[i].className.
 replace(/(^|)sortedAscending(|$)/, "$1");

 if (targetTrChildren[i] == targetTh)
 {
 targetColumn = i;

 if (targetTrChildren[i].sortOrder == "descending" &&
 targetTrChildren[i].clicked)
 {
 targetTrChildren[i].sortOrder = "ascending";
 targetTrChildren[i].className += " sortedAscending";

260

Chapter 13: Basic Dynamic HTML

 targetA.setAttribute("title",
 "Sort by this column in descending order");
 }
 else
 {
 if (targetTrChildren[i].sortOrder == "ascending" &&
 !targetTrChildren[i].clicked)
 {
 targetTrChildren[i].className += " sortedAscending";
 }

 else
 {
 targetTrChildren[i].sortOrder = "descending";
 targetTrChildren[i].className += " sortedDescending";
 targetA.setAttribute("title",
 "Sort by this column in ascending order");
 }
 }

 targetTrChildren[i].clicked = true;
 }
 else
 {
 targetTrChildren[i].clicked = false;

 if (targetTrChildren[i].sortOrder == "ascending")
 {
 targetTrChildren[i].firstChild.setAttribute("title",
 "Sort by this column in ascending order");
 }
 else
 {
 targetTrChildren[i].firstChild.setAttribute("title",
 "Sort by this column in descending order");
 }
 }
 }

 var newTbody = targetTbody.cloneNode(false);

 for (var i = 0; i < targetTrs.length; i++)
 {
 var newTrs = newTbody.childNodes;
 var targetValue = getInternalText(
 targetTrs[i].getElementsByTagName("td")[targetColumn]);

261

Sorting Tables by Column

 for (var j = 0; j < newTrs.length; j++)
 {
 var newValue = getInternalText(
 newTrs[j].getElementsByTagName("td")[targetColumn]);

 if (targetValue == parseInt(targetValue, 10) &&
 newValue == parseInt(newValue, 10))
 {
 targetValue = parseInt(targetValue, 10);
 newValue = parseInt(newValue, 10);
 }
 else if (targetValue == parseFloat(targetValue) &&
 newValue == parseFloat(newValue))
 {
 targetValue = parseFloat(targetValue, 10);
 newValue = parseFloat(newValue, 10);
 }

 if (targetTrChildren[targetColumn].sortOrder ==
 "descending")
 {
 if (targetValue >= newValue)
 {
 break;
 }
 }
 else
 {
 if (targetValue <= newValue)
 {
 break;
 }
 }
 }

 if (j >= newTrs.length)
 {
 newTbody.appendChild(targetTrs[i].cloneNode(true));
 }
 else
 {
 newTbody.insertBefore(targetTrs[i].cloneNode(true),
 newTrs[j]);
 }
 }

262

Chapter 13: Basic Dynamic HTML

 targetTable.replaceChild(newTbody, targetTbody);

 stopDefaultAction(event);

 return false;
}

The first for loop that occurs after all the structural variables have been defined
sets the respective states for each of the table heading cells when one of them is
clicked. Not only are classes maintained to identify the heading cell on which
the table is currently sorted, but a special sortOrder property is maintained on
each cell to determine the order in which that column is sorted. Initially, a column
will be sorted in descending order, but if a heading cell is clicked twice consecut-
ively, the sort order will be changed to reflect an ascending sequence. Each
heading cell remembers the sort order state it exhibited most recently, and the
column is returned to that state when its heading cell is re-selected. The title
of the hyperlink for a clicked heading cell is also rewritten depending upon the
current sort order, and what the sort order would be if the user clicked on it again.

The second for loop sorts each of the rows that’s contained in the body of the
table. A copy of the original tbody is created to store the reordered table rows,
and initially this copy is empty. As each row in the original tbody is scanned, the
contents of the table cell in the column on which we’re sorting is compared with
the rows already in the copy.

In order to find the contents of the table cell, we use the function
getInternalText:

File: sort_tables_by_columns.js (excerpt)

function getInternalText(target)
{
 var elementChildren = target.childNodes;
 var internalText = "";

 for (var i = 0; i < elementChildren.length; i++)
 {
 if (elementChildren[i].nodeType == 3)
 {
 if (!/^\s*$/.test(elementChildren[i].nodeValue))
 {
 internalText += elementChildren[i].nodeValue;
 }
 }

263

Sorting Tables by Column

 else
 {
 internalText += getInternalText(elementChildren[i]);
 }
 }

 return internalText;
}

getInternalText extracts all of the text inside an element—including all of its
descendant elements—by recursively calling itself for each child element and
concatenating the resultant values together. This allows us to access the text inside
a table cell, irrespective of whether it’s wrapped in elements such as spans,
strongs, or ems. Any text nodes that are purely whitespace (spaces, tabs, or new
lines) are ignored via a regular expression check.

When sortColumn finds a row in the copy whose sorted table cell value is “less”
than the one we’re scanning, we insert a copy of the scanned row into the copied
tbody. For a column in ascending order, we simply reverse this comparison: the
value of the row in the copy must be “greater” than that of the scanned row.

However, before a comparison is made, we check whether the contents of the
sorted table cell can be interpreted as an integer or a float; if so, the comparison
values are converted. This makes sure that columns that contain numbers are
sorted properly; string comparisons will produce different results than number
comparisons.

Once all of our original rows have been copied into the new tbody, that element
is used to replace the old one, and we have our sorted table!

Using the sortableDescending and sortableAscending classes, which are as-
signed to the currently sorted table heading cells, we can use CSS to inform the
user which column the table is sorted on, and how it is sorted, as shown in Fig-
ure 13.2 and Figure 13.3.

264

Chapter 13: Basic Dynamic HTML

Figure 13.2. A sortable table sorted in descending order on the
fourth column

Figure 13.3. A sortable table sorted in ascending order on the
second column

265

Sorting Tables by Column

Summary
The two main pillars of DHTML are the capturing of events, and the reorganiz-
ation and creation of page elements via the DOM. Using these principles, it’s
possible to capture many of the different ways that users interact with a page
and make the interface respond accordingly.

As can be seen by the number and quality of JavaScript-enhanced web applications
that are now available, the features DHTML can bring to new interfaces represents
one of the biggest growth areas for innovative JavaScript. The foundations and
basic examples shown in this chapter give you a sense of the power that it can
deliver inside a user’s browser. We’ll expand upon this further in the following
chapters as we build some really interesting interfaces.

266

Chapter 13: Basic Dynamic HTML

Time and Motion14
The fundamental structure of the Internet is based upon a series of static states,
which are generally called pages. In the last chapter, we saw how DHTML could
break down this model and create a number of separate states within the same
page by reacting to a user’s interaction. In this chapter, we take this concept one
step further.

Instead of viewing a web page as a discrete set of states, JavaScript allows us to
use time and motion to produce truly dynamic pages. Objects can change over
time, move fluidly around the page, and be manipulated by users in a manner
analogous to real-world interaction. Operations that are now deeply ingrained in
desktop applications—such as drag-and-drop objects or slider controls—are good
examples of this behavior, and have not yet been made part of the Web.

In the following solutions, you’ll learn the basic steps involved in moving objects
around a page, then apply these principles as we build real-time interactive systems
such as slider controls and drag-and-drop interfaces.

Using setTimeout and setInterval
Both of these functions are used to execute JavaScript code after a given time
period. However, each does so in a way that’s more appropriate for some situations
than others.

Solution
Both setTimeout and setInterval have exactly the same syntax. A string of
code and a time period in milliseconds is passed to the function, and the code is
evaluated after the time period has elapsed.

The difference between these functions is that setInterval automatically repeats
the execution of the code at ongoing intervals of the time period, whereas
setTimeout executes the code just once.

Although this makes it seem that setTimeout is applicable only to one-off actions,
it can still be used to perform repeated operations if we create a functional
loop—a function that executes again, after a delay, by means of a setTimeout
call:

File: settimeout_setinterval.js

showTime();

function showTime()
{
 var today = new Date();
 alert("The time is: " + today.toString());
 setTimeout("showTime()", 5000);
}

Once this call is executed, the time will be displayed approximately once every five
seconds. If setInterval were used, the code would look like this:

File: settimeout_setinterval2.js

setInterval("showTime()", 5000);

function showTime()
{
 var today = new Date();
 alert("The time is: " + today.toString());
}

While the two approaches may look extremely similar, and would display very
similar results, the most telling difference is this: the setTimeout approach does
not execute showTime every five seconds; it executes showTime five seconds after
each call to setTimeout. This means that if the main body of the showTime function
took two seconds to execute, the function would be executed once every seven

268

Chapter 14: Time and Motion

seconds. setInterval, on the other hand, is not bound by the operation of the
function it calls. It simply executes that function regularly at the specified interval.

It is for this reason that setInterval is best used for operations in which you
require accurate performance at a regular interval. setTimeout is more suited to
situations in which you don’t want to run the risk of having successive calls inter-
fere with each other, particularly where each call involves heavy calculation and
long processing times.

Using a Function Pointer

As well as a string of code, both timing functions can take a function pointer
as their first arguments, although Internet Explorer 5 for Mac will silently
fail if you do this.

If you use setTimeout and setInterval in this fashion, they can point
to a function that’s defined elsewhere:

setTimeout(showTime, 500);

function showTime()
{
 var today = new Date();
 alert("The time is: " + today.toString());
}

Alternatively, an anonymous function can be declared inline:

setTimeout(function(){var today = new Date();
 alert("The time is: " + today.toString());}, 500);

Discussion
If left untended, setInterval will continue to execute the same code over and
over until the browser window is closed, or the user moves to another page.
However, there is a way to stop both setInterval and setTimeout from execut-
ing.

When executed, a setInterval call returns a timer ID that allows you to access
the timing function in the future. By passing this ID to clearInterval, you are
able to halt the execution of that timed process:

269

Using setTimeout and setInterval

File: settimeout_setinterval3.js (excerpt)

var intervalProcess = setInterval("alert('GOAL!')", 3000);
�
var stopGoalLink = document.getElementById("stopGoalLink");
attachEventListener(stopGoalLink, "click", stopGoal, false);
�
function stopGoal()
{
 clearInterval(intervalProcess);
}

If stopGoalLink is clicked at any time, the interval process will be cancelled and
no further iterations of the interval will be executed. The same can be done to a
setTimeout call, if it is cancelled before the timeout period has expired:

File: settimeout_setinterval4.js (excerpt)

var timeoutProcess = setTimeout("alert('GOAL!')", 3000);
�
var stopGoalLink = document.getElementById("stopGoalLink");
attachEventListener(stopGoalLink, "click", stopGoal, false);
�
function stopGoal()
{
 clearTimeout(timeoutProcess);
}

Making an Object Move Along a Set Path
Animations use small visual changes at regular time intervals to trick the brain
into seeing fluid movement. This technique has been used for well over 150 years
to achieve animated effects across various media, and as we’re about to see,
computers also use this approach—albeit in a fairly refined fashion.

Solution
If you want to move an absolutely or relatively positioned object, say, 500 pixels
from the left edge of the browser window, we can set object.style.left =
"500px"; however, the effect that the end user sees will be something akin to
teleportation. In order to create a smooth movement from point A to point B,
we must divide the intervening space into a series of points, then position the
object at each of those points, in turn, for a fraction of a second. This technique
creates the illusion that the object is moving towards its destination.

270

Chapter 14: Time and Motion

This discussion gives us the perfect opportunity to use one of JavaScript’s time
delay functions. By moving the object 25 pixels to the right every 50 milliseconds,
we can eventually get it to move all the way to our end-point 500 pixels across
the screen:

File: move_object_along_path.js (excerpt)

addLoadListener(initSoccerBall);

function initSoccerBall()
{
 document.getElementById("soccerBall").animationTimer =
 setInterval(
 'moveObject(document.getElementById("soccerBall"),
 500, 0, 25)', 50);
}

function moveObject(target, destinationLeft, destinationTop,
 maxSpeed)
{
 var currentLeft = parseInt(retrieveComputedStyle(target,
 "left"));
 var currentTop = parseInt(retrieveComputedStyle(target, "top"));

 if (isNaN(currentLeft))
 {
 currentLeft = 0;
 }

 if (isNaN(currentTop))
 {
 currentTop = 0;
 }

 if (currentLeft < destinationLeft)
 {
 currentLeft += maxSpeed;

 if (currentLeft > destinationLeft)
 {
 currentLeft = destinationLeft;
 }
 }
 else
 {
 currentLeft -= maxSpeed;

271

Making an Object Move Along a Set Path

 if (currentLeft < destinationLeft)
 {
 currentLeft = destinationLeft;
 }
 }

 if (currentTop < destinationTop)
 {
 currentTop += maxSpeed;

 if (currentTop > destinationTop)
 {
 currentTop = destinationTop;
 }
 }
 else
 {
 currentTop -= maxSpeed;

 if (currentTop < destinationTop)
 {
 currentTop = destinationTop;
 }
 }

 target.style.left = currentLeft + "px";
 target.style.top = currentTop + "px";

 if (currentLeft == destinationLeft &&
 currentTop == destinationTop)
 {
 clearInterval(target.animationTimer);
 }
}

Our soccer ball animation is set up to execute once the page loads, using the
addLoadListener function from Chapter 1. Once it executes, this load event
handler calls setInterval, requesting a call to moveObject every 50 milliseconds
with the appropriate arguments. This generates the appearance of movement
shown in Figure 14.1. The setInterval timer ID is assigned as an extended
property of our target object, so we can stop it from executing once the object
has reached its destination.

272

Chapter 14: Time and Motion

setInterval Inefficiencies and Alternatives

Although getting setInterval to execute document.getElementById
for each iteration may be a little inefficient, the alternative—using an an-
onymous function to create a closure—would not allow the animation to
work in Internet Explorer 5 for Mac. Using a global variable would be
downright messy.

moveObject takes four arguments: the object to be moved, the final position of
the left edge of the object (in pixels) (destinationLeft), the final position of
the top edge of the object (destinationTop), and the number of pixels that the
object will be moved each time (maxSpeed).

Inside moveObject, our first task is to obtain the target object’s current position
using the retrieveComputedStyle function from Chapter 12. This custom
function is used so that the initial position of the object can be applied inside a
style sheet, and still be retrieved via the function. If no valid value is found for
either of the left or top positions, they will be set to zero.

Position Detection Alternatives

This method of position detection relies upon our setting explicit values for
the object’s position in the CSS, or wanting the animation to start at the
origin (0, 0). It is possible to detect the position of an element whose location
is not explicitly set—to do so, we use the getPosition function from
Chapter 13. However, for the reasons explained there, it will not be reliably
accurate.

By using the left and top style properties, moveObject assumes that the target
object is positioned relatively or absolutely. Statically positioned objects will not
be affected by either of these properties, so if you’re going to perform animation
on static objects, you can replace those property assignments with marginLeft
or marginTop. However, the animation of statically positioned objects results in
changes to the surrounding document, which is usually an undesired effect. Hence,
this function operates upon relatively or absolutely positioned elements.

Once we’ve calculated the current position of the object, we must calculate the
position of the point to which we want it to move. Depending upon the direction
in which the object is moving, we must either add or subtract maxSpeed. The
direction is determined by comparing the current position to the destination
position. If the current position is less than the destination, the element must be
moved right and/or down. If the current position is greater than the destination,
the element must be moved right and/or up. The destination position is calculated
independently for each axis; at the same time, we check whether the planned

273

Making an Object Move Along a Set Path

movement will carry the element beyond its destination point. If it will, the new
position is set to equal the destination point.

Once the planned values have been checked, they are assigned to the element’s
style.left and style.top properties, which changes its position. If, after this
move, the object has reached both its destination ordinates, clearInterval is
called using the reference to the animation timer that we created earlier. This
stops the object’s animation. Otherwise, execution continues as normal and
moveObject will be called again as per the original setInterval call.

Figure 14.1. Simulating movement between an object’s origin
and its destination

Discussion
Movement in the real world is a far more complex process than is moving an
object 25 pixels to the right every 1/20th of a second. You could write an entire
book on computer animation—and many have—so we won’t delve too deeply
into it here.

A lot can be gained by experimenting with different types of movement and
making subtle changes to the ways that you move objects; however, such experi-
ments can become very specific to the scenario on which you’re working, which
can make it difficult to produce an all-encompassing solution.

274

Chapter 14: Time and Motion

A simple example of more realistic motion is shown below. This modified version
of moveObject simulates deceleration in an object’s movement as it approaches
its destination, as shown in Figure 14.2.

Figure 14.2. Decreasing the distance traveled per frame as the
object approaches its destination

File: move_object_along_path2.js (excerpt)

function moveObjectDecelerate(target, destinationLeft,
 destinationTop, maxSpeed)
{
 var currentLeft = parseInt(retrieveComputedStyle(target,
 "left"));
 var currentTop = parseInt(retrieveComputedStyle(target, "top"));

 if (isNaN(currentLeft))
 {
 currentLeft = 0;
 }

 if (isNaN(currentTop))
 {
 currentTop = 0;
 }

 if (typeof target.floatingPointLeft == "undefined")
 {
 target.floatingPointLeft = currentLeft;

275

Making an Object Move Along a Set Path

 target.floatingPointTop = currentTop;
 }

 var decelerateLeft = 1 + Math.abs(destinationLeft -
 target.floatingPointLeft) / 10;
 var decelerateTop = 1 + Math.abs(destinationTop -
 target.floatingPointTop) / 10;

 if (decelerateLeft > maxSpeed)
 {
 decelerateLeft = maxSpeed;
 }

 if (decelerateTop > maxSpeed)
 {
 decelerateTop = maxSpeed;
 }

 if (target.floatingPointLeft < destinationLeft)
 {
 target.floatingPointLeft += decelerateLeft;

 if (target.floatingPointLeft > destinationLeft)
 {
 target.floatingPointLeft = destinationLeft;
 }
 }
 else
 {
 target.floatingPointLeft -= decelerateLeft;

 if (target.floatingPointLeft < destinationLeft)
 {
 target.floatingPointLeft = destinationLeft;
 }
 }

 if (target.floatingPointTop < destinationTop)
 {
 target.floatingPointTop += decelerateTop;

 if (target.floatingPointTop > destinationTop)
 {
 target.floatingPointTop = destinationTop;
 }
 }

276

Chapter 14: Time and Motion

 else
 {
 target.floatingPointTop -= decelerateTop;

 if (target.floatingPointTop < destinationTop)
 {
 target.floatingPointTop = destinationTop;
 }
 }

 target.style.left = parseInt(target.floatingPointLeft) + "px";
 target.style.top = parseInt(target.floatingPointTop) + "px";

 if (target.floatingPointLeft == destinationLeft &&
 target.floatingPointTop == destinationTop)
 {
 clearInterval(target.animationTimer);
 }
}

The major difference between moveObjectDecelerate and moveObject lies in
how far the object is moved in each step. Instead of directly using maxSpeed to
determine how far the object is moved each time, a relationship is set up between
the distance remaining between an object and its destination, and that object’s
next move. The gist of the algorithm used here is that the distance between the
element’s current position and its destination is divided by ten. We add one to
the resulting figure to make sure that the object moves at least one pixel at each
step. Although this approach might seem to suggest that there will be only ten
steps between the object’s origin and its destination, remember that each time
the object moves, the distance between it and its destination is lessened, and so,
too, is the calculated increment. As the element moves closer to its destination,
it gradually slows down, then comes to a stop on its destination point, as shown
in Figure 14.2.

We divide the difference between the element’s current position and its destina-
tion by ten because this approach creates a nicely paced movement. As with any
of the variables in this solution, changing this value will produce a different type
of movement; change the variables yourself to create a movement that’s just right
for your animations.

Magnitude vs Distance

When we perform the calculations for decelerateLeft and
decelerateTop, we’re interested in the magnitude of motion, not the dir-

277

Making an Object Move Along a Set Path

ection, which we determine separately. In order to make sure that we don’t
get a negative number, the Math.abs method is used to obtain the absolute
(i.e., positive) distance remaining.

maxSpeed is used to control the speed of the element. The values calculated for
the steps of movement can be very large, particularly in the animation’s early
stages. This would normally cause a large jump in the object’s position, creating
less-than-ideal animation. By capping its speed with maxSpeed, we maintain a
nice, smooth flow.

This discussion has presented just one method by which we can calculate an ob-
ject’s deceleration. Depending upon the type of movement you want to achieve,
different numbers and different algorithms can be used to calculate an object’s
velocity. You can make an object accelerate, decelerate, stop gently, stop abruptly,
or bounce around on elastic. Robert Penner has created quite a few different
models of movement for Flash animation1 that could easily be transferred from
ActionScript to JavaScript. Try some of them yourself.

Making Animation Less Jerky
As it’s only an illusion, the best an animation can do is to fool the eye into
thinking that an object is moving naturally. A jerky animation breaks this illusion
by allowing the user to see the discrete parts that make up the animation. Fortu-
nately, there are a few tricks that you can use to minimize your animation’s
jerkiness.

Solution
The smoothness of JavaScript animation is governed by quite a few factors:

❑ the length of time between each animation frame

❑ the pixel distance (or amount of change) between frames

❑ the complexity of the animation that’s being performed

❑ the speed of the computer on which the animation is running

❑ the speed of the browser in which the animation is viewed

1 http://www.robertpenner.com/easing

278

Chapter 14: Time and Motion

http://www.robertpenner.com/easing
http://www.robertpenner.com/easing

You can influence some of these factors; others are beyond your control. Here’s
a little insight into each area.

Animation Frame Times
In order to move an object across the screen in the previous solution, we used a
time interval of 50 milliseconds, which equates to a frame rate of roughly 20
frames per second (20 Hz). As a comparison, movies use a frame rate of 24 Hz
or 25 Hz, while television standards vary around the world from 25 Hz to 30
Hz. Although 20 Hz will not produce a perfectly smooth animation, it will produce
a reasonably smooth result. The reason why we used this less-than-perfect number
was because most average computer systems are not able to handle a higher frame
rate. So, to ensure some consistency of speed across systems, it’s better to use a
lower frame rate than the optimal rate.

Note that increasing the frame rate will reduce jerkiness if the computer is capable
of rendering the animation at the speed you’ve chosen. So, if the interval between
moveObject calls was set to 25 milliseconds, we would achieve a rate of approx-
imately 40 Hz on systems that could handle it:

setTimeout(function(){moveObject(target, destinationX,
destinationY, maxSpeed);}, 25);

The frame rates that different computers can handle depend upon the complexity
of the animation, how much of the CPU is being used for other applications, and
various other factors. So, it’s worth your while to experiment with different frame
rates for different circumstances.

Doubling the Frame Rate Doubles the Speed

If you double the frame rate of an animation, effectively, you’re doubling its
speed. So, if you double the frame rate but want an object to cover the same
distance in the same amount of time, you must halve the distance the object
travels between frames.

Changing Between Frames
Small movements are less noticeable than large movements. On a computer
monitor, the smallest possible movement shifts an object by one pixel2—the

2 Dynamic antialiasing, supported by Flash and the 3D graphics engines of modern games, makes it
possible to display movement in steps that are smaller than a pixel. However, in the world of DHTML,
antialiasing is not practical.

279

Animation Frame Times

minimum unit of display. By composing an animation using the smallest units
possible (i.e., one-pixel shifts), you can reduce jerkiness to a minimum; however,
you’ll also affect the speed at which objects move.

In the example we discussed in the previous solution, we required the object to
move 500 pixels at 20 frames per second. If the object moves 25 pixels at a time,
it takes one second to reach its destination. If it were to move only one pixel at
a time, it would take 25 seconds to travel 500 pixels. Hence, a compromise must
be reached between the speed of the animation and its smoothness (the number
of discrete points that are used to represent its movement). Smoothness can also
be affected by changing the frame rate, as noted above.

Complexity of the Animation
Probably the biggest time-drain in object animation occurs while the browser and
computer draw the image on the screen. The browser needs to calculate how the
object will appear on the page, as well as how it interacts with other elements;
the computer needs to interpret all this information, then get the display onto
the monitor.

If you have large animated areas—or a number of objects that are animating
simultaneously—this will affect the time it takes for objects to be redrawn, and
impact on how jerky their movements look. By reducing the size of an animation,
or reducing the number of animations occurring concurrently, you will decrease
the complexity of the animation and decrease its jerkiness.

The Speed of the Computer
At its most basic level, JavaScript animation is about calculation. Finding objects,
multiplying numbers, drawing colors—all these steps rely on the computer’s
processing power. Yet your viewers’ computing power will vary, and this will affect
the way in which your animation performs.

Users’ hardware quality is out of your control, but you can ensure that your
JavaScript code is as lean as possible and doesn’t require redundant processing
that could waste CPU power. You may also want to consider the complexity of
your animation, as noted above.

280

Chapter 14: Time and Motion

The Speed of the Browser
Different browsers obviously use different application code to perform various
functions. The time it takes Internet Explorer to perform a regular expression is
different from the time it takes Safari to do the same thing; the time it takes
Mozilla to calculate the styles for an element is different from the time it takes
Opera to perform those calculations.

The differing engines used by browsers affect the way your animations perform,
but the choice of browsers your visitors use is out of your hands. The most
pragmatic approach you can take is to make sure your JavaScript code and anim-
ations are optimized for best performance using the other tips in this solution.

Implementing Drag-and-drop Behavior
Dragging an object and dropping it onto something else is an extremely powerful
visual metaphor. It has become a deeply ingrained behavior in many operating
systems and applications; Microsoft even went so far as to include proprietary
drag-and-drop functionality in Internet Explorer. But, by using some modern
JavaScript, you can use this technique on your web pages with full cross-browser
support.

Solution
There are two main steps to creating a drag-and-drop interface: defining the
visual movement of objects as they are dragged, and defining the “hot zones” to
which they can be dragged.

Drag-and-drop behavior can be added to almost any HTML element, but for the
purposes of this example we will use as a starting point the basic structure for a
shopping cart:

File: drag_n_drop.html (excerpt)

<ul id="products">
 <li id="shirtArsenal">
 Arsenal Shirt

 <li id="shirtLiverpool">
 Liverpool Shirt

 <li id="shirtChelsea">

281

The Speed of the Browser

 Chelsea Shirt

 <li id="shirtWestham">
 Westham Shirt

<form id="shoppingCart">
</form>

First, we need to attach event listeners to the draggable objects so that when a
user clicks and holds the mouse button on one of them, that object enters a
dragging state. We’ll use the addLoadListener function from Chapter 1 to install
all the listeners when the page loads:

File: drag_n_drop.js (excerpt)

addLoadListener(initDragNDrop);

function initDragNDrop()
{
 if (identifyBrowser().indexOf("ie") >= 0 &&
 identifyOS() == "mac")
 {
 return false;
 }

 var LIs= document.getElementById("products").
 getElementsByTagName("li");

 for (var i = 0; i < LIs.length; i++)
 {
 attachEventListener(LIs[i], "mousedown", mousedownDragNDrop,
 false);
 LIs[i].style.cursor = "move";
 }
}

A browser detection technique from Chapter 11 is used to prevent Internet Ex-
plorer 5 for Mac from executing the script. We take this precaution because the
values the script returns for object positions and mouse cursor events in this
browser are a little buggy; it’s safest to serve degraded functionality to IE 5 for
Mac.

In all other browsers, the attachEventListener function we saw in Chapter 13
is used to create a cross-browser event listener that fires mousedownDragNDrop
when one of the draggable objects receives a mousedown event. As an additional

282

Chapter 14: Time and Motion

usability helper, when a list item is made draggable, we change its style.cursor
property to "move". This means that when users mouse over a draggable item,
they will be informed that it is draggable by a change in the cursor’s appearance.

mouseDownDragNDrop makes an object ready to be dragged. It calculates position
coordinates, and attaches event handlers that react to mouse movements:

File: drag_n_drop.js (excerpt)

function mousedownDragNDrop(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 if (typeof event.pageX == "undefined")
 {
 event.pageX = event.clientX + getScrollingPosition()[0];
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

 var target = getEventTarget(event);

 while (target.nodeName.toLowerCase() != "li")
 {
 target = target.parentNode;
 }

 document.currentTarget = target;

 var currentLeft = parseInt(target.style.left);
 var currentTop = parseInt(target.style.top);

 if (isNaN(currentLeft))
 {
 currentLeft = "0";
 }

 if (isNaN(currentTop))
 {
 currentTop = "0";
 }

 if (typeof target.originLeft == "undefined")
 {
 target.originLeft = currentLeft;

283

Implementing Drag-and-drop Behavior

 target.originTop = currentTop;
 }

 target.clickOriginX = event.pageX;
 target.clickOriginY = event.pageY;
 target.differenceX = currentLeft - event.pageX;
 target.differenceY = currentTop - event.pageY;

 attachEventListener(document, "mousemove",
 mousemoveCheckThreshold, false);
 attachEventListener(document, "mouseup",
 mouseupCancelThreshold, false);

 stopDefaultAction(event);

 return false;
}

You might think that it would be best to put event listeners for mousemove and
mouseup on the draggable object. However, because a browser’s display can
sometimes get out of sync with the cursor, this approach would make it possible
to move the cursor outside of the element while the mouse button was still de-
pressed. Were this to happen, the object would stop moving, and the user would
have to go back and click on it again. Also, when the mouse button was released,
the mouseup event wouldn’t register on the draggable object, so the mousemove
event listener would be active whenever the mouse cursor moved over that object.
Confusion would most certainly ensue.

To avoid these problems, we’ll install the event listeners onto the document. This
way, they’ll be triggered no matter where the cursor is positioned in relation to
the object.

Our listeners need to know which object is currently being dragged, so we’ve
created a property—document.currentTarget—to keep track of the currently
dragged element. To detect this element, we use the getEventTarget function
from Chapter 13. However, as we saw in that chapter, this function returns the
deepest element in the DOM that is affected by the event, not necessarily the
element to which this event listener was attached. To make sure we have the
right target element, we check whether the element returned from getEventTarget
is of the type we need; if it’s not, we iterate upwards through its ancestor elements
until we find the element we want. As you write the JavaScript code for this
process, you’ll need to have some knowledge of the structure of your page, but
this is the easiest method of consistently finding the target element.

284

Chapter 14: Time and Motion

originLeft and originTop are added as properties of the draggable object the
first time it is clicked upon; they store the value of the object’s original position
so that it can be returned to the origin if an invalid drop is made. clickOriginX
and clickOriginY store the coordinates of the mousedown event itself. These
values are used later to determine how far from the mousedown point the user
has moved the cursor. differenceX and differenceY store the difference between
the position of the top-left corner of the object and the location of the mousedown
event. This information is required because, though we’ll use the cursor’s coordin-
ates to position the draggable object, the coordinate system used by the cursor
differs from that used by the object. The coordinates of the mousedown event
(event.pageX and event.pageY) are calculated using the solution devised in
Chapter 13, and require the getScrollingPosition function from Chapter 7.

Once a mouse button has been depressed on a draggable object, mouse activity
is monitored by two event listeners: mousemoveCheckThreshold and
mouseupCancelThreshold. These are merely interim listeners that allow linked
items to be dragged. If the draggable object is a link, or contains any links, those
links will still be clickable, but once the user moves the cursor more than three
pixels with the mouse button depressed, the list item will enter drag mode.

mousemoveCheckThreshold detects whether the cursor has moved those three
pixels:

File: drag_n_drop.js (excerpt)

function mousemoveCheckThreshold(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 if (typeof event.pageX == "undefined")
 {
 event.pageX = event.clientX + getScrollingPosition()[0];
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

 var target = document.currentTarget;

 if (Math.abs(target.clickOriginX - event.pageX) > 3 ||
 Math.abs(target.clickOriginY - event.pageY) > 3)
 {
 detachEventListener(document, "mousemove",
 mousemoveCheckThreshold, false);

285

Implementing Drag-and-drop Behavior

 detachEventListener(document, "mouseup",
 mouseupCancelThreshold, false);

 attachEventListener(document, "mousemove", mousemoveDragNDrop,
 false);
 attachEventListener(document, "mouseup", mouseupDragNDrop,
 false);
 attachEventListener(document, "click", clickDragNDrop, false);
 }

 stopDefaultAction(event);

 return false;
}

Once mousemoveCheckThreshold detects the required movement, it removes the
interim event listeners and attaches the real drag-and-drop listeners. We also add
a click event listener to prevent any links from being followed when the mouse
button is released.

The second interim listener, mouseupCancelThreshold is triggered when the user
releases the mouse button without moving the cursor more than three pixels in
any direction. This simply removes our interim listeners, cancelling the drag op-
eration that would otherwise have been initiated:

File: drag_n_drop.js (excerpt)

function mouseupCancelThreshold()
{
 detachEventListener(document, "mousemove",
 mousemoveCheckThreshold, false);
 detachEventListener(document, "mouseup", mouseupCancelThreshold,
 false);

 return false;
}

In mousemoveDragNDrop, we use the variables initialized in mousedownDragNDrop
to display the draggable object in the right place:

File: drag_n_drop.js (excerpt)

function mousemoveDragNDrop(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;

286

Chapter 14: Time and Motion

 }

 if (typeof event.pageX == "undefined")
 {
 event.pageX = event.clientX + getScrollingPosition()[0];
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

 var target = document.currentTarget;

 target.style.left = event.pageX + target.differenceX + "px";
 target.style.top = event.pageY + target.differenceY + "px";

 stopDefaultAction(event);

 return true;
}

The vertical and horizontal positions of the cursor are added to the stored
differenceX and differenceY values for the dragged object, and are then as-
signed to its top and left style properties. This has the effect of moving the
object around with the cursor.

Applying the Script to Static Elements

The left and top properties only apply to relatively or absolutely positioned
elements. If you must apply this script to static elements, those properties
can be replaced with the marginLeft and marginTop properties.

mousemoveDragNDrop also calls the stopDefaultAction function we saw in
Chapter 13 in order to prevent standard actions—such as text selection—from
occurring while an object is being dragged.

When the mouse button is released, we want the dragging effect to cease. This
is achieved using the mouseupDragNDrop function:

File: drag_n_drop.js (excerpt)

function mouseupDragNDrop(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 if (typeof event.pageX == "undefined")

287

Implementing Drag-and-drop Behavior

 {
 event.pageX = event.clientX + getScrollingPosition()[0];
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

 var hotZone = document.getElementById("shoppingCart");
 var hotZonePosition = getPosition(hotZone);
 var target = document.currentTarget;

 if (!((event.pageX > hotZonePosition[0]) &&
 (event.pageX < hotZonePosition[0] + hotZone.offsetWidth) &&
 (event.pageY > hotZonePosition[1]) &&
 (event.pageY < hotZonePosition[1] + hotZone.offsetHeight)))
 {
 target.style.left = target.originLeft + "px";
 target.style.top = target.originTop + "px";
 }
 else
 {
 var cartInput = document.getElementById("cartInput");

 if (cartInput == null)
 {
 var cartInput = document.createElement("input");

 cartInput.setAttribute("id", "cartInput");
 cartInput.setAttribute("name", "cartInput");
 cartInput.setAttribute("type", "hidden");
 cartInput.setAttribute("value", target.getAttribute("id"));
 document.getElementById("shoppingCart").
 appendChild(cartInput);
 }
 else
 {
 cartInput.setAttribute("value",
 cartInput.getAttribute("value") + "," +
 target.getAttribute("id"));
 }

 // In a practical system, you would probably submit the form
 alert("Item dropped on shopping cart!");
 target.style.left = target.originLeft + "px";
 target.style.top = target.originTop + "px";
 }

 detachEventListener(document, "mousemove", mousemoveDragNDrop,

288

Chapter 14: Time and Motion

 false);
 detachEventListener(document, "mouseup", mouseupDragNDrop,
 false);

 return true;
}

Here, the last two calls to the detachEventListener function from Chapter 13
remove the event listeners from the document, meaning that further interaction
won’t occur until the user clicks on another draggable object.

Before that, we determine whether the draggable object has been placed on the
“hot zone,” or whether it should return to its original position. The rather verbose
if statement in the middle of the function determines whether the current
cursor position falls within the boundaries of the hot zone object. If it doesn’t,
the dragged object is returned to its original position. If an object has been placed
in the hot zone, an action is performed. In this example, we create a hidden form
field that stores the value of the dragged item, but it could just as easily write to
a cookie or send off a remote scripting call.

Lastly, the clickDragNDrop function cancels any click events that arise during
the drag-and-drop process. This stops links from being followed after the mouse
button has been released:

File: drag_n_drop.js (excerpt)

function clickDragNDrop(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 detachEventListener(document, "click", clickDragNDrop, false);

 stopDefaultAction(event);

 return true;
}

clickDragNDrop also removes the event listener that called it; otherwise, links
would remain unclickable after you’d finished dragging the item.

The finished script lets you create drag-and-drop interfaces like the one shown
in Figure 14.3.

289

Implementing Drag-and-drop Behavior

Figure 14.3. Using drag-and-drop behavior to create relationships
between two separate objects

Reordering a List Using Drag-and-drop
Functionality

Traditionally, it has been a usability challenge to enable a user to order more
than one of a particular item from a store. An obvious solution would be to pos-
ition arrows next to each the list item, and get the user to click repeatedly on
those arrows in order to move an item; however, this solution wouldn’t be easy
to use. The drag-and-drop capabilities of JavaScript offer a far easier way for users
to manipulate lists of items and see their changes reflected in real time.

290

Chapter 14: Time and Motion

Solution
A sortable list uses a lot of the code that we created for normal drag-and-drop
objects in the previous solution. It differs in that, as the selected item is dragged
around, each of the objects in the list must respond to the movement appropriately
by reordering the list. Once the dragged object has been dropped and the order
finalized, the structure of the list can be recorded in a number of ways.

The HTML for our list looks something like this:

File: list_order_drag_n_drop.html (excerpt)

<ol id="footballLadder">

 Liverpool

 Manchester United

 Arsenal

 Chelsea

 West Ham

 Fulham

The CSS used to position each of our list items is relatively simple, and can be
fairly flexible:

File: list_order_drag_n_drop.css (excerpt)

ol
{
 list-style: none;
}

li
{
 width: 195px;

291

Reordering a List Using Drag-and-drop Functionality

 height: 30px;
 margin-bottom: 5px;
 background-color: #666666;
 color: #FFFFFF;
 line-height: 30px;
 �
}

The initialization and mousedown listeners hardly differ from the drag-and-drop
script we developed in “Implementing Drag-and-drop Behavior” earlier in this
chapter:

File: list_order_drag_n_drop.js (excerpt)

addLoadListener(initSortableList);

function initSortableList()
{
 if (identifyBrowser().indexOf("ie") != -1 &&
 identifyOS() == "mac")
 {
 return false;
 }

 var LIs = document.getElementById("footballLadder").
 getElementsByTagName("li");

 for (var i = 0; i < LIs.length; i++)
 {
 attachEventListener(LIs[i], "mousedown",
 mousedownSortableList, false);
 LIs[i].style.cursor = "move";
 }
}

function mousedownSortableList(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 if (typeof event.pageY == "undefined")
 {
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

292

Chapter 14: Time and Motion

 var target = getEventTarget(event);

 while (target.nodeName.toLowerCase() != "li")
 {
 target = target.parentNode;
 }

 document.currentTarget = target;

 target.clickOriginY = event.pageY;

 attachEventListener(document, "mousemove",
 mousemoveCheckThreshold, false);
 attachEventListener(document, "mouseup", mouseupCancelThreshold,
 false);

 return true;
}

Because the list items will move in only one dimension (vertically), we do not
need to worry about handling any horizontal coordinates, but that functionality
can easily be incorporated from the previous solution if we need it.

Once a mouse button has been depressed on a draggable object, the mouse
movements are initially monitored by mousemoveCheckThreshold and
mouseupCancelThreshold. These functions check for an appropriate amount of
cursor movement before initializing the actual drag-and-drop functionality:

File: list_order_drag_n_drop.js (excerpt)

function mousemoveCheckThreshold(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 if (typeof event.pageY == "undefined")
 {
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

 var target = document.currentTarget;

 if (Math.abs(target.clickOriginY - event.pageY) > 3)
 {

293

Reordering a List Using Drag-and-drop Functionality

 if (typeof document.selection != "undefined")
 {
 var textRange = document.selection.createRange();
 textRange.collapse();
 textRange.select();
 }

 detachEventListener(document, "mousemove",
 mousemoveCheckThreshold, false);
 detachEventListener(document, "mouseup",
 mouseupCancelThreshold, false);

 attachEventListener(document, "mousemove",
 mousemoveSortableList, false);
 attachEventListener(document, "mouseup", mouseupSortableList,
 false);

 var cloneItem = target.cloneNode(true);
 cloneItem.setAttribute("class", "clone");
 cloneItem.style.position = "absolute";
 cloneItem.style.top = getPosition(target)[1] + "px";
 cloneItem.differenceY = parseInt(cloneItem.style.top) -
 event.pageY;

 cloneItem = target.parentNode.appendChild(cloneItem);

 target.clone = cloneItem;
 target.style.visibility = "hidden";
 }

 stopDefaultAction(event);

 return true;
}

function mouseupCancelThreshold()
{
 detachEventListener(document, "mousemove",
 mousemoveCheckThreshold, false);
 detachEventListener(document, "mouseup", mouseupCancelThreshold,
 false);
 return true;
}

Once mousemoveCheckThreshold detects the required movement (more than
three pixels), the interim event listeners are removed, and the proper drag-and-

294

Chapter 14: Time and Motion

drop listeners are attached. Just before this, we see a conditional statement that
deals with selection. This is a fix for a bug that occurs in lower versions of Internet
Explorer for Windows: these browsers don’t cancel text selections while an object
is being dragged. The fix simply collapses any text selections, nullifying their ef-
fects.

Once the new event listeners are added, an exact clone of the target object is
created and positioned in the same location as the original. Instead of moving
the actual target list item around, we create this absolutely positioned clone and
hide the original. We do so because we need to maintain a gap in the list where
the dragged item would ordinarily be, and because we need to provide a visual
display of the item moving around with the cursor. By creating a clone, and
adding it to the end of the list, we get the best of both worlds. The clone’s inclu-
sion at the end of the list ensures that it inherits any of the styles associated with
the list items, so we don’t have to style it manually to match the original list
item. And by setting the visibility of the target list item to "hidden", we
eradicate the need to cancel any click events for any links the item may contain,
as hidden elements don’t receive events.

Cloning the Clone

A class of “clone” is added to the clone, just so you can add some extra CSS
effects. A good one to use is opacity, which makes the clone seem like a ghost
of the original. Note, though, that this simple code doesn’t work in all
browsers:

.clone
{
 opacity: 0.5;
}

Once this additional infrastructure has been created, the positions of the clone
and the surrounding elements are modified by the listener
mousemoveSortableList:

File: list_order_drag_n_drop.js (excerpt)

function mousemoveSortableList(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

295

Reordering a List Using Drag-and-drop Functionality

 if (typeof event.pageY == "undefined")
 {
 event.pageY = event.clientY + getScrollingPosition()[1];
 }

 var target = document.currentTarget;
 var clone = target.clone;
 var plannedCloneTop = event.pageY + clone.differenceY;
 var listItems = clone.parentNode.getElementsByTagName("li");
 var firstItemPosition = getPosition(listItems[0]);
 var lastItemPosition = getPosition(listItems[listItems.length -
 2]);

 if (plannedCloneTop < firstItemPosition[1])
 {
 plannedCloneTop = firstItemPosition[1];
 }
 else if (plannedCloneTop > lastItemPosition[1])
 {
 plannedCloneTop = lastItemPosition[1];
 }

 clone.style.top = plannedCloneTop + "px";

 var LIs = target.parentNode.getElementsByTagName("li");
 var currentItemHigher = true;

 for (var i = 0; i < LIs.length; i++)
 {
 if (LIs[i] != target && LIs[i] != target.clone)
 {
 if (event.pageY < getPosition(LIs[i])[1] +
 LIs[i].offsetHeight && currentItemHigher)
 {
 target.parentNode.insertBefore(target, LIs[i]);

 break;
 }
 else if (event.pageY > getPosition(LIs[i])[1] &&
 !currentItemHigher)
 {
 target.parentNode.insertBefore(LIs[i], target);
 }
 }
 else
 {

296

Chapter 14: Time and Motion

 currentItemHigher = false;
 }
 }

 stopDefaultAction(event);

 return true;
}

The position of the dragged object is managed using the technique explained in
the solution in “Implementing Drag-and-drop Behavior”; however, a number of
other aspects are peculiar to sortable lists.

Firstly, the position of the clone is constrained at the top and bottom by the first
and last items in the list. If users try to drag the clone beyond those boundaries,
they will not succeed. Obviously, the clone itself technically is the last item in
the list, so we use the second-last item to mark the bottom boundary.

Once the position of the clone has been finalized, we check to see how the other
list items should order themselves around its new position. For each list item
that isn’t either the target or the clone, we check whether its bottom edge is
higher than the current cursor position, and assess whether its current location
is above the target element. If the list item meets both these requirements, it
should be moved below the target element; to do so, we reorder the list using the
insertBefore DOM function. If it doesn’t meet those requirements, we check
if instead the top edge of the current list item is lower than the cursor position,
and whether the current item is positioned below the target list item. If these re-
quirements are met, we rearrange the list so that the current list item is positioned
above the target list item. In all other cases, we leave the order of the list un-
touched.

The effect of this script is that, as users move the clone around, their movements
automatically change the position of the target list item in the list. This will
automatically be reflected in the visual order of the other list items, creating a
real-time sorting effect.

When the user releases the mouse button, we tidy up the list by removing the
clone and making the target visible again:

File: list_order_drag_n_drop.js (excerpt)

function mouseupSortableList()
{
 var target = document.currentTarget;
 var clone = target.clone;

297

Reordering a List Using Drag-and-drop Functionality

 clone.parentNode.removeChild(clone);

 target.style.visibility = "visible";

 detachEventListener(document, "mousemove",
 mousemoveSortableList, false);
 detachEventListener(document, "mouseup", mouseupSortableList,
 false);

 return true;
}

The drag-and-drop event listeners are removed, and the list is reordered!

The finished script will produce an interface like that shown in Figure 14.4.

Figure 14.4. Putting Manchester United into its rightful position
using a drag-sortable list

Making a Scrolling News Ticker
Scrolling news tickers serve two main purposes. Firstly, because they’re animated,
they attract more attention than static text. Secondly, the ability of scrolling
tickers to display a theoretically endless amount of text allows them to squeeze
a lot of information into a very small space. Of course, the inappropriate use of
tickers can distract users from truly important information and, not surprisingly,
users generally find uncontrollable animation to be irritating. It’s up to you to
use ticker effects wisely.

298

Chapter 14: Time and Motion

Solution
The HTML and CSS code for this news ticker is particularly important. The
HTML consists of two block elements, one nested inside the other. You can place
whatever content you wish inside the innermost block element:

File: scrolling_news_ticker.html (excerpt)

<div id="newsTicker">
 <div id="newsScroller">
 Breaking news: Liverpool defeats AC Milan in
 a penalty shootout after a shock comeback from 3-0 down in the
 second half of the Champions' League final.
 </div>
</div>

The following CSS must be applied to the elements:

File: scrolling_news_ticker.css (excerpt)

#newsTicker
{
 position: relative;
 width: 300px;
 height: 35px;
 overflow: hidden;
}

#newsScroller
{
 position: absolute;
 position/**/: relative;
 height: 35px;
 line-height: 35px;
 white-space: nowrap;
}

The relative positioning of newsTicker means that any absolutely positioned
elements inside this will be positioned relative to newsTicker itself; the defined
height and overflow properties restrict the news ticker display to a single line
of text. An explicit width must be defined for newsTicker, but this property can
take anything from a pixel value to a percentage. If you want the ticker to span
the entire page, just use 100%.

The double declaration of position for newsScroller means that Internet Ex-
plorer 5.0 for Windows treats this element as absolutely positioned, while all

299

Making a Scrolling News Ticker

other browsers treat it as relatively positioned. Ideally, all browsers would be
comfortable with the absolutely positioned version, but Opera does not clip ab-
solute elements inside relative elements, so without the second declaration the
whole message would be visible in that browser—virtually ruining the news ticker
effect. The complexity increases because Internet Explorer 5.0 ignores the
white-space property and wraps the message. We have to give this browser the
absolutely positioned version of the ticker to maintain the horizontal flow of
words.

Now, to the JavaScript! Its main function is to determine the width of the inner
container, and to animate it the appropriate distance before recycling the content:

addLoadListener(initNewsTicker);

function initNewsTicker()
{
 var newsScroller = document.getElementById("newsScroller");

 newsScroller.style.left = 0;

 if (retrieveComputedStyle(newsScroller, "position") ==
 "relative")
 {
 var relativeWidth = newsScroller.offsetWidth;

 newsScroller.style.position = "absolute";
 newsScroller.calculatedWidth = newsScroller.offsetWidth;

 if (relativeWidth > newsScroller.calculatedWidth)
 {
 newsScroller.calculatedWidth = relativeWidth;;
 }

 newsScroller.style.position = "relative";
 }
 else
 {
 newsScroller.calculatedWidth = newsScroller.clientWidth;
 }

 moveNewsScroller();

 return true;
}

300

Chapter 14: Time and Motion

function moveNewsScroller()
{
 var increment = 5;
 var newsScroller = document.getElementById("newsScroller");
 var currLeft = parseInt(newsScroller.style.left);

 if (currLeft < newsScroller.calculatedWidth * -1)
 {
 newsScroller.style.left =
 newsScroller.parentNode.offsetWidth + "px";
 }
 else
 {
 newsScroller.style.left = (parseInt(newsScroller.style.left) -
 increment) + "px";
 }

 setTimeout("moveNewsScroller()", 50);

 return true;
}

Unfortunately, when a relatively positioned element occurs inside an element
whose overflow is set to "hidden", most browsers will calculate the offsetWidth
of the inner element to reflect that of its parent. For this reason, initNewsTicker
quickly changes newsScroller’s position to "absolute", measures its width,
then changes it back to "relative". We then take the largest width between the
absolute and relative positions. This process happens almost instantly, but if
there were a visible flicker, it would occur only in Opera. For Internet Explorer
5, we simply take newsScroller’s clientWidth.

moveNewsScroller then uses a simple linear animation cycle to move news-
Scroller to the left. The increment variable can be increased or decreased to
affect the speed at which the news ticker scrolls.

The finished result is shown in Figure 14.5.

301

Making a Scrolling News Ticker

Figure 14.5. The scrolling news ticker displaying an unlimited
amount of information in a limited area

Discussion
For accessibility reasons—and because so many people find movement on web
pages annoying—it’s a good idea to include a stop/start button for your news
ticker. Most users wouldn’t bother to start the ticker, which would defeat the
purpose of the tool, so we’ll make it move by default, and let the user turn the
ticker off if they wish.

We’ll use JavaScript to add the stop button to our page so that only users who
see the scrolling effect will see the button. At the same time, we’ll attach a click
event listener to handle clicks on the button:

302

Chapter 14: Time and Motion

File: scrolling_news_ticker.js (excerpt)

function initNewsTicker()
{
 var newsScroller = document.getElementById("newsScroller");

 newsScroller.style.left = 0;

 if (retrieveComputedStyle(newsScroller, "position") ==
 "relative")
 {
 var relativeWidth = newsScroller.offsetWidth;

 newsScroller.style.position = "absolute";
 newsScroller.calculatedWidth = newsScroller.offsetWidth;

 if (relativeWidth > newsScroller.calculatedWidth)
 {
 newsScroller.calculatedWidth = relativeWidth;
 }

 newsScroller.style.position = "relative";
 }
 else
 {
 newsScroller.calculatedWidth = newsScroller.clientWidth;
 }

var stopLink = document.createElement("a");
 stopLink.setAttribute("id", "");
 stopLink.id = "stopLink";
 stopLink.setAttribute("href", "");
 stopLink.href = "#";
 stopLink.appendChild(document.createTextNode(
 "Stop/start news ticker"));
 attachEventListener(stopLink, "click", clickStopLink, false);

 var stopButton = document.createElement("div");

 stopButton.appendChild(stopLink);

 var newsTicker = document.getElementById("newsTicker");

 if (newsTicker.nextSibling != null)
 {
 newsTicker.parentNode.insertBefore(stopButton,
 newsTicker.nextSibling);

303

Making a Scrolling News Ticker

 }
 else
 {
 newsTicker.parentNode.appendChild(stopButton);
 }

 moveNewsScroller();

 return true;
}

We’ll also need a reference to the timer that’s used to animate the news ticker.
This requires us to edit one line in moveNewsScroller:

File: scrolling_news_ticker.js (excerpt)

function moveNewsScroller()
{
 �
 newsScroller.timeout = setTimeout("moveNewsScroller()", 50);

 return true;
}

When the click event on stopLink is fired, we can start or stop the animation
as appropriate:

File: scrolling_news_ticker.js (excerpt)

function clickStopLink()
{
 var stopLink = document.getElementById("stopLink");

 if (typeof stopLink.stopped != "undefined" && stopLink.stopped)
 {
 moveNewsScroller();
 stopLink.stopped = false;
 }
 else
 {
 clearTimeout(document.getElementById("newsScroller").timeout);
 stopLink.stopped = true;
 }

 return true;
}

304

Chapter 14: Time and Motion

Figure 14.6 shows the ticker once the button has been added to it.

Figure 14.6. A stop/start button providing user control over the
ticker

Creating Clip-based Transition Effects
Used appropriately, transitions can help to provide users with visual feedback
on their actions, and add a little extra polish to your interfaces. Clip-based
transitions manipulate the visible area of an element, so you can use them to
produce effects like wipes or collapses. Move over, George Lucas!

Solution
CSS 2 allowed the clip CSS property to be applied to any object that wasn’t
absolutely positioned. However, CSS 2.1 reversed this to allow clip to be used
only on absolutely positioned elements. This is the rule that modern browsers
apply, so the effects mentioned here will only work for absolutely positioned
elements. The principles could be applied to relative or static elements if you
modified the dimensions of a containing element with overflow set to hidden;
however, you might find the content of the container reflows as you modify the
container’s dimensions.

You can start a transition in response to any event—clicking, waiting, moving,
typing—but for this example, we’ll assume that the user will click on an object.

File: clip_transitions.js (excerpt)

addLoadListener(function(){setTimeout(function(){
 initTransitions();}, 0);});

function initTransitions()
{
 var elements = getElementsByAttribute("class", "transition");

 for (var i = 0; i < elements.length; i++)
 {
 attachEventListener(elements[i], "click", clickTransition,

305

Creating Clip-based Transition Effects

 false);
 }

 return true;
}

function clickTransition(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (!/(^|)transition(|$)/.test(target.className))
 {
 target = target.parentNode;
 }

 transitionSquash(target);

 return true;
}

That rather confused looking addLoadListener call at the beginning of this script
weeds out any browsers that can’t handle functions as arguments to setTimeout
(i.e., Internet Explorer 5 for Mac). As a result of that addLoadListener call,
initTransitions won’t be called in that browser, so the page will degrade to
non-JavaScript functionality. We use function references to animate the objects
in this solution because we require a general solution that can be applied to
multiple elements on a page. Earlier in this chapter, we animated a soccer ball
using a method that was compatible with Internet Explorer 5 for Mac, but that
solution required us to hard-code the element that we used. If you’d like to achieve
these transitions in that browser, similar modifications can be made to this code.

initTransitions uses the getElementsByAttribute function from Chapter 5
to attach a click event listener to all elements with a class of transition. That
event listener executes clickTransition, a function whose main purpose is to
get the right event target element from our Chapter 13 custom function
getEventTarget. The listener then makes sure that the selected event target
element is in fact the right element by checking the className for the class
transition. The correct element reference is then passed to transitionSquash
to start the transition animation.

306

Chapter 14: Time and Motion

transitionSquash is a transition that appears to squash an object: it reduces
the object’s height by incrementally clipping its top and bottom edges:

function transitionSquash(target)
{
 if (typeof target == "undefined" || typeof target.style ==
 "undefined")
 {
 target = this;
 }

 var increment = 5;
 var width = target.offsetWidth;
 var height = target.offsetHeight;

 if (target.style.clip.indexOf("rect") == -1)
 {
 target.style.clip = "rect(" + increment + "px," + width +
 "px," + (height - increment) + "px,0)";
 }
 else
 {
 var clipDimensions = getClipDimensions(target.style.clip);

 if ((clipDimensions[2] - increment) - (clipDimensions[0] +
 increment) > 0)
 {
 target.style.clip = "rect(" + (clipDimensions[0] +
 increment) + "px," + clipDimensions[1] + "px," +
 (clipDimensions[2] - increment) + "px," +
 clipDimensions[3] + "px)";
 }
 else
 {
 target.style.clip = "rect(" + parseInt(height / 2) + "px," +
 clipDimensions[1] + "px," + parseInt(height / 2) +
 "px," + clipDimensions[3] + "px)";

 return true;
 }
 }

 setTimeout(function(){transitionSquash(target)}, 50);

 return true;
}

307

Creating Clip-based Transition Effects

The first action that transitionSquash takes is to check the target object for an
existing clip property. If a target object doesn’t exist, the clipping area of the
object is set to five pixels away from the top and bottom, and flush on the left
and right sides.

If a clipping area is already defined (i.e., this is a subsequent step of the anima-
tion), we go on to reduce the clipping area by the defined increment. In order
to do this, the current dimensions of the clipping area must be retrieved and
modified, progressing the animation. The dimensions of the clipping area are re-
trieved using the getClipDimensions function, which returns an array of integers
in the standard CSS dimension order (top, right, bottom, left).

File: clip_transitions.js (excerpt)

function getClipDimensions(clipString)
{
 var clipValue = clipString.replace(/rect\((.*)\)/, "$1");

 if (/,/.test(clipValue))
 {
 var clipDimensions = clipValue.split(",");
 }
 else
 {
 var clipDimensions = clipValue.split(" ");
 }

 for (var i = 0; i < clipDimensions.length; i++)
 {
 clipDimensions[i] = parseInt(clipDimensions[i]);
 }

 return clipDimensions;
}

This function parses the clip property’s rect(top,right,bottom,left) syntax
to retrieve the dimension values as integers. Most browsers separate the values
with commas, but Internet Explorer automatically converts the commas to spaces,
so we have to be careful when deciding which character to split the string upon.

When defining the new dimensions of the clipping area, transitionSquash
checks to see whether any part of the object will remain visible. If not, it defines
the clipping area to be of zero height (some browsers will display an object with
a negative clipping area), and returns from the function without calling
setTimeout again, thereby ending the transition.

308

Chapter 14: Time and Motion

The finished effect should look like Figure 14.7.

Figure 14.7. The squash transition collapsing an object vertically

Discussion
A number of effects are made possible by clip transitions; all you need to do to
create a new effect is execute a different function from inside clickTransition.

transitionCurtain is similar to transitionSquash, except that it makes the
object collapse horizontally.

File: clip_transitions2.js (excerpt)

function transitionCurtain(target)
{
 var increment = 5;
 var width = target.offsetWidth;
 var height = target.offsetHeight;

 if (target.style.clip.indexOf("rect") == -1)
 {
 target.style.clip = "rect(0," + (width - increment) + "px," +
 height + "px," + increment + "px)";
 }
 else
 {
 var clipDimensions = getClipDimensions(target.style.clip);

 if ((clipDimensions[1] - increment) - (clipDimensions[3] +
 increment) > 0)
 {
 target.style.clip = "rect(" + clipDimensions[0] + "px," +
 (clipDimensions[1] - increment) + "px," +
 clipDimensions[2] + "px," + (clipDimensions[3] +
 increment) + "px)";
 }
 else
 {
 target.style.clip = "rect(" + clipDimensions[0] + "px," +

309

Creating Clip-based Transition Effects

 parseInt(width / 2) + "px," + clipDimensions[2] +
 "px," + parseInt(width / 2) + "px)";

 return true;
 }
 }

 setTimeout(function(){transitionCurtain(target)}, 50);

 return true;
}

This transition is illustrated in Figure 14.8.

Figure 14.8. The curtain transition collapsing an object horizontally

transitionShrink collapses the object into the top-left corner. Instead of
increment, it uses a variable named steps to determine how many frames should
be animated before the object disappears:

File: clip_transitions3.js (excerpt)

function transitionShrink(target)
{
 var steps = 15;
 var width = target.offsetWidth;
 var height = target.offsetHeight;
 var widthIncrement = parseInt(width / steps);
 var heightIncrement = parseInt(height / steps);

 if (target.style.clip.indexOf("rect") == -1)
 {
 target.style.clip = "rect(0," + (width - widthIncrement) +
 "px," + (height - heightIncrement) + "px,0)";
 }
 else
 {
 var clipDimensions = getClipDimensions(target.style.clip);

 if ((clipDimensions[1] - widthIncrement) > 0)
 {

310

Chapter 14: Time and Motion

 target.style.clip = "rect(0," + (clipDimensions[1] -
 widthIncrement) + "px," + (clipDimensions[2] -
 heightIncrement) + "px," + "0)";
 }
 else
 {
 target.style.clip = "rect(0,0,0,0)";

 return true;
 }
 }

 setTimeout(function(){transitionShrink(target)}, 50);

 return true;
}

The finished effect can be seen in Figure 14.9.

Figure 14.9. The shrink transition collapsing an object into the
top left corner

These are just some of the ways in which you can use the clip property to
transition an object. Others you could try include left-to-right wipes, top-to-bottom
wipes, and various forms of scaling.

Making a Slider Control
Sliders provide users with a very intuitive way to select data over a fixed, continu-
ous data range. They immediately give users a sense of the position of the current
value within a range of values, and also allow users to manipulate that value
easily, and see changes in real time.

Solution
A slider is another example of a feature that’s available in desktop applications,
but is not yet widely used as a native widget inside web browsers. Plain text fields

311

Making a Slider Control

are capable of storing the same data as a slider, so in order to provide graceful
degradation for users without JavaScript, we will convert any plain text input
that has a class of slider into a slider object:

File: slider_control.js (excerpt)

addLoadListener(initSliders);

function initSliders()
{
 var sliderReplacements = getElementsByAttribute("class",
 "slider");

 for (var i = 0; i < sliderReplacements.length; i++)
 {
 var container = document.createElement("div");
 var slider = document.createElement("div");
 var newInput = document.createElement("input");
 var sliderReplacementID =
 sliderReplacements[i].getAttribute("id");

 if (sliderReplacementID != null || sliderReplacementID != "")
 {
 container.setAttribute("id", sliderReplacementID +
 "SliderContainer");
 }

 container.className = "sliderContainer";
 slider.className = "sliderWidget";
 slider.style.left =
 sliderReplacements[i].getAttribute("value") + "px";
 slider.valueX =
 parseInt(sliderReplacements[i].getAttribute("value"), 10);

 try
 {
 newInput.setAttribute("id",
 sliderReplacements[i].getAttribute("id"));
 newInput.setAttribute("name",
 sliderReplacements[i].getAttribute("name"));
 newInput.setAttribute("type", "hidden");
 newInput.setAttribute("value",
 sliderReplacements[i].getAttribute("value"));
 }
 catch(error)
 {
 return false;

312

Chapter 14: Time and Motion

 }

 container.appendChild(slider);
 sliderReplacements[i].parentNode.insertBefore(container,
 sliderReplacements[i]);
 sliderReplacements[i].parentNode.replaceChild(newInput,
 sliderReplacements[i]);

 container.input = newInput;

 attachEventListener(slider, "mousedown", mousedownSlider,
 false);
 }

 return true;
}

The target element is replaced by two divs that represent the slider control—one
nested inside the other—as well as a hidden input that will record the form data
that’s to be submitted.

Internet Explorer 5 for Mac doesn’t allow the type of a newly created input to
be changed, so the creation of the hidden input is wrapped inside a try-catch
statement. If the creation of the input fails, the function will exit without creating
a slider, leaving the plain text input on the page.

If the target element possesses an id, the id of the outer div is modified to allow
easy access to the target element’s id via either CSS or JavaScript, as are the
classes of both divs. If the original form element had a value, the slider’s
style.left property will be modified appropriately to represent it, and its exten-
ded property valueX (which is used later) also will be updated.

Lastly, a reference to the hidden input field is created from the slider container
to allow the field’s value to be updated dynamically, and a mousedown event
listener is placed on the internal div.

This event listener is the gateway to the slider’s behavior. When a user presses
a mouse button on the slider object, the following familiar drag-and-drop code
is initiated:

File: slider_control.js (excerpt)

function mousedownSlider(event)
{
 if (typeof event == "undefined")

313

Making a Slider Control

 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (!/(^|)sliderWidget(|$)/.test(target.className))
 {
 target = target.parentNode;
 }

 document.currentSlider = target;
 target.originX = event.clientX;

 attachEventListener(document, "mousemove", mousemoveSlider,
 false);
 attachEventListener(document, "mouseup", mouseupSlider, false);

 stopDefaultAction(event);

 return true;
}

This function is pretty much identical to the mousedown listener we saw in the
drag-and-drop solution that was presented earlier in this chapter. In this case,
though, we use a different criterion to verify the target element: we make sure it
has a class of sliderWidget. The major differences are incorporated into the
mousemove handler:

File: slider_control.js (excerpt)

function mousemoveSlider(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var slider = document.currentSlider;
 var sliderLeft = slider.valueX;
 var increment = 1;

 if (isNaN(sliderLeft))
 {
 sliderLeft = 0;
 }

314

Chapter 14: Time and Motion

 sliderLeft += event.clientX - slider.originX;

 if (sliderLeft < 0)
 {
 sliderLeft = 0;
 }
 else if(sliderLeft > (slider.parentNode.offsetWidth -
 slider.offsetWidth))
 {
 sliderLeft = slider.parentNode.offsetWidth -
 slider.offsetWidth;
 }
 else
 {
 slider.originX = event.clientX;
 }

 slider.style.left = Math.round(sliderLeft / increment) *
 increment + "px";
 slider.parentNode.input.setAttribute("value",
 Math.round(sliderLeft / increment) * increment);
 slider.valueX = sliderLeft;

 stopDefaultAction(event);

 return true;
}

The slider is positioned relative to the mouse cursor using the technique we dis-
cussed in “Implementing Drag-and-drop Behavior”; however, we restrict its
movement to occur within the boundaries of the slider container. Every slider
has to have a finite length, and if the user moves the cursor beyond the boundaries
of the slider container, the slider handle shouldn’t go with it. Because of this, the
slider handle’s position is automatically set to zero or to the maximum value, if
the cursor goes beyond the left or right boundaries, respectively, of the slider
control.

The increment value we’re using in this function allows you to specify “notches”
on the slider for fixed values. For instance, if your scale went from zero to 100,
but you only wanted the user to select multiples of ten, you could set increment
to 10. This way, the slider would position itself at the multiple of ten pixels that
was closest to the cursor’s position. The default value of increment is 1 (i.e., one
pixel, in which case the slider moves in a smooth fashion).

315

Making a Slider Control

Beyond its appearance, any change in the slider’s position is reflected in its asso-
ciated input field. At the moment, this field merely indicates the raw pixel distance
from the left boundary of the slider container, but we could easily apply an al-
gorithm to this value in order to calculate some other figure with an offset or a
multiplier. In such cases, we’d modify the second-to-last operation with the details
of that algorithm. So, if we wanted each pixel on the slider to represent 5°C, the
code that assigned the value to the hidden input field would look like this:

 slider.parentNode.input.setAttribute("value",
 Math.round(sliderLeft / increment) * increment * 5);

We’ve simply multiplied the value by five.

The last thing that mousemoveSlider does is call the stopDefaultAction function
we saw in Chapter 13. This function stops the action that would normally occur
when the mouse moves; in this case, it stops users from selecting text on the page
while they’re moving the slider around.

Slider Styling

The values produced by the slider are inseparably tied to the way it is styled.
If the slider container is specified to have a width of 200 pixels, and the slider
handle has a width of 20 pixels, 180 discrete data points will be available on
the slider.

How you relate those points to your own data domain is up to you, but it’s
generally easiest to assign one pixel to represent one unit. For example, if
you have a number scale from zero to 400, set the width of the slider con-
tainer to 420 and the width of the slider handle to 20.

Once the user has finished selecting the required slider value, the user will release
the button and mouseupSlider will remove the event listeners that we put in
place to handle the slider movement:

File: slider_control.js (excerpt)

function mouseupSlider()
{
 detachEventListener(document, "mousemove", mousemoveSlider,
 false);
 detachEventListener(document, "mouseup", mouseupSlider, false);

 return true;
}

Figure 14.10 shows what the finished slider control should look like.

316

Chapter 14: Time and Motion

Figure 14.10. Using a slider control to pick a value within a
continuous data range

In Chapter 16 we’ll revisit this slider widget and look at ways to make it accessible
to a variety of different users.

Discussion
To see how we can translate the slider value into a usable number, let’s create a
widget that allows the user to choose the background color of the page.

In order to build this functionality, we need three inputs that will represent the
red, green, and blue color channels:

File: slider_control_background_color.html (excerpt)

<input id="channelRed" name="channelRed" class="slider"
 type="text" value="0" />
<input id="channelGreen" name=" channelGreen" class="slider"
 type="text" value="0" />
<input id="channelBlue" name=" channelBlue" class="slider"
 type="text" value="0" />

Users without JavaScript will see text inputs: they can type in a value for each
of the channels, and submit the form. However, we can replace these text boxes
with much more intuitive slider controls that update the page in real time.

If we reuse the code from the example above, all we need to do is modify
mousemoveSlider to collect the values from each of the sliders, and write them
to the background color of the page:

File: slider_control_background_color.js (excerpt)

function mousemoveSlider()
{
 �
 var redValue =
 document.getElementById("channelRed").getAttribute("value");

317

Making a Slider Control

 var greenValue =
 document.getElementById("channelGreen").getAttribute("value");
 var blueValue =
 document.getElementById("channelBlue").getAttribute("value");
 document.getElementsByTagName("body")[0].style.backgroundColor =
 "rgb(" + redValue + "," + greenValue + "," + blueValue + ")";

 stopDefaultAction(event);

 return true;
}

Each of the channels in the RGB color scale has 255 possible values, so if we
want to be able represent all the colors in that scale, we must ensure that our
sliders have at least 255 discrete data points. If our slider markers were 20 pixels
wide, for example, we’d make our slider containers 275 pixels wide.

Figure 14.11 shows our background color sliders in action.

Figure 14.11. Transforming slider values to alter the background
color of a page

Summary
Because the Internet has traditionally been a static medium, the ability to create
movement and respond to user input are some of the most eye-opening and
tangible examples of JavaScript’s benefits.

318

Chapter 14: Time and Motion

These capabilities have been given a bad reputation due to the proliferation of
frivolous, nonfunctional eye candy—effects that more often hinder a user’s inter-
action with a web page than help it. Yet real power underlies those tricks.
JavaScript gives us the ability to enrich interfaces, create more usable environ-
ments, and involve users as they have never been involved before.

This chapter has explained the basic principles by which many valuable effects
can be achieved, and has given you a few examples of what JavaScript makes
possible within the realm of time-and-motion effects. Yet the greatest applications
of this power lie waiting in your imagination.

319

Summary

320

DHTML Menus and Navigation15
DHTML menus are usability and accessibility minefields, and opinion is strongly
divided on whether they’re useful tools, necessarily evils … or just plain evil!

Personally, I rather like them, but I will concede that it’s rare to find a really well-
made menu on the Web, though they do exist. In developing an HTML menu,
there are quite a few major issues to consider. We’ll be looking at these as we
move through this chapter, examining the techniques for avoiding or minimizing
problems as they arise.

The chapter is divided into two broad solutions—a drop-down or fly-out menu,
and a folder tree or expanding menu—each of which is a different beast, function-
ally speaking. For each solution there are a number of sub-solutions, which build
on the original script to add new features, such as timers and menu repositioning
capabilities, to the basic fly-out menu.

Throughout this chapter, we’ll use the same HTML structure (an unordered list),
with CSS styling and JavaScript behaviors. This is a beautiful demonstration of
the true separation of content, style, and behavior,1 and ensures that our menu
will degrade gracefully. We’ll also set it up so that the underlying content remains

1 Though beautiful, the demonstration is not perfect—our script will still need to know one or two
things about the design, and take some of its data from HTML attributes—but in that respect, per-
fection is almost impossible.

accessible, both for screen readers and other serial browsers, and for legacy
browsers and those that lack CSS and scripting support.

List Menu Credits

The technique of using lists for navigation and drop-down menus is credited
in part to Mark Newhouse, and his seminal article Taming Lists,2 and to
Eric Meyer’s pure CSS menus.3 The advantage of using lists over tables or
divs for navigation is that they have a proper structure and hierarchy, and
are semantically close in meaning to a navigation bar. XHTML 2 ratifies this
notion with a new nl (navigation list) element.4

Before we dive into the scripting, let’s look at the HTML:

File: vertical.html (excerpt)

<ul id="navigation" class="vertical">
 Home
 About us

 Our services

 Manufacturing
 Distribution

 Our products

 Widgets
 Spoons

 Contact us

 By phone
 By email

2 http://www.alistapart.com/articles/taminglists/
3 http://www.meyerweb.com/eric/css/edge/menus/demo.html
4 http://www.w3.org/TR/2005/WD-xhtml2-20050527/mod-list.html

322

Chapter 15: DHTML Menus and Navigation

http://www.alistapart.com/articles/taminglists/
http://www.meyerweb.com/eric/css/edge/menus/demo.html
http://www.w3.org/TR/2005/WD-xhtml2-20050527/mod-list.html

Remember that nested lists go before the closing , not after it. That’s
important, because our scripting won’t work on a list that’s not properly formed.

The id attribute will be used to identify the list to our script. The class is used
partly by the script to determine the orientation of a fly-out menu (because some
of the positioning calculations will be different for a horizontal navigation bar),
but mostly to apply the CSS. Although this example (and the CSS examples in
this chapter) involves a vertical navbar with menus, the script we’ll be writing
will work equally well for a horizontal navbar, and the necessary CSS for such a
menu is included in the archive.

Making a Drop-down or Fly-out Menu
Having established the HTML framework, we need to use some CSS to style our
basic navigation bar and menus. The development of that menu is largely outside
the scope of this book, and for discussions of the techniques involved I refer you
to Rachel Andrew’s The CSS Anthology.5 In any case, not much of it is directly
relevant to how the script works. Since we have pretty good separation of content
from design, we don’t need to know a great deal about the CSS to write the
JavaScript (and vice versa).

That said, we don’t have perfect separation, and some bits are significant, so we’ll
highlight and discuss those sections as we come across them. Watch also for
points at which I’ve added footnotes to the CSS, to explain a particular rule or
choice of syntax.

Here’s a complete style sheet that styles the list we’ve just created as a vertical
navigation bar with fly-out menus:

File: vertical.css (excerpt)

/* structural styles and offsets */
ul.vertical, ul.vertical li, ul.vertical ul {
 margin: 0;
 padding: 0;
 list-style-type: none;
 font-size: 100%;
}
ul.vertical {
 position: absolute;
 z-index: 1000;
 cursor: default;

5 http://www.sitepoint.com/books/cssant1/

323

Making a Drop-down or Fly-out Menu

http://www.sitepoint.com/books/cssant1/

 width: 8em;
 left: 1em;
 top: 1em;
}
ul.vertical li {
 position: relative;
 text-align: left;
 cursor: pointer;
 cursor: hand;
 width: 8em;
 margin: -1px 0 0 0;
}
ul.vertical ul {
 z-index: 1020;
 cursor: default;
 width: 8.2em;
 margin: -0.5em 0 0 7.5em;
 position: absolute;
 left: -100em;
 top: 0;
 padding: 1px 0 0 0;
}
ul.vertical ul li {
 width: 8.2em;
}
ul.vertical ul ul {
 margin: -0.5em 0 0 7.7em;
}
/* design styles */
ul.vertical ul {
 border-width: 1px;
 border-style: solid;
 border-color: #ffeca7 #a97741 #a97741 #ffeca7;
}

ul.vertical a:link, ul.vertical a:visited {
 display: block;
 cursor: pointer;
 cursor: hand;
 background: #ffc;
 border: 1px solid #edbb85;
 padding: 5px 7px;
 font: normal normal bold 0.7em tahoma, verdana, sans-serif;
 color: #008000;
 text-decoration: none;
 letter-spacing: 1px;

324

Chapter 15: DHTML Menus and Navigation

}

ul.vertical a:hover, ul.vertical a:focus, ul.vertical a:active,6

ul.vertical a.rollover:link, ul.vertical a.rollover:visited {
 background: #ffefcf;
 color: #806020;
}

/* browser hacks */
@media screen, projection {
 * html ul.vertical li {7

 display: inline;
 f\loat: left;
 background: #fff;
 }
}
* html ul.vertical li { position: static; }
* html ul.vertical a:link, * html ul.vertical a:visited {
 position: relative; }

Our list now looks like Figure 15.1.

Figure 15.1. An HTML list styled as a vertical navigation bar

6 The :active pseudo-class can be used to simulate :focus in Internet Explorer 5 and 6. Their
implementation of :active is wrong, and they don’t support :focus at all, but by a happy
coincidence their implementation of :active is almost identical to the correct implementation of

:focus! The difference is that when you click a link, and then click Back, or select the previous
page from the history, the last link you clicked will still be in its active state and, therefore, will still
 be highlighted.
7 These CSS hacks are for Internet Explorer 5 and 6, to stabilize the appearance of the list items.
The inline display applies to all versions of IE, but the float applies only to IE 5.5 or later,
because the backslash in the rule hides it from IE 5.0.

325

Making a Drop-down or Fly-out Menu

The menus have a similar layout and appearance to the main navigation bar, but
we can’t see them yet, because they’re hidden by default. To hide them we’re
not using display or visibility, because that would make them inaccessible
to most browser-based screen readers (which, for the most part, cannot read
content that is not visibly displayed8).

With that as a given, what we’re using instead is a technique known as offleft
positioning, with which the hidden content is made “invisible” by virtue of being
positioned far off the screen:

File: vertical.css (excerpt)

ul.vertical ul {
 �
 position: absolute;
 left: -100em;
 �
}

Since nothing is actually hidden per se, the content remains accessible to this
group of users, whether they have JavaScript enabled or not.

Accessible … Almost!

However it won’t be universally accessible, because there’s one group of users
who fall through the net: people who use a graphical browser that has CSS
enabled but doesn’t support the script, or has JavaScript disabled, won’t see
the submenus at all. Even if we included pure CSS menu triggers, they still
wouldn’t work for everyone; in fact, inevitably, whatever method we use for
creating menus, a minority of users are not going to be able to see them. The
only part of the structure that is universally accessible is the main navigation
bar (the top level of links).

What this means in practical use is that everything that is accessible from the
submenus must also be accessible without them. This can be achieved by ensuring
you have additional sub-navigation on the index page of each section, and
that you provide options like a site map and search function. Most of this
happens quite naturally in the process of putting a site together, but I still
recommend you keep it in mind specifically: a dynamic menu is a useful
form of site navigation, but it should never be the only one.

Finally, please note that the menus we’re making in this solution will only work
from mouse events. In Chapter 16, we’ll pick them up again and make them ac-
cessible from the keyboard.

8 http://www.access-matters.com/2005/04/10/quiz-521-screen-reader-test-1/

326

Chapter 15: DHTML Menus and Navigation

http://www.access-matters.com/2005/04/10/quiz-521-screen-reader-test-1/
http://www.access-matters.com/2005/04/10/quiz-521-screen-reader-test-1/

Solution
Since we’re using offleft positioning to hide the submenus, the work that the
script will do in opening and closing them will actually just set their positions,
bringing each menu back into view, or moving it off again.

There are two parts to the script. This first is an initialization function called
dropdownMenu:

File: dropdownMenu.js (excerpt)

function dropdownMenu(navid)
{
 var isie = (typeof document.all != 'undefined'
 && typeof window.opera == 'undefined'
 && navigator.vendor != 'KDE');
 if (typeof document.getElementById == 'undefined'
 || (navigator.vendor == 'Apple Computer, Inc.'
 && typeof window.XMLHttpRequest == 'undefined')
 || (isie && typeof document.uniqueID == 'undefined'))
 {
 return;
 }

 var tree = document.getElementById(navid);
 if (tree)
 {
 var items = tree.getElementsByTagName('li');
 for (var i = 0; i < items.length; i++)
 {
 dropdownTrigger(tree, items[i], navid, isie);
 }
 }
}

We’ll also use a list item initialization function called dropdownTrigger, which
binds the necessary event listeners using the generic attachEventListener
function we saw in “Handling Events” in Chapter 13:

File: dropdownMenu.js (excerpt)

function dropdownTrigger(tree, li, navid, isie)
{
 var a = li.getElementsByTagName('a')[0];
 var menu = li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null;

327

Making a Drop-down or Fly-out Menu

 var horiz = tree.className.indexOf('horizontal') != -1;
 var issub = li.parentNode.id == navid;

 attachEventListener(li, 'mouseover', function(e)
 {
 a.className += (a.className == '' ? '' : ' ') + 'rollover';
 if (menu)
 {
 menu.style.left = horiz
 ? (isie ? li.offsetLeft + 'px' : 'auto')
 : '0';
 menu.style.top = horiz && issub
 ? (isie ? a.offsetHeight + 'px' : 'auto')
 : (isie ? li.offsetTop + 'px' : '0');
 }
 }, false);

 attachEventListener(li, 'mouseout', function(e)
 {
 var related = typeof e.relatedTarget != 'undefined'
 ? e.relatedTarget : e.toElement;
 if (!li.contains(related))
 {
 a.className = a.className.replace(/ ?rollover/g, '');
 if (menu)
 {
 menu.style.left = '-100em';
 }
 }
 }, false);

 if (!isie)
 {
 li.contains = function(node)
 {
 if (node == null) { return false; }
 if (node == this) { return true; }
 else { return this.contains(node.parentNode); }
 };
 }
}

Finally, we can initialize the menu onload by calling dropdownMenu with the list
id. Here, we’re using the encapsulated load solution we built in “Getting Multiple
Scripts to Work on the Same Page” in Chapter 1:

328

Chapter 15: DHTML Menus and Navigation

File: dropdownMenu.js (excerpt)

addLoadListener(function() { dropdownMenu('navigation'); });

Now, when our menus are in use, they’ll look like Figure 15.2.

Figure 15.2. The menus in use

Discussion
Let’s begin with the dropdownMenu function. The first thing we do is check for
Internet Explorer, using the object tests we saw in Chapter 11 to set the isie
variable. We need that variable straight away in order to test for exclusions. We
need DOM support, which filters out older script-supporting browsers such as
Netscape 4, but we also need to test for older Safari builds (earlier than 1.2) and
IE 5 for Mac. In both cases, the CSS for the submenus isn’t stable, so we degrade
those builds to unsupported (they can see the navigation bar, but not the sub-
menus). Finally, we can proceed to iterate through the list items, passing each
one to the trigger-initialization function, dropdownTrigger.

In dropdownTrigger, we begin by creating some values for later use: we save
references to the link (a), and the menu (menu), which are used within the open
and close functions (this will make the menu toggling faster, since some of its
computations have been done in advance). We also save the result of some envir-
onment checks: whether this is a horizontal menu (horiz), and whether this is
a first-level or deeper submenu (issub), both of which affect how positioning
works.

329

Making a Drop-down or Fly-out Menu

The Scope of Defined Variables

Since we’ve defined the variables at this level, they remain global to
everything inside dropdownTrigger, including the inner functions. The
fact that variables defined in a particular scope are available to inner scopes
is one of the most powerful features of JavaScript, and is discussed in more
depth in Chapter 19.

Now we come to bind our list item event handlers, and we again encounter a
problem we saw in Chapter 13. We’re using our encapsulated
attachEventListener function, which delegates to attachEvent for Internet
Explorer, but within that construct the reference this points to window, rather
than the element to which the listener is bound. We discussed ways to deal with
this problem in Chapter 13 and, in this case, the solution is simple because our
functions are defined as closures: we already have a reference to the element to
which we’re binding our listener in the argument li, so we can simply use that
reference instead of this:

File: dropdownMenu.js (excerpt)

attachEventListener(li, 'mouseover', function()
{

Let’s look at what the listeners actually do. In the list item mouseover function,
the first thing that happens is that a scriptable class name for rollover styles is
set. It’s set on a link when you mouse over that item, and ensures that, when you
move to a link in a submenu, the parent link remains highlighted, which wouldn’t
happen with pseudo-classes alone. It improves usability by adding context high-
lighting all the way down the branch you’re viewing (and it looks very nice as
well). The rollover class name ties in with the styles we defined in the original
CSS:

File: vertical.css (excerpt)

ul.vertical a:hover, ul.vertical a:focus, ul.vertical a:active,
ul.vertical a.rollover:link, ul.vertical a.rollover:visited {
 background: #ffefcf;
 color: #806020;
}

This effect is also stabilized by the action of event bubbling. If you were to roll
over a link without having already passed your mouse over its ancestors (which
could happen if you came to an already-open menu from outside it), then the
rest of the branch wouldn’t already be highlighted. By allowing the event to
bubble, the rollover is applied to every ancestor. If you’re not already familiar

330

Chapter 15: DHTML Menus and Navigation

with event bubbling, see the section called “Handling Events” in Chapter 13 in
Chapter 13.

Regular Expression Trickery

When we add the rollover class name, we first check for an existing value
before adding a space delimiter, which is necessary to avoid creating a class
value such as rollover (beginning with a leading space). This is purely
to avoid a browser quirk: in some Opera 7 builds, a class is not applied if the
attribute value begins with a leading space:

File: dropdownMenu.js (excerpt)

a.className += (a.className == '' ? '' : ' ') +
 'rollover';

When we come to remove the class name in the mouse out handler, we might
find that it’s been applied more than once to the same link, as a result of the
event bubbling we’ve just discussed. To remove the rollovers properly, we
need to include a global flag in the replacement expression:

File: dropdownMenu.js (excerpt)

a.className = a.className.replace(/ ?rollover/g, '');

For more about regular expressions, see Chapter 3.

The only other thing that exists in our mouseover function is the show/hide
mechanism for the menus, which is simply a set of position toggles that move
the menu into place. There’s no display or visibility change, because our menus
are already displayed and visible, as we saw when we looked at the CSS.

Within that code, we have variations that are specific to Internet Explorer. For
example:

File: dropdownMenu.js (excerpt)

(isie ? li.offsetLeft + 'px' : 'auto')

These are needed because IE’s menu positioning is different than other browsers’;
where most browsers use position: relative on the list items, in IE that would
expose an obscure and frustrating z-ordering9 quirk.10 To accommodate this

9 z-order is the vertical stacking of objects, as defined for normal elements by the CSS z-index
property.
10 Where multiple nested elements all have position: relative, IE starts erroneous new
contexts, resulting in an incorrect stacking order.

331

Making a Drop-down or Fly-out Menu

quirk, we’re using position: static on the list items for IE, which means that
the coordinate origin for absolutely-positioned menus is different in that browser.

In Internet Explorer, then, the menu’s natural position is flush with the left edge
of the list item, hence we position it to the right edge using that item’s
offsetWidth; in other browsers, the menu’s natural position is already flush with
the right edge, exactly where we want it, so we position it using the value auto.
(The offsets that make them overlap the parent are applied from the default CSS,
using negative margin values.)

In fact, this is true for all the position values: they’re either computed for Internet
Explorer, or set to zero or auto for other browsers, in which they sit in their
natural position. I designed the CSS for this example specifically to allow for
these nuances, partly so that the later addition of pure CSS menu-triggers is still
possible (for browsers other than IE), but largely because it was the most effective
way of making the stupid thing behave (but please don’t think I’m wantonly IE-
bashing here; I have high praise indeed in only a few paragraphs’ time!).

In the list item mouseout function, we do the opposite job: reset the rollover
class name, and reset the positioning styles so that the menus disappear from
view.

But there’s some interesting event evaluation going on there:

File: dropdownMenu.js (excerpt)

var related = typeof e.relatedTarget != 'undefined'
 ? e.relatedTarget : e.toElement;
if (!li.contains(related))
{
 �
}

contains is a method for evaluating the relationship between two nodes in the
DOM: it indicates whether one contains the other. We’re using it here to evaluate
the related-target node (for a mouseout event, the related target is the element
or other node that the mouse is moving to), proceeding only if that node is not
contained by our current list item (i.e., it’s outside that list item). This technique
is used to filter out events we’re not interested in, for example, the mouseout
event that fires on an element when the user mouses over an element inside it.

But, fantastically useful as the contains method is, it’s not defined in any public
standard. It’s actually proprietary to Internet Explorer (you see—it’s not all bad!),

332

Chapter 15: DHTML Menus and Navigation

so before we can use it, we have to write the function for other browsers. Here,
I’m using Jason Davis’ solution:11

File: dropdownMenu.js (excerpt)

if (!isie)
{
 li.contains = function(node)
 {
 if (node == null) { return false; }
 if (node == this) { return true; }
 else { return this.contains(node.parentNode); }
 };
}

In our evaluation, we ask whether the list item contains the node we’re examining:

❑ If that node is null, it doesn’t exist, and therefore it can’t be contained
within our list item (false).

❑ If that node is the same as the node we’re currently examining, the list item
is that node; therefore it must be contained within it (true).

❑ If neither of the above is true, run the function again on the parent node.

And so it travels up the DOM, starting with the node in question, until we either
find our list item (true) or run out of nodes (false). This is an example of a re-
cursive function—a function that calls itself.

contains is also implemented by Opera, but it doesn’t do any harm to re-imple-
ment it regardless. However, it needs to be protected from IE, because it throws
an error in IE 5 for Mac (that’s okay of course: we don’t need to recreate the
function in that browser, we’re simply preventing it from choking on our recre-
ation).

Event Argument not Required

You might have noticed that we create the related-target reference without
first having to convert an event argument. Normally, we’d do something like
this:

if (!e) { e = window.event; }

11 http://www.jasonkarldavis.com/

333

Making a Drop-down or Fly-out Menu

http://www.jasonkarldavis.com/

In this case, it isn’t necessary because IE is using attachEvent, and when
that construct is used, an event reference is passed to the function automatic-
ally. In other words, e is already a reference to IE’s window.event object.
This is also discussed in Chapter 13.

Adding Arrows to Indicate the Presence
of a Submenu

Now that we have a functional menu, it would be nice to open it up beyond the
realms of “mystery meat” navigation! When we look at it we have no way of
knowing which item contains a sub-branch, unless we actually mouse over that
item. We can improve the usability of the menu by adding arrows.

Solution
We’re going to add submenu-indicator arrows as CSS background images. Here’s
the CSS, which uses a list item class name of hasmenu, and child selectors from
that class (plus equivalent hacks for Windows IE), to redefine the link back-
grounds so that they include arrow images:

File: vertical.css (excerpt)

/* submenu indicator arrows */
ul.vertical li.hasmenu > a:link,
ul.vertical li.hasmenu > a:visited {
 background: url(right-green.gif) #ffc no-repeat 95% 50%;
}

ul.vertical li.hasmenu > a:hover,
ul.vertical li.hasmenu > a:focus,
ul.vertical li.hasmenu > a:active,
ul.vertical li.hasmenu > a.rollover:link,
ul.vertical li.hasmenu > a.rollover:visited {
 background: url(right-red.gif) #ffefcf no-repeat 95% 50%;
}

* html ul.vertical li.hasmenu a:link,
* html ul.vertical li.hasmenu a:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(right-green.gif) #ffc no-repeat 95% 50%" : "#ffc");
}

* html ul.vertical li.hasmenu a:hover,

334

Chapter 15: DHTML Menus and Navigation

* html ul.vertical li.hasmenu a:active,
* html ul.vertical li.hasmenu a.rollover:link,
* html ul.vertical li.hasmenu a.rollover:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(right-red.gif) #ffefcf no-repeat 95% 50%" : "#ffefcf");
}

We can apply the class name to the relevant list items as they’re being initialized.
We already have a variable for whether a list item has a submenu, so we can use
that as the condition for whether to add the arrow class name (including a test
for whether it already has a class, as we did for the link rollovers in the original
script).

Below is an excerpt from the dropdownTrigger function; our new code is shown
in bold:

File: dropdownMenu.js (excerpt)

function dropdownTrigger(tree, li, navid, isie)
{
 var a = li.getElementsByTagName('a')[0];
 var menu = li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null;
 var horiz = tree.className.indexOf('horizontal') != -1;
 var issub = li.parentNode.id == navid;

if (menu)
 {
 li.className += (li.className == '' ? '' : ' ') + 'hasmenu';
 }

 attachEventListener(li, 'mouseover', function(e)
 {
 �

335

Adding Arrows to Indicate the Presence of a Submenu

Figure 15.3. The menus displaying submenu-indicator arrows

Now our menus will look like Figure 15.3.

Since the rollover is a separate image from the default arrow, we should take the
time to cache it. We can do this in the main initialization function as shown
below (additions are shown in bold):

File: dropdownMenu.js (excerpt)

function dropdownMenu(navid)
{
 var isie = (typeof document.all != 'undefined'
 && typeof window.opera == 'undefined'
 && navigator.vendor != 'KDE');
 if (typeof document.getElementById == 'undefined'
 || (navigator.vendor == 'Apple Computer, Inc.'
 && typeof window.XMLHttpRequest == 'undefined')
 || (isie && typeof document.uniqueID == 'undefined'))
 {
 return;
 }

var rollover = new Image;
 rollover.src = 'right-red.gif';

Discussion
The CSS that applies the arrows uses child selectors, but these aren’t supported
in Windows IE 5 and IE 6, so what we can do instead is apply the rules using an
expression, for example:

336

Chapter 15: DHTML Menus and Navigation

File: vertical.css (excerpt)

* html ul.vertical li.hasmenu a:link,
* html ul.vertical li.hasmenu a:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(right-green.gif) #ffc no-repeat 95% 50%" : "#ffc");
}

The expression syntax is proprietary to Windows IE, and allows you set a style
property value as the result of a JavaScript evaluation. Inside the expression, this
is a reference to the element to which the rule applies; here, we’re evaluating the
class name of its parent to determine whether the background image should be
used.

Using a CSS background tied to a single class name makes the arrow images very
easy to apply, and easy to deal with in the script: because no new elements have
been added, we don’t have to consider whether events from those elements will
cause any conflicts.

But this choice is not entirely without debate, because it’s not exactly clear
whether submenu indicator arrows are part of the content or the presentation.
They serve a visual purpose, so maybe they’re presentational; but they also indicate
hierarchy, so maybe they’re part of the content.

It’s a complicated and rather tedious subject, but on this occasion I’m siding with
the arrow being part of the presentation, and I’m going to apply it without a
textual equivalent as a CSS background. While I must admit that I think the
arrows are actually content, the information they impart is already present in the
semantics of the list (the structure itself includes hierarchical information, which
a good-quality screen reader like JAWS can interpret), so I don’t think it’s a tre-
mendous loss to apply them this way.

Navigation Arrows as Content?

If you do decide that the arrows are content, you’ll also need to decide how
to represent that content textually: even if we used images, they would still
need alt text. But what text is appropriate? We certainly can’t use a symbol
like > or », because those symbols already have other meanings—the former
is a greater-than sign, the latter is a French quotation mark—and a screen
reader would pronounce those existing meanings.

What we really want is one more character that imparts the same meaning
irrespective of modality. I don’t know if there is a definitive answer here, but
the best I can suggest is to use two or three dots (or an ellipsis character, as
I’ve done myself in the past). That should be commonly understood to mean

337

Adding Arrows to Indicate the Presence of a Submenu

“and there’s more” when heard as speech, while doing a similar job when
viewed as written text. An alternative could be to use a textual label, such
as submenu, written as the alt text of an image.

Adding Timers so the Menus Don’t Open
and Close so Abruptly

One of the major usability problems with dynamic menus is that they can be
very skittish and awkward to use: you have to move your mouse very precisely
over a small target area in order to navigate through a structure like the one
shown in Figure 15.4.

Figure 15.4. Without timers, mouse movement must be very
precise

If you move your mouse outside the target area, the menu you’re aiming for will
close. If you move your mouse outside the structure, the whole thing will close
and you’ll have to start again. This can be intensely frustrating for users, but we
can solve the problem by introducing open and close timers.

The addition of timers engenders better usability for anyone who’s using a mouse,
because timers permit more natural mouse movement. You could move to the
link directly, as depicted in Figure 15.5, or with a more erratic path like that in
Figure 15.6.

338

Chapter 15: DHTML Menus and Navigation

Figure 15.5. With timers, mouse movement can be more direct

Figure 15.6. With timers, mouse movement can be more erratic

Solution
To add timers to our menu, we need to add some logic to our mouseover and
mouseout event listeners. Rather than opening and closing the menus immediately
in response to these events, we must perform these actions after a delay, using
setTimeout, and cancel these actions when a contradicting event occurs during
the delay.

An example of a contradicting event would occur where a mouseout event initiates
a menu close timer, but a subsequent mouseover event on the same element re-
quests that the menu be kept open, thus cancelling the menu close timer.

To modify our script, we first need a new global variable, branch, which we’ll
use to track the currently-open branch. As shown in the code below, this variable

339

Adding Timers so the Menus Don’t Open and Close so Abruptly

is set to a default value in dropdownMenu (additions from the previous script are
shown in bold):

File: dropdownMenu.js (excerpt)

var branch;

function dropdownMenu(navid)
{
 var isie = (typeof document.all != 'undefined'
 && typeof window.opera == 'undefined'
 && !?navigator.vendor != 'KDE');
 if (typeof document.getElementById == 'undefined'
 || (navigator.vendor == 'Apple Computer, Inc.'
 && typeof window.XMLHttpRequest == 'undefined')
 || (isie && typeof document.uniqueID == 'undefined'))
 {
 return;
 }

 var rollover = new Image;
 rollover.src = 'right-red.gif';
 var tree = document.getElementById(navid);
 if (tree)
 {

branch = tree;
 var items = tree.getElementsByTagName('li');
 for (var i = 0; i < items.length; i++)
 {
 dropdownTrigger(tree, items[i], navid, isie);
 }
 }
};

We’re also going to need a new function that closes all the menus from a given
root node, and a second function to identify unwanted events coming from text
nodes in Safari (both of which we’ll examine in the discussion):

function clearMenus(root)
{
 var menus = root.getElementsByTagName('ul');
 for (var i = 0; i < menus.length; i++)
 {
 menus[i].style.left = '-100em';
 }
}

340

Chapter 15: DHTML Menus and Navigation

function unwantedTextEvent()
{
 return (navigator.vendor == 'Apple Computer, Inc.'
 && (event.target == event.relatedTarget.parentNode
 || (event.eventPhase == 3
 && event.target.parentNode == event.relatedTarget)));
};

Now we’re ready to implement the timers into our main script, which we’ll do
by surrounding the show/hide code with calls to setTimeout, passing the existing
code as nested closures. Writing them in this format means we can use variables
from the function scope directly within the timers; they’ll run the code inside
after a set amount of time, unless cancelled by a contradicting event (again, ad-
ditions are shown in bold):

File: dropdownMenu.js (excerpt)

function dropdownTrigger(tree, li, navid, isie)
{
var opentime, closetime;

 var a = li.getElementsByTagName('a')[0];
 var menu = (li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null);
 var horiz = (tree.className.indexOf('horizontal') != -1);
 var issub = (li.parentNode.id == navid);

 if (menu)
 {
 li.className += (li.className == '' ? '' : ' ') + 'hasmenu';
 }

 attachEventListener(li, 'mouseover', function(e)
 {

if (unwantedTextEvent()) { return; }
 clearTimeout(closetime);
 if (branch == li) { branch = null; }

 a.className += (a.className == '' ? '' : ' ') + 'rollover';

 if (menu)
 {

opentime = window.setTimeout(function()
 {
 if (branch)
 {
 clearMenus(branch);

341

Adding Timers so the Menus Don’t Open and Close so Abruptly

 branch = null;
 }

 menu.style.left = horiz
 ? (isie ? li.offsetLeft + 'px' : 'auto')
 : '0';

 menu.style.top = horiz && issub
 ? (isie ? a.offsetHeight + 'px' : 'auto')
 : (isie ? li.offsetTop + 'px' : '0');

}, 250);
 }
 }, false);

 attachEventListener(li, 'mouseout', function(e)
 {

if (unwantedTextEvent()) { return; }

 var related = typeof e.relatedTarget != 'undefined'
 ? e.relatedTarget : e.toElement;
 if (!li.contains(related))
 {

clearTimeout(opentime);
 branch = li;

 a.className = a.className.replace(/ ?rollover/g, '');
 if (menu)
 {

closetime = window.setTimeout(function()
 {
 menu.style.left = '-100em';

}, 600);
 }
 }
 }, false);

 if (!isie)
 {
 li.contains = function(node)
 {
 if (node == null) { return false; }
 if (node == this) { return true; }
 else { return this.contains(node.parentNode); }
 };
 }
}

342

Chapter 15: DHTML Menus and Navigation

Discussion
The principle here is simple: before opening or closing a menu, wait a specified
amount of time; if another event occurs, contradicting the first, cancel the timer
and do nothing. Implementing a close timer means that mouse movement across
a menu can be very imprecise: if your mouse moves briefly off the menu and back
again, it doesn’t matter.

The open timer works on the same principle, but its purpose is slightly differ-
ent—it’s there to ensure that, when moving your mouse from an item to a child
menu, you can pass briefly over intervening links without the menu you aim to
reach closing, or being replaced by a different one. It also means that when you’re
navigating elsewhere on the page, such as moving past the menu to get to the
browser’s Back button, you can move your mouse briefly over the navigation bar
without opening any menus at all.

It’s because of the open timer that we need the clearMenus reset function: this
way, when an open timer does complete, and a menu is ready to open, any cur-
rently-open menus are closed immediately. Without that reset, we’d often see a
short pause, equal to the difference between the open time and close time, before
the menu closed. We could avoid that pause using fewer lines of code if we re-
stricted the open and close timers to have the same value, but that would be a
shame, because their optimum values are different. Based on experimentation
and the feedback I get from users of my own sites, I’ve found that 600ms is the
optimum length for a close timer, while a brisk 250ms is about right for an open
timer.

We maintain the global branch variable so that the reset doesn’t conflict with
menu opening—if we just performed a tree-wide reset every time, it would be
impossible to open menus further than one-level deep, because a mouseover on
a nested menu would reset all its ancestors. Instead, we do a reset only from the
previously-opened branch downwards, which has the effect of closing whichever
menu was last opened.

The branch variable is maintained from the list item’s mouseout function, where
it’s continually set to whichever list item you last moved your mouse off, and is
cleared (set back to null) either by the clearMenus function, or by a contradicting
mouseover event. The second circumstance is necessary because you might mouse
away from the lowest item in a menu, as though to close it, then move back onto
that same item, which, without that test, would cause the menus to close. The
approach we’re taking ensures that the menus are never reset if the branch variable
is the item you’re actually using.

343

Adding Timers so the Menus Don’t Open and Close so Abruptly

Although the branch variable needs to be global (so that it can be referenced
from any item), each pair of timers is local to its own menu—each menu has its
own pair of timers. You wouldn’t want the parent items of a deeply-nested menu
to close while you’re still using it—you’d want a menu branch to remain open to
the point at which you’re using it. This means that an event on a menu should
cancel not just that menu’s timer, but all timers up that branch.

Happily, this occurs naturally through the action of event bubbling, a process
that we used for the persistent rollover when we first built the menu, and which
is doubly important here. In fact, event bubbling is the only reason this works at
all!

We could have achieved this effect in other ways, of course. We could have
maintained our menu structure from a single pair of timer references in the
global scope, for example, but the method we’ve chosen is entirely self-contained:
by writing the timers as closures within the scope of each list item, our script is
more effectively encapsulated (and would be easier to convert to object oriented
style, which we’ll discuss in Chapter 19). It does mean that we lose support for
Mac IE 5, and Safari 1.0 (neither of which supports the use of setTimeout with
that syntax); however, we’ve already degraded those builds to unsupported (for
other, CSS-related reasons, as we noted earlier), so it’s not going to be an issue.

Less is More!

The fewer variables you have in the global scope, the better. Ideally, we
wouldn’t have any (apart from functions), because each global variable you
use has the potential to conflict with another. This can easily happen when,
for example, one person adds a script without knowing the others that will
be used on the same page. Even if you completely control the development
of a site yourself, once you have more than a couple of scripts, it can be very
easy to lose track of the names you’ve already used.

We could still have a problem with event bubbling in later versions of Safari,
because events can come from text nodes in Safari,12 and some of those events are
unwanted. For example, moving your mouse from the padding-space of a link
onto its text will fire a mouseover event on the text node and a mouseout event
on the link, neither of which we want, because they would bubble up and cause
multiple timers to start. But we can’t just ignore them entirely, because the links
might not have any padding, or the mouse might be moving so fast that the text
node is the first to receive an event (elements can sometimes fail to fire mouseover
or mouseout events if the movement across them is extremely fast).

12 We first encountered this phenomenon in “Opening Off-site Links in a New Window” in Chapter 7.

344

Chapter 15: DHTML Menus and Navigation

This is why we have the unwantedTextEvent function: it returns whether an
event is unwanted, by those criteria, so that we can use it as a condition in the
list item mouse functions.

event Saves the Day

The event references in unwantedTextEvent look pretty strange, I know.
event is Internet Explorer’s window.event object, but IE doesn’t support
the property name relatedTarget. So, why haven’t we passed an event
reference?

Well, we haven’t had to, because this test for unwanted events needs only
to work in Safari (and Konqueror, which uses the same engine), and because
Safari and Konqueror implement IE’s global event object as well as the pass-
by-reference model used in Firefox and other browsers! It certainly makes
life easier here, and could be invaluable in other cases, should you find
yourself in a situation where it’s impossible or impractical to pass a reference.

Making Sure the Menus Stay Inside the
Window

Once we start adding deeper levels to the menu, we may reach a situation where
a single branch is too long to fit inside the window. This clearly won’t do, because
menus that extend outside the window are virtually impossible to use with the
mouse. What we need is the ability to detect that kind of situation, then reposition
the menus on the fly.

Information Architecture Tip

Even with these measures in place, it’s generally considered good usability
to keep a menu structure fairly small. A large structure with many deeply-
nested branches can be intimidating to use, while a single menu with dozens
of items will be too tall to fit inside a window at a resolution of 800x600.

Consider splitting large menus into subgroups, and if the number of subgroups
becomes excessive, consider removing the detailed links, limiting yourself to
section-index pages. A drop-down menu should not be a sitemap, after all.

Solution
To make the calculations for menu repositioning, every time a menu is opened,
we need to know that menu’s approximate position with respect to the top-left

345

Making Sure the Menus Stay Inside the Window

of the viewport, and the viewport’s size. These two functions will give us the
data:

File: dropdownMenu.js (excerpt)

function getRoughPosition(ele, dir)
{
 var pos = dir == 'x' ? ele.offsetLeft : ele.offsetTop;
 var tmp = ele.offsetParent;
 while (tmp != null)
 {
 pos += dir == 'x' ? tmp.offsetLeft : tmp.offsetTop;
 tmp = tmp.offsetParent;
 }
 return pos;
};

function getViewportSize()
{
 var size = [0,0];

 if (typeof window.innerWidth != 'undefined')
 {
 size = [
 window.innerWidth,
 window.innerHeight
];
 }
 else if (typeof document.documentElement != 'undefined'
 && typeof document.documentElement.clientWidth != 'undefined'
 && document.documentElement.clientWidth != 0)
 {
 size = [
 document.documentElement.clientWidth,
 document.documentElement.clientHeight
];
 }
 else
 {
 size = [
 document.getElementsByTagName('body')[0].clientWidth,
 document.getElementsByTagName('body')[0].clientHeight
];
 }

 return size;
}

346

Chapter 15: DHTML Menus and Navigation

We also need a function to do the actual repositioning work, using data from the
previous two:

File: dropdownMenu.js (excerpt)

function repositionMenu(menu)
{
 var extent = [
 getRoughPosition(menu, 'x') + menu.offsetWidth + 25,
 getRoughPosition(menu, 'y') + menu.offsetHeight + 25
];
 var viewsize = getViewportSize();

 if (extent[0] > viewsize[0])
 {
 var offset = menu.offsetWidth
 + menu.parentNode.parentNode.offsetWidth;
 var inset = menu.parentNode.offsetWidth
 - menu.offsetLeft;

 menu.style.left = (0 - offset + (inset * 2)) + 'px';
 }
 if (extent[1] > viewsize[1])
 {
 var current = parseInt(menu.style.top, 10);
 var difference = (extent[1] - viewsize[1]);

 menu.style.top = (current - difference) + 'px';
 }
}

Finally, we can call the repositioning function from our list item mouseover
function (additions from the previous script are shown in bold):

File: dropdownMenu.js (excerpt)

attachEventListener(li, 'mouseover', function(e)
{
 if (unwantedTextEvent()) { return; }
 clearTimeout(closetime);
 if (branch == li) { branch = null; }

 a.className += (a.className == '' ? '' : ' ') + 'rollover';

var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
 while (target.nodeName.toUpperCase() != 'LI')

347

Making Sure the Menus Stay Inside the Window

 {
 target = target.parentNode;
 }
 if (target != li) { return; }

 if (menu)
 {
 opentime = window.setTimeout(function()
 {
 if (branch)
 {
 clearMenus(branch);
 branch = null;
 }

 menu.style.left = horiz
 ? (isie ? li.offsetLeft + 'px' : 'auto')
 : '0';

 menu.style.top = horiz && issub
 ? (isie ? a.offsetHeight + 'px' : 'auto')
 : (isie ? li.offsetTop + 'px' : '0');

repositionMenu(menu);
 }, 250);
 }
}, false);

Discussion
Before we examine how the repositioning works, let’s look briefly at the two
utility functions, getRoughPosition and getViewportSize.

The first function, getRoughPosition, finds the position of an object on the
page, but as we saw in the earlier section called “Finding the Position of an Ele-
ment” in Chapter 13, such a simple routine is rarely very accurate: it doesn’t in-
clude the borders on intermediate elements, nor does it cater for the various
browser quirks and variations. In this case, however, we don’t really need very
accurate figures; we simply need to know if a menu is near, or past, the edge of
the viewport, so a simple function like this is good enough. We will, of course,
have to allow for broad inaccuracies, so when we actually come to use the function,
we’ll include a generous buffer zone of 25 pixels to that end.

348

Chapter 15: DHTML Menus and Navigation

The second function, getViewportSize, simply works out the current viewport
size using a variety of browser-dependent properties, and is identical to the
solution we saw in “Getting the Viewport Size (the Available Space inside the
Window)” in Chapter 7.

Now, let’s turn to the function that actually does the repositioning. Within the
list item mouseover listener you can see that repositionMenu is called immedi-
ately after the default positioning. That’s simple enough. However, what we have
here is a structure of many nested items, inside which events are allowed to bubble
freely. Suddenly, that’s a problem for us—the bubbling means that the menu we
examine when we come to repositioning is always the lowest menu in that branch
(the first submenu from the navbar). We can’t stop that bubbling, as we rely on
it for other purposes in the script, but we do have to do something if we want this
repositioning to work.

What we have to do is allow it to bubble, but ensure that the menu positioning
code only acts on the true target, not any subsequent bubble phases. That’s the
purpose of this code:

File: dropdownMenu.js (excerpt)

var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
while (target.nodeName.toUpperCase() != 'LI')
{
 target = target.parentNode;
}
if (target != li) { return; }

The li reference is the list item to which the handler is bound, but the target
variable will refer to whichever node the event has bubbled to at that point in
time, “rounded-up,” so to speak, to the nearest list item (because the bubbling
events can also come from intermediate elements—from links and, in Safari, from
the text node inside a link).

The end result is that the code responsible for timer management and rollover
styling (both of which come before the above fragment in the mouseover listener)
bubbles freely, as it needs to, but the menu positioning code is ignored unless
the listener is dealing with the primary target. We could have done the same job
more simply if we had been able to use the eventPhase property (to determine
at what stage of event propagation the function is being called), but that property
isn’t supported in Internet Explorer 5 or 6.

349

Making Sure the Menus Stay Inside the Window

Now that we are able to reference the right menu, and we have window-size and
position-finding functions that can establish that a menu needs to be moved,
what kind of repositioning do we want? We have two options:

❑ Move the menu back just enough that it doesn’t go over the edge of the win-
dow (let’s call this position rounding).

❑ Invert the menu’s position so that it opens to the other side of its parent
(position inversion).

In fact both approaches are useful for different directions of overflow. Let’s begin
with the horizontal overflow, and a menu structure that looks like Figure 15.7
when fully expanded.

Figure 15.7. A large menu structure fully expanded

If our window was only half that width and we used position rounding on the
Widgets/Spoons menu, what would happen to the levels beyond that menu?
Those menu levels would also go over the edge. They’d be repositioned in the
same way, ending up almost directly on top of their parent. We would see
something like Figure 15.8.

350

Chapter 15: DHTML Menus and Navigation

Figure 15.8. Menus stacking on top of each other: not good

That won’t do at all! Let’s try position inversion, which will give us a much
neater layout, as shown in Figure 15.9. A further child menu might have room
to open normally, or it might be repositioned back to the left, as necessary. The
menus will still stack up after a certain number of levels, but in two columns in-
stead of one, ensuring that they remain usable.

Figure 15.9. Menus stacking in two neat columns: much better

351

Making Sure the Menus Stay Inside the Window

Margins and Menu Overlap

You’ll notice that the submenus overlap their parents’ right edges slightly,
which is achieved using a negative margin in our CSS. However, if not ac-
counted for, that overlap would translate into a gap when a submenu was
repositioned to the left, as we’ve just discussed.

The margin value might be provided in a non-pixel unit (such as em, as it
is in this demonstration), so our code must calculate the margin as a pixel
value by ascertaining the difference between the menu’s offsetLeft, and
the offsetWidth of its parent:

File: dropdownMenu.js (excerpt)

var inset = menu.parentNode.offsetWidth
 - menu.offsetLeft;

To re-implement the margin on the repositioned menu, we add twice the
margin to its left position (once to remove the gap, and a second time to
create an equivalent overlap of the parent menu’s left edge):

File: dropdownMenu.js (excerpt)

menu.style.left = (0 - offset + (inset * 2)) + 'px';

Now, let’s look at the possibility of a vertical overflow. Here, position rounding
is the solution we want, because the horizontal shift was really all that was needed
to avoid obscuring parent menus. Menus are never going to stack directly on top
of each other now: we can be sure that a child menu will always be to the left or
right of its parent.

Indeed, if we used position inversion for the vertical axis, we could be moving
the menu quite a way up, possibly out of practical reach. A menu with many
items could be quite tall, and a window is typically wider than it is high, so,
typically, we have less leeway overall when dealing with the vertical aspect of
menu positioning. We should only move it far enough to keep it above the fold,
as shown in Figure 15.10.

352

Chapter 15: DHTML Menus and Navigation

Figure 15.10. Menus repositioned to stay above the fold

Now, with both kinds of repositioning in force, even a large structure constrained
in a small space remains usable, displaying similarly to Figure 15.11.

Need Scrolling?

These repositioning functions don’t allow for page scrolling. In practice,
scrolling is seldom necessary, because most sites have their main navigation
bar at or near the top of the page. But if you do need that capability, you
can simply add the scrolling amounts to the viewport size figures, using data
from the getScrollingPosition function we built in “Getting the
Scrolling Position” in Chapter 7.

Figure 15.11. A large menu structure in a very small space

353

Making Sure the Menus Stay Inside the Window

Making the Menus Display Over select
Elements

In Windows Internet Explorer 5 and 6, HTML select elements are examples of
windowed controls. They’re rendered by the operating system, rather than the
browser, and have a z-order of infinity (z-order is the vertical stacking of objects,
as defined for normal elements by the CSS z-index property). In practice, this
means that when a DHTML layer and a windowed control coincide, the control
will show through, as illustrated in Figure 15.12.

Figure 15.12. A menu coinciding with a select element in
Windows IE

However, in IE 5.5 and IE 6 the iframe element has unique properties—it’s a
window-level object like any other window or frame, so it can go on top of other
window-level objects, but it can also fall in with the regular z-order of page ele-
ments. The practical upshot of this is that if you put an iframe between a DHTML
layer and a windowed-control, the control doesn’t show through! How cool is
that?

Solution
To apply this technique to our menu, we simply need to create iframe layers on
the fly. Each time a menu is opened, we’ll create a new iframe and position it
directly underneath that menu, removing it when the menu is closed. Here are
the functions we’ll need:

354

Chapter 15: DHTML Menus and Navigation

File: dropdownMenu.js (excerpt)

function createIframeLayer(menu)
{
 var layer = document.createElement('iframe');
 layer.tabIndex = '-1';
 layer.src = 'javascript:false;';
 menu.parentNode.appendChild(layer);

 layer.style.left = menu.offsetLeft + 'px';
 layer.style.top = menu.offsetTop + 'px';
 layer.style.width = menu.offsetWidth + 'px';
 layer.style.height = menu.offsetHeight + 'px';
}

function removeIframeLayer(menu)
{
 var layers = menu.parentNode.getElementsByTagName('iframe');
 while (layers.length > 0)
 {
 layers[0].parentNode.removeChild(layers[0]);
 }
}

These iframes are styled with the following CSS, which places them between the
list item and the menu in the stacking order:

File: vertical.css (excerpt)

/* iframe layer */
ul iframe {
 position: absolute;
 z-index: 1010;
 border: none;
}

Finally, we need to add this behavior to the list item functions. First, we call
createIframeLayer in the mouseover listener, immediately after the other posi-
tioning code (this way, we create the iframe layer at the menu’s final position,
which saves having to reposition them both). It’s wrapped in an object test that
applies to Windows IE only (additions from the previous script are shown in
bold):

File: dropdownMenu.js (excerpt)

attachEventListener(li, 'mouseover', function(e)
{
 if (unwantedTextEvent()) { return; }

355

Making the Menus Display Over select Elements

 clearTimeout(closetime);
 if (branch == li) { branch = null; }

 a.className += (a.className == '' ? '' : ' ') + 'rollover';

 var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
 while (target.nodeName.toUpperCase() != 'LI')
 {
 target = target.parentNode;
 }
 if (target != li) { return; }

 if (menu)
 {
 opentime = window.setTimeout(function()
 {
 if (branch)
 {
 clearMenus(branch);
 branch = null;
 }

 menu.style.left = horiz
 ? (isie ? li.offsetLeft + 'px' : 'auto')
 : '0';

 menu.style.top = horiz && issub
 ? (isie ? a.offsetHeight + 'px' : 'auto')
 : (isie ? li.offsetTop + 'px' : '0');

 repositionMenu(menu);

if (typeof document.uniqueID != 'undefined')
 {
 createIframeLayer(menu);
 }
 }, 250);
 }
}, false);

Then, we call removeIframeLayer at both the points at which menus are closed.
The first is the list item mouseout:

356

Chapter 15: DHTML Menus and Navigation

File: dropdownMenu.js (excerpt)

attachEventListener(li, 'mouseout', function(e)
{
 if (unwantedTextEvent()) { return; }

 var related = typeof e.relatedTarget != 'undefined'
 ? e.relatedTarget : e.toElement;
 if (!li.contains(related))
 {
 clearTimeout(opentime);
 branch = li;

 a.className = a.className.replace(/ ?rollover/g, '');
 if (menu)
 {
 closetime = window.setTimeout(function()
 {
 menu.style.left = '-100em';

removeIframeLayer(menu);
 }, 600);
 }
 }
}, false);

We call removeIframeLayer a second time at the reset function, clearMenus:

File: dropdownMenu.js (excerpt)

function clearMenus(root)
{
 var menus = root.getElementsByTagName('ul');
 for (var i = 0; i < menus.length; i++)
 {
 menus[i].style.left = '-100em';

removeIframeLayer(menus[i]);
 }
}

We don’t need to perform any browser checks to call removeIframeLayer, because
the code inside it will apply only if an iframe layer has already been created.

Discussion
The iframe has absolute positioning within the same context as the menu (i.e.,
the menu and the iframe are siblings within a positioned parent element). This

357

Making the Menus Display Over select Elements

makes it easy for us to place the iframe underneath the menu, and set its dimen-
sions to match those of the menu using the offset properties of the menu itself
(offsetLeft, offsetWidth, and so on).

Nobody will see the iframe layer, since it has no borders, and its size and position
perfectly match the size and position of the menu, but it will sit there doing its
job, obscuring select elements and other windowed controls. In fact, this trick
is so robust that it also works for Flash, Java applets—even embedded media
players!

Let’s set a couple of extra properties, just for safety’s sake. The negative tabIndex
value takes the iframe out of the page’s tab order (otherwise, users would be
able to navigate to it with the keyboard, which would cause confusion). We set
src so that we don’t experience any problems with SSL pages. In IE, iframes
with no set src automatically load about:blank. IE considers this an insecure
page, and would generate a warning dialog that reads: “This page contains both
secure and non-secure items.”

We can avoid this problem by setting the src to 'javascript:false;', because
the document is then deemed to be within the same security zone as the host
page. Note that we must set the src before appending the iframe to the page; if
we do it afterwards we’ll get that “click” sound of a link being followed every
time a new iframe is created.

Note that this trick only works in IE 5.5 or later, because of the unique properties
of an iframe in those versions; the solution doesn’t work in IE 5.0, even though
this browser is equally affected by the original problem. IE 5.0 is a little-used
version, and usage rates are in steep decline, so you’d be forgiven for overlooking
the browser on this occasion. If you do want to cater for its followers, you can
fall back on the older, more brutal technique of hiding all select elements
whenever the menus open, and showing them as the menus are closed. This
method is less subtle because it hides all select elements completely, even if a
menu only partially overlaps, or indeed, is nowhere near those elements!

To implement this alternative solution, we’ll need to define a show/hide function:

File: dropdownMenu.js (excerpt)

function toggleSelects(vis)
{
 if (typeof document.uniqueID != 'undefined'
 && typeof document.body.style.scrollbarTrackColor ==
 'undefined')
 {

358

Chapter 15: DHTML Menus and Navigation

about:blank

 var selects = document.getElementsByTagName('select');
 for (var i = 0; i < selects.length; i++)
 {
 selects[i].style.visibility = vis;
 }

 return true;
 }

 return false;
}

The function uses a combination of object tests to identify Windows IE 5.0, then
returns true or false on the basis of whether or not it ran (and therefore,
whether or not the browser is Windows IE 5.0). This means we can use it as both
a function call and a condition directly from our iframe functions, so that they
either hide all select elements, or create the iframe layer. Here’s the code (ad-
ditions are shown in bold):

File: dropdownMenu.js (excerpt)

function createIframeLayer(menu)
{
if (!toggleSelects('hidden'))

 {
 var layer = document.createElement('iframe');
 layer.tabIndex = '-1';
 layer.src = 'javascript:false;';
 menu.parentNode.appendChild(layer);

 layer.style.left = menu.offsetLeft + 'px';
 layer.style.top = menu.offsetTop + 'px';
 layer.style.width = menu.offsetWidth + 'px';
 layer.style.height = menu.offsetHeight + 'px';
}

}

function removeIframeLayer(menu)
{
if (!toggleSelects('visible'))

 {
 var layers = menu.parentNode.getElementsByTagName('iframe');
 while (layers.length > 0)
 {
 layers[0].parentNode.removeChild(layers[0]);
 }

359

Making the Menus Display Over select Elements

}
}

However, the behaviors we get are not quite what we need. We don’t want to
display the select elements whenever any menu is closed: we only want to display
them when all of the menus are closed, and to do so, we’ll need to change the
way those elements are reset. Apply the following modification to the list item
mouseout function (additions are shown in bold):

attachEventListener(li, 'mouseout', function(e)
{
 if (unwantedTextEvent()) { return; }

 var related = typeof e.relatedTarget != 'undefined'
 ? e.relatedTarget : e.toElement;
 if (!li.contains(related))
 {
 clearTimeout(opentime);
 branch = li;

 a.className = a.className.replace(/ ?rollover/g, '');
 if (menu)
 {
 closetime = window.setTimeout(function()
 {
 menu.style.left = '-100em';

 if (toggleSelects('visible') && tree.contains(related))
 {
 toggleSelects('hidden');
 }
 else
 {
 removeIframeLayer(menu);
 }

 }, 600);
 }
 }
}, false);

Here, we’re calling toggleSelects directly, rather than having it called indirectly
from removeIframeLayer. Only Windows IE 5.0 will return true; therefore, only
that browser will go on to the second condition—another contains evaluation
that assesses whether the event’s related target is still inside the tree (so one or

360

Chapter 15: DHTML Menus and Navigation

more menus are still open), or is outside the tree completely (so all menus are
closed). That gives us the information we need: we have to show the elements
again, but we can hide them immediately if the mouse is still inside the tree. The
overall effect is that the select elements appear to remain constantly hidden.

Remember that contains is proprietary to IE. However, we needn’t worry about
this call tripping up other browsers, since they won’t look past the call to
toggleSelects, which will return false.

Making a Folder Tree or Expanding Menu
An expanding menu (sometimes also known as a “switch menu” or “contracting
menu”) begins with almost exactly the same HTML framework as our drop-
down/fly-out menu. The only difference is a change in the main ul class name,
from vertical to expanding. The styling, as shown in Figure 15.13, is quite
similar to that of a vertical navbar with fly-out menus, except that the menus
have static, rather than absolute positioning (and the arrows point downwards).

The behaviors are quite different, though, because the menus are triggered using
click events, rather than mouseover events, which means that the usability issues
we’ll need to tackle will be different from those we saw in the previous solution.
In some cases, they’ll be simplified—we don’t really need timers any more, and
we certainly don’t need menu repositioning—but we will encounter other usability
issues, and a serious accessibility trap that we haven’t seen before.

A folder tree menu is a variation on the expanding menu theme, with slightly
different styling. Generally, a folder tree menu’s sublevels are indented, and
icons—such as folder/file icons or the plus/minus symbols seen in a Windows-
style folder tree—appear beside each menu item, as shown in Figure 15.14.

361

Making a Folder Tree or Expanding Menu

Figure 15.13. An HTML list styled as an expanding menu

Figure 15.14. A folder tree menu with plus/minus icons

We’ll account for both those icon variations in due course, but let’s begin by
building the basic framework. We’ve already seen the HTML; here’s the CSS for
an expanding menu:

File: expanding.css

/* structural styles and offsets */
ul.expanding, ul.expanding li, ul.expanding ul {
 margin: 0;
 padding: 0;

362

Chapter 15: DHTML Menus and Navigation

 list-style-type: none;
 font-size: 100%;
}
ul.expanding {
 position: relative;
 cursor: default;
 width: 8.2em;
}
ul.expanding li {
 position: relative;
 text-align: left;
 cursor: pointer;
 cursor: hand;
 width: 8.2em;
 margin: -1px 0 0 0;
}
ul.expanding ul {
 cursor: default;
 width: 8.2em;
 padding: 2px 0;
 position: absolute;
 left: -100em;
}
ul.expanding ul li {
 width: 8.2em;
}

/* design styles */
ul.expanding a:link, ul.expanding a:visited {
 display: block;
 cursor: pointer;
 cursor: hand;
 background: #ffc;
 border: 1px solid #edbb85;
 padding: 5px 7px;
 font: bold 0.7em tahoma, verdana, sans-serif;
 color: #008000;
 text-decoration: none;
 letter-spacing: 1px;
}
ul.expanding a:hover, ul.expanding a:focus, ul.expanding a:active,
ul.expanding a.rollover:link, ul.expanding a.rollover:visited {
 background: #ffefcf;
 color: #806020;
}

363

Making a Folder Tree or Expanding Menu

/* submenu indicator arrows */
ul.expanding li.hasmenu > a:link,
ul.expanding li.hasmenu > a:visited {
 background: url(down-green.gif) #ffc no-repeat 95% 50%;
}
ul.expanding li.hasmenu > a:hover,
ul.expanding li.hasmenu > a:focus,
ul.expanding li.hasmenu > a:active,
ul.expanding li.hasmenu > a.rollover:link,
ul.expanding li.hasmenu > a.rollover:visited {
 background: url(down-red.gif) #ffefcf no-repeat 95% 50%;
}
* html ul.expanding li.hasmenu a:link,
* html ul.expanding li.hasmenu a:visited
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(down-green.gif) #ffc no-repeat 95% 50%" : "#ffc");
}
* html ul.expanding li.hasmenu a:hover,
* html ul.expanding li.hasmenu a:active,
* html ul.expanding li.hasmenu a.rollover:link,
* html ul.expanding li.hasmenu a.rollover:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(down-red.gif) #ffefcf no-repeat 95% 50%" : "#ffefcf");
}

/* browser hacks */
@media screen, projection {
 * html ul.expanding li {
 display: inline;
 f\loat: left;
 background: #fff;
 }
}

This creates a menu which will eventually look like the one shown in Figure 15.13.
That image shows where we’re going, but at this point, using straight CSS, our
menu has no submenu indicator arrows, nor are any of its menus visible by default.
Let’s implement the basic expanding menu functionality now.

Solution
To begin, we need a primary initialization function; this is called treeMenu. It’s
similar to the dropdownMenu initialization function we wrote in the section called
“Making a Drop-down or Fly-out Menu” at the start of this chapter, but simpler,
since we have only one special case to deal with. (It affects Safari and Opera, and

364

Chapter 15: DHTML Menus and Navigation

is catered for by the call to displayReset, which we’ll examine in the discussion
below.)

File: treeMenu.js (excerpt)

function treeMenu(navid)
{
 if (typeof document.getElementById == 'undefined') { return; }

 var rollover = new Image;
 rollover.src = 'down-red.gif';

 var tree = document.getElementById(navid);
 if (tree)
 {
 var items = tree.getElementsByTagName('li');
 for (var i = 0; i < items.length; i++)
 {
 treeTrigger(tree, items[i], navid);
 }

 if (navigator.vendor == 'Apple Computer, Inc.'
 || typeof window.opera != 'undefined')
 {
 displayReset(tree);
 }
 }
}

var isreset = false;

function displayReset(tree)
{
 var menus = tree.getElementsByTagName('ul');
 for (var i = 0; i < menus.length; i++)
 {
 menus[i].style.display = 'none';
 menus[i].style.position = 'static';
 }
 isreset = true;
}

Next, we have a list item initialization function that works rather differently from
the equivalent in our drop-down menu script:

365

Making a Folder Tree or Expanding Menu

File: treeMenu.js (excerpt)

function treeTrigger(tree, li, navid)
{
 var a = li.getElementsByTagName('a')[0];
 var menu = li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null;

 if (menu)
 {
 li.className += (li.className == '' ? '' : ' ') + 'hasmenu';
 }

 li.onclick = function(e)
 {
 var target = e ? e.target : window.event.srcElement;
 while (target.nodeName.toUpperCase() != 'LI')
 {
 target = target.parentNode;
 }
 if (target == this && isreset)
 {
 if (menu)
 {
 if (menu.style.display == 'none')
 {
 menu.style.display = 'block';
 }
 else
 {
 menu.style.display = 'none';
 }
 return false;
 }
 else
 {
 return true;
 }
 }
 };

 attachEventListener(a, 'keyup', function(e)
 {
 if (!isreset && e.keyCode == 9)
 {
 displayReset(tree);
 }

366

Chapter 15: DHTML Menus and Navigation

 }, false);

 var moves = 0;
 attachEventListener(a, 'mousemove', function()
 {
 if (!isreset)
 {
 moves++;
 if (moves > 2) { displayReset(tree); }
 }
 }, false);
}

Finally, as before, we call our main initialization function from the load event,
passing the list id:

File: treeMenu.js (excerpt)

addLoadListener(function() { treeMenu('navigation'); });

Discussion
The treeTrigger function starts by performing many of the same tasks the
dropdownTrigger function did in our drop-down menu example: it stores a ref-
erence to the link and the submenu (if one exists), adds a class name to identify
which items should have indicator arrows, and binds an event listener to each
list item to facilitate opening and closing the submenus. Two additional event
listeners, keyup and mousemove, are used for links. These listeners are related to
solving the accessibility trap I mentioned earlier; we’ll discuss this in depth shortly.

But let’s begin with the simplest aspect: the list item click event handler. Here,
we have to do the same kind of target filtering that we performed on our drop-
down menu, and for the same reason: to establish whether this event comes dir-
ectly from the element to which this handler was assigned (this), or has bubbled
from another. Without this filter, we wouldn’t know if we were responding to a
click on the list item that contains the menu, or a list item contained within that
menu.

Avoiding a Safari Bug

You’ll notice that the script uses a DOM 0 event handler to respond to click
events, rather than the less intrusive attachEventListener method we’ve

367

Making a Folder Tree or Expanding Menu

used elsewhere. This tactic helps us avoid a bug in Safari.13 Although we’re
responding to click events on behalf of list items, it’s the links inside those
list items that people will actually click. To use these links as menu open
and close toggles, we’ll need to prevent those links from being followed.

In Chapter 13 we saw a method that we can use to prevent the default action
of an event. That method was stopDefaultAction, and it works all the
time for almost every browser. Almost. In Safari, the method simply fails to
work, and the browser follows the link as normal. As far as I know, there
isn’t an effective workaround for this bug, other than to fall back on a DOM
0 handler with which we can simply return false. This approach works fine
in all browsers, which is why we’ve used it here.

With the workaround in place, our function simply displays or hides the menu.
But hang on … didn’t we say that using display or visibility properties to
show and hide elements makes our menus inaccessible to browser-based screen
readers?

Indeed, by default, the menus are hidden using the offleft positioning technique
we saw previously. It solved a usability problem in that example, but in this case
it’s actually detrimental to users of graphical browsers. Links that are positioned
in this way are still accessible via the keyboard, even though they’re not visible
on the screen, so, if we used this solution, users who tabbed through the list (or
otherwise navigated by keyboard) would navigate to menu items they couldn’t
see!

The problem is complicated further by the fact that we have to return false on
menu-triggering links, and the click events which trigger the function can be
fired by the keyboard as well as the mouse (for instance, by pressing Enter on a
link that has focus). So if we returned false in every case we’d be preventing
keyboard navigation of our menus for anyone using a browser-based screen
reader, because activating the link would do nothing at all!

One way to deal with the first problem is to add focus event listeners to every
link, so that the menus open automatically. This would ensure that all menu
levels are always accessible to sighted keyboard users; however, this solution
doesn’t allow users to control the opening and closing of menu branches from the
keyboard (which would be far more usable). Nor does it address the second
problem in any way: we still need to know what to do—whether or not to follow
the link—when a link receives a click event.

13 At the time of writing, the bug occurs in versions of Safari up to and including version 2.0.1.

368

Chapter 15: DHTML Menus and Navigation

In order to address the second problem, we must think more carefully about how
the menu will be navigated by keyboard. Ultimately, both our accessibility
problems and our usability preferences are part-and-parcel of the same issue; we
have to address them together.

What we really need is a means of identifying browser-based screen readers that
would allow us to use display toggles and provide a means for evaluating click
events. We can’t directly identify such devices, because they don’t identify
themselves differently from the browser they’re used with. But we can infer their
use indirectly, because they don’t generate the same set of events that the browser
generates on its own. We can use these disparities to “detect” the browsing devices
in question, and respond accordingly.

This technique is covered in a lot more depth in Chapter 16, but in summary,
browser-based screen readers rarely generate keydown or keyup events as a result
of the user pressing Tab to navigate between links; however, some screen readers
do generate these events when modifier keys like Shift are used, or when other
actions occur, such as the user pressing Enter to activate a link.

It’s a Hack!

This technique is a hack—there’s no other word for it—because it makes
inferences about devices based on behaviors that could change in future
versions. But, at present, it allows us to cater for the original accessibility
problem in a way that would otherwise be impossible, as far as I know.
Without it, our tree menu would be useless for all browser-based screen
readers.

So, to solve the problem, we attach a key handler to each of the links and test
for keyCode 9 (the Tab key). If we receive an event with that keyCode we’ll know
it came from a graphical browser, not a browser-based screen reader.14 In such
cases, we can call displayReset:

File: treeMenu.js (excerpt)

attachEventListener(a, 'keyup', function(e)
{
 if (!isreset && e.keyCode == 9)
 {
 displayReset(tree);
 }
}, false);

14 This solution was tested in JAWS 5.0 and 6.2, Connect Outloud 2.0, Windows Eyes 5.0, Hal 6.5
and Home Page Reader 3.0. Please see Chapter 16 for more details.

369

Making a Folder Tree or Expanding Menu

The displayReset function iterates through and hides all the menus (which
gives us the keyboard behaviors we want for graphical browsers, solving the first
problem). To say that we’ve removed those menus from the display, we set the
isreset flag, which we can use later to process click events. If the flag has not
been set, we know that we’re not dealing with a graphical browser. Therefore, we
don’t have to toggle the menu display: we can follow the link as normal (solving
the second problem).

We’ll have to do the same thing for mouse events, so that mouse navigation still
works properly. However, in doing so we have to overcome another behavioral
quirk of various browser-based screen readers: some generate a complement of
mouse events when a link is actuated with the keyboard. For example, Dolphin Hal
6.5 generates mouseover, mousemove, and mousedown events at the same time as
it generates a click event. But it only generates one of each, so we can use a
mousemove handler that counts for multiple events to filter the events that are
generated. A graphical browser used in conjunction with a mouse will generate
several mousemove events on a link before it generates a click event, while a
screen reader generates only one mousemove, just before the link is followed.
Therefore, if we receive several events within the lifetime of the script, we can
assume that the visitor is using a graphical browser:

File: treeMenu.js (excerpt)

var moves = 0;
attachEventListener(a, 'mousemove', function()
{
 if (!isreset)
 {
 moves ++;
 if (moves > 2) { displayReset(tree); }
 }
}, false);

Regardless of which event actually triggers the reset, we need only go through
the script once. Therefore, in both instances, displayReset is called only if the
isreset flag has not already been set.

Before we can consider our solution complete, we need to consider one more
category of browsers: voicing or speaking browsers such as Opera 8 with Voice,
Firefox with the FoxyVoice extension, and Safari 2 using VoiceOver (the speech
capability introduced in Mac OS 10.4). Each of these tools is designed to supple-
ment visual browser use, rather than to act as the sole browsing tool for a person
who’s completely blind, so they need to be treated in the same way as a graphical
browser. But Safari with VoiceOver and Opera with Voice fall through the net,

370

Chapter 15: DHTML Menus and Navigation

because they don’t quite generate the same set of events as those browsers generate
on their own.

Safari with VoiceOver does generate keyup events when the user navigates with
the Tab key, but not when custom navigation keystrokes (such as Ctrl-Option-→
for “move to next link”) are used.

Opera with Voice may not generate key events at all, because it allows users to
navigate using voice commands alone. Actually, Opera has a range of navigation
keys (users can press A and Q to move between links, while the arrow keys allow
spatial navigation), so the original test for keyCode 9 wouldn’t cater for Opera
anyway. We could add extra key-codes to the test condition, but the solution
we’re about to step through will cover it from another direction.

All we need to do to fix this problem is to apply displayReset at menu initializ-
ation when we detect Opera:

File: treeMenu.js (excerpt)

if (navigator.vendor == 'Apple Computer, Inc.'
 || typeof window.opera != 'undefined')
{
 displayReset(tree);
}

Since no other browser-based screen readers integrate with Safari or Opera,15

actual users will not be affected.

Indicating Expanded Branches in a Menu
In a Windows-style folder tree menu, each submenu usually is supplemented by
an icon; + (plus) denotes a closed sub-branch (meaning “click to expand”) and
– (minus) denotes an open sub-branch (“click to collapse”). On different systems,
the icons may vary—your system may show a folder or other icon—but the
principle is the same. For the most part, adding these icons is simply a case of
changing the CSS, that is, removing the indicator arrows that change with the
link state, and replacing them with icons that change with the menu state.

A little scripting is involved, but it’s identical regardless of whether you’re adding
icons to a folder tree, or highlighting expanded elements in an expanding menu.
So far, we’ve been building an expanding menu, but at the end of this solution,

15 The vast majority of readers only work with Internet Explorer, but GW Micro’s Windows Eyes
5.5 (beta, at the time of writing) also claims to work with Firefox.

371

Indicating Expanded Branches in a Menu

we’ll see how to turn it into a folder tree. You can then continue development
using the menu type you need.

Solution
The scripting aspect of this solution is based on the approach we used in our fly-
out menu: we’ll set a particular class name when a branch is in use (in this case,
“in use” means the submenu is open), and remove the class when the menu is
not in use. Here’s the list item click event handler again, with the necessary
additions in bold:

File: treeMenu.js (excerpt)

li.onclick = function(e)
{
 var target = e ? e.target : window.event.srcElement;
 while (target.nodeName.toUpperCase() != 'LI')
 {
 target = target.parentNode;
 }
 if (target == this && isreset)
 {
 if (menu)
 {
 if (menu.style.display == 'none')
 {
 menu.style.display = 'block';

a.className += (a.className=='' ? '' : ' ') + 'rollover';
 }
 else
 {
 menu.style.display = 'none';

a.className = a.className.replace(/ ?rollover/g, '');
 }
 return false;
 }
 else
 {
 return true;
 }
 }
};

372

Chapter 15: DHTML Menus and Navigation

Simple, isn’t it? If we add that script to our expanding menu, the revised menu
code will highlight not only menu items that we roll over, but submenu items
that have been opened, finally achieving the look we saw back in Figure 15.13.

Discussion
But what about folder tree icons? First, let’s rework the link and arrow styles so
that our background-color and arrow change applies only once a submenu has
been expanded (not when it is moused over):

/* design styles */
ul.expanding a:link, ul.expanding a:visited {
 display: block;
 cursor: pointer;
 cursor: hand;
 background: #ffc;
 border: 1px solid #edbb85;
 padding: 5px 7px;
 font: bold 0.7em tahoma, verdana, sans-serif;
 color: #008000;
 text-decoration: none;
 letter-spacing: 1px;
}

ul.expanding a:hover, ul.expanding a:focus, ul.expanding a:active,
ul.expanding a.rollover:link, ul.expanding a.rollover:visited {
 color: #806020;
}

/* submenu indicator arrows */
ul.expanding li.hasmenu > a:link,
ul.expanding li.hasmenu > a:visited {
 background: url(down-green.gif) #ffc no-repeat 95% 50%;
}
ul.expanding li.hasmenu > a.rollover:link,
ul.expanding li.hasmenu > a.rollover:visited {
 background: url(down-red.gif) #ffefcf no-repeat 95% 50%;
}
* html ul.expanding li.hasmenu a:link,
* html ul.expanding li.hasmenu a:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(down-green.gif) #ffc no-repeat 95% 50%" : "#ffc");
}
* html ul.expanding li.hasmenu a.rollover:link,
* html ul.expanding li.hasmenu a.rollover:visited {

373

Indicating Expanded Branches in a Menu

 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(down-red.gif) #ffefcf no-repeat 95% 50%" : "#ffefcf");
}

Figure 15.15 illustrates the difference between a submenu that has been moused
over and one that has actually been expanded. Previously, these different states
had the same styles.

Figure 15.15. Two states of link appearance

By changing the rules in this way, we’ve created the states we need for plus/minus
icons—they can change and persist from menu opening, but are unaffected by
link mouseovers! Now that we’ve worked out our selector structure, we can adjust
the style sheet to give us the look we want for our folder tree menu:

File: foldertree.css

/* structural styles and offsets */
ul.foldertree, ul.foldertree li, ul.foldertree ul {
 margin: 0;
 padding: 0;
 list-style-type: none;
 font-size: 100%;
}
ul.foldertree {
 position: relative;
 cursor: default;

374

Chapter 15: DHTML Menus and Navigation

 width: 8.2em;
}
ul.foldertree li {
 position: relative;
 text-align: left;
 cursor: pointer;
 cursor: hand;
 width: 8.2em;
 margin: -1px 0 0 0;
}
ul.foldertree ul {
 cursor: default;
 width: 8.2em;
 padding: 2px 0;
 position: absolute;
 left: -100em;
 margin: 0 0 0 1em;
}
ul.foldertree ul li {
 width: 8.2em;
}

/* design styles */
ul.foldertree a:link, ul.foldertree a:visited {
 display: block;
 cursor: pointer;
 cursor: hand;
 padding: 1px 0 1px 15px;
 font: 0.7em tahoma, verdana, sans-serif;
 color: #000;
 text-decoration: none;
 letter-spacing: 1px;
}
ul.foldertree a:hover, ul.foldertree a:focus,
ul.foldertree a:active {
 text-decoration: underline;
 color: #007;
}

/* plus/minus icons */
ul.foldertree li.hasmenu > a:link,
ul.foldertree li.hasmenu > a:visited {
 background: url(plus.gif) no-repeat 1% 50%;
}
ul.foldertree li.hasmenu > a.rollover:link,
ul.foldertree li.hasmenu > a.rollover:visited {

375

Indicating Expanded Branches in a Menu

 background: url(minus.gif) no-repeat 1% 50%;
}
* html ul.foldertree li.hasmenu a:link,
* html ul.foldertree li.hasmenu a:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(plus.gif) no-repeat 1% 50%" : "transparent");
}
* html ul.foldertree li.hasmenu a.rollover:link,
* html ul.foldertree li.hasmenu a.rollover:visited {
 background: expression(/hasmenu/.test(this.parentNode.className)
 ? "url(minus.gif) no-repeat 1% 50%" : "transparent");
}

/* browser hacks */
@media screen, projection {
 * html ul.foldertree li {
 display: inline;
 f\loat: left;
 background: #fff;
 }
}

This style sheet will style our list to look like the one in Figure 15.14. But don’t
forget to change the icon caching!16

File: treeMenu.js (excerpt)

function treeMenu(navid, indexpage)
{
 if (typeof document.getElementById == 'undefined') { return; }

 var rollover = new Image;
 rollover.src = 'minus.gif';

If you’re working through these examples step by step, you’ll now either have an
expanding menu with arrows, or a folder tree menu with icons. Both these menus
are behaviorally identical; the only difference is their styling, and this will remain
the case as we move through the final two solutions in this chapter: the JavaScript
is the same, whichever design you’re using.

16 The version of treeMenu.js distributed in the code archive caches both down-red.gif and
minus.gif, so the script can be used with both menu styles.

376

Chapter 15: DHTML Menus and Navigation

Allowing Only One Menu Branch to Be
Open at Any Time

Whether or not you want this behavior will depend on what you’re doing with
your menu. For example, a folder tree menu that’s to be used as a directory
browser might be better off without it, so that you can have as many branches
open as you need. On the other hand, an expanding menu that’s used for site
navigation could probably benefit from this behavior, as the menu would likely
be easier to understand if only one navigable branch can be open at any time.

Solution
To make this solution work, we need to run a reset function in response to every
menu-opening event. This function will reset all menus that descend from siblings
of the newly-opened menu. Here’s the reset function:

File: treeMenu.js (excerpt)

function clearSiblingBranches(trigger)
{
 var menus = trigger.parentNode.getElementsByTagName('ul');
 for (var i = 0; i < menus.length; i++)
 {
 menus[i].style.display = 'none';
 var a = menus[i].parentNode.getElementsByTagName('a')[0];
 if (a)
 {
 a.className = a.className.replace(/[]?rollover/g, '');
 }
 }
}

To add it to our main function, we’ll call it directly before a menu-opening event.
Here’s the list item click function again (additions are shown in bold):

File: treeMenu.js (excerpt)

li.onclick = function(e)
{
 var target = e ? e.target : window.event.srcElement;
 while (target.nodeName.toUpperCase() != 'LI')
 {
 target = target.parentNode;

377

Allowing Only One Menu Branch to Be Open at Any Time

 }
 if (target == this && isreset)
 {
 if (menu)
 {
 if (menu.style.display == 'none')
 {

clearSiblingBranches(this);
 menu.style.display = 'block';
 a.className += (a.className=='' ? '' : ' ') + 'rollover';
 }
 else
 {
 menu.style.display = 'none';
 a.className = a.className.replace(/ ?rollover/g, '');
 }
 return false;
 }
 else
 {
 return true;
 }
 }
};

Discussion
The simplicity of this solution belies its usefulness! As you can see from the code,
the reset simply iterates through all menus descending from the parent menu of
our trigger (i.e., all sibling menus of that trigger and their descendants). If we call
the reset just before a menu opens, it will effectively close all branches except the
newly-opened one. Nice!

Opening the Current Sub-branch
Automatically

For the final solution in this chapter, we’ll look at a neat usability enhancement
for navigational tree menus. This enhancement compares the current page against
the links in the list, then opens the relevant branch to show users where they are.

378

Chapter 15: DHTML Menus and Navigation

Solution
We need three new functions for this solution. First and foremost is a slightly
complicated function called findHere, which will work out which link in the
navigation bar corresponds to the current page address:

function findHere(tree, navid, indexpage)
{
 var page = document.location.href;
 page = page.replace(indexpage, '').replace(/,/g,'%2C');
 var links = tree.getElementsByTagName('a');
 var matches = [];
 for (var i = 0; i < links.length; i++)
 {
 var href = links[i].href;
 if (href && !/[a-z]+\:\/\//.test(href))
 {
 matches = [];
 break;
 }

 href = href.replace(indexpage, '').replace(/,/g,'%2C');
 if (href != '' && page.indexOf(href) != -1)
 {
 matches[matches.length] = links[i];
 }
 }
 if (matches.length < 1) { return; }

 var probabilities = [];
 for (i = 0; i < matches.length; i++)
 {
 href = matches[i].href;
 probabilities[i] = [0, href];

 for (var j = 0; j < href.length; j++)
 {
 if (href.charAt(j) == page.charAt(j))
 {
 probabilities[i][0] ++;
 }
 }
 }

 probabilities.sort(compare);

379

Opening the Current Sub-branch Automatically

 href = probabilities[0][1];
 for (i = 0; i < links.length; i++)
 {
 if (links[i].href == href)
 {
 youAreHere(links[i], href, navid);
 break;
 }
 }
}

We also need a compare function, for sorting a matrix inverse-numerically (using
the method we saw in Chapter 4):

File: treeMenu.js (excerpt)

function compare(a, b)
{
 return b[0] - a[0];
}

Then, once we’ve found the applicable link, we have a function that applies the
necessary attributes:

File: treeMenu.js (excerpt)

function youAreHere(link, href, navid)
{
 link.className += (link.className == '' ? '' : ' ') +
 'rollover';
 var li = link.parentNode;
 var menu = (li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null);
 if (menu)
 {
 menu.style.display = 'block';
 menu.style.position = 'static';
 }

 var text = ((link.getAttribute('title') && link.title != '')
 ? link.title : link.firstChild.nodeValue);

 link.title = text + (link.href == href
 ? ' [you are here]' : ' [you\'re in this section]');
 if (li.parentNode.id != navid)
 {
 link = li.parentNode.parentNode.getElementsByTagName('a')[0];
 youAreHere(link, href, navid);

380

Chapter 15: DHTML Menus and Navigation

 }
}

To make all this run, we have to make three modifications to our existing code.
First, we edit the displayReset function (the function that overrides the posi-
tioning of submenus); otherwise, it would cause an unwanted reset when a pre-
opened structure was first used. We’ll need to arrange the code so that it still
applies universal static positioning to override the positioning, but only sets
display to none on a menu that isn’t already shown. We can detect such menus
from looking at their current position values (additions are shown in bold):

File: treeMenu.js (excerpt)

function displayReset(tree)
{
 var menus = tree.getElementsByTagName('ul');
 for (var i = 0; i < menus.length; i++)
 {

if (menus[i].style.position != 'static')
 {
 menus[i].style.display = 'none';

}
 menus[i].style.position = 'static';
 }
 isreset = true;
}

Next, we add the call to findHere from our main initialization function, treeMenu
(additions are shown in bold):

File: treeMenu.js (excerpt)

function treeMenu(navid, indexpage)
{
 if (typeof document.getElementById == 'undefined') { return; }
 var rollover = new Image;
 rollover.src = 'minus.gif';

 var tree = document.getElementById(navid);
 if (tree)
 {
 var items = tree.getElementsByTagName('li');
 for (var i = 0; i < items.length; i++)
 {
 treeTrigger(tree, items[i], navid)
 }

381

Opening the Current Sub-branch Automatically

 if (navigator.vendor == 'Apple Computer, Inc.'
 || typeof window.opera != 'undefined')
 {
 displayReset(tree);
 }

findHere(tree, navid, indexpage);
 }
}

Finally, the treeMenu function itself takes a second argument, indexpage, which
is passed on to the findHere function and used to specify the name of default
index pages (such as index.html, or default.php). This is so that, for example,
/about/index.html is recognized as being the same page as /about/.

Specify this value as an argument to the original initialization call (additions are
shown in bold):

File: treeMenu.js (excerpt)

addLoadListener(function(){treeMenu('navigation','index.html');});

Discussion
The first thing we do in the findHere function is establish the current page ad-
dress, which includes a replacement for the default page name (indexpage), and
replaces commas for the benefit of Internet Explorer 6, which doesn’t correctly
equate a comma with its escaped equivalent.

Then, we can iterate through the links in the navbar and compare each href with
the address. But we have to check that the href we get is actually a qualified
value (a value that includes the domain and protocol) because in older Safari
builds it comes back as the literal attribute value, which is of no use for this
comparison. In that situation, we reset the “possible matches” array and stop,
effectively abandoning the whole function.

Here, we’re actually comparing whether or not the page address contains this
href as a substring: if it does, we’re part of the way to establishing that they’re
the same; if it doesn’t, well, obviously they’re not the same, so there’s no point
comparing them further.

We have to determine a “best match” from the array of possible matches. This
is done by comparing each character of the href against the same character of
the page URI, and building up an array of likelihoods to discover which href has

382

Chapter 15: DHTML Menus and Navigation

the highest overall score. The highest score is deemed to be the current page. If
a perfect match is not found, the script will end up with the closest match; this
will most likely be a section index or parent of the current page, if one exists, or
the main index page, if no better match is found.

Now that we know where we are, we can apply the necessary attributes both to
our link (adding the rollover style, and appropriate title text), and to the menu
that contains it (making it visible). Although this code will still apply to browser-
based screen readers, and will make a visible difference in the host browser, there
won’t be a difference to the screen reader itself—the entire tree is still accessible
as through scripting and CSS were not enabled.

In order to show a nested menu, we also have to open its parents. Thankfully,
since our menu structure is hierarchical, we have no problem asserting that the
parent items of the link we have identified are the parent sections of that page,
so we can simply walk back up the tree! The youAreHere function is recursive
(just like the contains method we saw at the beginning of this chapter); it calls
itself up the branch, applying the necessary attributes, until it reaches the root
list.

Summary
In this chapter, we’ve built two kinds of dynamic menu: a drop-down or fly-out
menu, and a folder tree or expanding menu. We’ve examined accessibility and
usability issues as they arise, and looked at some innovative techniques for im-
proving the situation. Using and expanding on these ideas, you can build soph-
isticated and eminently usable dynamic navigation systems, while remaining
confident that you’re not falling into the conventional traps.

We’ve also touched on a few aspects of accessible scripting. We’ll explore these
ideas further in Chapter 16, where we’ll also come back to our drop-down menu,
upgrading it for three (yes, three) forms of keyboard navigation!

383

Summary

384

JavaScript and Accessibility16
At this point in the Web’s evolution, it’s still impossible to give definitive advice
on how best to marry JavaScript and accessibility, particularly when it comes to
screen readers and other assistive devices, because implementations vary so much,
and technologies change so rapidly. Yet despite—and because of—that fact, ac-
cessibility is an incredibly exciting area to work in, so at the very least I hope to
impart some of my enthusiasm for the subject in this chapter.

This focus of this book in on practical implementations, and in that respect this
chapter is no different than the others, focused as it is on the current needs of
users. Certainly, we may allow ourselves room for speculation, and experiment
with ideas for the future, but the bottom line is that people are using the Web
now, in imperfect circumstances, and there are numerous things that we can and
should do to improve the situation.

Some of the issues surrounding this topic have become slightly confused in recent
times, not just in regard to the definition of accessibility, but over the differing
needs of users: keyboard and screen-reader users are often seen as a single group,
when in fact the needs and interactions of a screen reader user often diverge
sharply from those of a sighted keyboard user. We’ll see many examples of this
as we go through the chapter.

But first, we need to cover some theoretical ground, so let’s begin by discussing
what accessibility actually is.

Is JavaScript Inaccessible?
Is concrete inaccessible?

Certainly it has the potential to be, if it’s created as a structure that’s physically
impossible for some people to use, as stairs would be to a person using a wheel-
chair. Yet that same concrete could have created a ramp, which is accessible both
to people using wheelchairs and those on foot. So the concrete itself is neither
accessible nor inaccessible—it’s just a medium. And so is JavaScript.

However, that doesn’t mean we can forget the whole point of accessibility and
just carry on regardless! Oh, no. Although JavaScript is no more inaccessible than
any other aspect of web development, it’s loaded with the potential to restrict
user access through circumstances that range from simple to extremely complex!
There are so many ways in which a script could cause problems, or fail to accom-
modate one or more groups of users, that if we are to begin to address the possib-
ilities and create accessible scripts, we must start by looking at the whole spectrum
of potential access barriers.

Solution
What exactly do we mean when we say, “accessible?” To whom are we making
our scripts accessible? And why do we need to do this, anyway?

What is Accessibility?
The answer to this question is not quite as straightforward as I wish it were. In
recent months, there’s been a lot of debate among developers about whether
“accessibility” means “catering to the needs of people with disabilities” or “catering
to the needs of all users.”1 The premise under which we’ll work in this chapter
is a compromise between the two: accessibility is about catering to everyone, but with
priority and emphasis on the needs of people with disabilities.

1 A lively debate on the topic is documented at http://www.accessifyforum.com/viewtopic.php?t=3159,
but it’s not for the faint-hearted—it throws up more questions than it answers, and gets slightly
confrontational in places. I refer to it because it illustrates the strength of passion and reason on both
sides (and because I’m in it, making my views pretty clear!). For discussions that focus more on the
reason and less on the passion, you might try
http://www.alistapart.com/articles/pdf_accessibility#multiple and
http://www.autisticcuckoo.net/archive.php?id=2005/08/24/joe-clark-on-accessibility.

386

Chapter 16: JavaScript and Accessibility

http://www.accessifyforum.com/viewtopic.php?t=3159
http://www.alistapart.com/articles/pdf_accessibility#multiple
http://www.autisticcuckoo.net/archive.php?id=2005/08/24/joe-clark-on-accessibility

When we talk about “accessibility problems” we’re talking about issues that affect
people because of attributes they can’t readily change—a person who’s blind can’t
just decide to see. By contrast, someone who surfs the Web with JavaScript turned
off simply because they want to has made a choice, and one they could easily
change if they felt inclined.

I think it’s absolutely right to be significantly more concerned with limitations
over which people have no choices, than those over which they do. But that
doesn’t mean that people who fall into the latter category aren’t important. And,
even more crucially, at what point can we assume to know which category users
and their particular access limitations fall into? How can we ever know (short of
asking them) whether users without JavaScript have made that choice consciously?
Has the choice been made for them as a result of circumstances beyond their
control?

We can predict the amount of choice involved in some issues, though. For ex-
ample, when an issue affects users on the basis of their ability to see, then the
question is definitely one of disability. When an issue affects people who don’t
have JavaScript support, the question might not be one of disability, but there’s
no way we can know whether it is or not. Even if we could know (for example,
by asking them), the answer wouldn’t matter unless that circumstance were true
for all non-JavaScript users.

We couldn’t restrict our accessibility efforts exclusively to disabled users, even
if we wanted to. However, this chapter does show how we can put a priority on
the needs of those users, while improving accessibility for all.

Who are the Affected Users?
Many groups of users face specific accessibility barriers, but not all of them are
directly affected by scripting practice. Color-blindness is one example where the
considerations are visual and design-based, and are more to do with CSS than
anything else.

There are other issues which, while being significant to a script, are not really
programming considerations as much as they are application design considerations.
For example, flashing colors and animation (which could be dangerous to someone
who has photosensitive epilepsy), may simply be unnecessary. If these effects are
necessary, then we face certain planning considerations: do we choose to have a
feature that’s static by default and animated by preference (so a user chooses the
animation, rather than having it happen automatically), or do we decide to warn
users in advance that it will occur? (Some applications, such as DHTML games,

387

Who are the Affected Users?

may be innately fast-paced and visual, and it may be impossible to make them
accessible without fundamentally changing their nature.)

The issue of support for JavaScript itself should already be quite familiar to you,
as we covered it back in “Providing for Users who Don’t Have JavaScript (Pro-
gressive Enhancement)” in Chapter 1. Suffice it to say that if client-side scripting
is not available, redundant functionality should be provided. But we will encounter
situations in which the question of scripting support is not a black and white is-
sue—browser-based screen readers are among the devices that do support JavaS-
cript, but only in a very piecemeal way, so we’ll have to turn our attention to
them specifically.

To summarize, through the course of this chapter we’ll look at two groups of
users whose particular needs and interactions impact directly on the way an ap-
plication is programmed:

❑ people who navigate using the keyboard

❑ people who use a screen reader

I’m not saying that these are the only groups of users who are affected, because
there are definitely others. For example, the needs and interactions of visually
impaired users who use screen magnification software may also be different from
those of other users, but the developer community at large is only beginning to
come to terms with the impacts of such users’ needs. There may also be implica-
tions in some kinds of scripting for people who have cognitive disabilities; for
example, the speed of a news ticker or other animation may need to be made
adjustable to accommodate different reading speeds.

However, I must admit that I have very little experience in those areas. So, while
I will point out relevant issues and considerations as they arise, the bulk of this
chapter is concerned with the two core user groups mentioned above.

The needs of these two groups are often very different, and we’ll examine and
discuss these variations through this chapter. Nevertheless, a person who uses a
screen reader is almost certain to be navigating with the keyboard, so in that
sense catering to the keyboard user is the primary concern of accessible scripting.
(Obviously, the mouse user is equally important, but I’m assuming you don’t
need me to tell you that!)

388

Chapter 16: JavaScript and Accessibility

In Another User’s Shoes

If you’re not in the habit of navigating web sites with the keyboard, try it
now. Spend some time getting a feel for what it’s like, seeing where difficulties
arise, and thinking about how those issues could be avoided.

Making Scripts Accessible to the
Keyboard

Now that we’ve established the need for support, what are the basic practicalities
of scripting for the keyboard?

Solution
The biggest implication of scripting for the keyboard is that interactions are
limited to elements that can accept the focus universally, primarily links (<a
href>) and form controls (<input>, <select>, <textarea>, and <button>). It’s
also possible to give focus to the area elements in an image map, a frame or
iframe, in some cases an object, and in most browsers, the document or
documentElement itself.

This further implies that the events that we can handle using keyboard interactions
are limited to those events that the keyboard actually can generate, primarily
focus, blur, click (activating a link or button with the keyboard is programmat-
ically the same as clicking it with a mouse), and the three key-action events,
keydown, keyup, and keypress.

Of course, we still have to cater to programmatic events like readystatechange
and the infamous load event, proprietary events such as activate in IE, and
mode-independent events like a form’s submit event. Even so, we’re left with a
pretty small collection, not a million miles away from the toolset we had in the
days of Netscape 3!

However, this doesn’t mean we’ll be consigning mouse-specific events to the trash
completely; nor does it relegate elements that can’t take focus to the sidelines
altogether. It just means we’ll have to rethink our approach to some things. Im-
proving access is about providing equivalence, which is not the same as equal-
ity—it doesn’t necessarily matter if we provide different paths for different users,
as long as everyone has a path to an equivalent end result.

389

Making Scripts Accessible to the Keyboard

Discussion
In purely practical terms, it’s not a major limitation that only certain elements
can accept the focus. Styled links can do the job a lot of the time, although a link
still needs an href if it is to take focus; if the link’s only function is scripting-re-
lated, that often results in the need for links to have # or javascript:void(null),
or a similar, essentially junk href. The cure for this problem could be the button
element, which is incredibly flexible in that it can contain other HTML, as well
as being able to accept focus regardless of whether or not it has a value.

However, there is a real limitation of semantics here, because the range of
meaning we can express using these elements is limited. Furthermore, the native
behaviors of the elements are fixed. Let’s look at the kinds of problems these issues
can cause.

For the issue of semantics, the problem is one of confusion for non-graphical user
agents: devices that rely on element semantics to convey meaning cannot accur-
ately convey the fact that an element has been enhanced with dynamic behaviors.
How would you know, for example, that a button labeled Add item to cart would
run a process on the current page, rather than loading a new page?

To the visual user, it might not matter, but to users of screen reader it matters a
great deal, because screen readers have unique difficulties interpreting content
that updates without reload (which we’ll examine in detail later in this chapter).
There’s also a problem with using “junk” href values in that, to the reader, they
appear like a bunch of links that all go to the same page. Once any of them is
activated, they’re all announced as visited links from that point forward. Obvi-
ously, this can be very confusing.

As for the second issue—limitations arising from the fixed nature of the elements’
native behaviors—the problem is one of repetition and irritation for keyboard
users, because they’ll have to do more work to navigate around a page.

The best way to illustrate this is with a DHTML menu, and here I’m using the
example from a 2005 conference paper, DHTML Accessibility—Fixing the JavaScript
Accessibility Problem,2 by Rich Schwerdtfeger and Becky Gibson of IBM:

Most DHTML menus don’t act like regular menus with respect
to keyboard access. If you can use the keyboard to get to the
menu at all, a common mistake is to put each menu item in the

2 http://www.csun.edu/cod/conf/2005/proceedings/2524.htm

390

Chapter 16: JavaScript and Accessibility

http://www.csun.edu/cod/conf/2005/proceedings/2524.htm
http://www.csun.edu/cod/conf/2005/proceedings/2524.htm

tab order (often accomplished by making each menu item an
<a>). In fact, the correct behavior for menus is that the entire
menu should be in the tab order once, and arrow key navigation
should be supported.

Now, personally, I don’t completely agree with the claim that this is the “correct”
behavior for menus. I would caution developers against thinking that web-based
GUI widgets should behave exactly like those of an operating system GUI (even
within web applications), because the behavioral norms exhibited on the Web
are not identical to those exhibited within an operating system. To stay with this
example, DHTML menus typically have a capability that OS menus do not,
whereby a single item is both a menu-opening trigger and a link (in OS menus,
they’re only ever one or the other).

The paper continues:

Despite this limitation, Internet Explorer filled a hole in the
HTML specification which allows elements with a tabindex <
0 to receive focus without being entered in the tab order. We
now treat this as a best practice and it has also been implemented
in Firefox and Mozilla. So, it’s now possible for HTML authors
to do the right thing with respect to keyboard navigation.

In IE and recent versions of Firefox and Mozilla, we can indeed give any element
the ability to take focus simply by giving it atabindex value. The traditional use
of tabindex is actually counterproductive from an accessibility standpoint, because
every browser implements it slightly differently, and no one browser gets it quite
right. The upshot of this is that it’s better not to use tabindex at all—it’s better
simply to allow elements to fall into their natural, source-code order.

But if we’re careful, we can use this attribute in an accessible manner, because
we can use the special tabindex value 0, which means an element is tab-navigable
in its natural place in the tab order (essentially, 0 is an “auto” setting). Indeed,
we can use the two values, 0 and -1, to create a keyboard-navigable menu like
the one shown in Figure 16.1.

A user who navigates with the Tab key will have only the menu itself in the
native order, which reduces the amount of manual tabbing they have to do to
move past it. To let users drill into the contents of a single menu, we have to
script for the up and down arrow keys, and programmatically focus each link.

391

Making Scripts Accessible to the Keyboard

Figure 16.1. Using custom tabindex attributes with a DHTML
menu

Now we’ve got a navigational paradigm that requires scripting. If we’re going to
use it, we’ll have to design our menu without these custom tab indexes (so that
the links are natively navigable), then apply the indexes dynamically. In fact,
we’d have to take this approach anyway—for the sake of backwards compatibil-
ity—so okay, that’s no more of an issue than script support itself.

But what have most users gained from this solution that we couldn’t have achieved
using cross-browser scripting and without these additional tab indices? Well, on
a purely superficial level, it achieves very little. We don’t have a native behavioral
paradigm, because it takes scripting to make this solution work, and if we’re going
to add scripting, why wouldn’t we just use all four arrow keys to provide twodi-
mensional navigation throughout? Why should we mess about with Tab and
arrow combinations? (Later in this chapter we’ll be looking at accessible menus
in more depth, at which point we’ll review both methods of applying keyboard
navigation: from the Tab key, and from the four arrow keys.)

However, there is another, deeper level at which the benefits of this solution be-
come far more significant. For a screen reader, the richer element semantics are
very important, because they can convey more specific information about an
element—for example, in navigation developed using this approach, the focus
will be announced as a “list,” rather than a “link” or “button.” The behavior of
our menu is also more consistent with what happens now with other widgets; for
example, you Tab to a select element, then use the up and down arrow keys to
move between the options. Fundamentally, a screen reader is a linear (one-dimen-
sional) access device, so tab navigation plus up/down drilling makes much more
sense conceptually, and is easier to visualize, than two-dimensional navigation.

IBMis currently working with GW Micro (the makers of Windows Eyes) and the
Mozilla Foundation, under the project title of DHTML Accessibility,3 not just
to implement compatibility with generically focusable elements, but to introduce

3 http://www.mozilla.org/access/dhtml/

392

Chapter 16: JavaScript and Accessibility

http://www.mozilla.org/access/dhtml/

“roles” and “states” (defined by element attributes) that can convey information
about the nature and state of elements. This solves the semantics problem, and
means that any appropriate element can convey all the necessary information:
its own meaning, its behavioral role, and its current state.

These are very exciting developments and I, for one, will be watching them with
great interest, but I want to remain firmly practical—this is not something we
can really use now, because it’s not backwards-compatible: it provides no function-
ality at all to browsers other than IE or Firefox, and offers only very limited
functionality to device combinations other than Firefox 1.5 plus Windows Eyes
5.5.

Even if we put aside the additional role and state information, and looked only
at custom tab indexes as a means of providing keyboard navigation, we can’t
implement even that solution at the moment, because the vast majority of current
screen readers don’t generate the key events we’d need as a basis for the additional
scripting (something we’ll also get into in depth a little later in this chapter). If
we used this technique to create a DHTML menu, we’d actually be making the
links inaccessible to some, though they were accessible before!

So my working conclusion for now is that, while this may become a best practice
technique in the future, it’s not a widely useful or recommendable technique at
the moment.

Using Device-independent Event
Handlers

What are device-independent event handlers? A figment of the W3C’s imagina-
tion!

A more useful answer is that device-independent event handlers are those that
have equal semantics irrespective of the device or method that’s used to fire them.
The ideal example is actuate, a theoretical event that would fire from any action
that actuated (e.g., clicked) a link or other element. But as the HTML Techniques
for WCAG 1.0 concede,4 no device actually implements such an event.

4 http://www.w3.org/TR/WCAG10-HTML-TECHS/#directly-accessible-scripts

393

Using Device-independent Event Handlers

http://www.w3.org/TR/WCAG10-HTML-TECHS/#directly-accessible-scripts
http://www.w3.org/TR/WCAG10-HTML-TECHS/#directly-accessible-scripts

The Client-side Scripting Techniques for WCAG 2.05 (Working Draft6 recom-
mend the use of an event called activate instead of click—a strange thing to
suggest, given that this event doesn’t really exist, either! At least, it doesn’t exist
in any standard implementation. Ironically, it does exist as a proprietary event in
Windows IE, although it means something else entirely (it’s equivalent to the
focus event, except that it bubbles; we’ll examine this difference shortly).

Perhaps the guidelines are referring to the DOM 2 User Interface event
DOMActivate,7 or maybe they intend it purely as a theoretical example like actu-
ate; undoubtedly this will be clarified in a later draft.

Solution
The nearest thing we have to a universal, device-independent event is click.
This event is generated in all major desktop browsers—as well as the vast majority
of popular screen readers and assistive devices—when the user clicks an element
with the mouse, or sets focus on it and presses Enter (or Space, or whatever key
the device is using). In some PDAs, a click event can be fired by tapping an
element with the stylus,8 and there are other, equivalent actions in other devices.

There are other events that, similarly, are not truly device-independent, though
they’re close enough for most practical purposes; these are events that, in theory,
could be device-independent, but are actually implemented by current browsers
as events from the mouse or the keyboard. To give some other examples,
mouseover events might come from a track-ball, mousemove events might be
generated by the analog stick on a Sony PSP, and focus events can be generated
by spoken navigation commands in Opera 8 with Voice.

In theory, we want to be able to support any mode of interaction, from whatever
device it is sent, so that all potential users have the same capacity to input or
receive information. In practice, our scripts will be dealing with two kinds of in-
teraction for any given task. We refer to these as “mouse” and “keyboard” inter-
action, but they could include a variety of different, equivalent actions.

5 http://www.w3.org/TR/WCAG20-SCRIPT-TECHS/
6 At the time of writing, this document was a working draft dated June 2005.
7 http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-uievents
8 This assumes that the device supports JavaScript and click events to some extent. In Pocket IE
for Windows Mobile 2003, for example, inline event handlers are supported with the onclick at-
tribute, but DOM event handlers (the onclick property) are not.

394

Chapter 16: JavaScript and Accessibility

http://www.w3.org/TR/WCAG20-SCRIPT-TECHS/
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-uievents
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-uievents

Making Scripts Accessible to the
Keyboard as well as the Mouse

With two discrete forms of interaction for any given script, we may (or may not)
require two separate approaches … so how do we actually implement solutions
that incorporate both? Let’s begin by discussing how not to do it.

The WCAG (Web Content Accessibility Guidelines) 1.0 techniques documenta-
tion suggests that the best approach is to provide redundant input mechanisms—to
provide two handlers that “pair” together for the same element—and the examples
it gives are things like keydown to be paired with mousedown, or keyup to go with
mouseup. However, this is the wrong way of looking at the situation, because
keyboard and mouse events are conceptually different things, and in many cases
they behave completely differently, as we’ll see in the following discussion.

Solution
I think it’s more helpful to think in terms of behavioral pairing, than event
pairing. If, for example, you have a piece of functionality that’s driven by a
mousedown event, don’t think, “How can I use a keydown event to make this
work?” Instead, ask yourself, “How can I make this work from the keyboard?”

Perhaps I’m just splitting hairs, but I don’t think so. Phrased the second way,
the question leads to different answers. The first question asks about a specific
approach, which may or may work; the second question simply asks if there is
an approach, so it’s open to any compatible solution.

Perhaps, in our hypothetical case, the solution is to extend the same functionality
using a completely different mechanism: a different button or interface trigger,
for example, which may end up being activated by a keydown event after all; but
instead it might just as easily be a focus event or a click. The event itself is not
the point; the point is to provide something that ultimately achieves the same (or
an equivalent) end result.

I hesitate to use the tired expression “think outside the box” because, as we know,
there is no box. Still, that phrase comes to mind: scripting for the keyboard is a
different discipline than scripting for the mouse, with different issues and consid-
erations. I find it much more productive to approach keyboard behaviors from
scratch, as a unique set of interactions, rather than trying to adapt existing mouse
behaviors to suit the keyboard. Scripting for the keyboard isn’t difficult, but it

395

Making Scripts Accessible to the Keyboard as well as the Mouse

is conceptually different from the way most of us are used to thinking about in-
teractive scripting, and that’s the point.

Let’s get more practical now. We’ll look at a few different kinds of scripts that
originally were triggered by mouse events, to see if we can find an approach that
makes them accessible to the keyboard as well.

We won’t go into great detail about any particular script in this solution. Instead,
we’ll be looking more closely at general ideas, with code snippets for examples.
In the solutions that follow, we’ll pick up some of these ideas and take them
further to create specific and usable scripts.

Rollovers and Revealing Content
A simple rollover effect might just be a change to a color or background-image
on a link. You’re probably more than experienced in using links whose display
property is set to block, giving them the predictable dimensions to house a
background image that can be swapped without the need for scripting, thanks
to the hover, focus, and active pseudo-classes.

Scripted rollovers are generally just as easy to extend to the keyboard, provided
that they’re based on links or other elements that can take focus. Here’s a simple
effect that’s powered by toggling a class name (this simplified example uses the
attachEventListener function from Chapter 13):

attachEventListener(link, 'mouseover', function()
{
 link.className = 'rollover';
}, false);

attachEventListener(link, 'mouseout', function()
{
 link.className = '';
}, false);

We can apply a pair of focus and blur listeners to do the same job:

attachEventListener(link, 'focus', function()
{
 link.className = 'rollover';
}, false);

attachEventListener(link, 'blur', function()
{

396

Chapter 16: JavaScript and Accessibility

 link.className = '';
}, false);

But when it comes to handling events on groups of elements, the situation is
more complicated, because focus events don’t bubble. We could handle a mouse
event on any element by using a single document-level listener:

attachEventListener(document, 'mouseover', function(e)
{
 var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;

 � target is whatever node the event bubbles up from

}, false);

This works because the mouse events bubble up from the points at which they
occur, but as the focus and blur events don’t bubble, such a function would
handle only the events that occurred on the element to which the listener was
assigned—leaving out any of its descendants.

Actually, focus events do bubble in Mozilla browsers, but they’re not supposed
to; they don’t bubble in Opera, Safari, or Internet Explorer. IE 5.5 onwards has
the proprietary event activate, which is functionally similar to focus, except
that it does bubble; Safari implements the DOM2 UI Event DOMFocusIn,9 which
also does (and is supposed to) bubble; and, since Mozilla’s focus events bubble
anyway, we could have a partial solution as follows:

var focusevent = isie ? 'activate' :
 issafari ? 'DOMFocusIn' : 'focus';
attachEventListener(document, focusevent, function(e)
{
 � and so on…

}, false);

However, this doesn’t include Opera, or IE 5.0, or indeed any future browser that
follows the norm of not bubbling focus events, because the default case here is
Mozilla’s atypical behavior. Ultimately, this solution is of little real use.

If we want something that amounts to a document-wide focus handler, we’ll just
have to bind focus and blur handlers to every element individually (and that’s

9 http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-uievents

397

Rollovers and Revealing Content

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-uievents

exactly what we’re going to do later in this chapter, when we make title-attribute
tooltips accessible to the keyboard).

Form Validation
Making client-side form validation accessible to the keyboard is pretty easy, be-
cause the relevant events are mode-independent. The change event fires after
the value of a form control changes; select fires when text within it is selected;
submit and reset fire from form submission and resetting, respectively. But in
none of these cases does it matter how the event was fired—whether the user was
navigating or selecting with the keyboard, clicking or highlighting with the mouse,
the events were fired just the same.

Of course, this implies that accessible form scripting must use the right events
for the task—don’t link a form validation function to the click event of the
submit button itself, because there are other, entirely independent actions that
can submit a form (such as pressing Enter when the focus is in a text field). The
submit event itself bubbles, so you could use a single document-level event
listener for all the forms on a page.

If you are performing client-side validation, it’s worth thinking about where to
send keyboard focus when notifying the user of errors or omissions. For example,
a validation function that was bound to the submit event of a form might generate
an alert dialog with details of the error, or it might highlight the erroneous field
by changing its border and label text. In both cases, you can make it easier for a
keyboard user to get to the problem field if you send focus to it automatically,
using the programmatic focus method of the field element:

function checkUsernameForm(frm)
{
 if (frm['username'].value == '')
 {
 alert('Please enter your username');

frm['username'].focus();

 return false;
 }

 return true;
}

398

Chapter 16: JavaScript and Accessibility

This is a fair use of the method, I think, but be aware that the focus method can
be dangerous: moving the focus around can be very disorientating for a user,
particularly if he or she can’t see, or fails to notice the cursor move. However, I
think this solution is okay in this case, because if the user submits a form and
receives that message, the element that’s referred to is the logical place to go.

Other uses of this method spring to mind, and though at first they appear to
improve usability, they may actually do just the opposite. The example I’m
thinking of is a form that asks for credit card details by presenting four text boxes,
each of which takes four numbers. As the user enters the last digit into each box,
the focus is shifted automatically to the next box. I’ve encountered forms like
this on a few occasions, but I wasn’t expecting that focus-shifting behavior. I was
looking down at the keyboard and pressing Tab myself after each group of four
digits; the result was that only the first and third boxes had numbers in them,
while the rest of my typing filled the subsequent form fields. It was inconvenient
for me, but it could have been worse—and probably has been for other users of
the same sites.

The size of the problem depends on context, of course—behavior like this might
be a massive time-saver for someone entering credit card data into a company’s
internal web-based application on a regular basis; but for the casual user entering
his or her details to buy something online, this unexpected behavior could be
anything from surprising to intensely frustrating. Think very carefully before you
use the focus method.

Beware of the blur

There’s also a programmatic blur method (which does what it says on the
tin) but you shouldn’t use it, because it’s ambiguous about where it sends the
focus. Thus, the focus is ultimately “lost,” and the browser is forced to replace
it. The actual results of its implementation will vary, but usually the focus
will be replaced in the address bar or other window control—whatever’s im-
mediately after or before the page in the window’s overall tab order. Effect-
ively, the user loses his or her place in the document, and is forced to start
again from the top. The worst use of blur is so appalling that I fear I would
insult your intelligence by suggesting you would even consider it:

Suffice it to say never, ever use this approach: it makes the element (and,
potentially, the rest of the page) completely inaccessible to the keyboard.

Another example of dubious use of the focus method involves forcing a form
element to retain the focus until its value is properly completed. A script might

399

Form Validation

employ a blur event listener to validate the field, and then send focus back to it
immediately, but this is a bad practice because it forces a change in the natural
browsing behavior of keyboard and mouse users alike. It could also be incredibly
confusing for someone who has a cognitive disability; for most users it’s likely
be very annoying. Overall, I would go so far as to discourage any kind of element-
specific validation mechanism—save validation for the submit event.

I also recommend that you avoid disabling buttons based on the states of other
fields. Arriving at the Submit button of a form to find it disabled can unsettle
users (“Why is this button disabled? How am I supposed to submit the form?”),
assuming that the user can get to it at all—some screen readers don’t include
disabled elements in the reading order, so they wouldn’t even know the button
was there (so the question would become simply, “How do I submit this form?”).
Users who do see the button won’t know it has a dependency to other field values
(unless you tell them of course, but why go through that learning curve?). I think
it’s much better—because it’s common and well understood—to allow the form
to be submitted as the user chooses, and only then to warn of missing or invalid
data.

Drag-and-drop Functionality
Drag-and-drop functionality is complicated to script at the best of times, never
mind trying to make it more accessible! At first glance it looks impossible, because
the dynamos of drag-and-drop behaviors are mousemove events, for which there
are no keyboard equivalents. But with a bit of lateral thinking it can be done.

Imagine a vertical list or a column of boxes, much like the one we built in “Re-
ordering a List Using Drag-and-drop Functionality” in Chapter 14, that can be
reordered using drag-and-drop functionality. The mouse picks up an object, moves
it, then snaps it to a new position, but the end result of those actions is simply
a change in the order of the objects: the one you dragged has moved up or down
by a given number of positions. Couldn’t we get to that same end result using
commands from the up and down arrow keys?

Indeed we could, but we’ll need an element to act as an “anchor” for the keyboard:
an element that can take focus (either the draggable object itself, or something
inside it), and handle events from the arrow keys.

Figure 16.2 depicts a box that indicates mouse behaviors; the darker strip at the
top is the “grab” element for the mouse. You can click on it and, holding the
house button down, drag the box around.

400

Chapter 16: JavaScript and Accessibility

Figure 16.2. A draggable box with a “grab” element for the mouse

Now, if we add a link inside the grab element, and style it to look like a graphical
icon, as shown in Figure 16.3, that icon can be the anchor for keyboard navigation.

Figure 16.3. The same box again with an anchor for keyboard
navigation

The icon serves a double purpose here. As well as being the keyboard anchor for
drag-and-drop actions, it acts as a toggle to show and hide the box’s content area
(when the user either presses Enter, or clicks on it with the mouse). These
screenshots were generated by a script that’s too large to reproduce here, but if
you’d like to download and play with it, you can find it on my web site.10

A DHTML slider control is another example in which drag-and-drop functionality
can be retrofitted for the keyboard, as arrow-key events can be translated to left
and right dragging actions. Later in this chapter, we’ll build that exact capability
into the slider control we made in “Making a Slider Control” in Chapter 14.

AJAX and other Remote Scripting Techniques
The core of AJAX scripting deals with programmatic events—things like the
readystatechange event of XMLHttpRequest, or the load event of an iframe

10 http://www.brothercake.com/site/resources/scripts/dbx/

401

AJAX and other Remote Scripting Techniques

http://www.brothercake.com/site/resources/scripts/dbx/

used for data retrieval (we’ll delve into both techniques fully in Chapter 18). The
users’ modes of interaction don’t make any difference to the ways in which these
events behave, so we don’t need to consider them especially.

But we do have two important things to consider. First, how are those processes
triggered? If a request or process is to be triggered by a user action, we must ensure
that the same process can be triggered by a keyboard user. Second, we must think
about how we’ll format the response.

In addressing the second issue, we must carefully construct the response HTML,
to make sure we maintain a usable tab order. For example, if we use the response
data to create a new select element from which the user can select a further
option, we must ensure that the selector is inserted near the trigger element,
rather than being appended to the body, so that keyboard users can get straight
to it.

Making title Attribute Tooltips Display
on Focus

The title attribute is designed to provide supplementary information about a
link, form control, or other element, and is usually rendered in graphical browsers
as a tooltip like the one shown in Figure 16.4.

Figure 16.4. A link’s title attribute rendered as a
mouseover-driven tooltip

402

Chapter 16: JavaScript and Accessibility

In screen readers and other aural user-agents, the title text may be spoken in
a different tone, or with other contextual information (or it may not be spoken
at all—it’s generally an optional setting).

The disadvantaged in this paradigm are sighted keyboard users, for whom title
text is generally not available at all. The majority of browsers don’t display this
information when the user is navigating to an element using the keyboard; indeed,
some elements that rely on their title attributes to be of any use, such as abbr
(abbreviation) elements, simply are not accessible to the keyboard.

But there is one significant exception that I’m aware of, which is that Opera fa-
cilitates spatial navigation (hold down the Shift key, then move around using
the arrow keys). With this mechanism, it’s possible to navigate to abbr (among
other selected elements), in which case the title text is shown as a tooltip!

But in browsers other than Opera (can you tell I’m a fan?) this information gen-
erally is not available. We can’t do anything about elements that don’t receive
the focus, but with some nifty DOM scripting, we can improve the situation for
links, form controls, and other elements that take focus.

Solution
This solution is somewhat similar to the nicely-styled tooltips we saw in “Display-
ing a Tooltip when you Mouse Over an Element” in Chapter 13. However, what
we’re doing here is supplementing, rather than replacing, the existing tooltips, so
we’re going to try to style them to match those previously-created tooltips using
CSS 2 System Colors.11

These will apply the same font and colors used in the native OS tooltip, ensuring
that it remains accessible to people who use a specific color scheme (e.g., high
contrast). However, system colors don’t work in Safari, so in that browser we’ll
just have to use the tooltips’ default styles, and use a less-than-ideal CSS hack
to apply the difference:

File: tooltips.css

div.tooltip {
 background: InfoBackground;
 font: small-caption;

11 See http://www.w3.org/TR/CSS21/ui.html#system-colors for more information. Note that System
Colors are deprecated in the CSS 3 Color Module in favor of System Appearance properties, as part
of the Basic User Interface Module (Working Draft)
[http://www.w3.org/TR/2003/WD-css3-ui-20030703/#system].

403

Making title Attribute Tooltips Display on Focus

http://www.w3.org/TR/CSS21/ui.html#system-colors
http://www.w3.org/TR/2003/WD-css3-ui-20030703/#system

 border: 1px solid InfoText;
 color: InfoText;
 padding: 2px 4px;
 text-align: left;
 position: absolute;
 width: auto;
 height: auto;
}

div[class~="tooltip"] {
 background: #feffc8;
 font: normal normal normal 11px verdana,sans-serif;
 border: 1px solid #c3c3c3;
 color: #000;
}

div[class~="tooltip"]:lang(en) {
 background: InfoBackground;
 font: small-caption;
 border: 1px solid InfoText;
 color: InfoText;
}

The first set of rules defines the default styling, which applies to all browsers; the
second set applies the alternative, non-system font and colors to CSS 2-capable
browsers; the third reapplies the system colors to any CSS 2 browser that also
understands the lang pseudo-class (which excludes Safari). This risk here is that
if a future version of Safari (or any other browser) adds support for lang without
also providing support for system colors, the hack will break.

In our script, we’re going to iterate through all elements, attempting to bind a
focus event listener to each. When a given element receives the focus, a new
element will be created, styled using those system colors, and populated with the
title text from the focused element.

We begin with an initialization function that binds the necessary event listeners
with our ever-useful attachEventListener function:

File: tooltips.js (excerpt)

addLoadListener(initTooltips);

function initTooltips()
{
 var keyflag = false;
 attachEventListener(document, 'keydown', function()

404

Chapter 16: JavaScript and Accessibility

 {
 keyflag = true;
 }, false);
 attachEventListener(document, 'keyup', function()
 {
 keyflag = false;
 }, false);

 var eles = typeof document.all != 'undefined'
 ? document.all : document.getElementsByTagName('*');
 for (var i = 0; i < eles.length; i++)
 {
 if (eles[i].getAttribute('title'))
 {
 attachEventListener(eles[i], 'focus', createTooltip, false);
 attachEventListener(eles[i], 'blur', removeTooltip, false);
 attachEventListener(eles[i], 'mouseover', function()
 {
 if (!keyflag) { removeTooltip(); }
 }, false);
 }
 }
}

This initialization function is called from the load event, using the generic
addLoadListener function from Chapter 1.

The document.all Collection

Here, we’re using the proprietary document.all collection—a relic of the
browser wars that shouldn’t normally be employed. However, in this case,
document.all is necessary to support Windows IE 5, which doesn’t imple-
ment the '*' notation for fetching all elements.

The real work of the script is done by two functions that create and remove the
custom tooltips:

File: tooltips.js (excerpt)

var timer, tooltip = null;

function createTooltip(e)
{
 var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
 timer = window.setTimeout(function()
 {

405

Making title Attribute Tooltips Display on Focus

 removeTooltip();

 if (!tooltip)
 {
 tooltip = document.createElement('div');
 tooltip.appendChild(document.createTextNode(target.title));
 tooltip.className = 'tooltip';
 document.getElementsByTagName('body')[0].
 appendChild(tooltip);

 if (tooltip.offsetWidth > 300)
 {
 tooltip.style.width = '300px';
 }

 var position = [
 getRoughPosition(target, 'x'),
 getRoughPosition(target, 'y') + target.offsetHeight + 5
];

 tooltip.style.left = position[0] + 'px';
 tooltip.style.top = position[1] + 'px';

 var size = [
 tooltip.offsetWidth,
 tooltip.offsetHeight
];
 var viewport = getViewportSize();
 var scrolling = getScrollingPosition();

 if ((position[0] + size[0]) >= (viewport[0] + scrolling[0]))
 {
 position[0] -= (size[0] - target.offsetWidth);
 if (position[0] < 0) { position[0] = 0; }
 tooltip.style.left = position[0] + 'px';
 }
 if ((position[1] + size[1]) >= (viewport[1] + scrolling[1]))
 {
 position[1] -= (size[1] + target.offsetHeight + 10);
 if (position[1] < 0) { position[1] = 0; }
 tooltip.style.top = position[1] + 'px';
 }
 }
 }, 400);
}

406

Chapter 16: JavaScript and Accessibility

function removeTooltip()
{
 if (tooltip)
 {
 tooltip.parentNode.removeChild(tooltip);
 tooltip = null;
 }
 clearTimeout(timer);
}

This tooltip creation script relies heavily on three other utility functions we’ve
used before:

❑ getRoughPosition, from Chapter 15, for finding the position of the original
element

❑ getScrollingPosition and getViewportSize, from Chapter 7, to ascertain
the page scroll position and the space that’s available inside the window

Discussion
The two keyboard event listeners at the start of the initialization function
maintain a keyflag variable that indicates whether or not a key is pressed:

File: tooltips.js (excerpt)

var keyflag = false;

attachEventListener(document, 'keydown', function()
{
 keyflag = true;
}, false);

attachEventListener(document, 'keyup', function()
{
 keyflag = false;
}, false);

We need this extra scripting for Opera, because the use of spatial navigation
generates mouseover events as well as focus events. The mouse events are used
in the script to clear the tooltip, so that our custom tooltips don’t conflict with
the native tooltips for people who use both the mouse and keyboard at different
times. But if we allowed that to happen while spatial navigation was taking place,
the tooltips wouldn’t work at all: every action would create and then instantly
remove the tooltip.

407

Making title Attribute Tooltips Display on Focus

Since spatial navigation involves holding down the Shift key, we create and use
the keyflag variable to determine whether a mouseover event really comes from
a mouse (because the flag is false when the event fires), and only clear the
tooltip if it does:

File: tooltips.js (excerpt)

attachEventListener(eles[i], 'mouseover', function()
{
 if (!keyflag) { removeTooltip(); }

}, false);

The main createTooltip function is bound to each element using a focus event.
This function stores a reference to the target element, then starts a 400ms timer
to enclose the rest of the code. The timer helps improve usability, as it lets the
script avoid quickly creating and destroying lots of tooltips as users Tab through
a list.

Once the timer has finished, its inner function begins with a call to
removeTooltip, which removes any existing tooltip and clears the timer variable
set by createTooltip. This means that if another focus event occurs before the
timer has completed, that iteration will be abandoned and a new one will start,
ultimately ensuring that only one tooltip can ever be visible at any time.

Creating the tooltips is a pretty straightforward process. We create a new div
element with the appropriate class name and the target element’s title text,
then append it to the body. The width is restricted to 300 pixels so that the text
of large tooltips wraps, and is easier to read.

Then comes the most intensive work: positioning and repositioning the tooltip.
We begin by finding the position of the target element, and positioning the
tooltip in the same place, though the tooltip is offset by the target element’s
height (so it’s underneath, not directly on top) and a small margin (which im-
proves its appearance):

File: tooltips.js (excerpt)

var position = [
 (getRoughPosition(target, 'x')),
 (getRoughPosition(target, 'y') + target.offsetHeight + 5)
];
tooltip.style.left = position[0] + 'px';
tooltip.style.top = position[1] + 'px';

408

Chapter 16: JavaScript and Accessibility

We must also make sure that the tooltip remains inside the viewport, so we use
its position and size, along with the viewport size and scrolling position, to de-
termine whether the tooltip has run off the edge of the viewport. If it has, we
recalculate its position to orient it from the other side of the original target, finally
limiting its position to zero (so that it won’t be repositioned off the viewport’s
other side):

File: tooltips.js (excerpt)

var size = [
 tooltip.offsetWidth,
 tooltip.offsetHeight
];
var viewport = getViewportSize();
var scrolling = getScrollingPosition();

if ((position[0] + size[0]) >= (viewport[0] + scrolling[0]))
{
 position[0] -= (size[0] - target.offsetWidth);
 if (position[0] < 0) { position[0] = 0; }]
 tooltip.style.left = position[0] + 'px';
}
if ((position[1] + size[1]) >= (viewport[1] + scrolling[1]))
{
 position[1] -= (size[1] + target.offsetHeight + 10);
 if (position[1] < 0) { position[1] = 0; }
 tooltip.style.top = position[1] + 'px';
}

The default position of a custom tooltip will be just beneath its trigger, as show
in Figure 16.5.

Figure 16.5. The title attribute as a focus-driven tooltip

409

Making title Attribute Tooltips Display on Focus

But the tooltip’s size and position are flexible, so it works even when space is at
a premium, as in Figure 16.6.

Figure 16.6. The same tooltip in a very confined space

This solution also overcomes a common limitation of built-in tooltips, in that it
scales with font size, as shown in Figure 16.7.

Figure 16.7. The same tooltip with larger text

Figure 16.7 illustrates the appearance of the tooltip in Firefox, using CSS 2 System
Colors. I don’t know why the font value displays bold text, given that the native
tooltip isn’t bold by default, but I’m reluctant to override that manually—tweaking
the appearance of system fonts somewhat defeats the point of using them.

You’ll remember that we couldn’t apply CSS 2 System Colors in Safari, because
it doesn’t support them (and would render the tooltips as completely black boxes),
so the fallback colors are based on the default appearance of Safari’s native
tooltips, and end up looking like those in Figure 16.8.

410

Chapter 16: JavaScript and Accessibility

Figure 16.8. The same tooltip in Safari

Making a DHTML Menu Accessible to the
Keyboard

Our second major solution in Chapter 15 created a folder tree or expanding menu,
and that solution is already accessible to keyboard users (including those using
screen readers), because we had to consider these people in order to make the
menus work properly for any user. In that solution, we employed an inference
technique for identifying screen readers; we’ll be looking at this technique in
more depth in “Making Scripts Accessible to Screen Readers” later in this chapter.

However, you may recall that the first main solution, a drop-down or fly-out
menu, wasn’t completed within the scope of that chapter—the solution we pro-
duced was only fully accessible to people using a mouse.

At the time, I promised we’d come back to that issue, and here we are! In this
solution and the next, we’re going to improve our original script to provide multiple
modes of keyboard navigation. In all browsers, we’ll add support for users to
navigate using Tab and Shift-Tab (or equivalent keystrokes—for example, in
Opera, the link navigation keys are A and Q). We’re also going to add support
for spatial navigation in Opera, while for Firefox, Safari, and Internet Explorer
for Windows, we’ll implement a similar kind of two-dimensional navigation facility
that employs the arrow keys.

411

Making a DHTML Menu Accessible to the Keyboard

The baseline script we’re starting with is the finished DHTML menu solution
from the section called “Making a Drop-down or Fly-out Menu” in Chapter 15,
including all the usability enhancements we designed for it; if you haven’t already
read that solution, I recommend you do so first, otherwise much of what we talk
about here will be completely abstract. For these examples, we’ll continue to use
a vertical navigation bar with fly-out menus, but the solution will cater equally
to a horizontal version, and indeed we’ll have some special considerations to talk
about in that case.

Solution
Let’s begin by adding basic keyboard navigation using Tab and Shift-Tab (or
their equivalents). We can already Tab through the links, of course, and press
Enter to activate any of them, but we need some scripting to make the menus
appear and disappear.

On each link we need a focus event listener, which will use essentially the same
code as the mouseover listener. To save repetition, we’ll abstract that event
listener into a function:

File: dropdownMenuKeyboard.js (excerpt)

function showMenu(menu, horiz, issub, li, a, isie)
{
 menu.style.left = horiz
 ? (isie ? li.offsetLeft + 'px' : 'auto')
 : '0';

 menu.style.top = horiz && issub
 ? (isie ? a.offsetHeight + 'px' : 'auto')
 : (isie ? li.offsetTop + 'px' : '0');

 repositionMenu(menu);

 if (typeof document.uniqueID != 'undefined')
 {
 createIframeLayer(menu);
 }
}

We also need two new iterative functions—the first to show all the menus neces-
sary to reveal a particular submenu, the second to hide all the nested submenus
of a given menu:

412

Chapter 16: JavaScript and Accessibility

File: dropdownMenuKeyboard.js (excerpt)

function showAncestors(tree, menu, horiz, issub, isie)
{
 clearMenus(tree);

 while (menu.id != tree.id)
 {
 var li = menu.parentNode;
 var a = li.getElementsByTagName('a')[0];

 showMenu(menu, horiz, issub, li, a, isie);

 menu = li.parentNode;
 }
}

function resetSiblingBranches(trigger, tree)
{
 clearMenus(trigger.parentNode);

 var links = trigger.parentNode.getElementsByTagName('a');
 for (var i = 0; i < links.length; i++)
 {
 links[i].className =
 links[i].className.replace(/ ?rollover/g, '')
 }
}

Next, we need to make a few alterations to the original dropdownTrigger function,
to modify the existing mouseover event listener and add the new focus listener
(additions and changes to the original script are shown in bold below):

File: dropdownMenuKeyboard.js (excerpt)

function dropdownTrigger(tree, li, navid, isie, horiz)
{
 var opentime, closetime;
 var a = li.getElementsByTagName('a')[0];
 var menu = li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null;
 var issub = li.parentNode.id == navid;

 if (menu)
 {
 li.className += (li.className == '' ? '' : ' ') + 'hasmenu';
 }

413

Making a DHTML Menu Accessible to the Keyboard

attachEventListener(a, 'focus', function(e)
 {
 clearTimeout(closetime);

 a.className += (a.className == '' ? '' : ' ') + 'rollover';

 resetSiblingBranches(li);
 if (menu)
 {
 showMenu(menu, horiz, issub, li, a, isie);
 }

 var parent = li.parentNode;
 if (parent != tree)
 {
 if (parent.style.left == '' ||
 parent.style.left == '-100em')
 {
 showAncestors(tree, parent, horiz, issub, isie);
 }
 if (toggleSelects('visible') && tree.contains(e.srcElement))
 {
 toggleSelects('hidden');
 }
 }
 }, false);

 attachEventListener(li, 'mouseover', function(e)
 {
 if (unwantedTextEvent()) { return; }
 clearTimeout(closetime);
 if (branch == li) { branch = null; }

 a.className += (a.className == '' ? '' : ' ') + 'rollover';

 var target = typeof e.target != 'undefined'
 ? e.target : window.event.srcElement;
 while (target.nodeName.toUpperCase() != 'LI')
 {
 target = target.parentNode;
 }
 if (target != li) { return; }

 if (menu)
 {

414

Chapter 16: JavaScript and Accessibility

 opentime = window.setTimeout(function()
 {
 if (branch)
 {
 clearMenus(branch);
 branch = null;
 }

resetSiblingBranches(li);
 showMenu(menu, horiz, issub, li, a, isie);
 }, 250);
 }
 }, false);

 attachEventListener(li, 'mouseout', function(e)
 {
 if (unwantedTextEvent()) { return; }

 var related = typeof e.relatedTarget != 'undefined'
 ? e.relatedTarget : e.toElement;
 if (!li.contains(related))
 {
 clearTimeout(opentime);
 branch = li;

 a.className = a.className.replace(/ ?rollover/g, '');
 if (menu)]
 {
 closetime = window.setTimeout(function(
 {
 menu.style.left = '-100em';

 if (toggleSelects('visible') && tree.contains(related))
 {
 toggleSelects('hidden');
 }
 else
 {
 removeIframeLayer(menu);
 }

 }, 600);
 }

 }, false);

415

Making a DHTML Menu Accessible to the Keyboard

 if (!isie)
 {
 li.contains = function(node)
 {
 if (node == null) { return false; }
 if (node == this) { return true; }
 else { return this.contains(node.parentNode); }
 };
 }

Finally, we’ll perform some surgery on the dropdownMenu initialization function,
to create new values and bind additional methods (again, additions and alterations
are shown in bold):

File: dropdownMenuKeyboard.js (excerpt)

var branch;

function dropdownMenu(navid)
{
var isopera = typeof window.opera != 'undefined';

 var isie = typeof document.all != 'undefined'
 && !isopera && navigator.vendor != 'KDE';
var issafari = navigator.vendor == 'Apple Computer, Inc.';

 if (typeof document.getElementById == 'undefined'
 || (issafari && typeof window.XMLHttpRequest == 'undefined')
 || (isie && typeof document.uniqueID == 'undefined'))
 {
 return;
 }

 var rollover = new Image;
 rollover.src = 'right-red.gif';
 rollover = new Image;
 rollover.src = 'down-red.gif';

 var tree = document.getElementById(navid);
 if (tree)
 {

var horiz = tree.className.indexOf('horizontal') != -1;
 branch = tree;
 var items = tree.getElementsByTagName('li');
 for (var i = 0; i < items.length; i++)
 {
 dropdownTrigger(tree, items[i], navid, isie, horiz);
 }

416

Chapter 16: JavaScript and Accessibility

var eles = typeof document.all != 'undefined'
 ? document.all : document.getElementsByTagName('*');
 for (i = 0; i < eles.length; i++)
 {
 attachEventListener(eles[i], 'focus', function(e)
 {
 var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
 if (!tree.contains(target))
 {
 resetSiblingBranches(items[0]);
 }
 }, false);
 }

 if (!isie)
 {
 tree.contains = function(node)
 {
 if (node == null) { return false; }
 if (node == this) { return true; }
 else { return this.contains(node.parentNode); }
 };
 }
 }
}

We don’t need any blur event listeners because, as it turns out, all the necessary
menu closing and resetting will be triggered from other focus events. I’ll explain
why below.

Discussion
We need to make sure that all the menus are closed when the user navigates away
from the tree entirely, so that they’re not left with residual menus covering other
elements on the page. It sounds simple enough, but detecting that situation is
surprisingly awkward.

If we were responding to a mouseout event, we could simply check the event’s
relatedTarget property (or toElement in IE—the element that the mouse is
moving to), and check if it was outside the menu tree. But we can’t do that from
a blur event, because blur events don’t have a related target property. I have no idea
why this is the case, it’s just a fact.

417

Making a DHTML Menu Accessible to the Keyboard

A document-level focus listener seems like a logical alternative. If we receive a
focus event that bubbles up from any element, we can check if it’s outside the
menu tree. But that won’t work either, because as we’ve seen already in this
chapter, focus events don’t bubble.

What we’re left with is a reliable, if somewhat inefficient, solution: we must bind
a focus event listener to every element in the document. The listener will perform
that same check to see whether or not the event target is outside the menu tree,
and will reset the menu state if it is:

File: dropdownMenuKeyboard.js (excerpt)

var eles = typeof document.all != 'undefined'
 ? document.all : document.getElementsByTagName('*');
for (i = 0; i < eles.length; i++)
{
 attachEventListener(eles[i], 'focus', function(e)
 {
 var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
 if (!tree.contains(target))
 {
 resetSiblingBranches(items[0]);
 }
 }, false);
}

The Custom contains Method

Again, to check if an event is inside or outside the tree, we have created a
custom contains method. This method evaluates the relationship between
nodes, as we discussed in the section called “Making a Drop-down or Fly-
out Menu” in Chapter 15.

File: dropdownMenuKeyboard.js (excerpt)

if (!isie)
{
 tree.contains = function(node)
 {
 if (node == null) { return false; }
 if (node == this) { return true; }
 else { return this.contains(node.parentNode); }
 };
}

418

Chapter 16: JavaScript and Accessibility

The new resetSiblingBranches function simply closes all menus and clears all
highlighted links beginning from a specified root node. Passing the first list item
in the tree (member 0 in the items collection we defined at the start of the script)
has the effect of resetting the entire menu structure.

Our shiny, new focus event listener essentially recreates the mouse behaviors,
but this time, it does so without any open or close timers (because they’re not
necessary for keyboard navigation, and would just amount to pointless pauses).
However, we’ll still have to reset any currently running close timer, in case a
menu is closed with the mouse but then keyboard navigation supersedes that
action. A small addition to the mouseover listener—a call to
resetSiblingBranches—is necessary for the same reason: the mouse navigation
needs to reset any changes to the menu structure that were made via keyboard
navigation.

The focus listener is bound to each link, not each list item (as is the case for the
mouse listeners), because we won’t get focus events from list items, and as we
know, they don’t bubble up from the links:

File: dropdownMenuKeyboard.js (excerpt)

attachEventListener(a, 'focus', function(e)
{
 clearTimeout(closetime);

 a.className += (a.className == '' ? '' : ' ') + 'rollover';

 resetSiblingBranches(li);
 if (menu)
 {
 showMenu(menu, horiz, issub, li, a, isie);
 }

 var parent = li.parentNode;
 if (parent != tree)
 {
 if (parent.style.left == '' || parent.style.left == '-100em')
 {
 showAncestors(tree, parent, horiz, issub, isie);
 }

 if (toggleSelects('visible') && tree.contains(e.srcElement))
 {
 toggleSelects('hidden');
 }

419

Making a DHTML Menu Accessible to the Keyboard

 }
}, false);

The only other significant difference between this code and the equivalent mouse
behaviors is the call to showAncestors, which comes into play when a user tabs
backwards through the menu structure:

File: dropdownMenyKeyboard.js (excerpt)

if (parent.style.left == '' || parent.style.left == '-100em')
{
 showAncestors(tree, parent, horiz, issub, isie);
}

When navigating backwards, it’s possible to go straight from a navigation bar
link to a deeply-nested menu link, but of course that menu won’t be visible, because
you didn’t navigate through its ancestors on your way there. We can test for this
situation by checking whether the parent menu has a style.left value that’s
consistent with it being hidden, then iterating backwards12 up the tree, showing
each ancestor menu:

File: dropdownMenyKeyboard.js (excerpt)

function showAncestors(tree, menu, horiz, issub, isie)
{
 clearMenus(tree);

 while (menu.id != tree.id)
 {
 var li = menu.parentNode;
 var a = li.getElementsByTagName('a')[0];

 showMenu(menu, horiz, issub, li, a, isie);

 menu = li.parentNode;
 }
}

12 I wonder if iterating backwards should be called “reiteration.”

420

Chapter 16: JavaScript and Accessibility

Making a DHTML Menu Usable via the
Keyboard

The preceding solution is certainly accessible—every menu and link is now
available to the keyboard—but the behaviors are not as smooth as they are for
mouse users. Navigating to a deeply nested link still involves of lot of key presses,
because tabbing is a one-dimensional operation (forwards or backwards), yet our
menu is really a two-dimensional structure (we can move up and down through
nested menus, and left and right between sibling menu items). Wouldn’t it be
cool if we could reconcile that with two-dimensional navigation keys?

The arrow keys are the obvious and intuitive choice. In fact, Opera already has
the functionality we want, and almost no effort is required to make it work for
our menus! If we use the spatial navigation paradigm we first looked at in
“Making title Attribute Tooltips Display on Focus”, Opera users can navigate
around the entire menu structure by holding down Shift and moving the mouse
cursor around with the arrow keys. This action also fires focus events, when
relevant, so the menus will open and close as they do for mouse users.13

But we still have Firefox and other Mozilla browsers, Safari, and Internet Explorer
to think about. For these browsers, we’ll create similar functionality with custom
scripting, using the arrow keys alone.

Solution
To begin with, we need a simple but highly effective utility function called
cleanUselessWhitespace. This function, which is based on a method by Alex
Vincent,14 removes all the unwanted whitespace text nodes from inside the tree
(including tabs, spaces, and line breaks between list items). It makes our job a
whole lot easier, because node references will then be predictable (e.g., an li
element’s nextSibling property is another li tag, not the whitespace in between):

File: dropdownMenuKeyboard.js (excerpt)

function cleanUselessWhitespace(node)
{

13 The only change that was required to make this work was the addition of display: table to
the navigation bar list items’ CSS! Don’t ask me why that makes a difference, but it literally does
make all the difference; without it, Opera can’t latch onto the menu links reliably, so it’s basically
unusable.
14 http://weblogs.mozillazine.org/weirdal/

421

Making a DHTML Menu Usable via the Keyboard

http://weblogs.mozillazine.org/weirdal/
http://weblogs.mozillazine.org/weirdal/

 for (var x = 0; x < node.childNodes.length; x++)
 {
 var child = node.childNodes[x];
 if (child.nodeType == 3 && !/\S/.test(child.nodeValue))
 {
 node.removeChild(node.childNodes[x]);
 x--;
 }
 if (child.nodeType == 1)
 {
 cleanUselessWhitespace(child);
 }
 }
}

Next, we add the function that does the real work here; called
arrowKeyNavigation, it processes each key command, then sends focus to the
appropriate element:

File: dropdownMenuKeyboard.js (excerpt)

function arrowKeyNavigation(tree, link, keycode, horiz)
{
 var li = link.parentNode;
 var menu = li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null;
 var parent = li.parentNode;

 switch (keycode)
 {
 case 37:
 parent = parent.parentNode;
 if (tree.parentNode == parent) { parent = null; }
 if (parent)
 {
 parent.firstChild.focus();
 }
 break;
 case 38:
 var previous = li.previousSibling;
 if (!previous)
 {
 previous = li.parentNode.childNodes
 [li.parentNode.childNodes.length - 1]
 }
 previous.firstChild.focus();
 break;

422

Chapter 16: JavaScript and Accessibility

 case 39:
 if (menu)
 {
 menu.firstChild.firstChild.focus();
 }
 break;
 case 40:
 var next = li.nextSibling;
 if (!next)
 {
 next = li.parentNode.childNodes[0];
 }
 next.firstChild.focus();
 break;
 }
}

Finally, we can add a document-level key listener to kick all that into action.
Here’s an excerpt from the dropdownMenu function to the extent necessary to
show you the new code (additions are shown in bold):

File: dropdownMenuKeyboard.js (excerpt)

function dropdownMenu(navid)
{
 var isopera = typeof window.opera != 'undefined';
 var isie = typeof document.all != 'undefined'
 && !isopera && navigator.vendor != 'KDE';
 var issafari = navigator.vendor == 'Apple Computer, Inc.';

 if (typeof document.getElementById == 'undefined'
 || (issafari && typeof window.XMLHttpRequest == 'undefined')
 || (isie && typeof document.uniqueID == 'undefined'))
 {
 return;
 }

 var rollover = new Image;
 rollover.src = 'right-red.gif';
 rollover = new Image;
 rollover.src = 'down-red.gif';

 var tree = document.getElementById(navid);
 if (tree)
 {
 var horiz = tree.className.indexOf('horizontal') != -1;
 branch = tree;

423

Making a DHTML Menu Usable via the Keyboard

 var items = tree.getElementsByTagName('li');
 for (var i = 0; i < items.length; i++)
 {
 dropdownTrigger(tree, items[i], navid, isie, horiz);
 }

if (!isopera)
 {
 cleanUselessWhitespace(tree);

 var keyevent = issafari || isie ? 'keydown' : 'keypress';
 attachEventListener(document, keyevent, function(e)
 {
 var target = typeof e.target != 'undefined'
 ? e.target : e.srcElement;
 if (tree.contains(target) && target.getAttribute('href'))
 {
 if (/^(37|38|39|40)$/.test(e.keyCode.toString()))
 {
 arrowKeyNavigation(tree, target, e.keyCode, horiz);

 if (typeof e.preventDefault != 'undefined')
 {
 e.preventDefault();
 }
 return false;
 }
 }
 return true;

 }, false);
 }

Discussion
Here, we’re responding to arrow key events (which are key codes 37 to 40, inclus-
ive), then translating those directions into element references.

Figure 16.9 shows a point on the menu from which all possible movements would
lead us to other menu items. From this diagram, we can see what the relationships
are:

left (key code 37) means the parent item of the current menu

up (key code 38) means the previous sibling of the current item

424

Chapter 16: JavaScript and Accessibility

right (key code 39) means the first item in the current item’s child menu

down (key code 40) means the next sibling of the current item

Figure 16.9. Four directions of possible movement from a submenu
link

Of course, an element won’t always be available in any given direction, so we’ll
have to check each menu item for possible exceptions: if an item has no submenu,
there isn’t going to be anything to the right; from the main navigation bar, there
won’t be anything to the left; for movements up and down, we can cycle continu-
ally through the items, jumping back to the top when we reach the bottom of a
menu, and jumping to the bottom when we reach the menu’s top.

The core code for translating these four possible directions of movement into a
new focus target takes place in arrowKeyNavigation, the code for which was
given above.

However, there are certain circumstances in which this simple keyboard navigation
model breaks down. The main one is associated with menu repositioning, which
we implemented in “Making Sure the Menus Stay Inside the Window” in
Chapter 15. Pressing the right arrow to go to a submenu that has been shifted
to the left no longer makes sense, as Figure 16.10 shows.

Figure 16.10. The repositioned Spoons submenu changes the
meaning of “left” and “right”

425

Making a DHTML Menu Usable via the Keyboard

The Spoons submenu has been moved to the left side of its parent menu, so intu-
ition clearly demands that the left arrow should go to the submenu, not the right
arrow. We’re going to have to check for this possibility, and remap the keystrokes
accordingly.

We’ll also have to do some remapping for a horizontal navigation bar, because
the top-level list of links is a row, not a column (but this does not apply to the
submenus, which continue to behave as described above!). So within that navig-
ation bar, we’ll need to swap the meanings of up and left movements, as well as
the down and right movements. Finally—and also for a horizontal navigation
bar—when the user presses the up arrow from the first item in a first-level sub-
menu, we’ll want to move focus back up to the navigation bar, instead of cycling
round to the bottom of the submenu. This means we’ll have to convert that
particular keystroke from up to left.

Let’s create a new function to perform the relevant key conversions that will allow
us to handle all these exceptions. mapKeyCode will convert the code of the actual
key that was pressed to the correct code for the existing navigation logic. As we
have three exceptions, this function will perform one of three types of mapping
(in the order in which we’ve just discussed them):

File: dropdownMenuKeyboard.js (excerpt)

function mapKeyCode(keycode, type)
{
 switch (type)
 {
 case 0:
 if (keycode == 37) keycode = 39;
 else if (keycode == 39) keycode = 37;
 break;

 case 1:
 if (keycode % 2) keycode++;
 else keycode--;
 break;

 case 2:
 if (keycode == 38) { keycode = 37; }
 break;
 }

 return keycode;
}

426

Chapter 16: JavaScript and Accessibility

We need to call this code from the main arrowKeyNavigation function, just before
we check the key code for the action to be performed:

File: dropdownMenuKeyboard.js (excerpt)

function arrowKeyNavigation(tree, link, keycode, horiz)
{
 var li = link.parentNode;
 var menu = li.getElementsByTagName('ul').length > 0
 ? li.getElementsByTagName('ul')[0] : null;
 var parent = li.parentNode;

if (menu)
 {
 if (getRoughPosition(menu, 'x')
 < getRoughPosition(li.parentNode, 'x'))
 {
 keycode = mapKeyCode(keycode, 0);
 }
 }
 else if (parent != tree)
 {
 if (getRoughPosition(parent.parentNode.parentNode, 'x')
 > getRoughPosition(parent, 'x'))
 {
 keycode = mapKeyCode(keycode, 0);
 }
 }

 if (horiz)
 {
 if (parent == tree)
 {
 keycode = mapKeyCode(keycode, 1);
 }
 else if (parent.parentNode.parentNode == tree
 && li == li.parentNode.firstChild)
 {
 keycode = mapKeyCode(keycode, 2);
 }
 }

 switch (keycode)
 {
 �

427

Making a DHTML Menu Usable via the Keyboard

The last tricky thing we’ve done here has to do with the default actions associated
with all these arrow key presses. These events would normally cause window
scrolling to occur—something which, obviously, we want to prevent. However,
we can’t prevent scrolling for all arrow key presses, or we’d be breaking part of
the user interface. We should only prevent scrolling under the right circumstances.
So, within our event listener setup code in dropdownMenu, we use the contains
method to check if the event target is a hyperlink inside the menu tree; we also
check the keyCode to confirm that the event is an arrow key press. If everything
checks out, we trigger our arrowKeyNavigation function and cancel the default
action. Here’s the relevant code:

File: dropdownMenuKeyboard.js (excerpt)

if (tree.contains(target) && target.getAttribute('href'))
{
 if (/^(37|38|39|40)$/.test(e.keyCode.toString()))
 {
 arrowKeyNavigation(tree, target, e.keyCode, horiz);
 if (typeof e.preventDefault != 'undefined')
 {
 e.preventDefault();
 }
 return false;
 }
}

To trigger all this we use one of two different key events, depending on the
browser, as different browsers have different ideas about which event equates to
(and hence, can be used to suppress) the action of window scrolling. In Safari
and Internet Explorer it’s keydown, while in Mozilla browsers it’s keypress, hence
the code branching:

File: dropdownMenuKeyboard.js (excerpt)

var keyevent = issafari || isie ? 'keydown' : 'keypress';
attachEventListener(document, keyevent, function(e)
{
 �

Making a DHTML Slider Control
Accessible to the Keyboard

In “Making a Slider Control” in Chapter 14, we built a slider widget that translates
mouse movement into values sent to a hidden form field. This was carefully de-

428

Chapter 16: JavaScript and Accessibility

signed to deal with real data that’s submitted with the form as normal, so that
it degrades gracefully to a regular text field if scripting is not supported.

But the slider only works for mouse users, and even once it’s retrofitted for the
keyboard, the slider remains inaccessible to some screen reader users, who won’t
be able to use the widget and can’t navigate to the hidden field that represents
its data.

This solution sorts that problem out, so if you haven’t already read the original
solution I strongly recommend you do so.

Solution
We begin by changing a key aspect of what the scripting actually achieves. We
no longer want to remove the original text fields and replace them with hidden
fields; instead, we want to apply offleft positioning to move the text fields off the
screen (just as we did for our DHTML menus), then add the custom widgets.
This will ensure that the field remains accessible to screen reader users, even if
the custom widget doesn’t work. Changes from the original code are shown in
bold below:

File: slider.js (excerpt)

function initSliders()
{
 var sliderReplacements = getElementsByAttribute("class",
 "slider");

 for (var i = 0; i < sliderReplacements.length; i++)
 {
 var container = document.createElement("div");

var slider = document.createElement("button");
 slider.setAttribute("type", "button");

 container.className = "sliderContainer";
 slider.className = "sliderWidget";
 slider.style.left =
 sliderReplacements[i].getAttribute("value") + "px";
 slider.valueX = parseInt(
 sliderReplacements[i].getAttribute("value"), 10);

sliderReplacements[i].className += " offleft";

 container.appendChild(slider);
 sliderReplacements[i].parentNode.insertBefore(container,
 sliderReplacements[i]);

429

Making a DHTML Slider Control Accessible to the Keyboard

container.input = sliderReplacements[i];

 attachEventListener(slider, "mousedown", mousedownSlider,
 false);

attachEventListener(slider, "focus", focusSlider, false);
 attachEventListener(slider, "blur", blurSlider, false);

 document.ismouse = false;
 attachEventListener(slider, "mouseover", mouseoverSlider,
 false);
 attachEventListener(slider, "mouseout", mouseoutSlider,
 false);
 }

 return true;
}

The slider button itself needs to be an element that’s able to take focus, and
button is the obvious choice. In fact, this element specifically had to be a button
element, rather than an input of type button, because the latter doesn’t work
in Safari—for some (unknown) reason it doesn’t fire any mousedown events, which
makes it stop functioning as a slider for mouse users. A button element works,
and is semantically just as good; plus it also gives us richer design potential since
further elements can be contained inside it.

Styled Link vs Form Element

If we’d used a styled link instead of a form element, we’d have created a us-
ability problem in Opera (as well as making our script less accurate semantic-
ally). Opera uses different navigation keystrokes for links than it does for
form controls. If the slider could not be reached using the same keystrokes
that are used to access other form elements, this would clearly undermine
its usability as a form control.

The next consideration is that some of the code we’ll need for keyboard-initiated
movement is the same as for mouse-initiated movement. Let’s abstract the original
slider positioning logic into a separate function:

File: slider.js (excerpt)

function incrementSlider(slider, sliderLeft, increment, event)
{
 if (sliderLeft < 0)
 {
 sliderLeft = 0;

430

Chapter 16: JavaScript and Accessibility

 }
 else if (sliderLeft >
 (slider.parentNode.offsetWidth - slider.offsetWidth))
 {
 sliderLeft = slider.parentNode.offsetWidth -
 slider.offsetWidth;
 }
 else
 {
 slider.originX =
 typeof event != "undefined" ? event.clientX : 0;
 }

 slider.style.left =
 Math.round(sliderLeft / increment) * increment + "px";
 slider.parentNode.input.value =
 Math.round(sliderLeft / increment) * increment;
 slider.valueX = sliderLeft;
}

Once we make the necessary adjustment to the mousemoveSlider function (shown
in bold), we’ll have made all the necessary changes to the original script:

File: slider.js (excerpt)

function mousemoveSlider(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var slider = document.currentSlider;
 var sliderLeft = slider.valueX;
 var increment = 1;

 if (isNaN(sliderLeft))
 {
 sliderLeft = 0;
 }

 sliderLeft += event.clientX - slider.originX;

incrementSlider(slider, sliderLeft, increment, event);

 stopDefaultAction(event);

431

Making a DHTML Slider Control Accessible to the Keyboard

 return true;
}

Now let’s define the new functions we need—focus and blur listeners that
identify when the user navigates to or away from the slider control:

File: slider.js (excerpt)

function focusSlider(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }
 var target = getEventTarget(event);

 target.className += " sliderFocus";

 if (document.ismouse) { return false; }

 document.currentSlider = target;
 target.originX = 0;

 target.pressed = false;
 target.repeatRate = 400;
 target.currentRate = target.repeatRate;

 attachEventListener(document, "keydown", keydownSlider, false);
 attachEventListener(document, "keyup", keyupSlider, false);

 return true;
}

function blurSlider(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }
 var target = getEventTarget(event);

 target.className = target.className.replace(" sliderFocus", "");

 detachEventListener(document, "keydown", keydownSlider, false);

 return true;
}

432

Chapter 16: JavaScript and Accessibility

We also need keydown and keyup listeners to handle arrow-key events, and
translate them into the appropriate actions:

File: slider.js (excerpt)

function keydownSlider(event, repeatKey)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var slider = document.currentSlider;
 var sliderLeft = slider.valueX;
 var increment = 1;

 if (isNaN(sliderLeft))
 {
 sliderLeft = 0;
 }

 if (slider.pressed && event != null) { return false; }
 else { slider.pressed = true; }

 if (event != null)
 {
 repeatKey = event.keyCode;
 }
 else if (slider.currentRate == slider.repeatRate)
 {
 slider.currentRate = slider.repeatRate / 20;
 }
 else
 {
 increment = 3;
 }

 sliderLeft += repeatKey == 39 ? increment
 : repeatKey == 37 ? 0 - increment
 : 0;

 incrementSlider(slider, sliderLeft, increment);

 slider.repeater = setTimeout(function()
 {
 keydownSlider(null, repeatKey);

433

Making a DHTML Slider Control Accessible to the Keyboard

 }, slider.currentRate);

 return true;
}

function keyupSlider(event)
{
 var slider = document.currentSlider;

 clearTimeout(slider.repeater);
 slider.currentRate = slider.repeatRate;
 slider.pressed = false;
}

We also need new mouseover and mouseout listeners, which simply set and clear
a document.ismouse flag. This flag is used within the focusSlider function to
determine whether a focus event came from the keyboard, or from a click of the
mouse button (this can generate a focus event if the clicked element doesn’t
already have focus). In the latter case, we want to ignore most of the code in
focusSlider so as not to conflict with the mouse behaviors (for example, setting
the target.originX value to zero would override the value set by
mousedownSlider in all browsers except Opera, because of the order in which
the events fire):

File: slider.js (excerpt)

function mouseoverSlider()
{
 document.ismouse = true;
}
function mouseoutSlider()
{
 document.ismouse = false;
}

That’s it! Our slider control can now be used with the keyboard as well as the
mouse, and remains accessible to both screen readers and non-script browsers in
its original, semantic form.

Discussion
Obviously, there are some pretty tricky details being managed in the code above.
Let’s dive in!

434

Chapter 16: JavaScript and Accessibility

When a user holds down a key, the repeat rate of the associated keydown event
is not predictable, if indeed it repeats at all (in this case, it doesn’t repeat for
Opera or Safari). As such, we’ll have to take control of the repeat rate ourselves:
only the first, discrete keydown event will be handled (until another keyup event
has occurred); the repeat will be implemented manually using setTimeout.

This also allows us to enhance the usability of the slider by implementing a delay
before it repeats. You can see in the focusSlider function that the initial
repeatRate is set to 400ms: it takes 400ms after the first keydown for the second
slider value change to occur; but when it does occur, the keydownSlider function
divides the repeat rate by 20, so that it shoots up to 20ms and stays there. This
means users can easily select from a large range of numbers by holding down the
arrow key, but they can still micro-adjust the figure by pressing and releasing it
more quickly.

For the repeating calls to keydownSlider, we store and pass the keyCode value
back through the timer as a second argument, and replace the first argument—the
event object—with null. By checking for that null value (and confirming that
the button is held down with the help of a pressed property), the function is
able to identify and filter out any repeating keydown events that are produced
natively by the browser:

File: slider.js (excerpt)

if (slider.pressed && event != null) { return false; }
else { slider.pressed = true; }

The keyupSlider function resets all of that, stopping the timer, resetting the
repeat rate, and clearing the pressed property. The focus and blur event
listeners initialize and reset this property, and handle the rollover effect; but their
primary task is to add and remove the key listeners in the same way that the
original mousedown and mouseup listeners functioned for the other mouse listeners.

Before we leave this solution, I’d like to point out that it isn’t perfect! First, it
has an issue with excessive redundancy, in that the buttons are empty elements
for screen reader users, while the original text fields are unnecessary elements for
visual users. In neither case is this a problem—it doesn’t prevent the widget from
working as intended—but it does mean that all users will be left with some re-
dundant elements in their flow. The only way I’ve found to avoid this problem
is to use the original text field as the slider control itself, but under this approach
the styling possibilities are severely restricted.

The slider has what potentially is a more serious problem for any users who need
their keyboards to operate with a specific repeat rate or repeat delay, for example,

435

Making a DHTML Slider Control Accessible to the Keyboard

people who have restricted movement in their hands and require a longer repeat
delay to compensate. The script overrides the native speeds and implements
custom values, because this was the only way I found to create stable, cross-
browser behaviors, but this may make some of the interactions involved im-
possible; for example, a user might not be able to press and release an arrow key
quickly enough to micro-adjust the slider value.

Making Scripts Accessible to Screen
Readers

How do screen readers handle JavaScript? Badly!

Almost all of the screen readers in current use are browser-based readers, which
means they either work in tandem with, or directly embed, a regular graphical
browser (usually Internet Explorer, although Windows Eyes 5.5 also works with
Firefox).

An assumption under which many people begin coding is that a screen reader is
just like a text-only browser. This is not correct. A reader is nothing like a text
browser, because text browsers don’t support CSS or JavaScript; browser-based
screen readers do.

Hear the Web for Yourself!

To get a rough idea of what it’s like to use the Web with a screen reader,
imagine that a friend or colleague looks at a web page (or actually ask them
to do so!) and then reads it to you over the phone. They can tell you the alt
text of images, the labels for form controls, and maybe even the titles
of links. But for the most part, all you can hear is what they can see by de-
fault.

The most popular readers in current use are JAWS, Windows Eyes, Hal,
Connect Outloud, and Home Page Reader. If you’re in a position to try any
of these applications, I’d strongly encourage you to do so—you’ll be amazed
at the empathy and insights you can gain from even very limited experience
with these tools.

Better yet, you could go to a local university or college and visit their center
for students with disabilities, where you may be able to arrange to be present
when someone is using a screen reader to use the Web.

436

Chapter 16: JavaScript and Accessibility

We’ve already seen the need for scripting to be accessible to the keyboard (or
equivalent pointing/actuating device), and how the same baseline should be used
for people using screen readers, who are almost certain to be navigating with the
keyboard.

But beyond these basics, what we find is that browser-based screen readers don’t
behave the same as the browser behaves alone, yet they don’t behave like non-script browsers,
either. You could say that for these devices, JavaScript is “sort of” supported.15

Sounds confusing, right? But this could also be useful: it may allow us actually
to identify a browser-based screen reader, as distinct from a browser being used
on its own, if we could reference the differences in event behavior! In fact, we
know this can work, because we’ve used the technique already in “Making a
Folder Tree or Expanding Menu” in Chapter 15. But, as we noted at the time,
this approach is clearly a hack that’s defensible only because it’s better than
nothing at all—assuming that we have no other alternative.

But in some cases we do have an alternative. Every situation is different, and just
because the hack-based approach worked well in “Making a Folder Tree or Ex-
panding Menu” in Chapter 15 doesn’t mean that it’s the right solution for all
situations; it’s just one possible approach to consider. What we would like to be
able to develop is a range of techniques and ideas to add to our scripting arsenal,
so that we can approach any given application with a variety of ideas for making
it work, or at least to make it safe (i.e., implemented in a way that allows a screen
reader to fall back on non-script functionality).

We won’t get a complete answer here—in fact, in truth, we’ll barely scratch the
surface! But what I hope to convey more than anything else is a number of ways
to think about scripting that you may not have considered before.

To that end, this solution is split into three parts. The first part examines how
JavaScript actually behaves in a range of current screen readers, so you can gauge
the impact and get a sense of what already works, what can be adapted, and what
can’t. The second part will outline a general hack for inferring the identity of a
screen reader, so that we have at least one technique for “making safe” a script
that would otherwise be unusable. In the third and final part, having been through
the nitty-gritty, we’ll step back to take a broader, more academic look at the
subject, at which point we’ll reach a surprising best-practice recommendation for
building accessible web applications!

15 I don’t like to use the phrase “partially supported” in this case, because it feels like that implies a
neat, discrete subset of functionality. In fact, what we have here is far more nebulous and imprecise,
and “sort of” sums that up much better!

437

Making Scripts Accessible to Screen Readers

JavaScript Behaviors
Over the last few months, I’ve been involved in researching how the leading
screen readers and other assistive devices respond to JavaScript: what kind of
events they generate or respond to, under what circumstances. The research is
based at Access Matters,16 and is coordinated by Bob Easton, Derek Featherstone,
Mike Stenhouse and myself, using test data that was provided initially by us
(through controlled testing), but more importantly, by readers of the Access
Matters blog (who are “real users” in the sense that they’re running the test
without being concerned by the way it works). I’m grateful to all who took part
in that testing—without them, we’d know a great deal less than we do now. The
test produced a lot of data—more than I can possibly reproduce here—so if you’re
interested in the nitty-gritty, see the resources at Access Matters.17

Briefly, what we’re finding through this research is that script support in screen
readers is incredibly erratic and fragmentary. Yet that isn’t the biggest problem.
There are ways and means by which we can create usable hooks (for example, all
the screen readers we tested generate click events on links and form controls),
but the real sticking point is what to do next. When the script modifies what is
displayed by the browser, how does a screen reader user know that the content has
changed?

A sighted user has random access to a page, by virtue of looking at different bits
of it; if something changes, that user’s visual attention is drawn to it. But people
who are blind have no such access. Their approach to a page is linear, so if part
of the page changes before or after the users’ current focus, they won’t notice it
happen, and may not subsequently realize it has happened even when they reach
the portion of the page that has changed.

A screen reader doesn’t announce dynamic changes to the DOM. Those changes
just happen in the background, so any given change will more than likely go un-
noticed, unless we notify the user in some way.

And—this is the $64,000 question—just how do we do that? There are many
possibilities, with many variables to consider, so let’s explore the jungle and see
if we can find the temple!

16 http://www.access-matters.com/
17 http://www.access-matters.com/index/index-of-javascript-tests/

438

Chapter 16: JavaScript and Accessibility

http://www.access-matters.com/
http://www.access-matters.com/index/index-of-javascript-tests/

Rollovers and Revealing Content

We have a nice easy start to this one. Essentially, most rollover effects are aes-
thetic (they look nice, but convey no actual information), so generally we don’t
need to be concerned about whether they work for assistive devices, only
whether there’s likely to be any conflict.

There isn’t. Take the focus-driven rollovers we developed in “Making Scripts
Accessible to the Keyboard as well as the Mouse”, for example. Most screen readers
don’t generate focus events on links, so they won’t trigger the script. But even if they
do, all the script does is change the class of a link to apply a color change, and
that’s not a problem to any device—it won’t be seen, but it won’t do any harm
either.

But isn’t a rollover informational, in that it confirms the nature of the link (as
being a link, not just styled text)? Well yes, it is, but it’s information that’s only
relevant to a sighted user—a screen reader has semantics to fall back on, and will
pronounce or announce links differently from regular text (for example, JAWS
says “link” or “visited link” after the text, while Home Page Reader in its default
configuration uses a different voice).

That example notwithstanding, some effects really are informational and relevant
to this group of users, for example, if the rollover exposes another element with
new information, or it’s something more complex like a DHTML menu.

We looked at accessible fly-out menus earlier in this chapter, and we determined
that there were no additional usability considerations over and above how we
built the menu in the first place. The structure is an HTML list and uses position-
ing on the menus to show and hide them; that visual difference is irrelevant to
the spoken output of a screen reader, so it doesn’t matter whether the scripting
works or not, the user will always be able to access the complete menu.

This kind of progressive enhancement generally is the best approach for any kind
of content that is “revealed,” or otherwise not apparently visible by default: don’t
generate the content on the fly; have it sitting there in the source code, and just
reveal it on the fly. It doesn’t matter if the reader doesn’t support the script, be-
cause the content is there anyway and nothing has changed; if the reader does
support the script, it still doesn’t matter, because the content is only changed
visually.

But (and this is a very crucial “but”), when hiding content visually we mustn’t
actually hide it (using visibility, display, overflow, or clip), because that will

439

JavaScript Behaviors

also hide it from most screen readers.18 We discussed this already in the section
called “Making a Drop-down or Fly-out Menu” in Chapter 15, but I’ll reiterate
it here because it’s so important. What we must do instead is use the offleft pos-
itioning technique, so that the content is rendered but not apparently visible.
The CSS for “hidden” and “visible” states might look like this:

.hidden
{
 position: absolute;
 left: -100em;
}

.visible
{
 position: static;
}

This approach ensures accessibility in the pure sense because all the available
content is accessible, but it doesn’t provide ideal usability as it adds to the number
of items in the overall tab order. A user may have to navigate through a lot more
elements to find what they want, as they don’t have the same random-access
capabilities enjoyed by a sighted mouse user. While that might not be a major
issue for ad-hoc items or a small navigational tree, it could become a real pain
for a large and complex example.

This really is a judgment call—do you provide this kind of implementation, or
leave it out entirely, deferring instead to linked information on another page (for
example, link to items in a separate glossary instead of having popup definitions)?
Sometimes, less is more.

Form Validation

The most important thing when it comes to forms is don’t unduly mess with the focus.
Just as we discussed in “Making Scripts Accessible to the Keyboard as well as the
Mouse” (in relation to form validation and general keyboard navigation), most
uses of the focus method and all uses of the blur method are dubious, and could
be very confusing to a screen reader user.

18 This is true for most elements, most of the time—but there are exceptions. For example, JAWS
may speak the text in a label element even if it’s not displayed. But as a general rule of thumb,
it’s safest to assume that any element that is completely hidden with any of the noted properties is
not accessible to screen readers.

440

Chapter 16: JavaScript and Accessibility

Even so, client-side validation is very difficult to implement in a way that screen
readers can comprehend. The main consideration (which in fact applies to server-
side validation as well) is that error messages must be inserted in a logical place,
that is, inside the labels for the fields to which they relate. The best recommend-
ation I’ve seen19 is to use an additional em element to add emphasis to the mes-
sage, which can then also be used as a styling hook:

<label for="uname">Username
 must not contain spaces
</label>

But if we want a screen reader to hear that, how do we inform it that the message
is there? We could send focus to the relevant input element, but that would
usually come after the label, so the user might not hear it. (With implicit associ-
ation the input might be inside the label, but it would still generally come after
the label text.)

Actually, this depends upon the screen reader in question—JAWS, for example,
does read the text of an associated label when you focus a form field, but Home
Page Reader does not. So, for properly accessible client-side validation, the best
thing might be to send the focus to the start of the form, either by dynamically
resetting the action of the form to an ID reference in the page when a validation
error occurs (e.g., form.action = "#form"), or by using document.location to
do the same thing (e.g., document.location.replace('#form')). Or perhaps
the answer is simply to use an alert dialog for the error message.

But would any of those approaches work? We don’t yet have enough information
to know, as we’re now beginning to question the ways in which screen readers
behave in response to dynamically updated content. We need to continue our
investigation into more complex forms of scripting.

Non-user-initiated Scripts

The impacts of automatically initiated scripts depend entirely on what they do.
The bottom line here is whether they do something at load time, and the result
is static from that point on, or whether they do something periodically or asyn-
chronously, such that the content will change after the page has finished loading.

19 http://simplyaccessible.org/article/form-error-messages

441

JavaScript Behaviors

http://simplyaccessible.org/article/form-error-messages
http://simplyaccessible.org/article/form-error-messages

Don’t Change the Page Address Automatically

Don’t do anything that changes the page address automatically. For example,
don’t use client-side redirects (either in JavaScript or with a meta tag), be-
cause these are often disorienting or just plain annoying to users, who cannot
control the redirects with most browsers.

If you’re implementing a navigational select element, for example, make
it work from an explicit Go button rather than in response to the change
event, because most keyboard users select from options with the up and
down arrows alone,20 or by pressing letter keys to jump to specific items (for
example, typing C three times in a country selector to choose Canada). If
the selector activates onchange, the highlighted option would immediately
be followed, preventing the user from choosing any of the further options.

If the output of a script is static after load time—for instance, part of the page
itself is generated with JavaScript, or a random image src is selected for an ad
banner using JavaScript—this poses no problem for screen reader users. The
output will appear to the screen reader no differently than it does to the native
browser (where scripting is enabled, of course).

But if it’s dynamic output that updates periodically or asynchronously, the situ-
ation can become a great deal trickier, and in some cases, the application can
break or become useless. Consider a list of news items that updates itself period-
ically: in one sense, the change doesn’t need to be notified, because it’s relevant
not when it happens, but when you want to read the text; it can update silently
in the background until then, and that’s fine. But what happens if it updates
while you’re reading it? How confusing would that be?

Let’s find out! Here’s a simple script that tests the premise. I wouldn’t consider
this a finished or usable news ticker script; it’s simply the bare bones we need to
test this question:

File: news.js

var items = [
 'First news item',
 'Second news item',
 'Third news item',
 'Fourth news item',
 'Fifth news item',
 'Sixth news item',
 'Seventh news item',

20 As opposed to Alt-arrow, which can open a select menu as it appears for the mouse.

442

Chapter 16: JavaScript and Accessibility

 'Eighth news item',
 'Ninth news item',
 'Tenth news item'
];

var count = 0;
function updateNews()
{
 var list = document.getElementById('news');
 while (list.childNodes.length > 0)
 {
 list.removeChild(list.firstChild);
 }

 for (var i = count; i < count + 5; i++)
 {
 var n = i >= items.length ? i - items.length : i;
 var li = document.createElement('li');
 var a = li.appendChild(document.createElement('a'));
 a.href = '#';
 a.appendChild(document.createTextNode(items[n]));
 list.appendChild(li);
 }
}

window.onload = function()
{
 updateNews();
 window.setInterval(function()
 {
 count++;
 if (count == items.length) { count = 0; }
 updateNews();

 }, 510000);
};

The HTML for this is an ordered list, and is empty by default (which, again, is
not suitable for a public web site, as the end user may not support scripting, but
it’s fine for our test):

File: news.html (excerpt)

<ol id="news">

443

JavaScript Behaviors

The results from this test are diverse, and actually provide behavioral insights
over and above what we’re looking for here: as well as telling us how this partic-
ular script behaves in each device, the results begin to answer the wider question
of how screen readers behave when the DOM is updated after load time (more
on this shortly).

To avoid getting too bogged down in detail here, I won’t reproduce the test results
in full.21 For our purposes, I’ll summarize each screen reader, with an overall as-
sessment of its ability to handle dynamic content, and the potential for confusion
that such dynamism could cause the user:

Home Page Reader: moderate dynamic capability, high confusion potential
The content doesn’t update dynamically when reading the page automatically,
but it does update when navigating manually, so in theory you can hear any
five of the news items, though it won’t be readily apparent how the user can
control which five they hear. The content will continue to update as the user
navigates manually through the list, but when it does change, Home Page
Reader forces the user to update. By “forces the user to update” I mean that
the program presents a modal choice to the user, forcing them either to reload,
or redraw the page! Either of these actions ultimately resets the cursor back
to the top of the page, which means that unless a user can get through all
the items before any dynamic change occurs, the scripted list will effectively
become an impenetrable wall to keyboard navigation!

JAWS: low dynamic capability, low confusion potential
A JAWS user will hear only the first five items, no matter how they interact
with the page, as though the content were generated once and remained
static from then on; that being the case, there are no further behavioral issues.

Windows Eyes: low dynamic capability, moderate confusion potential
Windows Eyes displays almost the same behavior as JAWS, except that the
content does update when the page is redrawn (for example, if you move the
application focus to a different window, then back to Internet Explorer). So
while a user might be able to hear all ten news items eventually, this behavior
is not coherently controllable.

Dolphin Hal: high dynamic capability, high confusion potential
Dolphin Hal exhibits similar behavior to Home Page Reader, with a similar
behavioral quirk: the content is dynamic while the users navigate manually,
but any content update that occurs while they’re navigating through the list

21 If you’d like to look through them in detail, I refer you to my forthcoming article on SitePoint, a
link to which will be published at http://www.sitepoint.com/books/jsant1/.

444

Chapter 16: JavaScript and Accessibility

http://www.sitepoint.com/books/jsant1/

itself will send the page focus back to the top of that list! Just as with Home
Page Reader’s modal response, this behavior could create an impenetrable
barrier to keyboard navigation.

Connect Outloud: high dynamic capability, moderate confusion potential
The list is fully dynamic via any mode of interaction, so a user can hear all
ten news items if they navigate manually through the list, or if they come
back to it from time to time. This could be adequately usable providing that
the ticker is properly explained with preceding text, and it’s certainly the
most dynamic behavior we’ve seen from any screen reader so far. But simply
as a result of the ticker’s dynamic characteristics (and remember, the user
can’t actually see it), some quite strange and potentially confusing eventual-
ities are possible. For example, if the user were to Tab backwards from one
link to the previous one, at exactly the same time as the ticker updated, the
user would hear exactly the same link text spoken again!

Thankfully, none of the devices did the very worst thing I feared they
might—update the spoken output mid-sentence, resulting in fragmentary,
meaningless speech. Sure, I would have been very surprised to find a device that
actually did this, but I’m still very relieved to have my expectations confirmed!

To summarize the ability of screen readers to handle dynamic content, they offer
moderate dynamic capability, high confusion potential. (And there’s high confusion
potential for us developers as well!) Support can go either way, but neither way
is ideal—low dynamic capability gives us little to work with, but high dynamic
capability implies higher confusion potential. How can we possibly hope to
provide real-time dynamic functionality to any of these users without obfuscating
the heck out of their web experience at the same time?

Maybe we’ve just been unlucky, and have chosen a bad example!

Indeed, in the case of a scrolling news ticker such as the one we built in “Making
a Scrolling News Ticker” in Chapter 14, the outlook is a whole lot better. In this
instance, the content is there by default; all that changes is the visual position
of one element inside another, the inner element being partially obscured using
overflow: hidden. We know from other people’s research that some screen
readers can’t see content that’s obscured completely using overflow,22 but in this
case the content is only partially obscured. Does that affect how it’s perceived by
any of the screen readers?

22 http://www.access-matters.com/2005/04/24/quiz-527-screen-reader-test-7/

445

JavaScript Behaviors

http://www.access-matters.com/2005/04/24/quiz-527-screen-reader-test-7/
http://www.access-matters.com/2005/04/24/quiz-527-screen-reader-test-7/

Happily, the answer is a resounding no! In all tested screen readers, when reading
automatically and navigating manually, the CSS and scripting makes no difference
whatsoever: the content remains accessible at all times.

At last—something that just works!

AJAX and other Remote Scripting Techniques

Given everything we’ve found out so far, the biggest problem we’re going to face
should be pretty obvious: the problem isn’t how we trigger the script, it’s what
we do with the response.

We need to do some more testing, and try several possible means of notifying
the user that an update has taken place. Again, I won’t bog you down with too
much detail about the behavior of each device, and I refer you again to my article
on SitePoint if you want the nitty-gritty.

All the tests begin with a triggering link. The test is performed by navigating to
the link with the keyboard, and pressing Enter to actuate it:

File: ajax1.html (excerpt)

<p>
 This link is the trigger.
</p>

That script triggers some JavaScript that makes an XMLHttpRequest request, then
performs a variety of tasks with the response text, using an element with ID re-
sponse in the document:

window.onload = function()
{
 var trigger = document.getElementById('trigger');
 var response = document.getElementById('response');

 trigger.onclick = function()
 {
 var request = null;
 if (typeof window.ActiveXObject != 'undefined')
 {
 try { request = new ActiveXObject('Microsoft.XMLHTTP'); }
 catch (err) { request = null; }
 }
 else if (typeof window.XMLHttpRequest != 'undefined')
 {

446

Chapter 16: JavaScript and Accessibility

 request = new XMLHttpRequest();
 }

 if (request != null)
 {
 request.onreadystatechange = function()
 {
 if (request.readyState == 4
 && /^(200|304)$/.test(request.status.toString()))
 {
 � do something with the response
 }
 }

 request.open('GET', 'test.php?msg=Hello+World', true);
 request.send(null);
 }

 return false;
 };
};

The test.php script simply outputs a message to be sent to the browser by way
of a response—it could have been anything:

File: test.php

<?php
echo "And here's the response - " . $_GET['msg'];
?>

For the first group of tests, the response element in the HTML was a link. The
text in the link was updated, then a couple of different tricks were used to try to
get the screen reader to say it—using the focus method to set focus on it, or using
the document.location property to jump to the element’s ID:

File: ajax2.js (excerpt)

request.onreadystatechange = function()
{
 if (request.readyState == 4
 && /^(200|304)$/.test(request.status.toString()))same
 {

response.innerHTML = request.responseText;
 document.location = '#response';
 }
}

447

JavaScript Behaviors

In the former case (setting focus), only JAWS 5.0 and Connect Outloud responded
as hoped—they read the updated text in the link and said nothing further. Other
devices either did nothing at all (such as Hal), or read a different part of the page
instead (JAWS 6.2 and later versions did this, re-reading the top-level heading
again, instead of the updated link text).

The latter example (using document.location) produced slightly better, but
more varied results: in Hal and all versions of JAWS, the response works as inten-
ded; in Connect Outloud and Home Page Reader, the updated link text is spoken
as we’d hoped, but the reader doesn’t stop—it carries on reading to the end of
the page; in Windows Eyes, the reader skips the updated link and starts reading
from the element after it!

For the second group of tests, I switched the response link for a form ele-
ment—either a text field or a button—to see if that would produce more consistent
results. There were three variants: writing to a button and then focusing it; writing
to a text field and then focusing it; and finally, writing to a text field and then
selecting the text (using some proprietary methods we’ll meet properly in “Creating
an Auto-complete Text Field” in Chapter 18):

File: ajax6.js (excerpt)

request.onreadystatechange = function()
{
 if (request.readyState == 4
 && /^(200|304)$/.test(request.status.toString()))
 {

response.value = request.responseText;
 if (typeof response.createTextRange != 'undefined')
 {
 var range = response.createTextRange();
 range.select();
 }
 else if (typeof response.setSelectionRange != 'undefined')
 {
 response.setSelectionRange(0, response.value.length);
 }
 }
}

For all three variations, the pattern of success and failure was exactly the same:
it worked perfectly in JAWS 5.0 and Connect Outloud (although they also an-
nounced the element by saying, for example, “button” after the text), but failed
to work in later versions of JAWS, or in Windows Eyes. The failures paralleled
the browsers’ behavior with links—Windows Eyes would start reading from the

448

Chapter 16: JavaScript and Accessibility

element after the response, while later JAWS versions would read some other,
unrelated element instead. In Hal and Home Page Reader, these tests produced
no response at all.

Finally, for the sake of completeness, I turned to a simple alert dialog, to check
that it worked as expected:

File: ajax4.js (excerpt)

request.onreadystatechange = function()
{
 if (request.readyState == 4
 && /^(200|304)$/.test(request.status.toString()))same
 {

alert(request.responseText);
 }
}

This should be safe for everyone, but astonishingly, it isn’t. Windows Eyes 5.0
doesn’t always speak the dialog text—sometimes it just announces the dialog, and
doesn’t tell you what it says!

Overall, the results from these tests suggest that there’s no reliable way to notify
screen readers of an update in the DOM—there are piecemeal approaches that work
for one or more devices, but no overall approach or combination of approaches
that would cover them all, given that even the humble alert may not work cor-
rectly in Windows Eyes.

Tricks and Hacks
Now that we’ve looked at numerous different kinds of scripting, we have some
idea of what’s okay, and what’s far from okay. We may be faced with a situation
in which a particular script simply cannot be used in good conscience, unless we
can find a way to make it not apply to screen readers.

That’s where this part of the solution comes into play. We can’t identify screen
readers directly, because the vast majority don’t identify themselves any differently
than the browser would on its own. But we can use the data we do have to infer
their identity indirectly, so that we can filter out dangerous scripting and let them
fall back on static content.

We’ve already seen this technique work in the folder tree menu we made in
“Making a Folder Tree or Expanding Menu” in Chapter 15. In that example, we
needed to differentiate click events on certain links: in a graphical browser we

449

Tricks and Hacks

wanted those links to open a submenu and then return false, but in a screen
reader we wanted to follow the link as normal and ignore the menu script, because
otherwise the links would appear to do nothing at all (the change being a purely
visual one).

To make this work, there needed to be some interaction—we cannot infer the
use of a screen reader automatically, so this is not something we can do at load
time to determine whether a script should initialize. It’s something we can only
do after a minimum amount of interaction has taken place, and that minimum
is having navigated between two links.

None of the screen readers we’ve tested generate keydown or keyup events from
the Tab key when navigating between links; but some do generate them from
modifier keys like Shift, or from other actions like pressing Enter to actuate a
link. If we attach a keyup listener to one or more links, and test for keyCode 9
(the Tab key), we’ll know that, if we receive that event, it came from a vanilla
browser (i.e., a browser used on its own), not a browser-based screen reader. For
our folder tree menu, the links in the list itself provide that interactive input, so
as long as neither the very first, nor the very last navigation bar link has a sub-
menu, we’ll always have enough data to assess accurately whether the browser is
being used alone before any menu-opening click event can occur.

We also have to identify mouse navigation, but here we run into another behavi-
oral quirk of some browser-based screen readers, which is that some of these tools
also generate a complement of mouse events when a link is actuated with the
keyboard. Dolphin Hal 6.5, for example, generates mouseover, mousemove, and
mousedown events at the same time as a click event. But it only generates one
instance of each event, so if we use a mousemove handler that counts for multiple
events, it will provide the filter we need. A graphical browser used in tandem
with the mouse will have generated several mousemove events on a link before a
click event is generated, but the reader will generate only one, just before actu-
ating the link. So, if we receive several of these events before a click event, we
can be sure that a graphical browser is being used.

The code below has been abstracted into a generic utility and test function (which
would be initialized by a load event listener, and uses the attachEventListener
and detachEventListener functions from Chapter 13):

File: reader-detector.js

function readerDetector()
{
 var isreader = (typeof window.opera == 'undefined'
 && navigator.vendor != 'Apple Computer, Inc.');

450

Chapter 16: JavaScript and Accessibility

 var test = document.getElementById('testlink');

 function keyupTest(e)
 {
 if (!e) { e = window.event; }
 if (e.keyCode == 9)
 {
 isreader = false;
 }
 }

 var moves = 0;
 function mousemoveTest()
 {
 if (isreader)
 {
 moves ++;
 if (moves > 2) { isreader = false; }
 }
 }

 attachEventListener(test, 'keyup', keyupTest, false);
 attachEventListener(test, 'mousemove', mousemoveTest, false);

 test.onclick = function()
 {
 alert(isreader
 ? 'Screen reader' + ' [isreader=' + isreader + ']'
 : 'Vanilla browser' + ' [isreader=' + isreader + ']');
 detachEventListener(test, 'keyup', keyupTest);
 detachEventListener(test, 'mousemove', mousemoveTest);
 return false;
 };
}

The test-case HTML looks like this:

 Priming link
 Test link

This script correctly identifies the following devices, used with the keyboard:
JAWS 5.0–6.2, Connect Outloud 2.0, Home Page Reader 3.02 and 3.04, Hal
6.5, and Windows Eyes 5.0 and 5.5 (with Internet Explorer or Firefox). It also

451

Tricks and Hacks

identifies correctly all the major desktop browsers in their vanilla state, used with
either the keyboard or the mouse.

Currently, there are no browser-based readers based in Opera or Safari, hence
either of these browsers will immediately set the isreader variable to false in
the script above. Otherwise, the variable defaults to true, and is set to false by
the combinations of events we have just discussed.

This approach works for links, but it won’t work for form elements, because
navigating between form elements in these devices generates a lot more events
than do links, and there isn’t enough of a consistent discrepancy between the
various browsers and screen readers to be able to make the distinction.

Also, this solution is unable to allow for mouse navigation in a screen reader, as
it’s similarly not possible to differentiate between the standalone browser and
the screen reader. Somebody who does navigate with a mouse can be reasonably
assumed not to be blind, though they may be partially sighted and may use a
reader to assist navigation. Opera and Safari themselves do have voice capabilities,
and these are also designed for users who are not (or are not completely) blind.
So we’re talking in both cases about groups of users whose typical interactions
are no different than those of a sighted user; from a programming perspective,
we shouldn’t need to identify them separately.

Is this a completely safe hack that we can use from now on with free abandon?
Not entirely. Like any hack, it’s an imperfect solution, in this case because it
makes inferences based on known behavioral profiles of the most popular, current
screen readers. Inferences can break over time as new versions are released; they
may fail in programs other than those that have been tested; and of course, they
may simply be an incomplete picture, potentially affected by circumstances that
the testing didn’t reveal.

But the hack is better than nothing, especially if the alternative is a script that
creates unsolvable accessibility barriers. The obvious retort would be, “Well, don’t
use those scripts at all, then!” That’s a fair comment, but is it realistic? Could
you stay, and are you now, on the right side of that opinion? Consider: any script
that uses a click handler on a link, and degrades to a regular href, might not
work at all for a screen reader user, which would create an accessibility barrier.
Yet implementing scripts on links like this is a best-practice technique that’s used
all over the place for a wide range of tasks.

452

Chapter 16: JavaScript and Accessibility

I’m not trying to scare you here, nor am I being intentionally perverse. I simply
want to drill home what I believe is a pretty fundamental point: sometimes, imperfect
solutions will have to do, if the alternative is to do nothing.

In some cases, there is a viable alternative. As we’ve seen in examples through
this chapter, some kinds of scripts can be made safe for screen readers without
resorting to hacks—it just takes some thought and careful adjustment to the details
of their implementation, and some awareness of the different ways in which
people will actually use them. Some kinds of scripts are just fine anyway, without
any special consideration. Hooray for small mercies!

But we’re still left with big chunks of unsolved puzzle—scripting that simply
doesn’t work, or cannot be made safe for screen reader users. Most notable among
these problem areas is the task of making asynchronous updates to the DOM,
for which there’s apparently no single, reliable means of informing the screen
reader user that a change has occurred—not even the traditional alert dialog
can provide us with a rock-solid prop.

Towards Best Practice
At the London @media conference in 2005, Derek Featherstone suggested
(somewhat controversially at the time) that the best way to provide a consistent
experience for people using older screen readers might be to ask them to turn
JavaScript off.23 I strongly disagreed at the time, because I couldn’t see how that
was any different to asking another group of users to turn JavaScript on (something
we go out of our way to avoid doing).

The Mission

I really wanted to create a coherent solution for this book—to find a way of
making dynamic client interfaces work in screen readers and other assistive
devices. I wanted it for my own sake as much as theirs and yours. I wanted it for
the sake of professional pride!

But I haven’t found one, and I must tentatively conclude that there isn’t one at
present. I stress the “at present” because we simply don’t know enough to draw a
firm conclusion; we don’t even know what all the issues are! As I said at the start
of this section, what we’ve done here has barely scratched the surface of this issue,
and what will transpire over the next few months and years is anybody’s guess.

23 http://www.boxofchocolates.ca/archives/2005/06/12/javascript-and-accessibility

453

Towards Best Practice

http://www.boxofchocolates.ca/archives/2005/06/12/javascript-and-accessibility
http://www.boxofchocolates.ca/archives/2005/06/12/javascript-and-accessibility

Yet in reevaluating the original premise to try to understand all this, I came to a
startling conclusion: making dynamic client interfaces work in screen readers was
never the point of this exercise; the point is to make the applications themselves work
effectively in screen readers!

Interactions are just details, and perhaps what we’ve really been doing here is
projecting our own desires and preferences onto users for whom they’re not really
relevant. Maybe dynamic client interfaces don’t benefit screen reader users at
all, and it would work best for screen readers and their users if we played to the
kinds of interaction for which these devices were originally designed.

The Joy of Mode

The failure of alert dialogs to provide a reliable solution, and subsequent
thoughts and discussions on the general subject of modal dialogs, made me realize
that modal interaction is a fantastic thing, because modal interaction is always
task-focused. It begins from the premise that a user wants to do something (which
invariably they do; usually it’s only we programmers who have a holistic view of
an application), and limits his or her choices within a particular dialog to options
that progress that task. Think of the number of “wizards” used in Windows, how
easy they are to use, and consequently, how popular they’ve become.

Now, built-in dialogs themselves are not the answer, partly because we know
they’re not completely reliable, and partly because they’re so restrictive in terms
of the ways in which we can format them and the kinds of responses they can
provide (not to mention the way they look!). But they do suggest a feasible ap-
proach: modality.

Do we have a paradigm on the Web that can create that kind of modality, while
still providing a rich canvas for visual and interface design? What mechanism
can do that while also providing continual, live, and accurate progress information
to a screen reader, or any device, about what the host environment is doing?

Reaching toward a Best Practice Approach

The answer to the above questions? Individual page requests, and the states and
interactions of HTTP!

What I’m basically suggesting here, from these (albeit limited) test results, is that
conventional submit and response functionality is infinitely better, from a screen
reader’s perspective, than remote scripting applications that update pages without

454

Chapter 16: JavaScript and Accessibility

reload. If the end goal is building accessible web applications, then for this group
of users, the best approach may be to forget about JavaScript altogether!

What is this heresy? Am I trying to talk down one of the most exciting develop-
ments in the Web in recent years? Not at all! I’m certainly not drawing a line
under AJAX and calling it “inaccessible.” I’m merely stressing the point that ap-
plications should work using either mode of interaction—through traditional post and
response, or through remote scripting—and that perhaps the way to differentiate
the options for different users is to offer them a choice of interaction, rather than
trying to infer their environment and make that decision for them.

Either way, what I’m taking about is progressive enhancement, which makes it
possible to serve all users from a single application, without having to compromise
anyone’s experience, or divide users on the notion that one approach is “better”
than another. Just as XHTML 1 is designed to allow it to be handled by any
device—even those that were made before it existed—so modern scripting should
be designed with the same ideals, by progressive enhancement from a mode- and
device-independent core.

It could be that the lynch-pin of any solution is the user’s choice of mode, regardless
of whether that choice should be offered to users up-front, or made for them
programmatically. If a user approaches the page with JavaScript turned off, they’ve
already made their choice, otherwise it’s still viable; yet in some cases we have a
good idea of which mode suits which users better, and that leaves us either
wanting to make the choice programmatically (a ticklish business, as we’ve seen),
or offering it to users in advance (in which case it may be difficult to explain).

In most cases, I think the latter option is better. It’s better to explain a difficult
choice and risk users making the wrong one for themselves, than to take the
choice away and risk imposing the wrong one upon them, but circumstances may
allow you to avoid the choice altogether (as they did for our folder tree menu).

Into the Future

Maybe (and very ironically) Flash represents the best hope for dynamic client
interfaces! Recent versions of Flash have specific capabilities for providing
metadata to certain screen readers (JAWS and Windows Eyes), and offer a directly
detectable programming environment, with far more in the way of status and
object information than is currently available through JavaScript.

But screen reader vendors themselves may reasonably be hoped to respond to
the increasing popularity of remote scripting by providing the necessary hooks

455

Towards Best Practice

and feedback to help make it accessible to users. Maybe IBM, in its work with
screen reader and browser vendors, will pave the way for the DOM to provide
this kind of interface in a clean and accessible way.

Or maybe Derek was right all along, and we should just ask people using a screen
reader to turn JavaScript off!

Summary
In this chapter, we’ve outlined what we mean by accessible scripting, and dis-
covered that making scripts accessible to sighted keyboard users is possible for
basically anything—we didn’t see a single case in which a script was fundamentally
unadaptable, even if some circumstances required some careful, creative thinking
to make the scripts so.

But the situation is more difficult for screen reader users, because some kinds of
scripts are simply impossible to implement in some or all devices, as our testing
has revealed. The key remaining question seems to focus on how and whether
we try to filter out scripting ourselves, or whether we ask those who are affected
to change their browser configurations until such time as the technology is up to
the task.

The bulk of this chapter has talked about issues relating to keyboard navigation
and screen readers, but there’s much more to accessibility than that. For instance,
there are numerous groups of users for which we still haven’t catered properly,
because I honestly don’t know what to tell you about them! We may find out
through research that, for example, AJAX applications can be used to benefit
people with cognitive disabilities. Or we may find out that a general recommend-
ation to turn off JavaScript benefits other groups of users besides those we’ve
considered.

I never expected us to solve it all, but we do know a great deal more than we did
at the start of this chapter. Not bad!

456

Chapter 16: JavaScript and Accessibility

Using JavaScript with Flash17
Flash occupies an unusual position in the structure of the Internet. It has become
almost as ubiquitous as HTML itself, yet it isn’t built into any of the browsers
natively. Instead, Flash relies on a separate plugin to function properly.

It’s because of this unsteady existence that developers are sometimes required to
act as intermediaries between the world of Flash and the world of HTML. This
chapter introduces a few pieces of JavaScript that can help you successfully integ-
rate Flash into your pages, and make informed decisions about whether or not
to do so.

Detecting whether Flash is Installed in a
Browser

Although most web users can view Flash, there’s still a substantial number who
can’t, and there are always going to be versions of Flash that can’t handle your
new-fangled technology. So before you decide to use Flash objects on your web
page, you should be certain that the user’s browser supports them.

Solution
Almost all Flash detection scripts prior to 2005 required a clunky VBScript
workaround in order to determine which version of the Flash plugin Internet
Explorer was using; however, Bobby van der Sluis managed to find a pure
JavaScript method for doing this, and coded it into Unobtrusive Flash Objects.1

This gives us a nice clean way to detect the version of Flash that’s being used by
any browser.

Although standard objects are available to detect the plugins available in a user’s
browser, Internet Explorer for Windows always leaves those objects empty, so
we need to access its ActiveX objects in order to get the right information. Fortu-
nately, Internet Explorer for Mac is able to handle standard plugin detection, so
it’s not left out in the cold:

File: detect_flash.js

var flashInfo = getFlashVersion();

alert("This browser has Flash version: " + flashInfo["major"] +
 "." + flashInfo["build"]);

function getFlashVersion()
{
 var flashVersion = new Array();

 flashVersion["major"] = 0;
 flashVersion["build"] = 0;

 if (navigator.plugins &&
 typeof navigator.plugins["Shockwave Flash"] == "object")
 {
 var description =
 navigator.plugins["Shockwave Flash"].description;

 if (description != null)
 {
 var versionString =
 description.replace(/^.*\s+(\S+\s+\S+$)/, "$1");

 flashVersion["major"] =
 parseInt(versionString.replace(/^(.*)\..*$/, "$1"));
 flashVersion["build"] =

1 http://www.bobbyvandersluis.com/ufo/

458

Chapter 17: Using JavaScript with Flash

http://www.bobbyvandersluis.com/ufo/

 parseInt(versionString.replace(/^.*r(.*)$/, "$1"));
 }
 }
 else if (typeof window.ActiveXObject != "undefined")
 {
 try
 {
 var flashObject =
 new ActiveXObject("ShockwaveFlash.ShockwaveFlash");
 var description =
 flashObject.GetVariable("$version");

 if (description != null)
 {
 var versionNumbers =
 description.replace(/^\S+\s+(.*)$/, "$1").split(",");

 flashVersion["major"] = parseInt(versionNumbers[0]);
 flashVersion["build"] = parseInt(versionNumbers[2]);
 }
 }
 catch(error)
 {
 }
 }

 return flashVersion;
}

getFlashVersion can be run at any stage of a page’s loading procedure because
it queries only global browser properties. This allows you to execute it immediately
in the head of your document and use its value later.

Standards-compliant browsers fill the navigator.plugins property, which we
check for the existence of the "Shockwave Flash" plugin; we then parse that
plugin’s description to obtain its version numbers. The description follows the
form "Shockwave Flash 7.0 r19", and we’re particularly interested in those
last two numbers. The integer before the decimal point is the major version
number of the plugin, while the number that follows the r is the plugin’s build
version. Although most significant changes occur between major versions of the
software, differences do exist between build versions, so this information is
available if you require it.

Internet Explorer on a Windows platform will not store any plugins in the
navigator.plugins object, so the second branch of the above code is designed

459

Detecting whether Flash is Installed in a Browser

for this browser. We try to create a new ActiveX object of type "Shockwave-
Flash.ShockwaveFlash", and if it’s successful, we are able to query it for its
version information. Internet Explorer’s version description takes the form "WIN
7,0,19,0", where the major version is the first number and the build version is
the third number. This requires us to use a slightly different set of regular expres-
sions to divide the string up into the parts we need, but once the versions have
been ascertained, they are assigned to flashVersion, which is used as
getFlashVersion’s return value.

Once flashInfo has been assigned, we can use its associative array values to
perform tests on the current Flash version, and act accordingly:

var flashInfo = getFlashVersion();

if (flashInfo["major"] > 6 ||
 (flashInfo["major"] == 6 && flashInfo["build"] >= 65))
{
 �
}

Don’t Test for a Single Version

If you’re testing for a particular version of Flash, you should never check for
that version alone, like this:

if (flashInfo["major"] == 6)
{
 �
}

This kind of test does not make your script future-proof, because future
versions of Flash will fail that test even though they will most likely meet
the requirements for which you’re trying to test.

The script in the solution above tests for a Flash version greater than 6, or
a build version greater than or equal to 65. This allows higher versions to
pass the test, and means it won’t be broken whenever a new version of the
plugin is released.

460

Chapter 17: Using JavaScript with Flash

Communicating Between JavaScript and
Flash

Flash has its own scripting language called ActionScript, which is actually similar
to JavaScript as it was based on the same standard (ECMA-262). However, that
doesn’t mean the two languages are interchangeable. If you want a Flash file to
interact with the JavaScript on the HTML page that contains it, you need a way
for the two to communicate, and depending upon what you want to achieve, you
might have quite a challenge ahead.

Solution
A very simple way to have a Flash file execute a JavaScript command is to use
the ActionScript function getURL. Using getURL, you can make a “command
line” JavaScript call using the javascript: “faux URL” syntax that you can also
type into your browser’s location bar.

If we had a JavaScript function called uniteFlashJS on our web page, we could
call it from within a Flash movie by executing this piece of ActionScript:

File: communicate_javascript_flash.fla (excerpt)

getURL("javascript:uniteFlashJS()");

uniteFlashJS would then execute and do whatever it has to do. Simple!

Discussion
There are two other methods by which JavaScript and Flash can communicate,
but both have drawbacks and limitations. Of the two, probably the second
method is the most viable, given its broader browser compatibility.

FSCommand
The formalized method of interaction between JavaScript and Flash movies in-
volves the use of Flash’s FSCommand feature. However, this functionality is
currently only available in browsers that support ActiveX or LiveConnect (a Java
module), which at the moment includes Internet Explorer for Windows and older
versions of Netscape (versions 4.x and 6.2). The newest version of Netscape—ver-

461

Communicating Between JavaScript and Flash

sion 8—also supports FSCommand, but only if it’s in Internet Explorer emulation
mode.

The code requirements for FSCommand are very light. In order to execute a Flash
action from JavaScript you simply need to execute the method on a reference to
the Flash object—just like a DOM method. Take a look at the Flash object in
the following HTML:

File: communicate_javascript_flash2.html (excerpt)

<object id="movie"
 classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000">
 <param name="movie" value="intro.swf" />
 <embed name="movie" src="intro.swf"
 type="application/x-shockwave-flash" swLiveConnect="true" />
</object>

We could stop the movie by executing the ActionScript method stop on it:

File: communicate_javascript_flash2.js (excerpt)

document.getElementById("movie").stop();

Enabling LiveConnect

In order to enable LiveConnect, Netscape requires you to include the attribute
swLiveConnect="true" in the <embed> tag. Because it is a Java module,
LiveConnect will take a few seconds to load, so be sure to take this into ac-
count if you wish to use FSCommand.

There is a limited set of methods that can be accessed using this interface, but
they’re more than powerful enough to perform almost any task you need to ex-
ecute in your Flash movie. The full list is available in the Flash online document-
ation.2

If we’re approaching the situation from the opposite direction—that is, we need
to communicate from Flash to JavaScript—it’s almost as simple.

Since version 3 of Flash, ActionScript has had a function called fscommand that
allows a Flash movie to interact with the browser’s client-side scripting. It doesn’t,
however, directly execute a client-side function. Instead, when fscommand is ex-
ecuted, it’s mapped to a particular function on the client side. The name of that
function is the ID of the movie, followed by _DoFSCommand. The arguments that
are passed to fscommand—two strings called command and args—are forwarded

2 http://www.macromedia.com/support/flash/publishexport/scriptingwithflash/scriptingwithflash_03.html

462

Chapter 17: Using JavaScript with Flash

http://www.macromedia.com/support/flash/publishexport/scriptingwithflash/scriptingwithflash_03.html
http://www.macromedia.com/support/flash/publishexport/scriptingwithflash/scriptingwithflash_03.html

to this mapped function, and it is from there that you must perform your own
JavaScript calculations.

For the example Flash object above, the mapped function would have to be called
movie_DoFSCommand; once inside it, we can do whatever we wish with the argu-
ments it is passed. Generally, the command argument will specify the action to be
taken, and the args argument supplies any data that’s needed for its execution:

File: communicate_javascript_flash3.js (excerpt)

function movie_DoFSCommand(command, args)
{
 switch (command)
 {
 case "changeColor":
 changeColor(args);
 break;

 case "changeBackgroundColor":
 changeBackgroundColor(args);
 break;
 }

 return true;
}

VBScript Required

Internet Explorer integrates FSCommand using an ActiveX object, so when
fscommand is executed in ActionScript, it tries to communicate with a VB-
Script function. Therefore, a VBScript handler must be set up to forward
the FSCommand arguments on to the corresponding JavaScript function.
To do this, include this short piece of code in the head of your page:

File: communicate_javascript_flash3.html (excerpt)

<script type="text/VBScript">
sub movie_FSCommand(ByVal command, ByVal args)
 call movie_DoFSCommand(command, args)
end sub
</script>

If your Flash object has a different ID than movie, simply substitute that
at the beginning of the function name.

463

FSCommand

Flash/JavaScript Integration Kit
Although FSCommand is the mandated method of communication between
JavaScript and Flash, its lack of support across most browsers makes its viability
questionable on an open system. To counteract this, two programmers from
Macromedia—Christian Cantrell and Mike Chambers—have created an API that
uses a feature that was introduced in Flash 6.

The Flash/JavaScript Integration Kit3 uses ActionScript’s LocalConnection
function to set up between Flash and JavaScript a gateway that handles commu-
nication between the two languages. This solution does require you to include a
JavaScript file on affected pages, upload an SWF file to your server, and incorpor-
ate two Flash library files into your Flash authoring process, so its inner workings
are outside the scope of this book; however, it has been proven to work in Internet
Explorer 6 for Windows, Opera 8 for Windows and Mac, Safari 1.2, and Firefox
for Windows, Mac and Linux.

The kit is easily installed. You simply need to copy a couple of files to your local
server and reference one of them—javaScriptFlashGateway.js—from the
HTML pages that require it. Once this is done, it takes just two lines of code to
make a JavaScript to Flash call:

var flashProxy = new FlashProxy(uid,
 '/path/to/JavaScriptFlashGateway.swf');

flashProxy.call('myActionScriptFunction', 'my string', 123, true,
 new Date(), null);

The first line creates an instance of the Flash proxy, which acts as the gateway
between the JavaScript and the Flash movie. You need to pass it the ID of the
Flash movie with which you’ll be communicating, as well as the path of the Flash
gateway file you copied to your server.

Once this object has been instantiated, you’re free to execute functions inside
the Flash movie using the call method. call’s first argument is the name of the
ActionScript function you want to execute; its remaining arguments comprise
any data that you wish to pass to that function. The kit includes a data serializer,
so you can pass objects, arrays, strings, dates, numbers, booleans, and nulls, to
be converted automatically into a format that can be sent and read by Action-
Script.

3 http://weblogs.macromedia.com/flashjavascript/

464

Chapter 17: Using JavaScript with Flash

http://weblogs.macromedia.com/flashjavascript/

In order to receive calls from a Flash movie to JavaScript, nothing extra needs to
be done to the HTML other than including the javaScriptFlashGateway.js
file. Some bindings do need to be set up in the target Flash movie, but these are
all well-documented in the kit’s own documentation. If you’re keen, the best
approach is to download it and try it for yourself.

Summary
While previously, developers have taken an all or nothing approach—all Flash,
or all HTML—the growing demand to include rich media alongside accessible
content has highlighted the need to merge traditional HTML web pages with
individual Flash components. Recent JavaScript/Flash modules such as Scalable
Inman Flash Replacement,4 Unobtrusive Flash Objects,5 and the Flash/JavaScript
Integration Kit have shown that JavaScript and Flash can combine to produce
some fantastic results, while still providing for non-Flash, non-JavaScript users.

The solutions contained in this chapter should have helped ease the burden of
simultaneously providing Flash and non-Flash content, while showing you some
ways in which the two media can strengthen one another through combined in-
teraction. Although communication between the two areas isn’t as robust as it
could be, the ability to achieve such communication in a majority of modern
browsers bodes well for the future integration of Flash, HTML, and JavaScript
into one big experience.

4 http://www.mikeindustries.com/sifr/
5 http://www.bobbyvandersluis.com/ufo/

465

Summary

http://www.mikeindustries.com/sifr/
http://www.mikeindustries.com/sifr/
http://www.bobbyvandersluis.com/ufo/

466

Building Web Applications with
JavaScript18

As technology improves and people spend larger proportions of their day online,
the Internet is increasingly being used to deliver applications that were once the
domain of the desktop. The success of sites such as GMail,1 Basecamp,2 and
Flickr3 have shown that static web pages are seriously hampered in their ability
to cater to the ever-expanding needs and desires of online users.

The type of interaction that is required for an application like this is vastly differ-
ent from the traditional browsing experience that has made up most of the Inter-
net’s history. Quick response times, fluid interfaces, and granular data transmission
are all factors that can help or hinder an application’s usability. JavaScript is
perfectly positioned to step into this arena and create some truly innovative of-
ferings.

This chapter delves into some of the foundations of online application design,
including data transmission using remote procedure calls (RPC) via
AJAX/XMLHttpRequest, the replication of traditional application interface ele-
ments, and some features that can make your own projects shine.

1 http://www.gmail.com/
2 http://www.basecamphq.com/
3 http://www.flickr.com/

http://www.gmail.com/
http://www.basecamphq.com/
http://www.flickr.com/

Retrieving Data Using XMLHttpRequest
Although XMLHttpRequest has been around since 1999, since the coining of the
term AJAX (Asynchronous JavaScript and XML), a much stronger focus has been
placed on its capabilities as a data transmission module for JavaScript-driven web
pages.

Although it’s not mentioned in any standard defined by the W3C, Internet Ex-
plorer 5+ for Windows, Mozilla 1.0, Safari 1.2, and Opera 8.0 offer
XMLHttpRequest as a client-side data transmission object, making it a de facto
standard that may oust the W3C’s proposed DOM Level 3 Load and Save spe-
cification.4 It’s probably a good idea that we learn how to use XMLHttpRequest!

Solution
For any modern browser except Internet Explorer 5 and 6, we can create an
XMLHttpRequest object like this:

var requester = new XMLHttpRequest();

However, in Internet Explorer, XMLHttpRequest is implemented as an ActiveX
object, so an object is created like this:

var requester = new ActiveXObject("Microsoft.XMLHTTP");

IE and XMLHttpRequest

The way that XMLHttpRequest is implemented in Internet Explorer means
that if a user has trusted ActiveX controls disabled they will be unable to use
XMLHttpRequest, even if JavaScript is enabled. A lot of people disable un-
trusted ActiveX controls, but the disabling of trusted ActiveX controls is less
frequent.

Apparently, Internet Explorer 7 will implement XMLHttpRequest as a native
JavaScript object that does not require ActiveX, but we’ll have to wait and
see.

To cope with the different object creation syntax used by different browsers, it’s
best to use a try/catch structure that provides you with the correct object auto-
matically, and returns an error if the XMLHttpRequest object is not available:

4 http://www.w3.org/TR/DOM-Level-3-LS/

468

Chapter 18: Building Web Applications with JavaScript

http://www.w3.org/TR/DOM-Level-3-LS/
http://www.w3.org/TR/DOM-Level-3-LS/

File: retrieve_data_xmlhttprequest.js (excerpt)

var requester;
try
{
 requester = new XMLHttpRequest();
}
catch (error)
{
 try
 {
 requester = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (error)
 {
 requester = null;
 }
}

The try/catch structure is necessary for instantiating ActiveX objects because,
if a user has disabled ActiveX controls, an object test will indicate that they are
still available, though it will throw an error when you actually try to create one.

If you weren’t able to create an XMLHttpRequest object at all, the requester
variable will be null. It’s easy to test for this, and branch to some non-AJAX
fallback code (such as submitting a form).

Thankfully, the major differences between browser implementations of
XMLHttpRequest end there; all the basic data communication methods can be
called using the same syntax, irrespective of which browser they’re running in.

Accessing the API Documentation

The Internet ExplorerXMLHttpRequest API documentation is available
from MSDN.5

The Mozilla documentation is available at MDC.6

Meet MSXML

Microsoft’s XMLHttpRequest functionality is actually built upon an XML
parsing library that’s independent of the browser, and is known as MSXML.
Quite a few versions of MSXML may be available from a user’s browser, but

5 http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmobjpmexmlhttprequest.asp
6 http://developer.mozilla.org/en/docs/XMLHttpRequest

469

Retrieving Data Using XMLHttpRequest

http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmobjpmexmlhttprequest.asp
http://developer.mozilla.org/en/docs/XMLHttpRequest

the syntax above uses the default version (possibly a lower version than the
highest available).

Newer versions have more functionality, such as support for XPath expres-
sions and XML namespace management, so if you have a particular need for
this advanced functionality, you should check for the exact version you need:

var requester;
try
{
 requester = new XMLHttpRequest();
}
catch (error)
{
 try
 {
 requester = new ActiveXObject("Msxml2.XMLHTTP.5.0");
 }
 catch (error)
 {
 try
 {
 requester = new ActiveXObject(
 "Msxml2.XMLHTTP.4.0");
 }
 catch (error)
 {
 requester = null;
 }
 }
}

However, this is only advisable if you are working in a known browser envir-
onment (e.g., an intranet). Otherwise, the default XMLHTTP object will be
more than adequate for passing data back and forth with a server.

More information about MSXML7 is available on MSDN.

Requesting Data from a Server
Once an XMLHttpRequest object has been created, you must call two separate
methods in order to get it to retrieve data from a server.

7 http://msdn.microsoft.com/library/en-us/xmlsdk/html/7e831db8-9d0a-43ff-87e9-11382721eb99.asp

470

Chapter 18: Building Web Applications with JavaScript

http://msdn.microsoft.com/library/en-us/xmlsdk/html/7e831db8-9d0a-43ff-87e9-11382721eb99.asp

open initializes the connection that you wish to make; it takes two required argu-
ments and several optionals. The first argument is the type of request you want
to send, and the second is the location from which you wish to request data. For
instance, if you wished to use a GET request to access feed.xml at the root of
your server, you would initialize the XMLHttpRequest object like this:

requester.open("GET", "/feed.xml");

The URL can be either relative or absolute, but due to cross-domain security
concerns, the target must reside on the same domain as the page that requests
it.

XMLHttpRequest Calls via HTTP Only

Quite a few browsers will only allow XMLHttpRequest calls via HTTP, so
if you’re running files locally via file:// URLs, these browsers will not allow
you to make an XMLHttpRequest call.

The open method also takes an optional third boolean argument that specifies
whether the request is made asynchronously (true, the default) or synchronously
(false). With a synchronous request, the browser will freeze until the object has
completed, and will not allow any user interaction until it does so. An asynchron-
ous request occurs in the background, allowing other scripts to run, and permitting
the user to continue to access the browser. It is recommended that you use
asynchronous requests, otherwise you run the risk of a user’s browser locking up
while it waits for a request that went awry. open’s optional fourth and fifth argu-
ments are a username and password for authentication purposes when accessing
a password-protected URL.

Once open has been used to initialize a connection, the send method activates
the connection and makes the request. send takes one argument that allows you
to send CGI data along with the call. Internet Explorer dictates that it is optional,
but Mozilla will return an error if no value is passed, so it is safest to call it with
null if you have no parameters to pass:

File: retrieve_data_xmlhttprequest.js (excerpt)

requester.send(null);

When sending CGI variables using the GET request method, you have to hard-
code the variables into the open URL:

471

Requesting Data from a Server

File: retrieve_data_xmlhttprequest.js (excerpt)

requester.open("GET",
 "/query.php?name=Clark&email=superman@justiceleague.xmp");
requester.send(null);

When you’re sending CGI variables using the POST request method, you can pass
the CGI variables to the send method:

requester.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
requester.open("POST", "/query.cgi");
requester.send(
 "name=Clark&email=superman@justiceleague.xmp");

An Opera Requirement

Opera requires you to set the Content-Type header of a POST request
correctly. Other browsers don’t require it, but it’s the safest thing to do.

Once you have called send, XMLHttpRequest will contact the server and retrieve
the data that you requested; however, in the case of asynchronous requests, your
code will keep running while the request is processed. In order to find out when
the object has finished retrieving data, you must use an event handler. In the
case of an XMLHttpRequest object, you need to handle changes to its readyState
property. This property indicates the status of the object’s connection, and can
be any of:

0 uninitialized

1 loading

2 loaded

3 interactive

4 complete

Changes in the readyState property can be monitored using a
onreadystatechange handler:

requester.onreadystatechange = readystatechangeHandler;

readyState increments from 0 to 4, and the onreadystatechange event handler
is called for each increment; however, we only really want to know when the
connection has completed (4), so our handler needs to check for this. Upon the

472

Chapter 18: Building Web Applications with JavaScript

script’s completion, we also have to check whether the XMLHttpRequest object
successfully retrieved the data, or was given an HTTP error code such as 404
(page not found). This can be determined from the request object’s status
property, which contains an integer code. 200 (OK) and 304 (Not Modified) are
codes that indicate that data has been retrieved successfully (from the server and
from the browser cache, respectively), but the value can be any of the other valid
HTTP codes that servers return. If the request was not successful, you must
specify a course of action for your program to take:

File: retrieve_data_xmlhttprequest.js (excerpt)

requester.onreadystatechange = function()
{
 if (requester.readyState == 4)
 {
 if (requester.status == 200 || requester.status == 304)
 {
 success(requester);
 }
 else
 {
 failure(requester);
 }
 }

 return true;
};

Even though the XMLHttpRequest object allows you to call the open method
multiple times, each object can be used effectively only for one call, as the
readystatechange event does not occur again once readyState changes to 4
(in Mozilla). Therefore, you will have to create a new XMLHttpRequest object
every time you want to retrieve new data from a server.

Parsing the Data
Following a successful request, two properties of the XMLHttpRequest object can
contain data:

responseXML responseXML stores a DOM-structured object of any XML data
that was retrieved by the object. This object is navigable using
the standard JavaScript DOM properties and methods we ex-
plored in Chapter 5, such as getElementsByTagName,
childNodes and parentNode.

473

Parsing the Data

responseText responseText stores the data as a text string. If the content
type of the data reported by the server was text/plain or
text/html, this is the only property that will contain data. A
copy of any XML data will also be placed here as a string of
XML code, as an alternative to responseXML.

Depending upon the complexity of your data, it may be easier to return data as
a plain text string, thereby making the “XML” in XMLHttpRequest redundant.
However, for more complex data structures, you’ll probably want to transmit the
data as XML, as shown here:

File: retrieve_data_xmlhttprequest_data.xml

<?xml version="1.0" ?>
<user>
 <name>Barry Allen</name>
 <email>the_flash@justiceleague.com</email>
</user>
<user>
 <name>Hal Jordan</name>
 <email>green_lantern@justiceleague.com</email>
</user>

We are able to access different parts of the data using standard DOM access
methods:

File: retrieve_data_xmlhttprequest.js (excerpt)

var users = requester.responseXML.getElementsByTagName("user");

for (var i = 0; i < users.length; i++)
{
 alert("User " + (i + 1) + " name: " +
 users[i].getElementsByTagName("name")[0].firstChild.
 nodeValue + "\nUser " + (i + 1) + " e-mail: " +
 users[i].getElementsByTagName("email")[0].firstChild.
 nodeValue);
}

Beware Whitespace

You must also be careful about whitespace—any indenting of values in the
XML data may produce unwanted whitespace in the value, or add additional
text nodes to the DOM structure, both of which your code will need to
handle.

474

Chapter 18: Building Web Applications with JavaScript

Once you’ve parsed the data from the XMLHttpRequest object, you’re free to
change, delete and write it onto your web page any way you like.

Discussion

Caching
The caching principles that apply to other requests also apply to XMLHttpRequest
calls. This means that if you repeatedly contact the same server-side script for
data, you mightn’t get the most recent version: you may instead receive a cached
version supplied by the browser (or a proxy).

There are a couple of solutions to this problem. Firstly, you could append a unique
number to the URL of every request that you make via XMLHttpRequest. This
is just a dummy CGI variable that differentiates each URL: you don’t actually
use it in the server-side script. The unique number can be produced by appending
the current date in milliseconds to your second open argument:

requester.open("GET", "query.php?timestamp=" +
 new Date().getTime());
requester.send(null);

The other (cleaner) client-side solution is to set the If-Modified-Since header
of your XMLHttpRequest request to a date in the past, so that it always gets the
latest version from the server:

requester.setRequestHeader("If-Modified-Since",
 "Sat, 1 Jan 2000 00:00:00 GMT");
requester.open("GET", "query.php";
requester.send(null);

An even cleaner server-side approach is to set the Expires header for the docu-
ments returned from the server-side script so that they expire immediately. In
PHP, this would be:

header('Expires: -1');

From a client-side perspective, the easiest solution is probably the first one, but
the latter will have the fewest undesirable side-effects (such as cluttering your
browser’s cache with many responses to timestamped URLs).

475

Caching

AJAX Frameworks
Because the communication of data is such a common need—and is easily abstrac-
ted—many people have already taken the task of implementing XMLHttpRequest
off your hands by providing JavaScript frameworks for web application develop-
ment. These not only include the JavaScript modules with which your pages need
to interact in order to send and receive data, but also supply the server-side code
that handles JavaScript remote procedure calls.

A few of the more popular frameworks include:

❑ Prototype

http://prototype.conio.net/

❑ Dojo

http://dojotoolkit.org/

❑ Sajax

http://www.modernmethod.com/sajax/

In addition to data handling, Prototype and Dojo are fully-featured application
development frameworks that can also help you to create degradable functionality,
include interactive components, and modify your web pages dynamically.

Retrieving Data without Using
XMLHttpRequest

Although XMLHttpRequest provides a standard communication interface for most
modern browsers, it’s not supported in some of the older but still-current versions
such as Opera 7 and Internet Explorer 5 for Mac. One way to get around the lack
of XMLHttpRequest in these browsers is to make the remote procedure call using
an iframe.

iframes—the modern brothers of frames—allow you to embed one web page
inside another. We can control an iframe with script in the containing page,

476

Chapter 18: Building Web Applications with JavaScript

http://prototype.conio.net/
http://dojotoolkit.org/
http://www.modernmethod.com/sajax/

making it request pages from the server, then parse the results for data. This ap-
proach is not as clean as XMLHttpRequest, nor is it as well-suited to dealing with
XML data, but it’s a technique that has been used for many years.

Solution
The two main stages of using an iframe for a remote procedure call are the cre-
ation of the iframe, and the execution of code once the data has loaded. The
iframe can be created using the methods we discussed in Chapter 5. However,
Internet Explorer 5 for Windows doesn’t allow you to access the properties of a
dynamically created iframe, so in this browser we must resort to the nonstandard
(but widely supported) innerHTML property to create an iframe:

File: retrieve_data_iframe.js (excerpt)

function createIframeRPC()
{
 var body = document.getElementsByTagName("body")[0];
 var iframe = document.createElement("iframe");

 iframe.setAttribute("id", "iframeRPC");

 body.appendChild(iframe);

 if (typeof iframe.document != "undefined" &&
 typeof iframe.contentDocument == "undefined" &&
 typeof iframe.contentWindow == "undefined")
 {
 body.removeChild(iframe);

 var iframeHTML = '<iframe id="iframeRPC"></iframe>';

 body.innerHTML += iframeHTML;

 iframe = document.getElementById("iframeRPC");
 iframe.contentWindow = new Object();
 iframe.contentWindow.document = new Object();
 iframe.contentWindow.document.location = new Object();
 iframe.contentWindow.document.location.iframeRef = iframe;
 iframe.contentWindow.document.location.replace =
 locationReplaceIE5;
 }

 iframe.style.position = "absolute";
 iframe.style.left = "-1500em";

477

Retrieving Data without Using XMLHttpRequest

 iframe.style.top = "0";
 iframe.style.width = "0";
 iframe.style.height = "0";
 iframe.setAttribute("tabIndex", "-1");

 return true;
}

First, we create the iframe using standard DOM methods and append it to the
end of the body element; then, we check to see if we can access the document
that’s nested inside it. Internet Explorer 5 will allow us to see iframe.document,
but we won’t be able to manipulate its properties, so we have to substitute the
DOM-created iframe for a more primitive one.

Inside the check for IE 5, we remove the already created iframe, then append
some raw HTML to the body element using innerHTML. To allow us to access
that iframe using the same properties we’d use with Internet Explorer 5.5 and
6, we have to create a few new object properties that replicate the standard iframe
window structure. Basically, we have to make it seem like the location.replace
method may be called as follows (which it can in other browsers):

iframe.contentWindow.document.location.replace()

Because IE 5 doesn’t support this, we install our own custom function,
locationReplaceIE5, to do the same job:

File: retrieve_data_iframe.js (excerpt)

function locationReplaceIE5(URL)
{
 this.iframeRef.setAttribute("src", URL);

 return true;
}

Now that our iframe is in place and operational, we hide it by making it as small
as possible and moving it far off the left-hand side of the screen. It’s inadvisable
to set the iframe’s display property to none because Netscape 6 will then
completely ignore it. We also have to set the iframe’s tabIndex attribute to –1
so that it won’t interfere with the actions of keyboard users tabbing around the
page.

Once the iframe has been created, we’re ready to begin transmitting data. Calling
executeIframeRPC with a URL will load that URL into the iframe, effectively
sending off a remote procedure call:

478

Chapter 18: Building Web Applications with JavaScript

File: retrieve_data_iframe.js (excerpt)

function executeIframeRPC(URL)
{
 var iframe = document.getElementById("iframeRPC");

 if (typeof iframe.contentDocument != "undefined")
 {
 iframeDocument = iframe.contentDocument;
 }
 else if (typeof iframe.contentWindow != "undefined")
 {
 iframeDocument = iframe.contentWindow.document;
 }
 else
 {
 return false;
 }

 iframeDocument.location.replace(URL);

 return true;
}

Internet Explorer uses a different method for accessing the document inside the
iframe than other browsers, so we have to check for the appropriate object before
proceeding. Once we’ve found it, we can then replace the current location with
the new one we’re trying to communicate with. It’s possible to simply change
the src attribute of the iframe; however, in some browsers, this will place an
entry into the browser’s history and adversely affect the behavior of the Back
button. location.replace seamlessly updates the iframe’s location and allows
the Back button to go to the previous user-navigated page, instead of just invisibly
returning the iframe to its original blank location.

Prepare for a Slight Browser Delay

If you wish to call executeIframeRPC immediately after you create the
iframe, you should place the call inside a setTimeout function call with
a 10 millisecond delay, because some browsers will take a moment or two
to realize that the iframe exists.

executeIframeRPC will accept any well-formed URL, including CGI GET variables.
This enables us to send parameters to a script on our server:

executeIframeRPC("/scripts/getSecretIdentity.php?hero=Hawkgirl");

479

Retrieving Data without Using XMLHttpRequest

iframe Security Limitation

iframe scripting is limited by the same cross-domain security measures as
XMLHttpRequest, so you will only be able to make remote procedure calls
to scripts that reside on the same domain as the page that is calling them.

Once the call is made, the server-side script will begin to execute … but how can
we get data out of it? No handy events like readystatchange exist for iframes,
so we have to cheat a little: we get the server to output the very JavaScript code
that we want to execute when the response arrives.

When the URL of the iframe changes, it waits for the server’s response and loads
what is sent back by the script—a web page. Inside this web page, it’s possible
to write out some JavaScript that will be executed once that page has finished
loading in the iframe. As luck would have it, an iframe can execute any JavaScript
functions that are available in its parent, so we can call a special RPC “response
handler” function from inside the iframe.

The HTML that is returned from the server to the iframe should look something
like this:

File: retrieve_data_iframe_query.html

<html>
<head>
<script type="text/javascript">
window.parent.handleRPCData("Shayera Hol");

</script>
</head>
</html>

The code inside the script element will be executed as soon as it is received.
The iframe references its parent window using window.parent, and any JavaScript
function available in the parent can be executed using that reference. In this case,
we send some data to our handling function, handleRPCData:

File: retrieve_data_iframe.js (excerpt)

function handleRPCData(data)
{
 alert("The remote data was: " + data);

 return true;
}

480

Chapter 18: Building Web Applications with JavaScript

You can do anything you want with the data inside this function, but here we’re
just creating a simple alert box that contains the returned information.

Because the data is passed as a JavaScript variable, you aren’t limited to receiving
strings of text. You can pass any valid JavaScript data structure—floats, integers,
arrays, objects … anything:8

<html>
<head>
<script type="text/javascript">
 var secretIdentities = [["Black Canary", "Dinah Lance"],
 ["The Atom", "Ray Palmer"], ["The Flash", "Barry Allen"]];

 window.parent.handleRPCData(secretIdentities);
</script>
</head>
</html>

Creating Custom Dialogs (Such as Popup
Forms)

Dialogs—such as alert or confirm popups—are a really quick and easy way of
garnering information from a user without having to create a new page. They’re
also good in situations where you don’t want to break the flow of user interaction,
like the middle of a form. But the native browser dialogs are extremely limited
in terms of the information they can display, the ways in which the user can in-
teract with them, and how they look. If you really want to have useful dialogs,
the best way to ensure that might be to make your own.

Solution
The recent resentment towards popup windows means that you’ve probably got
less than a 50% chance of successfully opening one in response to user interaction.
By writing your dialogs into the current page, you’ll permit them to function
perfectly, and you’ll gain a whole lot more control over them.

8 This capability is behind the recent development of the JavaScript Object Notation (JSON) data
format [http://www.json.org/].

481

Creating Custom Dialogs (Such as Popup Forms)

http://www.json.org/
http://www.json.org/

Creating an in-page dialog is simple—it draws directly on the element creation
techniques that I introduced in Chapter 5. Let’s take an ordinary hyperlink and
cause it to display a custom dialog:

File: custom_dialogs.js (excerpt)

addLoadListener(initDialog);

function initDialog()
{
 var permissions = document.getElementById("permissions");

 permissions.onclick = createDialog;

 return true;
}

function createDialog()
{
 try
 {
 var body = document.getElementsByTagName("body")[0];

 var dialog = document.createElement("div");
 dialog.className = "customDialog";
 dialog.style.visibility = "hidden";
 dialog.style.position = "absolute";

 var dialogTitle = document.createElement("h1");
 dialogTitle.appendChild(document.createTextNode(
 "Change Security Permissions"));
 dialog.appendChild(dialogTitle);

 var dialogMessage = document.createElement("p");
 dialogMessage.appendChild(document.createTextNode(
 "Do you wish to give Clayface access to the self " +
 "destruct codes?"));
 dialog.appendChild(dialogMessage);

 var dialogButton1 = document.createElement("input");
 dialogButton1.setAttribute("type", "button");
 dialogButton1.setAttribute("value", "Yes");
 attachEventListener(dialogButton1, "click", dialogClick,
 false);
 dialog.appendChild(dialogButton1);

 var dialogButton2 = document.createElement("input");

482

Chapter 18: Building Web Applications with JavaScript

 dialogButton2.setAttribute("type", "button");
 dialogButton2.setAttribute("value", "No");
 attachEventListener(dialogButton2, "click", dialogClick,
 false);
 dialog.appendChild(dialogButton2);

 var dialogButton3 = document.createElement("input");
 dialogButton3.setAttribute("type", "button");
 dialogButton3.setAttribute("value", "Cancel");
 attachEventListener(dialogButton3, "click", dialogClick,
 false);
 dialog.appendChild(dialogButton3);

 body.appendChild(dialog);

 var scrollingPosition = getScrollingPosition();
 var viewportSize = getViewportSize();

 dialog.style.left = scrollingPosition[0] +
 parseInt(viewportSize[0] / 2) -
 parseInt(dialog.offsetWidth / 2) + "px";
 dialog.style.top = scrollingPosition[1] +
 parseInt(viewportSize[1] / 2) -
 parseInt(dialog.offsetHeight / 2) + "px";
 dialog.style.visibility = "visible";

 dialogButton1.focus();
 }
 catch(error)
 {
 return true;
 }

 return false;
}

addLoadListener (from Chapter 1) is used to execute initDialog once the page
has loaded. Inside initDialog, we divert the normal action of our link to
createDialog; however, we don’t do so using our usual attachEventListener
function, because, as we saw in Chapter 13, Safari is unable to stop a link’s default
action via W3C event listeners. Therefore, we use the reliable DOM 0 onclick
event handler. If users’ browsers don’t have JavaScript enabled, they’ll go to the
link’s normal href location, so your server-side scripts should handle this case
appropriately, serving up a page that’s equivalent to the dialog.

483

Creating Custom Dialogs (Such as Popup Forms)

createDialog goes about creating the HTML elements for the dialog. Obviously,
this will be highly tailored to the particular purpose you want to achieve, but
generally you will have a title, message, and action buttons. This code block is
wrapped in a try/catch structure because Internet Explorer 5 for Mac doesn’t
allow you to change the type of a newly created input. This means we can’t create
buttons, so if an error is thrown while we’re doing this, we continue with the
normal link action, taking the user to the server-side contingency page.

We place event listeners on the buttons so that we can react when the user clicks
on one. The handling functions can do whatever you require of the dialog, but
in this example, dialogClick will pass the button value on to a new page, or
close the dialog and unlock the page if “Cancel” is clicked:

File: custom_dialogs.js (excerpt)

function dialogClick(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (target.nodeName.toLowerCase() != "input")
 {
 target = target.parentNode;
 }

 var value = target.getAttribute("value");

 if (value == "Cancel")
 {
 var dialog = target;

 while (dialog.className != "customDialog")
 {
 dialog = dialog.parentNode;
 }

 closeDialog(dialog);
 }
 else
 {
 window.location.href = "permissions.php?action=" + value;
 }

484

Chapter 18: Building Web Applications with JavaScript

 return true;
}

Closing the dialog removes the dialog container from the DOM:

function closeDialog(dialog)
{
 dialog.parentNode.removeChild(dialog);

 return true;
}

The last part of createDialog positions the dialog squarely in the middle of the
browser window—no matter where the page is currently scrolled to—using a
combination of getScrollingPosition and getViewportSize (from Chapter 7).
Previously, the visibility style property of the dialog container was set to
"hidden", so we can add it to the page, get its dimensions, and reposition it
without the user seeing it jump around.

After the code has finished adding the dialog to the page, the focus is set to the
first dialog button. This not only helps keyboard users to access the dialog imme-
diately, but also lets you set the default action, which can speed up interaction.

Once we add our own CSS to the elements inside the dialog, we end up with a
rather attractive, customized dialog that matches our own application interface,
as shown in Figure 18.1.

Figure 18.1. A customized dialog

485

Creating Custom Dialogs (Such as Popup Forms)

Discussion
An even better way to focus the user’s attention onto the dialog is to mask the
page behind it with a dark, translucent color. By decreasing the brightness of the
background elements, the foreground elements (i.e., the dialog) will demand more
attention.

In order to achieve this effect, we must create an empty element and set its di-
mensions to equal the dimensions of the entire page. Here’s the function we’ll
use to calculate these dimensions:

File: custom_dialogs2.js (excerpt)

function getPageDimensions()
{
 var body = document.getElementsByTagName("body")[0];
 var bodyOffsetWidth = 0;
 var bodyOffsetHeight = 0;
 var bodyScrollWidth = 0;
 var bodyScrollHeight = 0;
 var pageDimensions = [0, 0];

 if (typeof document.documentElement != "undefined" &&
 typeof document.documentElement.scrollWidth != "undefined")
 {
 pageDimensions[0] = document.documentElement.scrollWidth;
 pageDimensions[1] = document.documentElement.scrollHeight;
 }

 bodyOffsetWidth = body.offsetWidth;
 bodyOffsetHeight = body.offsetHeight;
 bodyScrollWidth = body.scrollWidth;
 bodyScrollHeight = body.scrollHeight;

 if (bodyOffsetWidth > pageDimensions[0])
 {
 pageDimensions[0] = bodyOffsetWidth;
 }

 if (bodyOffsetHeight > pageDimensions[1])
 {
 pageDimensions[1] = bodyOffsetHeight;
 }

 if (bodyScrollWidth > pageDimensions[0])

486

Chapter 18: Building Web Applications with JavaScript

 {
 pageDimensions[0] = bodyScrollWidth;
 }

 if (bodyScrollHeight > pageDimensions[1])
 {
 pageDimensions[1] = bodyScrollHeight;
 }

 return pageDimensions;
}

getPageDimensions consolidates the properties supported by various browsers
to determine the actual size of the page.

We can now create an empty element of the correct dimensions just before we
create the dialog itself:

File: custom_dialogs2.js (excerpt)

function createDialog()
{
 var body = document.getElementsByTagName("body")[0];
var pageDimensions = getPageDimensions();

 var viewportSize = getViewportSize();

 if (viewportSize[1] > pageDimensions[1])
 {
 pageDimensions[1] = viewportSize[1];
 }

 var dropSheet = document.createElement("div");

 dropSheet.setAttribute("id", "dropSheet");
 dropSheet.style.position = "absolute";
 dropSheet.style.left = "0";
 dropSheet.style.top = "0";
 dropSheet.style.width = pageDimensions[0] + "px";
 dropSheet.style.height = pageDimensions[1] + "px";
 body.appendChild(dropSheet);

 try
 {
 var dialog = document.createElement("div");
 �

487

Creating Custom Dialogs (Such as Popup Forms)

The vertical page dimension has to be checked against the height of the viewport,
because the height of the page content may be less than that of the window, and
this can cause a strange appearance in the “drop sheet.”

When the dialog is closed, we will also have to remove the colored drop sheet:

File: custom_dialogs2.js (excerpt)

function closeDialog(dialog)
{
 var dropSheet = document.getElementById("dropSheet");

 dropSheet.parentNode.removeChild(dropSheet);
 dialog.parentNode.removeChild(dialog);

 return true;
}

With some tricked-out CSS styling, you can give the new element a translucent
background color, or provide it with a tiling background image for those browsers
that don’t support opacity:

File: custom_dialogs2.css (excerpt)

#dropSheet
{
 background-color/**/: #000000;
 background-image: url(../images/dots.gif);
 background-image/**/: none;
 opacity: 0.35;
 filter: alpha(opacity=35);
}

Internet Explorer 5 (which doesn’t support opacity) will not read the
background-color, but it will understand background-image, which simulates
a shaded background. All other browsers will cancel the background-image, then
apply an appropriate opacity property to give us a black drop sheet with 35%
opacity, producing the effect shown in Figure 18.2.

488

Chapter 18: Building Web Applications with JavaScript

Figure 18.2. A transparent drop sheet covering the page behind
the customized modal dialog

Creating Editable Elements
Form elements do not offer a great number of possibilities when it comes to the
visual formatting of their contents. They don’t support any child HTML elements,
so it’s impossible to let users change colors, styles, or preview elements on-the-
fly.

However, one feature that’s supported by a number of browsers allows users to
edit and create content much more freely than usual, though you’ll need JavaScript
to get it going.

Solution
The property designMode is a nonstandard addition to the DOM, but it is cur-
rently supported by Internet Explorer for Windows 5.5+, Mozilla/Firefox, and
Safari 1.3+. Once designMode has been set to true on an element, it allows that
element to receive text input and facilitates other editing capabilities. The Internet
Explorer and Safari implementations allow any element to be editable, but only
Mozilla allows for an entire document to be editable.

489

Creating Editable Elements

The most obvious use for content editing capabilities like these is in an inline
editor for a content management system (CMS) or forum, so the easiest way to
explain designMode is to make our own simple WYSIWYG (what you see is what
you get) editor.

The HTML element that’s closest to a WYSIWYG editor is textarea, so we’ll
use that as a baseline element to which browsers without designMode will degrade:

File: editable_elements.html (excerpt)

<form action="submit.php">
 <textarea id="content" name="content" class="wysiwyg">
 �
 </textarea>
</form>

Because Mozilla supports designMode only on entire documents, and because
our editor is inline, the textarea has to be replaced by an iframe—the only
element that will allow us to insert a new document inside the existing one:

File: editable_elements.js (excerpt)

addLoadListener(initWYSIWYG);

function initWYSIWYG()
{
 if (typeof(document.designMode) == "string" &&
 (document.all || document.designMode == "off"))
 {
 var textareas = getElementsByAttribute("class", "wysiwyg");

 for (var i = 0; i < textareas.length; i++)
 {
 convertWYSIWYG(textareas[i]);
 }
 }

 return true;
}

function convertWYSIWYG(textarea)
{
 var textareaID = textarea.getAttribute("id");
 var textareaName = textarea.getAttribute("name");
 var textareaValue = textarea.value;

 var input = document.createElement("input");

490

Chapter 18: Building Web Applications with JavaScript

 input.setAttribute("type", "hidden");
 input.setAttribute("id", textareaID);
 input.setAttribute("name", textareaName);
 input.value = textareaValue;

 var iframe = document.createElement("iframe");
 iframe.className = "wysiwygIframe";
 textarea.parentNode.replaceChild(iframe, textarea);

 if (typeof iframe.document != "undefined" &&
 typeof iframe.contentDocument == "undefined" &&
 typeof iframe.contentWindow == "undefined")
 {
 iframe.parentNode.replaceChild(textarea, iframe);

 return false;
 }

 iframe.parentNode.insertBefore(input, iframe);

 iframe.contentWindow.document.open();
 iframe.contentWindow.document.write(
 '<html><head><style type="text/css">' +
 '@import "css/editable_elements_iframe.css";</style>' +
 '</head><body>' + input.value + '</body></html>');
 iframe.contentWindow.document.close();
 iframe.contentWindow.document.designMode = "on";

 var form = iframe.parentNode;

 while (form != null && form.nodeName.toLowerCase() != "form")
 {
 form = form.parentNode;
 }

 if (form != null)
 {
 attachEventListener(form, "submit", function() {
 input.value = iframe.contentWindow.document.
 getElementsByTagName("body")[0].innerHTML;}, false);
 }

 return true;
}

491

Creating Editable Elements

Our addLoadListener function from Chapter 1 executes initWYSIWYG on page
load. This function detects whether the current browser supports editable content
by checking for the existence of the designMode property. The remaining checks
within initWYSIWYG’s first if statement are necessary because the designMode
property existed in earlier versions of Safari, but the functionality was not yet
implemented.

If editable content is supported, we use the getElementsByAttribute function
from Chapter 5 to retrieve all the elements with a class of wysiwyg, and send
them off to convertWYSIWYG to be changed into editable iframes.

convertWYSIWYG firstly creates a hidden input field that mirrors the textarea.
Because the textarea is a form element but an iframe is not, we need to create
an equivalent form element that will be submitted when the form is submitted.
The hidden input gets the same ID and name attribute as the textarea, as well
as the textarea’s initial value. Once this has been done, we are able to perform
a direct replacement between a newly created iframe and the textarea.

After we insert the iframe, we need to check whether we can access its properties.
As we saw in “Retrieving Data without Using XMLHttpRequest” earlier in this
chapter, Internet Explorer 5 for Windows has problems with DOM-created
iframes. However, in this situation the problem isn’t resolvable, so we need to
revert to the textarea if we can’t access the iframe properly.

Once the iframe has been inserted into the page, we can write its contents.
However, because a newly created iframe is a bit of a weird creature, we can’t
insert nodes directly into its DOM: we have to rely on the rather ancient open
and write methods to place content in there as a string. Once that’s been done,
we flick the switch by setting designMode to "on". We now have an editable
iframe on the page.

designMode Woes

Sometimes you may experience random errors when trying to edit content
inside the iframe. These could arise because some browsers can’t handle
an immediate change of designMode on new iframes. Try putting the
designMode change inside a setTimeout of 100ms or so:

setTimeout(function(){
 iframe.contentWindow.document.designMode = "on";},
 100);

492

Chapter 18: Building Web Applications with JavaScript

That solution looks okay, but it’s no good if we can’t get the data out of the
iframe when the form is submitted. To this end, convertWYSIWYG also sets up
an event listener to copy the contents of the iframe’s body element to our hidden
input when the form is submitted. Because the form data can only be submitted
as a string, the easiest way to get the body’s contents is via the innerHTML prop-
erty.

We’ve now got an editable HTML element that can be submitted to a server,
but it still does little more than the textarea. Some browsers have a few editing
shortcuts, like Ctrl-B to bold text, or Ctrl-I to italicize text, but they’re not
consistent, visible, or comprehensive enough to use on their own. Luckily, a
programmatic interface for editing the contents of the iframe is available. Once
designMode is switched on, an in-built method—execCommand—is able to perform
a variety of operations on the document’s content, from bolding text to creating
links and inserting images. Each browser implements a different engine for editable
regions, so you’ll have to check out the documentation to see what’s available:

❑ Creating Editable Web Pages in Internet Explorer 5.5

http://msdn.microsoft.com/library/en-us/dnmshtml/html/createwp.asp

❑ The Mozilla Midas specification

http://www.mozilla.org/editor/midas-spec.html

There are quite a few common features. Two of these—and perhaps the most
common editing operations—are the creation of bold and italic text.

In order to bold selected text, we call execCommand like this:

iframe.contentWindow.document.execCommand("bold", false, null);

In order to italicize selected text, we call execCommand like this:

iframe.contentWindow.document.execCommand("italic", false, null);

The first parameter is a string that corresponds to the command that you wish
execCommand to perform. The second parameter is a Boolean flag for user interface
interaction; however, its value always has to be false, as a value of true throws
an error in Mozilla. The last parameter is a string value, which some commands
will need in order to execute. If there is no value, it must be set to null, otherwise
Mozilla will throw another error.

493

Creating Editable Elements

http://msdn.microsoft.com/library/en-us/dnmshtml/html/createwp.asp
http://www.mozilla.org/editor/midas-spec.html

Using these commands, we can modify convertWYSIWYG to include an interface
for the editable area that provides buttons for our formatting functions:

function convertWYSIWYG(textarea)
{
 �
 var toolbar = document.createElement("div");
 toolbar.className = "wysiwygToolbar";
 iframe.parentNode.insertBefore(toolbar, iframe);

 var buttonBold = document.createElement("a");
 buttonBold.className = "wysiwygButtonBold";
 buttonBold.setAttribute("href", "#");
 buttonBold.appendChild(document.createTextNode("Bold"));
 buttonBold.command = "bold";
 buttonBold.iframe = iframe;
 buttonBold.onmousedown = mousedownToolbar;
 buttonBold.onclick = executeWYSIWYG;
 toolbar.appendChild(buttonBold);

 var buttonItalic = document.createElement("a");
 buttonItalic.className = "wysiwygButtonItalic";
 buttonItalic.setAttribute("href", "#");
 buttonItalic.appendChild(document.createTextNode("Italic"));
 buttonItalic.command = "italic";
 buttonItalic.iframe = iframe;
 buttonItalic.onmousedown = mousedownToolbar;
 buttonItalic.onclick = executeWYSIWYG;
 toolbar.appendChild(buttonItalic);

 return true;
}

function executeWYSIWYG(event)
{
 this.iframe.contentWindow.document.execCommand(this.command,
 false, null);
 this.iframe.contentWindow.focus();

 return false;
}

function mousedownToolbar()
{
 return false;
}

494

Chapter 18: Building Web Applications with JavaScript

Each new button is a link that stores a command string for execCommand and a
reference to its associated iframe. These properties are used when the link is
clicked and executeWYSIWYG is called. The click event is handled through a
DOM 0 onclick event handler because Safari can’t cancel the default action of
links through W3C event listeners. Another concession to Safari is the need for
an onmousedown event handler; without this, Safari loses the selection in the
iframe, so it would be impossible to apply any commands to selections in the
editable area. This handler calls what is perhaps the shortest function you’ll ever
see: it simply returns false to cancel the default action.

After a toolbar button is clicked, executeWYSIWYG translates the button’s value
into a valid action and passes it to execCommand, which modifies the iframe’s
document appropriately. Because the buttons are outside the iframe, the focus
of the cursor will change when we click on them, so the last thing that
executeWYSIWYG does is refocus the cursor on the iframe.

We now have our own little editor! With a little bit of judicious styling, as in
Figure 18.3, it can begin to look like the real thing.

Figure 18.3. An editable iframe with styled buttons for formatting

Discussion
As mentioned in the main solution, each browser has its own editing engine for
use with editable content, and each engine produces different markup to a differ-
ent degree of validity.

Internet Explorer will insert tags with uppercase attributes, Mozilla inserts line
breaks instead of paragraphs, and they both insert non-semantic markup when
all you want is a tag. It’s a slippery slope of feature bloat once you decide

495

Creating Editable Elements

to implement your own fully-functional editor, especially if you decide to eschew
execCommand in favor of your own transformation routines.

There already exist a few editors, of differing levels of complexity. You might
want to try these before delving into designMode yourself:

❑ widgEditor

http://www.themaninblue.com/experiment/widgEditor/

❑ TinyMCE

http://tinymce.moxiecode.com/

❑ FCKEditor

http://www.fckeditor.net/

Controlling Text Selections
Text selections are, in essence, a way of visually marking content on a page. Users
can utilize text selections to indicate which parts of the content they want a
program to act on (e.g., to copy, replace, or format), and programs can use text
selections to highlight text selections to the user. This tip explores text selection
from both perspectives, and shows how you can use it in your JavaScript applic-
ations.

Solution
Perhaps the simplest form of text selection control is the ability for JavaScript to
retrieve the text that a user has selected on a page:

File: text_selections.js (excerpt)

function retrieveSelection()
{
 var selectedText = "";

 if (typeof window.getSelection != "undefined")
 {
 selectedText = window.getSelection();

496

Chapter 18: Building Web Applications with JavaScript

http://www.themaninblue.com/experiment/widgEditor/
http://tinymce.moxiecode.com/
http://www.fckeditor.net/

 }
 else if (typeof document.getSelection != "undefined")
 {
 selectedText = document.getSelection();
 }
 else if (typeof document.selection != "undefined")
 {
 selectedText = document.selection.createRange().text;
 }

 return selectedText;
}

The getSelection methods in use here are DOM 0 functions, and they both
function identically; it’s just that different browsers have attached them to differ-
ent objects (older versions of Opera and Internet Explorer for Mac use
document.getSelection, while Mozilla and Safari use window.getSelection).
However, Internet Explorer does not provide a getSelection method; instead,
it opts to use a feature called Ranges as a way of identifying the selected text.

An understanding of Ranges is essential to a deeper understanding of text selection
control in browsers. While we are used to selecting text with a mouse or keyboard,
this merely creates a visual selection of the content; a Range defines an actual
section of the DOM. The two are independent of one another—you can have a
Range without a selection and a selection without a Range—but browsers generally
have functions that can convert between the two.

In the code above, Internet Explorer for Windows uses the document.selection
object to access the current selection, and the createRange method on that object
makes a Range that corresponds to that selection. Once we have that Range, the
text that it contains is available via its text property.

A Range consists of two boundary points—the start and the end—and its text
property consists of any text between tags that falls within those boundaries.
Consider this HTML:

File: text_selections.html (excerpt)

<h2 id="originHeading">
 Origin of the JLA
</h2>
<p class="bodyText">
 The Justice League's first origin, according to 1962's …
</p>

497

Controlling Text Selections

Imagine that a user selected text as shown in Figure 18.4.

Figure 18.4. Simple text selection

In this case, the value returned by retrieveSelection would obviously be
"Justice League of America". But what happens if the selection spans HTML
elements, as in Figure 18.5?

Figure 18.5. A more complex text selection

We still retrieve only the textual components, so the returned value would be
"Origin of the JLAThe Justice League's first origin, according to
1962's Justice League of America #9, began when Earth was infiltrated
by various competing alien warriors."

Browser support for Ranges is still a little sketchy. Internet Explorer for Windows
and Mozilla/Firefox have well-formed Range interfaces, but they are implemented
using different syntax. Safari follows the Mozilla implementation of Ranges, but
lacks a few of its features; Internet Explorer for Mac doesn’t support Ranges at
all, while Opera supports Ranges only on specific elements—namely text inputs
and textareas (strangely enough, Mozilla doesn’t support Ranges on text inputs
and textareas, but that functionality can be faked using some of its selection
functions).

498

Chapter 18: Building Web Applications with JavaScript

Because of this limited Range support, Internet Explorer for Windows, Mozilla,
and Safari are the only browsers that support the generic creation of text ranges
in a document. But as luck would have it, those are the browsers that support
our editable content area.

To extend our editor to allow the insertion of custom code—like emoticons—we
insert a new button when the editor is initialized. Then, when it is clicked, we
use the current selection point to determine where to place the code:

File: text_selection2.js (excerpt)

function convertWYSIWYG(textarea)
{
 �
 var buttonSmile = document.createElement("a");
 buttonSmile.className = "wysiwygButtonSmile";
 buttonSmile.setAttribute("href", "#");
 buttonSmile.appendChild(document.createTextNode("Smile"));
 buttonSmile.emoticon = ":)";
 buttonSmile.iframe = iframe;
 buttonSmile.onmousedown = mousedownToolbar;
 buttonSmile.onclick = insertEmoticon;
 toolbar.appendChild(buttonSmile);

 return true;
}

function insertEmoticon()
{
 var iframeWindow = this.iframe.contentWindow;
 var iframeDocument = iframeWindow.document;
 var selection = null;
 var range = null;

 if (typeof iframeWindow.getSelection != "undefined")
 {
 selection = iframeWindow.getSelection();

 if (typeof selection.getRangeAt != "undefined")
 {
 range = selection.getRangeAt(0);
 }
 else if (typeof selection.baseNode != "undefined")
 {
 range = iframeDocument.createRange();
 range.setStart(selection.baseNode, selection.baseOffset);

499

Controlling Text Selections

 range.setEnd(selection.extentNode, selection.extentOffset);

 if (range.collapsed)
 {
 range.setStart(selection.extentNode,
 selection.extentOffset);
 range.setEnd(selection.baseNode, selection.baseOffset);
 }
 }

 var rangeCopy = range.cloneRange();
 var insertText = iframeDocument.createTextNode(this.emoticon);

 rangeCopy.collapse(true);
 range.deleteContents();
 rangeCopy.insertNode(insertText);

 selection.collapse(insertText, this.emoticon.length);
 }
 else if (typeof iframeDocument.selection != "undefined")
 {
 selection = iframeDocument.selection;
 range = selection.createRange();
 range.pasteHTML(this.emoticon);
 }
 else
 {
 return false;
 }

 iframeWindow.focus();

 return true;
}

Once the extra button has been created in convertWYSIWYG, insertEmoticon is
ready to handle any clicks on it. The code is horribly branched due to the current
piecemeal implementation of Ranges, but the results are the same in every browser.

The first branch after the event detection determines how the selection object is
obtained. Mozilla and Safari both support window.getSelection, so they meet
the first condition, but the creation of a Range from that selection differs in each
browser. Mozilla employs a shortcut method—getRangeAt—that does all the
hard work for us, returning the Range at the specified index (technically a selection

500

Chapter 18: Building Web Applications with JavaScript

can consist of more than one Range, but a user-defined selection will consist of
only one).

With Safari, we have to go the long way around, creating an empty Range, and
setting its start and end points to the start and end points of the selection. The
baseNode and extentNode properties specify the parent DOM element of the
selection’s start and end points respectively, while baseOffset and extentOffset
specify the character offsets within those nodes. These pairs of values can be
passed to the Range methods setStart and setEnd to set the boundary points
of the Range. Mozilla doesn’t include the properties baseNode or extentNode,
so we aren’t able simply to use this method for both browsers.

Range Start and End Points

When specifying the start and end points of a Range object, the end point
must always be equal to or after the start point. Assuming left-to-right text
flow, if a user makes a selection from right to left, the baseNode/baseOffset
values will mark the right edge of the selection, and the
extentNode/extentOffset values will mark the left. If we use these values
to create a Range it will be empty; however, there’s no easy way to determine
whether the baseNode is before or after the extentNode. So, once the
normal method has been tried, you must check to see whether the Range is
collapsed (range.collapsed) and, if it is, reverse the order of the boundary
points used to initialize the Range.

Once we have a consistent Range object, we delete the selected text using
deleteContents, then insert the emoticon by creating a text node out of the
emoticon characters, and passing that node to insertNode, which inserts the
supplied node at the beginning of the Range.

A copy of the original Range has to be made and used as the target of insertNode
because, if deleteContents is called on a Range that spans HTML elements, the
Range will end up between the elements, and the inserted content will appear
out of place. The copy retains its starting position inside the first element, so
inserted content will be placed correctly.

The last thing to do is position the caret after the newly inserted content. The
selection’s collapse method does this by taking a node reference and a node
offset, and collapsing the selection to that location. By giving it the new text node
and its string length, we position the caret after the new emoticon.

The code branch for Internet Explorer’s Range handling is a good deal shorter.
A Range corresponding to the selection is created by executing createRange on

501

Controlling Text Selections

the document.selection object, and then the contents of the Range are overwrit-
ten by pasteHTML. Unlike the insertNode method used in the opposite branch,
pasteHTML does not really insert the content into the DOM; it treats the document
as a string of text and overwrites the contents of the Range with the supplied
string. However, both methods produce the same result, and your new editor,
shown in Figure 18.6, will be all smiles!

Figure 18.6. The WYSIWYG editor with a new emoticon insertion
feature

Creating an Auto-complete Text Field
Typing in repetitive data, or having to remember long strings, can quickly wear
a user out. If your application is able to preempt the content a user is typing into
a text field, and offer a number of possible suggestions, this will save the user
time, prevent frustration, and improve accuracy—the less a user types, the fewer
errors they can make.

Auto-complete text fields offer a great balance between ease of use and unobtrus-
iveness. A user can type away unhindered if the system’s guess is wrong, but if
the guess is right, they can use that suggestion without pressing another key!

Solution
There are really two parts to this solution. The first is an auto-complete feature
on the text field itself, and the second is a dynamically generated drop-down of
suggestions from which the user can select an option to enter into the text field.
Auto-completion of the text field relies upon Range control that is not available
in some browsers—Opera only introduced Range functions in version 8, so previ-

502

Chapter 18: Building Web Applications with JavaScript

ous versions will be excluded at this stage. Similarly, Internet Explorer for Mac
doesn’t implement Ranges, and although Safari does have Range capabilities,
they don’t work on form elements. Mozilla’s Range interface doesn’t support
form elements; however, it does have some special selection functions that we
can use instead.

The suggestion drop-down can be implemented in all modern browsers. The two
features are independent of each other, so if a browser doesn’t support auto-
completion, it will at least get the drop-down suggestions, which are equally
useful.

Before a program can guess what the user is typing, it has to have a list of possible
values, so you’ll need to create an array to hold these. In this example, it’s assumed
that the values are written into the page by the server, though the way in which
the server gets the values is up to you. They could be based on a predefined list,
the past history of the current user, or today’s horoscope, but the more helpful
they are, the more effective your auto-complete field will be.

For this example, let’s assume the user has typed in some email addresses on
previous occasions:

File: auto-complete_text_field.js (excerpt)

var emailAddresses = [
 "greenarrow@justiceleague.xmp",
 "greenflame@justiceleague.xmp",
 "greenhornet@dccomics.xmp",
 "greenlantern@justiceleague.xmp",
 "magneto@example.net",
 "mistermiracle@justiceleague.xmp",
 "redronin@sitepoint.com",
 "redtornado@justiceleague.xmp"
];

The auto-complete will run on a text input field, so we’ll need to get the input
field and handle any keystrokes that are made on it:

File: auto-complete_text_field.js (excerpt)

addLoadListener(initAutoComplete);

function initAutoComplete()
{
 var email = document.getElementById("email");

 email.setAttribute("autocomplete", "off");

503

Creating an Auto-complete Text Field

 attachEventListener(email, "keydown", keydownAutoComplete,
 false);
 attachEventListener(email, "blur", blurAutoComplete, false);

 return true;
}

function keydownAutoComplete(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 switch(event.keyCode)
 {
 case 9: // tab
 case 13: // enter
 case 16: // shift
 case 17: // ctrl
 case 18: // alt
 case 20: // caps lock
 case 27: // esc
 case 33: // page up
 case 34: // page down
 case 35: // end
 case 36: // home
 case 37: // left arrow
 case 39: // right arrow
 break;

 case 38: // up arrow

 var target = getEventTarget(event);
 var autoCompleteDropdown =
 document.getElementById("autoCompleteDropdown");

 if (autoCompleteDropdown != null)
 {
 var childLis = autoCompleteDropdown.childNodes;
 var selected = false;

 for (var i = 0; i < childLis.length; i++)
 {
 if (childLis[i].className == "hover")
 {

504

Chapter 18: Building Web Applications with JavaScript

 selected = true;

 if (i > 0)
 {
 childLis[i].className = "";
 childLis[i - 1].className = "hover";

 target.value = childLis[i - 1].firstChild.nodeValue;
 }

 break;
 }
 }

 if (!selected)
 {
 childLis[0].className = "hover";

 target.value = childLis[0].firstChild.nodeValue;
 }
 }

 stopDefaultAction(event);

 break;

 case 40: // down arrow
 var target = getEventTarget(event);
 var autoCompleteDropdown =
 document.getElementById("autoCompleteDropdown");

 if (autoCompleteDropdown != null)
 {
 var childLis = autoCompleteDropdown.childNodes;
 var selected = false;

 for (var i = 0; i < childLis.length; i++)
 {
 if (childLis[i].className == "hover")
 {
 selected = true;

 if (i < childLis.length - 1)
 {
 childLis[i].className = "";
 childLis[i + 1].className = "hover";

505

Creating an Auto-complete Text Field

 target.value = childLis[i + 1].firstChild.nodeValue;
 }

 break;
 }
 }

 if (!selected)
 {
 childLis[0].className = "hover";

 target.value = childLis[0].firstChild.nodeValue;
 }
 }

 stopDefaultAction(event);

 break;

 case 8: // backspace
 case 46: // delete

 if (typeof autoCompleteTimer != "undefined")
 {
 clearTimeout(autoCompleteTimer);
 }

 autoCompleteTimer = setTimeout("generateDropdown(false)",
 500);

 break;

 default:

 if (typeof autoCompleteTimer != "undefined")
 {
 clearTimeout(autoCompleteTimer);
 }

 var target = getEventTarget(event);
 var inputRanges = "false";

 if (typeof target.createTextRange != "undefined" ||
 typeof target.setSelectionRange != "undefined")
 {

506

Chapter 18: Building Web Applications with JavaScript

 inputRanges = "true";
 }

 autoCompleteTimer = setTimeout("generateDropdown(" +
 inputRanges + ")", 500);
 }

 return true;
}

initAutoComplete is executed on page load using the addLoadListener function
from Chapter 1. It initializes an event listener for keydown events on the text
field using the attachEventListener function from Chapter 13. A blur event
listener is added as well; this event fires when the text field loses focus (e.g., when
the user tabs out of it or clicks elsewhere), and it removes all the elements that
are created by the auto-completion functionality.

IE Doesn’t Use keypress

Internet Explorer for Windows doesn’t trigger a keypress event listener
when the user presses arrow keys and other control keys. That’s why we use
a keydown event listener for this solution.

When a keydown event is registered, keydownAutoComplete runs and checks
which key was pressed. For keyboard events the event object has a keyCode
property, which stores the ASCII value of the key that was pressed (you can find
the ASCII values of all keys at http://www.lookuptables.com/). For control keys
like Ctrl, Alt, Shift, or Enter, we don’t want to do anything, because the content
of the text field won’t have changed, but when users press a key that changes the
contents of the text field, we want to give them some suitable suggestions.

When users press a subtractive key—backspace or delete—we don’t want the
text field auto-complete to kick-in; we just want to enable the suggestions drop-
down, otherwise the user would never be able to delete multiple characters. To
do this, we call generateDropdown with a false argument. This means that when
generateDropdown finishes, it won’t call the auto-complete function.

The call to generateDropdown is made via setTimeout, so there won’t be rapid
flickering as a user types multiple characters. Each time a key is pressed, any ex-
isting timer is cancelled and a new one is created, so the drop-down will only be
displayed when the user pauses for a moment: 500 milliseconds, to be exact.

For any additive keys (i.e., character keys), generateDropdown is still called, but
an additional check allows for the auto-complete feature to be enabled if the

507

Creating an Auto-complete Text Field

http://www.lookuptables.com/

browser supports it. When that’s the case, generateDropdown is passed a true
argument.

The two other keys that require special handling are the up and down arrow keys.
These operate the current selection in the suggestions drop-down, so if users press
either of them, we check whether the drop-down exists, then move the selection
appropriately. Each of the list items in the drop-down is checked to see whether
it has the class hover, and when the currently selected item is found, either its
previous sibling or its next sibling will be selected, depending upon which arrow
key was pressed. The value of the text field is then changed to the newly selected
drop-down item.

The suggestions drop-down is created by the generateDropdown function, and
is actually an unordered list with associated items:

File: auto-complete_text_field.js (excerpt)

function generateDropdown(doAutoComplete)
{
 closeDropdown();

 var input = document.getElementById("email");

 var newUl = document.createElement("ul");
 newUl.setAttribute("id", "autoCompleteDropdown");
 newUl.autoCompleteInput = input;
 newUl.style.position = "absolute";
 newUl.style.left = getPosition(input)[0] + "px";
 newUl.style.top = getPosition(input)[1] + input.offsetHeight -
 2 + "px";
 newUl.style.width = input.offsetWidth - 3 + "px";

 for (var i = 0; i < emailAddresses.length; i++)
 {
 if (emailAddresses[i].indexOf(input.value) == 0)
 {
 var newLi = document.createElement("li");
 newLi.appendChild(
 document.createTextNode(emailAddresses[i]));

 if (browserDetected != "ie5mac")
 {
 attachEventListener(newLi, "mouseover", mouseoverDropdown,
 false);
 attachEventListener(newLi, "mouseout", mouseoutDropdown,

508

Chapter 18: Building Web Applications with JavaScript

 false);
 attachEventListener(newLi, "mousedown", mousedownDropdown,
 false);
 }

 newUl.appendChild(newLi);
 }
 }

 if (newUl.firstChild != null)
 {
 document.getElementsByTagName("body")[0].appendChild(newUl);
 }

 if (typeof doAutoComplete != "undefined" && doAutoComplete)
 {
 autoComplete();
 }

 return true;
}

generateDropdown first removes the existing drop-down by calling closeDropdown:

File: auto-complete_text_field.js (excerpt)

function closeDropdown()
{
 var autoCompleteDropdown =
 document.getElementById("autoCompleteDropdown");

 if (autoCompleteDropdown != null)
 {
 autoCompleteDropdown.parentNode.removeChild(
 autoCompleteDropdown);
 }

 return true;
}

Then, a new unordered list is created, positioned absolutely, and styled according
to the text field’s dimensions (with some adjustments for borders), so it has the
same width as, and is positioned just below, the text field. The text field’s position
is calculated using the getPosition function from Chapter 13.

509

Creating an Auto-complete Text Field

The values inside the drop-down are drawn from our pre-stored array of data.
The current value of the text field is compared with each of the array values, and
if the text field string is a substring from the start of the array value, then it is
added to the drop-down as a list item. As each list item is created, a few event
listeners are added to it as well. These handle mouse events and give the user the
ability to highlight drop-down items using the mouse cursor, and then to click
on them to place the selected value into the text field. We have to do a browser
check using identifyBrowser (from Chapter 11) because Internet Explorer 5
for Mac has real problems with the mouse events on the newly created list items.
That browser won’t allow for mouse interaction, but users will still be able to
navigate the drop-down using the arrow keys:

File: auto-complete_text_field.js (excerpt)

function mouseoverDropdown(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (target.nodeName.toLowerCase() != "li")
 {
 target = target.parentNode;
 }

 var childLis = target.parentNode.childNodes;

 for (var i = 0; i < childLis.length; i++)
 {
 childLis[i].className = "";
 }

 target.className = "hover";

 return true;
}

function mouseoutDropdown(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

510

Chapter 18: Building Web Applications with JavaScript

 var target = getEventTarget(event);

 while (target.nodeName.toLowerCase() != "li")
 {
 target = target.parentNode;
 }

 target.className = "";

 return true;
}

function mousedownDropdown(event)
{
 if (typeof event == "undefined")
 {
 event = window.event;
 }

 var target = getEventTarget(event);

 while (target.nodeName.toLowerCase() != "li")
 {
 target = target.parentNode;
 }

 target.parentNode.autoCompleteInput.value =
 target.firstChild.nodeValue;

 closeDropdown();

 return true;
}

A mousedown event listener is used instead of an actual click event listener be-
cause the blur event on the text field fires before a click event does, and this
makes the drop-down disappear before the list item can receive the click.

Each of the listeners uses the getEventTarget function from Chapter 13 to as-
certain the precise list item that received the event. To make sure that we have
a list item, we iterate upwards until we find an li element, then perform the re-
quired operation: changing the class, or copying the value to the text field.

511

Creating an Auto-complete Text Field

Returning to generateDropdown, the drop-down is added to the page only if it
has some valid suggestions. Then, depending upon the doAutoComplete argument
that was passed to it, it may call autoComplete:

function autoComplete()
{
 var input = document.getElementById("email");
 var cursorMidway = false;

 if (typeof document.selection != "undefined")
 {
 var range = document.selection.createRange();

 if (range.move("character", 1) != 0)
 {
 cursorMidway = true;
 }

 }
 else if (typeof input.selectionStart != "undefined" &&
 input.selectionStart < input.value.length)
 {
 cursorMidway = true;
 }

 var originalValue = input.value;
 var autoCompleteDropdown =
 document.getElementById("autoCompleteDropdown");

 if (autoCompleteDropdown != null && !cursorMidway)
 {
 autoCompleteDropdown.firstChild.className = "hover";
 input.value =
 autoCompleteDropdown.firstChild.firstChild.nodeValue;

 if (typeof input.createTextRange != "undefined")
 {
 var range = input.createTextRange();
 range.moveStart("character", originalValue.length);
 range.select();
 }
 else if (typeof input.setSelectionRange != "undefined")
 {
 input.setSelectionRange(originalValue.length,
 input.value.length);
 }

512

Chapter 18: Building Web Applications with JavaScript

 if (autoCompleteDropdown.childNodes.length == 1)
 {
 setTimeout("closeDropdown();", 10);
 }
 }

 return true;
}

The auto-complete feature is used only if the cursor inside the text field is situated
after the last character, otherwise it will interfere with the user’s typing. So, the
first thing we need to do is ascertain where the cursor is positioned. In Internet
Explorer, we do this by creating a Range from the selection, then trying to move
the Range to the right; if the move is successful, we know that the cursor is not
at the end of the text field. In other browsers, we can simply use the text field’s
selectionStart property. It returns the offset of the selection, which we can
compare with the total length of the text field’s value to see whether or not the
cursor is positioned at the end.

Once we know that the cursor is at the end of the text field, we create a copy of
its current value, then copy the first value of the suggestion drop-down into the
text field. All that remains is to select the part of the new value that the user
didn’t type. This allows them to continue typing without interference, as the
suggested text will automatically be overwritten by their own typing.

In Internet Explorer, we handle the selection of the suggested text by creating a
text range from the text field, then moving the start of the range by the length
of the text field’s original value. Create a selection from the range using
range.select and: presto! The suggested text is selected.

As most other browsers don’t support ranges inside text fields, we have to use a
specially supplied method called setSelectionRange. It operates on text fields
and takes a start index and an end index for the selection to be created. Using
the length of the original value as the start index, and the length of the new value
as the end index, we end up with the same selection as appears in Internet Ex-
plorer.

With the selection completed, the last thing we need to do is to tidy up the sug-
gestion drop-down. The first suggested value has been inserted into the text field,
so, if that’s the only suggestion in the drop-down, the drop-down becomes redund-
ant. We can close it by calling closeDropdown. We need to place it inside a
setTimeout call because Internet Explorer 5 for Windows crashes when you so

513

Creating an Auto-complete Text Field

quickly create and remove an element (the drop-down). Adding a tiny delay
avoids this.

The drop-down, and also its items’ hover state, can be styled using CSS, so we
not only end up with a really helpful feature, but as illustrated in Figure 18.7,
we have a smoothly integrated widget that almost looks like it’s native to the
browser.

Figure 18.7. A field that allows users to select from a number of
suggestions and automatically completes what they’re typing

Summary
Online applications are definitely one of the fastest growing segments of the In-
ternet, and as you can see from the examples above, JavaScript will play a pivotal
role in their development and use.

Without the interaction provided by JavaScript’s “behavior layer,” many possible
web applications would be unusable, or at the very least, unwieldy. With the
techniques that have been outlined in this chapter, you’ll be able to create rich,
immersive environments that do not suffer from the click-and-wait syndrome of
the static web.

The challenge now is to use these capabilities for something that no one has ever
imagined.

514

Chapter 18: Building Web Applications with JavaScript

Object Orientation in JavaScript19
Object Oriented Programming (OOP) is generally considered to be the best-
practice standard for large scale software engineering projects. It differs from
traditional procedural programming—where a program is a sequential list of in-
structions to the computer—by representing a program as a collection of individual
units (objects) that process their own data and communicate with other objects.

One Size Does not Fit All

OOP is by no means a suitable programming paradigm for every situation.
Simple programs often have no need for the structures of OOP, and if they’re
written in OOP, their size and performance can suffer. However, when it
comes to larger projects, OOP offers many valuable benefits including mod-
ularity, flexibility, easier maintenance, and more direct correlation with real
world processes.

Although JavaScript is most often characterized as an object based programming
language, it exhibits many of the features that OOP offers, and allows you to
benefit from the same advantages. This chapter will show you how to make the
most of these features and manage JavaScript as you would any other aspect of
a software project.

What’s so Good about Object
Orientation?

Four main principles form the basis of object oriented programming, and give
rise to its main benefits.

Abstraction
The key concept that underpins the very notion of objects is that they abstract
the details of their own implementation. If we have an object bird, it is enough
for other objects to know that they can call bird.moveTo—they don’t need to
know any of the details of how that movement will be implemented. By abstracting
these details, a standard interface to an object can be created very early in devel-
opment, and other objects can rely on this interface to remain the same, irrespect-
ive of any radical changes that may occur within the object itself.

Encapsulation
Encapsulation ensures that an object’s state can only be changed by the object
itself, as a result of that object’s performing one of the operations (methods) it
supports. Encapsulation enforces the advantages of abstraction by ensuring that
an object is accessible only by its interface, which makes it impossible for other
objects to rely upon the internal representation of an object’s behavior.

JavaScript doesn’t support a full implementation of encapsulation, as it lacks
private members (variables that can be accessed only by the object that contains
them).

Implementing Private Members

If you wish to implement private members, it is possible to do so using some
custom functions,1 but this will introduce overhead to the object creation
process.

1 http://www.crockford.com/javascript/private.html

516

Chapter 19: Object Orientation in JavaScript

http://www.crockford.com/javascript/private.html
http://www.crockford.com/javascript/private.html

Class Inheritance
Classes describe the functionality of objects that may be created; thus, each object
that a program creates at run time is an instance of a class. Inheritance allows
one class to replicate and extend the functionality of another without having to
re-implement the existing class’s behavior. This means that several classes can
inherit functionality from one superclass (or parent class) that contains their
shared behavior. The children can then specialize or extend upon the parent class
by creating new data and methods, or by overriding those that already exist in
the parent. If you think of classes as forming a tree hierarchy, a child class auto-
matically implements every property and method that its parent class supports.

Figure 19.1. A class with three levels of an object hierarchy,
including class names and some attributes

In the class diagram shown in Figure 19.1, the animal class has two properties:
eyes and legs. This means that its two subclasses (child classes), bird and cat
will also have eyes and legs, but bird adds a property that animal and cat
won’t have: wings. Further down in the hierarchy, both tweety and toucanSam
will have eyes, legs, and wings, but only the toucanSam class will have a
fruit_loops property.

517

Class Inheritance

Although JavaScript doesn’t, strictly speaking, implement inheritance, the same
advantages can be achieved using its prototype framework.

Polymorphism
Polymorphism literally means the ability to appear in different forms. Where
object oriented programming is concerned, polymorphism allows an object of a
given class to be treated as if it were an object of its superclass, despite the fact
that one or more of the superclass’s methods may be defined differently (overrid-
den) in the object’s true class.

As an example, if we have a class animal that has a method moveTo, we can call
that method on any object of class animal or any of its subclasses, like cat or
bird. If cats move differently from other animals, the cat class can declare its
own, alternative implementation of moveTo, which will be called for any object
of that class, even if the code that calls the method only knows that the object
is an animal.

The advantage of polymorphism is that, without any additional work, code that’s
written to make use of simple classes can benefit from the advanced functionality
implemented within more complex subclasses. That is, one piece of code can
make any animal move—but each individual class of animal can determine exactly
how it moves.

Object Based Code vs Object Oriented
Code

Although object based programming languages allow for the creation and interac-
tion of objects, they typically lack some of the features that are required in a fully
object oriented language. JavaScript, for example, lacks the key features of class-
based inheritance and private members.

Inheritance is usually implemented using syntax like this:

class Parent
{
 �
}

class Child extends Parent
{

518

Chapter 19: Object Orientation in JavaScript

 �
}

However, JavaScript does not support classes, and hence does not support inher-
itance. JavaScript is a prototype based language that uses objects as prototypes
for other objects: a new object can replicate the behavior of an existing object by
cloning it.

This is very similar to a class based approach, and in fact JavaScript programs
can utilize centrally defined behavior, and specialize or extend upon it. We’ll
discuss these capabilities a little later in this chapter.

Writing an Object Oriented Script
Grasping the notion of object orientation is as much about changing the way you
think about programming as it is about changing the way you code. However,
you’ll need to know some new syntax in order to begin object oriented program-
ming in JavaScript.

Solution
If classes are the blueprints for objects in other object oriented languages, functions
are the blueprints for objects in JavaScript.

Throughout this book you may have noticed the usage of syntax like this:

var tweety = new Bird();

For example, we saw the following snippet in Chapter 4:

var planets = new Array('mercury', 'venus', 'earth');

In that case, we were really creating a new instance of an object. The variable
tweety was assigned an object based on the function Bird. Using the common
object oriented programming terminology, tweety is an object of class Bird. Of
course, since JavaScript doesn’t have classes, Bird is simply defined as a function:

File: construct_object_oriented_script.js (excerpt)

function Bird()
{
 �
 return true;
}

519

Writing an Object Oriented Script

As we placed the keyword new before the call to Bird, JavaScript understands
that we’re creating a new object based on Bird, rather than assigning the output
of the function to the variable. Let’s check the type of tweety:

var tweety = new Bird();

alert(typeof tweety);

If you run this code, you’ll see that tweety is of type "object", irrespective of
the return value of Bird.

Inside the Bird function, we create all the properties that are associated with the
object:

File: construct_object_oriented_script.js (excerpt)

function Bird()
{
 this.feet = 2;
 this.feathers = true;

 return true;
}

Bird is a constructor—a function designed specifically to create new objects.
Within a constructor, this refers to the object that’s being created. Any object
that’s an instance of Bird will automatically acquire all the properties that were
assigned to this inside Bird. We can reference these properties immediately
after we create tweety:

File: construct_object_oriented_script.js (excerpt)

var tweety = new bird();
var numFeet = tweety.feet;

The value of the variable numFeet is 2.

Direct Referencing of Properties from Outside an Object

Even though the direct referencing of properties from outside an object is
possible in JavaScript, it breaks the principles of abstraction and encapsula-
tion, both of which are desirable as software engineering practices. See the
next section (“Creating Methods for an Object”) for information on how
you can provide a maintainable interface to an object.

520

Chapter 19: Object Orientation in JavaScript

Creating Methods for an Object
We’ve discussed how we can create properties for an object by assigning them
to this in the constructor. As we’re about to see, it’s also possible to include
methods for an object.

Solution
Object methods are used quite regularly as part of JavaScript. For instance, any
text string is actually an instance of String, which has quite a few associated
methods that you’ve probably used already: toLowerCase, replace, indexOf,
and so on.

There are two ways in which you can make your own object methods. Because
you can assign functions as values for variables in JavaScript, the first approach
is to specify a function as a property of an object in that object’s constructor:

File: create_methods.js (excerpt)

function Bird()
{
 this.feet = 2;
 this.feathers = true;
this.getFeetNum = getFeetNum;

 return true;
}

function getFeetNum()
{
 return this.feet;
}

In this listing, Bird assigns to this.getFeetNum a reference to the function
getFeetNum, making it a method for the resulting object. Note that we can also
use this within the getFeetNum function, again to access properties (and even
other methods) of the current object. getFeetNum makes use of this to query
the value of the feet property. Therefore, we can call this method whenever we
want to find out the number of feet for a Bird object:

File: create_methods.js (excerpt)

var tweety = new bird();
var numFeet = tweety.getFeetNum();

521

Creating Methods for an Object

The value of the variable numFeet will be 2.

You can even reduce the layers of referencing (and namespace conflicts, as we’ll
see at the end of this chapter) simply by defining the function explicitly inside
the constructor:

function Bird()
{
 this.feet = 2;
 this.feathers = true;

 this.getFeetNum = function()
 {
 return this.feet;
 };

 return true;
}

Creating a number of methods that can act as the external interface to an object’s
data is the best way to protect that data. This practice ensures that you see the
benefits of encapsulation and abstraction; it provides between objects a stable
point of contact that will not change even if the internal representation of data
within an object does.

Prototype-based Method Creation
I mentioned previously that JavaScript is a prototype-based programming lan-
guage. In JavaScript, every constructor has a prototype object associated with
it. The properties and methods of this prototype object appear as properties and
methods of every object that’s created using that constructor. Therefore, you can
create methods by assigning functions as properties of the prototype object for
a constructor.

At first glance, this approach seems exactly the same as defining your methods
within the constructor function, but prototype-based method creation offers
some important advantages:

❑ Because the functions are only stored once (in the prototype object), rather
than in every new object, this approach offers efficiencies over defining
methods within the constructor function.

522

Chapter 19: Object Orientation in JavaScript

❑ Since you can modify the prototype object at any time, this approach allows
you to add methods to classes that you didn’t create yourself (e.g., HTML
elements).

❑ As changes to the prototype object affect objects that are in existence already,
this approach lets you add methods to objects after they’re created.

These advantages are particularly important when you’re dealing with objects
that you don’t create yourself, such as HTML elements or simple data values.
For instance, you can’t modify JavaScript’s String constructor, which is buried
deep within a browser’s application code. But by accessing String’s prototype
object, you can add new methods that will be available to String objects
throughout your script.

Once a constructor has been declared, the prototype object is available from its
prototype property:

function Bird()
{
 this.feet = 2;
 this.feathers = true;

 return true;
}

Bird.prototype.getFeetNum = getFeetNum;

function getFeetNum()
{
 return this.feet;
}

Once getFeetNum has been assigned as a property of the prototype object, it can
be called as a method of any Bird object:

File: create_methods2.js (excerpt)

var tweety = new Bird();
var numFeet = tweety.getFeetNum();

To reduce code clutter, we can create the function directly as a property of the
prototype object:

523

Prototype-based Method Creation

File: create_methods2.js (excerpt)

function Bird()
{
 this.feet = 2;
 this.feathers = true;

 return true;
}

Bird.prototype.getFeetNum = function()
{
 return this.feet;
};

Prototype Methods and Source Order

JavaScript allows you to execute a function with global scope from anywhere
inside a source file, irrespective of whether the function is defined before or
after the point of execution. That’s why code such as this works:

init();

function init()
{
 �
}

However, when creating object methods using the prototype property, you
cannot call a method until after it has been added to the prototype object.
This means that the following code won’t work:

var tweety = new bird();
var numFeet = tweety.getFeet();

function Bird()
{
 �
}

Bird.prototype.getFeetNum = function()
{
 �
};

The call to tweety.getFeetNum in the above snippet will cause an error
because getFeetNum hasn’t yet been added to the prototype object for

524

Chapter 19: Object Orientation in JavaScript

Bird. That said, you could instantiate the object before adding the method
to the prototype:

var tweety = new Bird();

function Bird()
{
 �
}

Bird.prototype.getFeetNum = function()
{
 �
};

var numFeet = tweety.getFeet();

As long as the statement that adds a function to the prototype object comes
before any calls to the resulting method, everything will work fine.

This is one advantage of the declaration of methods inside an object’s con-
structor—regardless of where you place your constructors in your code file,
they will work. For this reason, many developers choose to use prototypes
only when they’re extending built-in classes and cannot modify the construct-
or.

Discussion
It’s also possible to create methods for built-in objects—such as strings—using
the prototype property. For example, we can create a method that automatically
converts any underscores in a string’s value to spaces:

File: create_method3.js (excerpt)

String.prototype.convertUnderscores = function()
{
 return this.replace(/_/g, " ");
};

Once the above statement is executed, the method convertUnderscores is
available for every string (whether newly created or pre existing):

File: create_method3.js (excerpt)

var underscored = "Are_there_any_spaces_in_here?";
var spaced = underscored.convertUnderscores();

525

Prototype-based Method Creation

The value of the variable spaced will be "Are there any spaces in here?"

Modelling Inheritance
Inheritance is one of the most important principles in object oriented program-
ming. It allows for the specialization and extension of one superclass into many
subclasses, with any changes to the superclass propagating through to the sub-
classes, and is extremely powerful for the creation and maintenance of objects.
The way that JavaScript supports inheritance will be unfamiliar to most C++ or
Java programmers, but it provides support nonetheless.

Solution
The prototype property allows any JavaScript constructor (or class) to clone the
data and methods of another. If we assign a new object instance as the prototype
of a constructor, that instance effectively becomes the constructor’s superclass:

File: inheritance.js (excerpt)

function Bird()
{
 this.feet = 2;
 this.feathers = true;

 return true;
}

function Canary()
{
 this.color = "yellow";

 return true;
}

Canary.prototype = new Bird();

var tweety = new Canary();
var tweetyFeet = tweety.feet;
var tweetyColor = tweety.color;

The value of the variable tweetyFeet will be 2, even though it’s an instance of
Canary, which does not contain a feet property. Instead, the property comes
from Canary’s prototype object, which is a new instance of Bird.

526

Chapter 19: Object Orientation in JavaScript

Because of the way prototypes work, it’s not a problem that all instances of
Canary will share a single instance of Bird as their prototype object. The methods
and properties exposed by a prototype cannot be overwritten by any single object
instance. Rather, if you set a new value for the feet property of a Canary object,
that value will be stored as a new property of that instance, hiding the original
value that remains stored in the prototype instance of Bird. The properties and
methods of a prototype effectively act as read-only defaults that may be overridden
by instance-specific values at any time.

Implementing Multiple Inheritance

If you wish to implement multiple inheritance (where one class may inherit
from multiple superclasses), it is possible to do so using some custom func-
tions,2 but this will introduce overhead to your object creation process.

Discussion
If this business of prototypes is giving you a headache, you’ll be pleased to hear
that it’s possible to mimic inheritance more simply by explicitly executing the
constructor of the superclass within the intended subclass’s constructor. For this
to work, though, you must first assign the superclass’s constructor as a method
of the subclass:

File: inheritance2.js (excerpt)

function Bird()
{
 this.feet = 2;
 this.feathers = true;

 return true;
}

function Canary()
{
this.superclass = Bird;

 this.superclass();

 this.color = "yellow";

 return true;
}

2 http://www.sitepoint.com/article/javascript-objects

527

Modelling Inheritance

http://www.sitepoint.com/article/javascript-objects
http://www.sitepoint.com/article/javascript-objects

var tweety = new Canary();
var tweetyFeet = tweety.feet;
var tweetyColor = tweety.color;

Because the statement this.superclass(); calls the Bird constructor as a
method of the new Canary object, this inside Bird will also refer to the new
object being created by Canary. So this.feet = 2; will add the feet property
to the new Canary object.

This technique will work only if all of the superclass’s properties and methods
are declared inside its constructor. Any properties or methods that are assigned
to Bird’s prototype object will not be available in instances of Canary.

Understanding Scope
Have you ever discovered that the value of a variable is coming from a completely
unexpected part of your code? It could be caused by an intricacy of variable
scoping.

Solution
The scope of a variable defines the portion of your script in which it is available.
In JavaScript, scope usually is controlled by functions.

If you specify a variable outside any function definition, it automatically has
global scope. This means that the variable is available from any point within
your script:

File: scope.js (excerpt)

var global = "available";

function availability()
{
 return global;
}

var isAvailable = availability();

The value of the variable isAvailable is "available".

Global scope is also assigned to any variable that’s defined in a function that
does not have the keyword var before it:

528

Chapter 19: Object Orientation in JavaScript

File: scope2.js (excerpt)

function function1()
{
 global = "available";
}

function function2()
{
 return global;
}

function1();
var isAvailable = function2();

The value of the variable isAvailable will be "available".

Note this statement inside function1:

global = "available";

This is not a variable declaration, because it does not begin with var. Rather, it
assigns to the variable global a value that JavaScript will implicitly create as a
global variable if it does not exist.

If we were to add the var keyword that’s necessary to turn this statement into a
formal variable declaration, function2 would produce an error, because the scope
of the variable global does not include function2:

File: scope3.js (excerpt)

function function1()
{
var global = "available";

}

function function2()
{
 return global;
}

function1();
var isAvailable = function2();

In the script above, the variable isAvailable would not be initialized, because
the script would throw an error when trying to access global inside function2.

529

Understanding Scope

As you can see, variables that are explicitly declared with the var keyword are
only accessible inside the function in which they are declared. This limitation is
called the variable’s scope. A variable declared this way will also override any
identically-named variable that would otherwise include the function in its scope:

File: scope4.js (excerpt)

var global = "available";

function function1()
{
 var global = "unavailable";

 return global;
}

var isAvailable = function1();

The value of the variable isAvailable will be "unavailable", because the global
variable that was declared within function1 overrides the one declared with
global scope.

Discussion
Within nested functions, you can access variables in any of the enclosing func-
tions:

File: scope5.js (excerpt)

function parentFunction()
{
 var scopedVar = "available";
 var nestedFunction = function()
 {
 return scopedVar;
 }

 return nestedFunction();
}

var isAvailable = parentFunction();

The value of the variable isAvailable will be "available".

530

Chapter 19: Object Orientation in JavaScript

One useful side effect of these rules of variable scope is that variables in an outer
function (e.g., parentFunction above) are available from nested functions (e.g.,
nestedFunction above) even after the outer function has finished executing:

File: scope6.js (excerpt)

function parentFunction()
{
 var scopedVar = "available";
 setTimeout(function() { alert(scopedVar); }, 1000);
 return true;
}

One second after parentFunction has been executed, an alert box will pop up,
displaying the message "available".

The ability for a nested function to access the variables in its enclosing environ-
ment at any time is called a closure. This is a very handy feature of JavaScript,
and one we’ve used several times throughout this book, most notably in “Getting
Multiple Scripts to Work on the Same Page” in Chapter 1 (in Chapter 1), where
we used a closure in addLoadListener for browsers that don’t support W3C
event listeners.

Implementing Namespaces
As more people around the world create JavaScript that you and I can add to our
pages, it becomes more likely that one person’s code will overwrite or interfere
with the variables and functions in code that’s written by someone else. This can
be avoided if we provide each piece of code with its own namespace.

Solution
Objects already help us prevent naming conflicts from arising between different
scripts. If a function is defined as a method of an object, there is no way that
that method can conflict with a function defined elsewhere; the same rule applies
to variables defined as properties of an object.

If all of your code is object oriented, the only possible point of conflict lies in the
object names. If you declare a constructor for a class named Bird, what will
happen if someone else declares a class named Bird? In most cases, one declaration
will silently override the other.

531

Implementing Namespaces

There’s no in-built way to prevent name conflicts in JavaScript, so your best bet
is to make sure that your classes are named in such a way that other coders are
unlikely to use those names for their own classes. Obviously, giving your classes
very generic names like Item is a bad idea.

One popular method of avoiding naming conflicts is to use the domain name
associated with a script, but to reverse the domain hierarchy like so:

File: namespaces.js (excerpt)

com.sitepoint.Bird = function()
{
 �
}

var tweety = new com.sitepoint.Bird();

Of course, you’d need to ensure that both com and com.sitepoint already exist.
So, as well as creating lengthy object names, you’ll need to write a little more
code to check for object existence (you don’t want to overwrite the com object
that another script might be using for its namespace):

File: namespaces.js (excerpt)

if (typeof com == "undefined")
{
 com = new Object();
}

if (typeof com.sitepoint == "undefined")
{
 com.sitepoint = new Object();
}

com.sitepoint.Bird = function()
{
 �
}

Ajile is a JavaScript module that’s designed to improve JavaScript interoperability
and reuse through namespacing, so if you’re looking for an easy way to control
namespaces (in Firefox or Internet Explorer 6, as these are the two browsers with
which Ajile is compatible), try it out.3

3 http://ajile.sourceforge.net

532

Chapter 19: Object Orientation in JavaScript

http://ajile.sourceforge.net

Summary
JavaScript has long been considered an immature and unstructured programming
language, but the techniques discussed in this chapter should demonstrate that
it is actually a flexible, powerful, and well-structured language capable of scaling
to meet the needs of your largest projects.

If you use the object oriented approach discussed here, your code should benefit
from being more maintainable, more modular, and more robust—characteristics
that you’ll definitely appreciate in the fast-paced world of web development.

533

Summary

534

Keeping up the Pace20
This final chapter, like the very first, focuses more on tips than outright solutions.
We’ll be discussing a range of ideas for improving the efficiency of your
scripts—reducing the amount of work they do so that they run faster, and reducing
the amount of code required to create them so that they load more quickly.

We’ll also look at how to reduce memory usage, and how to avoid or clean up
after DOM memory leaks. Although, arguably, these latter problems may be
beyond the scope of issues that a JavaScript coder should need to think about,
we all have to face them at some point.

Optimization really is the last resort of programming: it’s always better to look
at the design of your code to identify opportunities to make fundamental improve-
ments (maybe a whole chunk of the script is unnecessary, or could be simplified
if you took a different approach). A script that’s forcibly optimized for speed or
file size will invariably lose some degree of readability in the process, and you
should give this serious consideration if anyone besides you will look at it in the
future.

Nevertheless, if speed is critical to your application and you can’t improve the
design any further, it’s time to look closely at the ideas in this chapter. Most of
them will make little or no perceptible difference by themselves, but if you apply
all of them together in a large and complex script, you can make some very
worthwhile optimization improvements.

Making Scripts Run Faster
We obviously want our scripts to run as quickly as possible, all other things being
equal, but those last few milliseconds are seldom that important. Some optimiz-
ations may improve performance in one respect while damaging it in others (for
example, one JavaScript construct might be faster to run, but less concise than
some other techniques), so as we go through this solution, we’ll consider the rel-
ative benefits of each idea. You can then make up your own mind as to whether
or not it’s useful to you.

For General Scripting Only

This solution looks at techniques for general scripting, rather than specifically
considering improving the speed of DHTML animation. Although these
techniques also apply to that field, animation has its own set of issues and
a variety of approaches have evolved to improve its efficiency. These tech-
niques were discussed in detail in Chapter 14.

Solution
To make scripts run faster, we need to have them do less work:

❑ Save references to objects you use frequently.

❑ Use ternary operators and switch statements.

❑ Optimize loops.

❑ Avoid using eval.

❑ Avoid strict warnings.

❑ Optimize for particular browsers.

Let’s have a look at each of these in turn.

Saving References to Objects you Use Frequently
References to elements, collections, properties, and so forth, can be stored so that
they’re quicker to reference later. Why are they quicker? Because the script inter-
preter is doing less work. Consider this snippet:

536

Chapter 20: Keeping up the Pace

document.getElementById('content').getElementsByTagName('p');

Here, we’re asking the interpreter to start from document, find the element con-
tent with getElementById, then find all p elements within that. Every time we
use that expression in full, we’re making the interpreter do all that work. But we
can save the script from performing this operation more than once by creating a
variable with its result:

File: saving-references.js (excerpt)

var p =
document.getElementById('content').getElementsByTagName('p');

The p variable is simply a reference to that node set, which means that it’s dy-
namic; if later you add or remove p elements from the content element, the
p.length property will reflect the updated length of that set.

The length property is also worthy of inspection, because iterating through a
collection by length is a very common process in DHTML:

var p =
 document.getElementById('content').getElementsByTagName('p');

for (var i = 0; i < p.length; i++)
{
 �
}

The interpreter has to calculate the length of the p collection continually (every
time it evaluates the loop condition), and that might be unnecessary work. If we
stored the length of the p collection in advance, it would only need to be calculated
once:

File: saving-references.js (excerpt)

var p =
 document.getElementById('content').getElementsByTagName('p');
var len = p.length;

for (var i = 0; i < len; i++)
{
 �
}

I say “might” because in practice this only makes an appreciable difference in
Internet Explorer 5 and 6, for which the approach of referring to a stored length

537

Saving References to Objects you Use Frequently

is significantly faster; in other popular browsers this technique makes little or no
difference.1

Of course, the creation of that len variable itself means a slight increase in memory
usage, so unless you can gain additional benefit from reusing that variable within
the loop, this particular optimization is probably not worth it. (It may be worth
it if you want the advantage for IE, though; we’ll be looking at browser-specific
optimizations later in this solution.)

Caveat: Length must not Change

We haven’t created a reference here, we’ve simply copied the value of
p.length at a single point in time; the value of len is not dynamic, so we
can only do this if we can assert that the length will not change within the loop.
If the loop were to add or remove members from the collection, then iterating
with a stored length would not work correctly; it would either iterate too
few times, or too many, resulting in errors. In that situation, a stored value
is no good—you have to query the length property directly in the loop
condition.2

You can also save references to properties of DOM nodes and other objects to
simplify the use of those properties later on; style is an obvious example:

File: saving-references.js

var p =
 document.getElementById('content').getElementsByTagName('p');
var len = p.length;

for (var i = 0; i < len; i++)
{
var pstyle = p[i].style;

 pstyle.color = 'red';
 pstyle.fontWeight = 'bold';
}

If you create this kind of shortcut for every reference you use more than once,
you’ll gain a small efficiency improvement; each time you use it, you’ll avoid the

1 In a sample benchmark, iterating with a stored length was five times faster than querying the
length each time in Internet Explorer 6; in Firefox, Safari, and Opera, running the same benchmark,
no significant difference was observed.
2 Incidentally, adding and removing members from a collection will also change the indexes of the
other members in the collection, so you’ll need to update the value of your loop counter variable (i)
as well.

538

Chapter 20: Keeping up the Pace

work of walking through an object chain, so the overall improvement depends
on how often you use that particular shortcut.

Using Ternary Operators and Switch Statements
We’ve encountered ternary operators a few times in this book. The ternary oper-
ator is the only JavaScript operator that takes three operands:

File: ternary-operators.js (excerpt)

var grade = score >= 40 ? 'pass' : 'fail';

That example is equivalent to the following if-else statement:

if (score >= 40)
{
 var grade = 'pass';
}
else
{
 var grade = 'fail';
}

Ternary operators take a lot less code to write, so I recommend you use them
wherever practical.

Ternary operators can also be nested as deeply as you like. Consider the code
below:

File: ternary-operators.js (excerpt)

var grade = score >= 70 ? 'merit' : score >= 40 ? 'pass' : 'fail';

That script is equivalent to this:

if (score >= 70)
{
 var grade = 'merit';
}
else if (score >= 40)
{
 var grade = 'pass';
}
else
{
 var grade = 'fail';
}

539

Using Ternary Operators and Switch Statements

Keep in mind that the deeper the operators are nested, the harder they are to
read! You can improve the situation by wrapping extra parentheses around indi-
vidual ternary expressions, or by splitting the whole expression into multiple lines
with appropriate indentation, something like this:

File: ternary-operators.js (excerpt)

var grade = score >= 90 ? 'distinction' :
 score >= 70 ? 'merit' :
 score >= 40 ? 'pass' :
 'fail';

For very complex sets of conditions, the most useful and efficient construct is a
switch statement. Here’s one that does the same job as the preceding script:

File: switch-statements.js (excerpt)

switch (true)
{
 case score >= 90:
 var grade = 'distinction';
 break;

 case score >= 70:
 var grade = 'merit';
 break;

 case score >= 40:
 var grade = 'pass';
 break;

 default:
 var grade = 'fail';
}

A switch statement is equivalent to a set of if-else statements. The expression
(the value in parentheses) is compared with the value of each case (each outcome
that we care about), and the first match dictates the point at which we begin ex-
ecuting the code in the body of the statement. There’s also an optional default
case, which, if present, is run when no other case is matched (this is equivalent
to a final else in a series of if-elses).

The code that follows each case is generally terminated by a break statement,
which stops the execution of the switch at that point, and jumps to the code
following the closing brace. Without a break, execution would continue through
to the code following the next case (or the default), which is not usually desired.

540

Chapter 20: Keeping up the Pace

The form of that example might be unfamiliar to you, as it was to me before I
wrote this book. The only format I’d used before was this:

File: switch-statements.js (excerpt)

switch (score)
{
 case 90:
 var grade = 'distinction';
 break;
 case 70:
 grade = 'merit';
 break;
 case 40:
 grade = 'pass';
 break;
 default:
 grade = 'fail';
}

Here, the value of the expression is a variable (score), and each case represents
a specific value that it might take. This is a literal interpretation of the specifica-
tion, which says that each case value can only be tested for equality against the ex-
pression.

But take a look at the generic format of a switch statement:

switch (expression)
{
 case value1:
 �
 break;

 case value2:
 �
 break;

 default:
 �
}

This allows for greater flexibility than you may think. If the value of the expression
is true, rather than a variable, each case value can evaluate a complex expression
for a Boolean result (true or false), and that can be tested for equality against
the expression!

541

Using Ternary Operators and Switch Statements

This implies a third way of using switch, where the expression produces a Boolean
result, meaning that only two cases are possible (true or false). In the following
example, the default branch will never be executed:

File: switch-statements.js (excerpt)

switch (score >= 40)
{
 case true:
 var grade = 'pass';
 break;

 case false:
 grade = 'fail';
 break;

 default:
 grade = 'infinity plus one';
}

I can’t think what use that last example might serve, but the three examples to-
gether should illustrate the power and flexibility of switch. You could say that
switch is the maestro!

Optimizing Loops
The simplest way to improve the efficiency of a loop is to use a break statement
to prevent unnecessary iterations.

For example, if we’re iterating through p elements in order to find one with a
particular class, and we’re only interested in finding one, we can stop the loop as
soon as we’ve found it:

File: break-continue.js (excerpt)

var p = document.getElementsByTagName('p');
var len = p.length;

for (var i = 0; i < len; i++)
{
 if (p[i].className == 'summary')
 {
 var summary = p[i];

break;
 }
}

542

Chapter 20: Keeping up the Pace

continue is similar to break; however, in contrast to break, continue doesn’t
stop the execution of a loop entirely: it skips the remainder of the current iteration
of the loop body. Take this example:

File: break-continue.js (excerpt)

for (var i = 0; i < len; i++)
{
 if (p[i].className != 'summary')
 {

continue;
 }

 var summary = p[i];
 break;
}

Here we’re saying, “if the class is not summary, skip the rest of this iteration,”
which sends execution immediately to the update statement of the for loop
(i++). Only if the class is summary will the code proceed to the next statement of
the loop body, where it creates that summary variable. Remembering that continue
doesn’t mean “continue this iteration,” but “continue the loop with the next iter-
ation” can take a little getting used to!

Avoiding eval
The eval function takes a string and attempts to execute it as JavaScript code.
eval can be used to create functional code in very powerful and flexible ways,
but because of this power it’s very expensive to use.3

To do its job, eval must first determine whether the argument is a valid string;
it will then parse that string looking for JavaScript code. If the string equates to
an expression, that expression will be evaluated and its value returned; if it con-
tains statements, each of those will be evaluated and the value of the last one
returned. It’s a complex business, and usually achieves nothing—most of the
more typical uses of eval are uncalled for.

You might have seen it used to create an object reference:

File: avoiding-eval.js (excerpt)

var ele = eval('document.getElementById("link" + n)');

3 In a sample benchmark, creating an object reference using eval was two to three times slower
than creating the same reference without it.

543

Avoiding eval

It’s often used for tasks like testing the stored name of a modifier key against
whether that key is pressed:

File: avoiding-eval.js (excerpt)

var mod = 'shiftKey';
if (eval('e.' + mod))
{
 � The Shift key is pressed.
}

However, both of these are unnecessary uses. The second example could be ex-
pressed using square-bracket notation:

File: avoiding-eval.js (excerpt)

var mod = 'shiftKey';
if (e[mod])
{
 � The Shift key is pressed.
}

The first example just doesn’t need eval at all:

File: avoiding-eval.js (excerpt)

var ele = document.getElementById('link' + n);

It’s almost never necessary to use eval, so whenever you come across a situation
to which it seems appropriate, look for alternatives first; you might be surprised
by how easily you find one!

Avoiding Strict Warnings
We looked at some common causes of strict warnings, like assuming the existence
of an object, or re-declaring a variable, in “Strict Warnings” in Chapter 1.

In Mozilla browsers such as Firefox, strict warnings cause the interpreter more
work. Although they’re not actually errors per se, they’re points where an assump-
tion or reliance on a deprecated feature has been used. They force the script in-
terpreter to do “what you mean” rather than “what you say,” as it were, and that
takes additional processing.

544

Chapter 20: Keeping up the Pace

I think it’s generally a good idea to avoid strict warnings, because they point to
areas of inefficiency or bad coding practice, but in Mozilla browsers we actually
gain a significant speed improvement by avoiding them.4

Optimizing for a Particular Browser
If you’re scripting for only one browser or, conversely, if one browser is performing
noticeably worse than others, you may want to optimize your code to suit the
foibles of that browser.

We can use benchmarking to establish whether a particular code construct could
be expressed more efficiently in a different way. The benchmark is a process that
runs many times, so that we can time how long the process takes on average, and
make comparisons.

For example, let’s build a benchmark that compares two ways to find a substring
within a string—using indexOf and a regular expression test. We begin with
two test functions, each of which performs one of those operations:

File: optimizing-browser.js (excerpt)

function test1()
{
 return 'Test string'.indexOf('str') != -1;
}

function test2()
{
 return /str/.test('Test string');
}

We then run those functions multiple times:

File: optimizing-browser.js (excerpt)

var i = 0;

var start1 = new Date();
for (i = 0; i < 200000; i++)
{
 test1();
}
var end1 = new Date();

4 In a sample benchmark, testing for the existence of a navigator property using typeof was
ten times faster than relying on automatic type conversion for the check.

545

Optimizing for a Particular Browser

var start2 = new Date();
for (i = 0; i < 200000; i++)
{
 test2();
}
var end2 = new Date();

I’m using 200,000 iterations, which is enough to get useful data, but not so many
that it causes a problem for browsers. (For example, Firefox and other Mozilla
browsers will optionally time-out a script after a certain amount of continual
processing, to avoid a situation where a badly-written script could hang in an
infinite iteration or recursion.)

Now that we’ve run our benchmark, we can query and compare the results (the
getTime method returns the number of milliseconds in a Date object, as we saw
in Chapter 9):

File: optimizing-browser.js (excerpt)

alert('Test 1 = ' + (end1.getTime() - start1.getTime()) + 'ms\n'
 + 'Test 2 = ' + (end2.getTime() - start2.getTime()) + 'ms');

For the record, Table 20.1 shows the sample results for four major browsers.

Table 20.1. Substring detection benchmark results

IE 6Safari 1.3Firefox 1.0Opera 8Test

1302ms6064ms2664ms1562msTest 1: indexOf

2283ms19656ms1532ms1833msTest 2: test

Safari and IE 6 prefer indexOf, Firefox prefers the regex test, and Opera seems
to have no preference. So, all other things being equal, you can use the construct
that suits your target browser. The “other things” that you might need to consider
in this case are the fact that indexOf cannot test a regular expression, which
might be required, or the fact that you can reuse a regular expression, rather than
creating a new one each time it’s needed, to save parse time.5

That’s just a single example, but it illustrates the general point—whenever you
want to optimize your code for a particular browser, you can look through your

5 By using the RegExp constructor instead of a regex literal, but note that IE 5.0 for Mac has a
memory leak with that constructor, which is discussed in “Creating a Regular Expression” in Chapter 3.

546

Chapter 20: Keeping up the Pace

code for any constructs you use often, and examine whether there are faster ways
of doing the same job.

Remember earlier in this chapter, when we talked about iterating through a node
set by length? In Internet Explorer, it was much faster to store the length in ad-
vance, than to query it afresh each time.

Let’s look at another example. When referring to arguments in a function, is it
quicker to use named arguments, or to refer to them using the arguments collec-
tion? Here’s the benchmark:

File: optimizing-browser.js (excerpt)

function test3(a, b)
{
 return a + b;
}
function test4()
{
 return arguments[0] + arguments[1];
}

start1 = new Date();
for (i = 0; i < 200000; i++)
{
 test3(1, i);
}
end1 = new Date();
start2 = new Date();
for (i = 0; i < 200000; i++)
{
 test4(1, i);
}
end2 = new Date();

Table 20.2 shows the results.

Table 20.2. Argument fetching benchmark results

IE 6Safari 1.3Firefox 1.0Opera 8Test

711ms4104ms541ms581msTest 3: named args

1923ms4133ms571ms1803msTest 4: array

547

Optimizing for a Particular Browser

Opera and IE 6 prefer named arguments, but Firefox and Safari have no prefer-
ence.

Now obviously the numbers are skewed by factors that are not easy to com-
pare—for example, the CPU speed of the test computer—but that’s not actually
important, because all we’re comparing is the relative values of the two numbers
(which number is larger), then comparing those differences between browsers.
The actual values are not important, nor are they necessarily reflective of the
browsers’ overall performance; all they tell us is which of those constructs is faster
for each browser.

Writing Scripts Using Less Code
Using less code to write your scripts means that those scripts will download more
quickly; which is invariably a good thing for a public web site or web-based ap-
plication, but less significant for an intranet or local application (where the
download speed is the speed of the network). However, file size can also make a
difference to the time it takes a script to be parsed, since there are fewer actual
bytes for the interpreter to read.

However, when we talk about “code,” we’re talking specifically about lines of actual
code, not comments. Comments don’t count as code, and you shouldn’t limit the
amount of commenting you do for the sake of file size; comments can always be
removed before publishing (as we’ll see in the next solution).

Solution
I can make three core recommendations here:

❑ Divide tasks into functions (use OO).

❑ Use arrays and iteration to avoid code repetition.

❑ Write compact conditions and return statements.

Dividing Tasks into Functions (or Using OO)
Whenever you need to perform a set of actions more than once, it’s a good idea
to abstract them into a function. The more often you need it, the greater the ef-
ficiency gains you’ll make overall.

548

Chapter 20: Keeping up the Pace

Throughout this book we’ve seen many examples where a single, abstracted
function is presented as the solution to a particular problem. For example, here’s
the getViewportSize function that we’ve used a few times:

function getViewportSize()
{
 var size = [0, 0];

 if (typeof window.innerWidth != 'undefined')
 {
 size = [
 window.innerWidth,
 window.innerHeight
];
 }
 else if (typeof document.documentElement != 'undefined' &&
 typeof document.documentElement.clientWidth != 'undefined'
 && document.documentElement.clientWidth != 0)
 {
 size = [
 document.documentElement.clientWidth,
 document.documentElement.clientHeight
];
 }
 else
 {
 size = [
 document.getElementsByTagName('body')[0].clientWidth,
 document.getElementsByTagName('body')[0].clientHeight
];
 }

 return size;
}

Imagine we had to reproduce all that code every time we wanted to find out the
viewport size! That would be ridiculous. If we abstract it into a function, we can
simply use its return value:

var viewsize = getViewportSize();

Object orientated development is naturally geared towards this kind of abstraction,
where a script consists of one or more objects, and each of those objects has a
number of methods to serve it. Object oriented code is more efficient and reusable

549

Dividing Tasks into Functions (or Using OO)

by virtue of task separation, and this is one of the reasons why OO is so cool.
For more about object oriented development in JavaScript, see Chapter 19.

Using Arrays and Iteration to Avoid Code
Repetition

Iteration can be used to express something in fewer lines of code. Here’s a simple
example:

File: using-arrays-iteration.js (excerpt)

var p1 = document.getElementById('p1');
p1.style.color = 'red';

var p2 = document.getElementById('p2');
p2.style.color = 'red';

var p3 = document.getElementById('p3');
p3.style.color = 'red';

The above script could be expressed fewer lines, like this:

File: using-arrays-iteration.js (excerpt)

for (var i = 1; i < 4; i++)
{
 var p = document.getElementById('p' + i);
 p.style.color = 'red';
}

Obviously, when this approach is used for longer, more complex processes, the
gain will be more significant.

If we were setting different values (such as different colors), we could save those
values in an array:

File: using-arrays-iteration.js (excerpt)

var colors = ['red', 'gold', 'green'];
for (var i = 1; i < 4; i++)
{
 var p = document.getElementById('p' + i);
 p.style.color = colors[i - 1];
}

550

Chapter 20: Keeping up the Pace

Note how the array index is [i - 1], because our i values are 1–3, not 0–2 like
the indices of the array.

Compacting Conditions and Return Statements
You can write expressions for evaluation directly inside conditions and return
statements, rather than saving the result of the evaluation in a variable and using
or returning that. This sounds obvious, but it’s a neat trick to implement. Not
only does it reduce the amount of code required to evaluate an expression, it also
uses less memory, since one less variable has been created.

Here’s an example: a short function that returns the first element in a collection,
or null if that collection is empty:

File: compacting-conditions.js (excerpt)

function getFirstElement(root, tag)
{
 var collection = root.getElementsByTagName(tag);
 if (collection.length > 0)
 {
 var first = collection[0];
 }
 else
 {
 var first = null;
 }

 return first;
}

We can reduce that script immediately using a ternary operator, which we saw
earlier in this chapter:

File: compacting-conditions.js (excerpt)

function getFirstElement(root, tag)
{
 var collection = root.getElementsByTagName(tag);
 var first = collection.length > 0 ? collection[0] : null;

 return first;
}

In fact, we don’t need that first variable at all. We just need the value of the
expression, so let’s return that directly:

551

Compacting Conditions and Return Statements

File: compacting-conditions.js (excerpt)

function getFirstElement(root, tag)
{
 var collection = root.getElementsByTagName(tag);

 return collection.length > 0 ? collection[0] : null;
}

Processing Overhead vs Readability

Be careful to weigh the processing savings of your optimized code against
its readability; a few bytes’ reduction is not worth the trouble of being left
with an illegible script!

Optimizing Scripts for the Web
We’re no longer looking at your own, development version of a script: we’re
talking about the one that people actually use. These are optimizations that I
strongly recommend you perform on a separate copy of your script, so that you’re
not taking risks with the original. These are all tasks you can complete using the
find-and-replace function in your text editor.

Solution
I can recommend two ways to “compress” a script; these can make a dramatic
difference to the eventual file size:

❑ Remove comments and unnecessary whitespace.

❑ Compact the names of variables and properties.

Removing Comments and Unnecessary
Whitespace

Commenting and whitespace are crucial to good development practice. Line
breaks and tabs make a script much easier to read, while comments are there to
explain what a script is doing and, more importantly, why. Comments are useful
both while writing a script, and in the future, when you or others come back to
it.

552

Chapter 20: Keeping up the Pace

Personally, I comment like it’s going out of fashion, using two or three lines of
commenting to every line of code. I learnt the hard way how frustrating it is to
come back to a script after six months, only to have no idea how it works!

But, critical as they are to development, there’s no point leaving comments in
the copy that’s actually in use on your site or application—most users will never
read them, and those who are interested can always ask you for a development
copy of the script. (And there are obfuscation benefits as well—you can say no!)

Terminate your Lines

Before you remove line breaks from a script, you must ensure that every line
is properly terminated with a semicolon, where necessary. If you don’t do this,
the lines will run together, generating syntax errors, as in the following ex-
ample. Consider this snippet:

s = document.getElementById(n)
s.style.display = 'block';

That code works, but the first line is not terminated, so if it’s stripped of
line breaks, it will end up like this:

s = document.getElementById(n)s.style.display = 'block';

This code will generate an error. For more about this particular issue, please
see “Using Braces and Semicolons (Consistent Coding Practice)” in Chapter 1.

Table 20.3 shows a sequence of regular expressions that will remove one-line
comments, tabs, and line breaks (for more about regular expressions themselves,
see Chapter 3).

Table 20.3. Regular expressions to strip comments/whitespace

DescriptionWithaReplace

Temporarily convert URL protocols to a single slash$1:/([a-z]+)://

Remove one-line comments//.*

Remove tabs\t

Remove line breaks (may need \r on unix systems)\n

Restore URL protocols$1://([a-z]+):/

a An empty cell in the “with” column means “replace with nothing.”

553

Removing Comments and Unnecessary Whitespace

Removing One-line Comments

If you use the regular expression "//.*" (two slashes followed by any
number of characters to the end of the line) to remove one-line comments,
watch out for points at which that substring might occur within the code,
such as in the protocol of a URL, like http://www.sitepoint.com/.

To avoid any problems, the above sequence of regular expressions replaces
the double slashes in protocols with a single slash before removing comments;
it restores the double slashes afterwards.

Now, an additional step you could take is to remove spaces between operators
and other programmatic special characters. Consider this line:

var first = collection.length > 0 ? collection[0] : null;

It could be compressed to this:

var first=collection.length>0?collection[0]:null;

However, this is dangerous if it’s not done carefully. To remove those spaces with
a global replacement we would look for things like " > ", to be replaced with
">", and " : ", to be replaced with ":". The risk is that we could end up removing
necessary whitespace. If the script actually outputs text that includes those
character sequences, we’d almost certainly want to preserve the spaces there, to
make the output more readable.

Here’s another example: I once wasted several hours trying to debug a script for
Safari, when it turned out I’d done a global replacement on ", " (comma followed
by space) to reduce the size of argument lists in function declarations. However,
that broke the navigator.vendor test for "Apple Computer, Inc."—the space
is part of the value, and without it, the match was failing!

I couldn’t recommend performing global replacements on space characters! If
you really need the savings, I suggest you replace them one by one, as a manual
series of “find next” and “replace” operations, rather than a single “replace all,”
so that you can check that each one is safe as you go along. You could simply
write them like that from the outset, provided you don’t mind the consequent
loss of readability.

However, there have to be limits on the practicality of code optimization—it’s
not worth risking the correct functionality of a script for the sake of a few hun-
dreds bytes of processing power.

554

Chapter 20: Keeping up the Pace

Tabs and line breaks are not a risk (provided that lines of code are properly ter-
minated with semicolons, as we noted earlier), because even if the script includes
those characters, they will be written as literal escape values (such as "\t"); our
replacement would be looking for actual tabs in the code.

Compacting the Names of Variables and
Properties

We have to be careful when naming variables in the global scope if we’re scripting
on a page or application to which other people will also be contributing script,
so as not to choose a name that someone else might use. Two variables with the
same name in the same scope will conflict: the variable that’s declared second
will override the first. Reading the resulting code would involve tedious second-
guessing—another reason for reducing the number of global variables you use.

But within a function you can safely use the simplest of names, right down to one-
or two-letter names (with provisos, which we’ll look at in a moment). This is
perfectly safe, as the function provides restricted scope for the variables. Take a
look at this example:

File: compacting-names.js (excerpt)

function castSpell(incantation, potion)
{
 if (typeof potion == 'undefined') { potion = 'felix'; }
 var spell = document.getElementById(incantation);
 if (spell)
 {
 spell.style.display = 'block';
 spell.firstChild.nodeValue = 'Potion: ' + potion;
 }
}

This script could be compacted like so:

File: compacting-names.js (excerpt)

function castSpell(n, p)
{
 if (typeof p == 'undefined') { p = 'felix'; }
 var s = document.getElementById(n);
 if (s)
 {

s.style.display = 'block';
s.firstChild.nodeValue = 'Potion: ' + p;

555

Compacting the Names of Variables and Properties

 }
}

Notice how I used n, rather than i, for incantation? That’s one of the provisos
I mentioned: i is commonly used as a loop iterator, so I generally avoid using i
as a general-purpose variable (and j, for the same reason). I also avoid e, which
is commonly used as an event reference.

Avoiding Memory Leaks
JavaScript uses automatic garbage collection. Garbage collection is the disposal
of (i.e.,the freeing-up of memory used by) objects that are no longer needed. An
object is no longer needed when there are no existing references to it. This usually
happens when a page unloads.

However, Internet Explorer 5 and 6 cannot garbage-collect certain kinds of objects
if they form part of a circular reference. A circular reference occurs where two
or more objects refer to each other in a circular way—A refers to B, B refers to
C, and C refers back to A (we’ll see an example in a moment).

What should happen? As soon as the objects are no longer referenced from else-
where, the interpreter should recognize that they’re only referred to by one an-
other, and make them available for garbage collection. But in affected versions
of Internet Explorer, if any of those objects is a DOM node or an ActiveX object,
the garbage collector can’t see that object’s isolated relationship, so it will remain
in memory until the browser is closed.

When refreshing a single page, or navigating between pages that use the same
script (or another script with the same problem), the amount of memory used
by the browser will gradually increase and, in extreme cases, this can result in a
user running out of RAM altogether.

Solution
We have two ways to deal with this problem:

❑ Avoid circular references.

❑ Clean up after the fact.

The first solution is not always practical, so the second solution is generally the
more useful.

556

Chapter 20: Keeping up the Pace

Avoiding Circular References
Circular references are very easy to create without realizing it. Consider this
HTML, for example:

<h2>Site navigation</h2>
<ul id="menu">
 Home
 About us
 Contact us

The following scripting goes with it:6

File: circular-references.js (excerpt)

function bindListHandler(listid)
{
 var list = document.getElementById(listid);
 list.related = list.previousSibling;
 list.related.related = list;

 list.onclick = function()
 {
 this.related.style.color = 'red';
 };

 list.related.onclick = function()
 {
 this.related.style.color = 'red';
 };
}

We’ve created a related property for the list that refers to the heading, and a
related property of the heading that refers back to the list (although this is an
oversimplified example, since the heading is not necessarily the previousSibling
of the list). This technique can be very useful, as it allows an event handler on
either element to refer to the other. But, because they refer to each other, a cir-
cular reference has been created.

This problem can be avoided simply by avoiding circular references. Avoid creating
objects that refer to each other, and then no circular references will be formed.

6 Based on an example by Peter-Paul Koch
[http://www.quirksmode.org/blog/archives/2005/02/javascript_memo.html].

557

Avoiding Circular References

http://www.quirksmode.org/blog/archives/2005/02/javascript_memo.html

However, that may not be possible, or practical; you may prefer the convenience
of this kind of technique. Personally, I think this is really the vendor’s problem,
and not something we should have to worry about; nonetheless, a client might
complain, and we may have no choice but to find a way of fixing it.

I’ve been in that situation a few times, and fortunately there is an alternative,
retrospective solution that can be applied with little or no alteration to the ori-
ginal code.

Cleaning Up After the Fact
If you can’t, or don’t want to, avoid circular references, they be can be cleaned
manually.

Cleaning functions that are written as DOM 0 event handlers (using properties
like element.onclick, as we discussed in Chapter 13) is as simple as iterating
through document.all from the unload event, and “marking” the identified
properties for garbage collection by setting them to null. This example is based
on a function by Richard Cornford;7 further handlers can be added to the
expandos array as necessary:

File: dom-cleaners.js (excerpt)

if (typeof window.attachEvent != 'undefined')
{
 window.attachEvent('onunload', function()
 {
 var expandos = ['mouseover', 'click'];

 var elen = expandos.length;
 var dlen = document.all.length;

 for (var i = 0; i < dlen; i++)
 {
 for (var j = 0; j < elen; j++)
 {
 document.all[i]['on' + expandos[j]] = null;
 }
 }
 });
}

7 http://groups.google.com/group/comp.lang.javascript/msg/fe9025326f5ae177

558

Chapter 20: Keeping up the Pace

http://groups.google.com/group/comp.lang.javascript/msg/fe9025326f5ae177

But it’s equally possible to form circular references with functions that are bound
using attachEvent; these leak just the same way, but they don’t appear in
document.all or any other collection.

We can only clean them if we already have references to them, and this is where
a generic event-binding function can come in extra-handy. Let’s look back at the
attachEventListener function we created in Chapter 13 (here’s an excerpt as
far as is relevant):

function attachEventListener(target, eventType, functionRef,
 capture)
{
 if (typeof target.addEventListener != 'undefined')
 {
 target.addEventListener(eventType, functionRef, capture);
 }
 else if (typeof target.attachEvent != 'undefined')
 {
 target.attachEvent('on' + eventType, functionRef);
 }
 �

We simply need to store each reference as it’s added:

File: dom-cleaners.js (excerpt)

var listeners = [];
function attachEventListener(target, eventType, functionRef,
 capture)
{
 if (typeof target.addEventListener != 'undefined')
 {
 target.addEventListener(eventType, functionRef, capture);
 }
 else if (typeof target.attachEvent != 'undefined')
 {
 target.attachEvent('on' + eventType, functionRef);

listeners[listeners.length] =
 [target, eventType, functionRef];
 }
 �

Then, from the unload event, we can iterate through our stored listeners, removing
them with detachEvent:

559

Cleaning Up After the Fact

File: dom-cleaners.js (excerpt)

if (typeof window.attachEvent != 'undefined')
{
 window.attachEvent('onunload', function()
 {
 var len = listeners.length;

 for (var i = 0; i < len; i++)
 {
 listeners[i][0].detachEvent(
 'on' + listeners[i][1], listeners[i][2]);
 }
 });
}

Making Scripts Run Before the Load
Event

The load event doesn’t fire until a document has completely finished loading,
including the loading of all its external dependencies, such as style sheets, scripts
and, most significantly, images. It’s the same for both event handlers and event
listeners that are bound using addEventListener or attachEvent—none of these
will be triggered by the load event until the document has completely loaded.

Actually, we don’t need to know about external dependencies most of the time.
For most DOM scripts, we simply need to know whether the DOM is ready, and
that occurs irrespective of images and other includes. Unfortunately, there isn’t
any standard event that tells us when it happens.

Solution
What we can do is use a timer-based solution that continually checks for the ex-
istence of the body element, a DOM method (from which we know that DOM
scripting is generally safe), and one or more elements that your function may
depend upon:

File: run-before-onload.js

function addDomFunction(fn, dependencies)
{
 var counter = 0, collections = {}, timer = setInterval(
 function()

560

Chapter 20: Keeping up the Pace

 {
 var ready = false;
 counter++;

 if (typeof document.getElementsByTagName != 'undefined'
 && (document.getElementsByTagName('body')[0] ||
 document.body))
 {
 ready = true;

 if (typeof dependencies == 'object')
 {
 for (var i in dependencies)
 {
 if (dependencies[i] == 'id' &&
 !document.getElementById(i))
 {
 ready = false;
 break;
 }
 else if (dependencies[i] == 'tag')
 {
 var len = document.getElementsByTagName(i).length;
 if (typeof collections[i] == 'undefined' ||
 collections[i] != len || len < 1)
 {
 collections[i] = len;
 ready = false;
 break;
 }
 }
 }
 }
 if (ready)
 {
 clearInterval(timer);
 fn();
 }
 }

 if (counter >= 40)
 {
 clearInterval(timer);
 }

561

Making Scripts Run Before the Load Event

 }, 250);
}

This helper function can go right at the start of the head of your document, which
makes it usable from any other script that’s loaded subsequently, in much the
same way as were our other encapsulated event-listening functions (such as
addLoadListener, which we built way back in Chapter 1). We can use it to call
a named function:

addDomFunction(function);

Or we can use it by writing an anonymous function directly inside the call:

addDomFunction(function()
{
 alert('Hello world!');
});

When used this way, domFunction can be used to trigger code that creates new
elements and adds them to the head or body. However, if the code will manipulate
existing elements inside the body, we need to take extra steps to ensure that those
elements have already loaded. domFunction includes the facility to check for the
existence of specific elements or collections; these are defined by passing an object
literal as the second argument. Specify either a single element by ID:

addDomFunction(function, { 'elementId' : 'id' });

Or specify a group of elements by tag name:

addDomFunction(function, { 'p' : 'tag' });

Specifying an element by ID is a robust approach, because an element either exists
or it doesn’t, and addDomFunction can hold the execution of your nominated
function until an element with the specified ID exists. Waiting for a collection,
on the other hand, is shakier ground. Although addDomFunction can check for
the existence of a collection, it cannot detect whether that collection has finished loading,
and that might be very significant. For example, if your nominated function iter-
ates through the collection to apply behaviors or properties to all such elements
in the document, you want to be sure that all those elements have loaded before
it runs. The best addDomFunction can do in this case is recheck the length of the
collection every 250ms and, if it remains stable over that period, assume that the
collection has finished loading. If that sounds too unreliable for your needs (e.g.,
if you have a particularly large document in which the elements of a collection
might be quite spread out), I recommend you use a single element as the loading

562

Chapter 20: Keeping up the Pace

“hook”—one which comes later in the source code than the collection in which
you’re interested—and wait for that element by ID.

Discussion
The fact that scripts don’t run until images have loaded can sometimes produce
a noticeable difference between the page as it’s first seen, and how it looks once
the scripting kicks in. The most obvious example of this is a style sheet switcher
that applies a user’s choice of alternate style sheet from a cookie: if this didn’t
run until the load event, we would see the different styles possibly for several
seconds, or even minutes, depending on the number and size of the images in-
volved.

The timer-based solution we have just seen is one way around this, and it’s one
that offers a good overall level of browser support—the construct works in all
modern browsers except Mac IE 5 and Safari 1.0. However, there are other ways
to achieve it, and there’s a good article and discussion covering the range of
possibilities8 at Web Graphics.

But note that, however it’s implemented, this approach won’t always be appro-
priate. We might actually need to know about images on the page—to extract
properties such as their width and height, for example—and obviously we can’t
do that until those images have loaded. By the same token, we might be reading
data from another external source, such as the DOM of a page in an iframe.
Likewise, we can’t do that until we know the embedded document has loaded:
one approach we can use to ascertain this is to wait until the global load event.
So, while initializing scripts in this independent way will often be a suitable ap-
proach (and sometimes is clearly the best one), it’s not a direct and interchange-
able replacement.

As ever, take care to think through the implications of this, or any script you use.

Summary
In this chapter, we’ve discussed a range of techniques that aim to improve the
efficiency of scripts, and reduce the amount of code they take. The techniques
have varied from solid and generally useful ideas, to some that are arguably more
trouble than they’re worth.

8 http://web-graphics.com/mtarchive/001635.php

563

Summary

http://web-graphics.com/mtarchive/001635.php
http://web-graphics.com/mtarchive/001635.php

We’ve also seen aggressive techniques for “compressing” a script before publica-
tion; distinct from normal coding practice, these should only be applied to the
public version of a script, not to your own development copy. And we looked at
the dreaded DOM memory leak, and discussed how to avoid it, or clean up after
the fact—a task that’s almost become a necessity for all but the simplest of scripts!

Finally, we took a peek at an interesting technique for initializing scripts inde-
pendently of the regular load event, and although it may not be something you
use a great deal, this idea is gaining popularity as clients demand more sophistic-
ated and seamless user experiences.

564

Chapter 20: Keeping up the Pace

Index
Symbols
!= inequality operator, 49
!== non-identity operator, 50
. wildcard character, 56
== equality operator, 48
=== identity operator, 50

A
abs method, Math class, 278
absolute positioning

browser differences, 248
CSS clip property and, 305
drop-down lists, 509
iframe elements, 357
menus, IE, 332
news ticker example, 299

abstraction
direct referencing and, 520
object orientation feature, 516, 522,

549
of tasks as functions, 548

Access Matters web site, 438
accessibility

(see also keyboard accessibility; screen
readers)

attempted definition of, 386
automatically initiated scripts, 441
current sub-branch display, 383
device-independent event handlers,

393–394
frames and, 135
hiding menu elements, 326
keyboard and mouse, 395–402
keyboard navigation and, 368
limitations of menus, 326
non-programming aspects, 387
popups and, 129

screen readers and, 436–456
slider controls, 428–436
tooltip display and, 402–411

ActionScript, 461
activate event, IE, 394, 397
:active pseudo-class, 325
ActiveX objects, 3, 468

(see also Flash; XMLHttpRequest
object)

Flash detection and, 458
Flash version detection, 460
FSCommand support and, 461, 463
memory leaks and, 556

actuate event, 393
addDomFunction function, 562
addEventListener method, 16, 234,

243, 560
addLoadListener function, 15

accessible tooltip example, 405
adding a new style sheet, 226
auto-complete text fields, 507
clip–based transitions, 306
custom dialog example, 483
drag-and-drop effects, 282
image swapping, 169
soccer ball animation, 272
tooltip example, 251
WYSIWYG editor, 492

addRule method, IE, 221, 226
AJAX (Asynchronous JavaScript and

XML), 468
frameworks, 476
keyboard accessibility, 401
screen readers and, 446

Ajile module, 532
alert dialog

error analysis and, 23
error messages, 119, 441
page alternative, 25

screen readers and, 449
all property, document object

accessible tooltip example, 405
browser detection and, 196
cleaning functions using, 558
elements by attribute value, 98

alternate style sheets, 207, 211–212
animated GIFs, 189
animation

achieving smoothness, 278–281
applicable Flash techniques, 278
automated slideshows, 173
drawing times, 280
frame rate changes, 279
optimization excluding, 536
realism in, 274
scrolling news ticker, 298–305
soccer ball example, 272–278
straight line movement, 270
transition effects, 305–311

anonymous functions
creating, 12
DOM method loading, 562
event handlers and, 232
inline declaration, 269
setInterval alternative, 273
W3C event model and, 238

antialiasing, 279
appendChild method, 88, 92
arguments collection, 547
arithmetic operators, 31–33

(see also Math class)
array-literals, 66
arrays, 65–78

adding or removing members, 72
alternate style sheets, 214
clock display, 183
code efficiency and, 550
collections similar to, 83
date and time comparisons, 164
Date object methods and, 153
drop-down menus and, 503

example, 67
forms collection as, 104
image preloading, 168
inverse sorting, 380
multi-dimensional arrays, 66, 76
radio button access, 110
select box access, 113
slideshow automation, 175
sorting, 75, 77
strings from, 71
writing debugging data to, 25

arrow keys
accessible drag-and-drop functional-

ity, 400
accessible slider control, 433
drop-down menus and, 508
key codes for, 424
keyboard accessible menus and,

391, 411, 421, 424, 426, 428
arrow submenu indicators, 334, 337
assistive technologies, 5

(see also screen readers)
associative arrays

Flash version detection, 460
forms collections as, 104
frames collections as, 136

asterisks
implying all elements, 405
in regular expressions, 56
tag name wildcards, 98

asynchronous processing
(see also AJAX)
load requests, 168
open method requests, 471
updates and accessibility, 442, 453

attachEvent method, IE
addEventListener and, 16, 234, 243
attachEventListener and, 330
checking for, 237
circular references and, 559
event object and, 334

566

Index

load event and, 560
attachEventListener function, 234,

241, 243
accessible rollover example, 396
accessible tooltip example, 404
circular reference cleaning, 559
click events and, 367
drag-and-drop effects, 282
drop-down menu example, 327, 330
screen reader identification, 450
tooltip example, 251

attributes
accessibility under DOM 0, 96
copying, 93
reading and writing values, 95–98
reading unverified, 97
retrieving elements with given, 98–

100
auto-complete text fields, 502
automatic radix detection, 41
automatically initiated scripts, 441

B
back button problems, 479
background color slider, 317
background images, 168, 334
background masking, 486
background-color property, 488
back-references, 62
backslash escaping, 45–46
backtraces, 21
backwards navigation and accessibility,

420
base of numbers, 41
baseOffset and extentOffset properties,

501
behavior layer, 514
behavioral pairing and accessibility, 395
benchmarking tests, 545, 547
best practices, 5, 453
block elements, 299

blur event listeners, 507
accessible rollover example, 396
accessible slider control, 432

blur events, 417, 511
blur method

accessibility problems, 399
window object, 132

body element loading check, 560, 562
bold and italic text creation, 493
Boolean results, switch statements, 542
box model bugs, 246
box model calculations, 199
braces, 11

object literals use of, 71
typeof operator, problems with, 193

break statements, 116, 540, 542
browser detection, 194–198

(see also feature detection)
continuing need for, 191
drag-and-drop effects, 282
drop-down menu examples, 329,

359, 510
feature detection alternative, 128,

192
identifyBrowser function, 197, 222,

226, 510
screen readers, 369–370, 449
when to use, 194

browser support
addEventListener method, 17
advantages of feature detection, 192
callback functions, 63
child selectors, 336
currentTarget property, 239
designMode property, 489
event listeners, 234
Flash, 457–460, 464
JavaScript, 4
opacity property, 176–177, 180–

181, 488
ranges, 498, 502

567

scripting support by screen readers,
388, 437–449

scrolling, 139
style sheet manipulation, 217
XMLHttpRequest object, 192, 468–

469, 476
browser window (see viewport size)
browser-based screen readers (see screen

readers)
browsers

(see also browser support; cross-
browser scripting; Firefox; Inter-
net Explorer; Konqueror; Nets-
cape; Opera; Safari)

absolute within relative positioning,
300

animation speed and, 281
argument fetching benchmarking,

547
attribute handling by, 96, 100
box model bugs, 246
computed style retrieval, 205
cookie restrictions, 148
CSS 2 property interfaces, 202
CSS property value separators, 308
Date object display, 152
DHTML Accessibility project and,

393
editing engines, 495
element positioning differences, 248
element size determination, 246
elements, hiding optional, 123
error reporting, built-in, 20
event models, 134, 233–234
external debuggers and, 26
focus event bubbling, 397
getSelection implementation, 497
grouped selector treatment, 220
keyboard accessible menus, 421
keyboard navigation modes, 411
popup resizing, 132

references to stored lengths, 537
rendering modes, 140
repeat rates, 435
scrolling behavior, 137, 428
sorting behaviors, 77
speaking browsers, 370
style sheet switchers, built-in, 211
substring detection benchmarking,

546
tabindex attribute and, 391
title attribute and, 403
viewport size calculation, 349
voice capabilities, 452

browser-specific optimizations, 538,
545–548

bubble phase, 243
button element

accessible slider control, 430
keyboard accessibility and, 390

buttons
custom dialog example, 484
disabling and accessibility, 400
WYSIWYG editor interface, 494–

495, 499

C
caching

(see also preloading images)
icons, 376
staggered loading alternative, 173
XMLHttpRequest and, 475

calculation, minimizing, 537
call method, Flash/JavaScript Integra-

tion Kit, 464
callback functions, 62
camel casing, 202
cancelBubble property, 243
capture phase, 243
caret, in regular expressions, 56
caret, in text selections, 501
carriage return character, 46

568

Index

Cascading Style Sheets (see CSS)
case changes, 47, 219

camel casing, 202
case-insensitive flag, 54
ceil method, Math object, 32, 34, 188
chaining event handlers, 17
charAt method, 184
checkboxes, 106
child selectors, CSS, 336
childNodes property, 85, 94
“chromeless” windows, 127–128
circular references, 556–560
class attribute

access methods, 98, 100
showing and hiding fields, 121, 123
storing validation types, 118

class inheritance, 517–518, 526–528
classes, multiple CSS, 100
className property, 83, 100
cleaning functions, 558
clearInterval function, 269, 274
clearMenus function, 343, 357
click event

device-independent event handling
and, 394

transition effects, 305
client-side language limitations, 2
clientWidth and clientHeight proper-

ties, 246
clientX and clientY properties, IE, 249
clip property, CSS, 305, 308
clip-based transitions, 305–311
clocks, image-based, 181
clone class, 295
cloneNode method, 91
cloning objects by prototyping, 519,

526
close method, window object, 131
closed property, checking, 129, 134
closures, 181, 235, 341, 531

code
(see also readability)
avoiding repetition, 550
compressing in production scripts,

552–556
hiding, 13, 18
inserting custom, 499
obfuscation, 18, 553
shortening for efficiency, 548–552

code efficiency (see optimization)
collapse method, 501
collections

checking loading, 562
DOM 0, 85
from getElementsByTagName, 83

color slider control, 317
color value normalization, 206
comments

code efficiency and, 548, 552
hiding code with HTML, 13
removing URL protocols with, 554
source code obfuscation and, 18

communication interfaces (see data
transmission)

compare function, 76, 380
compatMode property, document ob-

ject, 198
compressing script code, 18
computed styles, 204
conditions, compacting, 551
Connect Outloud screen reader, 445,

448, 451
consistent coding practice, 5
constants, Math object, 32
constructors, 520, 525, 527
contains methods

custom, for accessible drop-downs,
418

event target checking, 428
proprietary IE, 332, 360

569

content (see dynamic content; separa-
tion of content...)

Content-Type headers, 472
continue statements, 543
control characters, 46
cookie property, document object, 144
cookies, 143–150

maintaining alternate style sheet
states, 212

restricting access, 147
setting expiry values, 146
uses, 150

Coordinated Universal Time (UTC),
152, 154

createDialog function, 483, 485
createElement method, 87
createElementNS method, 88
createRange method, 497, 501
createTextNode method, 88
cross-browser scripting

accessibility, 436
computed style retrieval, 205–206
drag-and-drop functionality, 281
event listeners and, 235, 282
mouse cursor position, 250, 257
style sheet modification, 220

cross-frame scripting, 135–137
CSS, 201–227

(see also style sheets)
controlling element display, 121, 123
disabling optional elements, 124
opacity property in CSS 3, 180
opacity setting, 176–177, 180–181
pseudo-classes, 169, 325, 396, 404
System Colors, CSS 2, 403, 410
tag uppercasing by IE, 219
target property, CSS 3, 133
using multiple classes, 100

CSS1Compat value, 198
cssFloat property, 202
currency values, 38

current branch opening, 378
currentStyle property, IE, 205–206
currentTarget property, 239
cursors (see mouse cursor)
curtain transitions, 309
custom code insertion, 499
custom dialogs, 481–489

D
data transmission

requesting data from servers, 470
without XMLHttpRequest, 476–481
XMLHttpRequest and, 468–476

data types, 16
arrays, 66
comparing unequal, 49
object literal properties, 71

date format, cookie expiry, 146
Date object, 151–154

calculating the day of the week, 162
compatible date formats, 161
date and time comparisons, 152,

159–166
formatting by browsers, 152
formatting difference results, 164
formatting into sentences, 154–157,

165
formatting methods, 153
ISO date formats, 156
limits on values, 163
meridian calculation, 158
Number function and, 40
string conversion, 37
time formatting, 157–159

day of the week calculations, 162
debugging scripts, 19–29
deceleration in animation, 275
decorations, popup windows, 131
default case, switch statements, 540
deleteContents method, 501
deleteRule method, 223

570

Index

delimiters, 53–54
designMode property, 489, 492
detachEvent method, 237, 559
detachEventListener function, 241,

289, 450
DHTML, 229–266
DHTML Accessibility project, 390,

392–393
DHTML controls

accessible slider control, 428–436
scrolling news ticker, 298–305
slider controls, 311–318

DHTML menus, 321–383
drop-down menu example, 323–361
expanding menus, 361–378
keyboard accessibility, 390, 392,

411–420
tabindex attribute and, 391
usability, 421–428

dialogs, custom in-page, 481–489
digits (see numeric data)
directory paths, cookie, 148
disability and accessibility, 386, 388
disabled property, style sheets, 208,

215–216
disabling optional elements, 124
display property

IE 5 and 6, 325
iframes, 478
screen reader identification, 369
visibility and, 257, 368

displayReset function, 369, 381
displayTime function, 184
div elements

accessible tooltip example, 408
changing a paragraph into, 91
nested divs, 313

DOCTYPE declarations, 199
document object

accessing forms from, 105
Opera load event listeners, 17

Document Object Model (see DOM)
Dojo JavaScript framework, 476
dollar sign, regular expressions, 56, 62
Dolphin Hal screen reader, 444, 448–

451
DOM (Document Object Model), 9,

79–102
cross-frame scripting, 137
DHTML use, 229
element sizing properties, 245
methods, document loading and, 560
nodes and memory leaks, 556
W3C definition, 80

DOM 0 functionality
attributes as properties, 96
cleaning functions, 558
collections, 85
event handlers, 230, 558

DOMActivate event, 394
DOMFocusIn event, 397
dot property method, 97
double slash notation, 554
download times, 548
drag-and-drop effects, 281–290

accessible slider control, 401
example interface, 289
hot zone, 289
keyboard accessibility, 400
reordering a list, 290–298, 400

drop sheets, 488
drop-down menu example, 323–361

adding timers, 338–345
constraining within windows, 345–

353
keyboard accessible version, 412–

423
select elements, 354–361
submenu arrows, 334–338

drop-down menus
auto-complete text fields, 502
horizontal navigation and accessibil-

ity, 426

571

keyboard accessibility, 411
positioning, 509

dynamic content and screen readers,
390, 442, 444, 453

Dynamic HTML (see DHTML)
dynamic variables, 537

E
ECMA–262 standard, 2, 461
editors

browser engines for, 495
code optimization in, 552
example WYSIWYG, 489–496
fully-functional, 496

efficient scripts (see optimization)
element nodes, checking for, 87
elements

accessing via the DOM, 82
adding and removing multiple

classes, 100
changing types of, 91–93
creating editable, 489–496
creating, using the DOM, 87–91
default action cancellation, 236
dimensions, when rendered, 245–

246
focus acceptance, 389
insertion options, 89
position of, when rendered, 246–

248, 348
prototype-based method creation,

523
removing or relocating, 93–95
repositioning, 348
retrieving by attribute value, 98–100
selecting all, 405

elements collection, 105, 118
em elements, 441
email address validation, 60, 115
emoticons, 499
encapsulation, 516, 520, 522

encryption, source code, 18
equality operator, 48, 50
equivalence and accessibility, 389
error objects, 24
error reporting

built-in, 20–23
external debuggers, 26
inline error messages, 119
page or window reporting, 25–26
screen reader form validation, 441
using alerts, 23–24
using try/catch blocks, 24

escape characters
formatting alerts, 24
regular expressions, 54
special characters in strings, 46
whitespace removal and, 555

escape function, 47
cookies, 144
sub-cookie separators, 149

eval function, 543–544
event bubbling, 243

addEventListener method and, 16
drop-down menu example, 330, 344
expanding menu example, 367
focus events, 397
menu repositioning and, 349

event handlers
attribute, code in, 8
behavioral pairing, 395
device-independence and accessibil-

ity, 393–394
multiple scripts and, 14
nonexistent elements, 10
XMLHttpRequest object, 472

event handling approaches, 229–245
DOM 0 event handlers, 230
W3C event listeners, 233

event listeners
checking object creation, 254
cross-browser, 282
event handlers and, 16

572

Index

location choice, 284
removing, 237

event model, W3C, 238
event models, browser, 134, 233–234
event propagation, 234
event target checking, 428
event target property, 134
eventPhase property, 349
events

keyboard accessibility and, 389
speaking browsers, 371

execCommand method, 493
executeIframeRPC function, 478
execution order, operators, 32
execution, stopping, 269
expanding menus, 361–371

folder tree menus and, 361
indicating expanded branches, 371–

376
restricting open branches, 377–378

Expires header, XMLHttpRequest, 475
expiry dates and times, cookies, 146
expressions

applying CSS rules in IE, 336
direct evaluation of, 551

external debuggers, 26
external dependencies, loading, 560

F
fading effects, 176–181

cross and straight fades, 181
feature detection, 128, 192–194

(see also browser detection)
ActiveX objects, 469
browser detection alternative, 194
cursor position detection, 249
omission of typeof operator, 193
opacity property support, 180
scroll position example, 137, 139
style sheet creation, 227
viewport size example, 141

file extensions, 168, 175
findHere function, 379
Firefox browser

(see also Mozilla browsers)
CSS 2 System Colors and, 410
errors console, 21
opacity support, 181
warnings console, 27

firstChild property, 85
Flash, Macromedia, 457–465

detecting browser support, 457–460
JavaScript animation and, 278
JavaScript communication with, 461
screen reader alternative, 455
version detection, 458–460

Flash/JavaScript Integration Kit, 464–
465

flickering, 213, 301
float property, CSS, 202, 325
floor method, Math object, 32, 34, 36
fly-out menus (see drop-down menus)
focus

accessible tooltip display on, 402–
411

keyboard accessibility and, 389
tabindex attribute and, 391

focus event listeners
accessible drop-down menu, 412–

413, 418–419
accessible rollover example, 396
accessible slider control, 432
accessible tooltip example, 404
source of focus events, 394, 434

focus method
accessible form validation, 398, 440
misuse, 399
opening new windows, 132
remote scripting accessibility, 447
validation errors and, 399

:focus pseudo-class, 325

573

folder tree menus
accessibility, 411
example script, 374
expanding menus and, 361
indicating expanded branches, 371–

376
restricting open branches, 377–378

font size, custom tooltips, 410
for attribute, accessing, 98, 100
for loops

avoiding repetition using, 550
caching images, 168
nested, 67
node structure and, 92
radio button access, 111
validating radio buttons, 116

for-in iterators, 24
form element, 430
form validation, 113–121

example script, 117
form submission and, 116
inline error messages, 119
keyboard accessibility, 398
mandatory text fields, 113
screen reader accessibility, 440
validating several fields, 117

forms collection, 104, 106
forms processing, 103–125

displaying and hiding fields, 121
validating before submission, 116

forward slash delimiter, 54
frame rates, animation, 279
frames collection, 136
frames, communicating between, 135–

137
FSCommand feature, Flash, 461, 464
fscommand function, ActionScript, 462
function literals, 12
function pointers, 269
function references, 306
functional loops, 268

functions
abstraction and, 548
assignment to event handlers, 232
creating with prototype objects, 523
derivation of objects from, 519
execution order, 524
introduced, 8
variable access in nested, 530
variable scope and, 528

G
g (global flag), 54, 62
garbage collection, 556
gecko browsers, 196

(see also Mozilla)
get* methods, Date object, 153, 156
getAttribute method, 95, 98, 135
getAttributeNS method, 88
getComputedStyle method, 205–206
getDate method, 153
getDateOrdinal method, 156
getDateString method, Date object,

155–156, 159
getElementById method, 9

accessing elements with, 28, 82
browser detection and, 196
getElementsByTagName and, 84
warnings from testing for, 28

getElementsByAttribute function, 98
tooltip example, 251
transition effect, 306
WYSIWYG editor, 492

getElementsByTagName method, 82
DOM 0 properties and, 85
iterating through elements, 98, 204,

473
getEventTarget function, 239

auto-complete text example, 511
drag-and-drop effects, 284
transition effect, 306

getHours method, Date object, 158

574

Index

getPageDimensions function, 486
getPosition function, 273
getRangeAt method, 500
getRoughPosition function, 348, 407
getScrollingPosition function, 137, 249

accessible tooltip example, 407
custom dialog positioning, 485
drag-and-drop effects, 285

getSelection methods, 497
getTime method, Date object, 153,

163, 546
getTimeBetween function, 165
getTimeString method, 158
getURL function, ActionScript, 461
getUTC* methods, Date object, 154
getViewportSize function, 141

code efficiency example, 549
custom dialog example, 485
tooltip positioning, 257, 407

global flag, regular expressions, 54, 62
global variables

automatic scope assignment, 528
intuitive values, 175
naming conflicts and, 344, 555
stopwatch example, 184

GMT string format, 146
graceful degradation, 5
grouped selectors, CSS, 219

H
Hal screen reader (see Dolphin Hal)
hidden elements

accessible slider control, 429
custom dialog positioning, 485
drag-and-drop reordering, 295
hiding menu elements, 326
hiding menus, 368
hiding optional fields, 121
hiding select elements, 358
offleft positioning, 326
screen readers and, 439

tooltip positioning, 256–257
hiding code, 13, 18
highlighting selections, 330, 371, 496
history of JavaScript, 2
Home Page Reader, 441, 444, 448–

449, 451
horizontal navigation bars, 426
horizontal overflow, 350
horizontally collapsing transitions, 309
hot zone, drag-and-drop effects, 289
href attribute, 382, 390
HTML

equivalent DOM hierarchy, 81
Flash and, 457
forms collection and, 106
menu examples, 322

hyphens in style attributes, 202

I
i (case-insensitive flag), 54
IBM Corporation, 392
icons

accessible drag-and-drop functional-
ity, 401

caching, 376
folder tree menus, 362, 371, 373

identifyBrowser function, 197, 222,
226, 510

identity operator, 50
If-Modified-Since header, XMLHttpRe-

quest, 475
iframes

data transmission using, 476–481
menu display and, 354
WYSIWYG editor and, 490

image collection, 167
image swapping, 169

image-based clock, 184
random display, 171

image-based clock, 181–186
images, 167–189

575

fading in and out, 176–181
inserting, with the WYSIWYG edit-

or, 493
preloading, 167
slideshow automation, 173
staggered loading, 173

in command, 69
index pages, default, 382
indexes

arrays, 65, 69
multi-dimensional arrays, 67
radio button access, 110
select box access, 113
string index numbering, 51–52
style sheets, 217
using form id tags as, 105

indexOf method, 51–52, 545–546
inequality operator, 49
inheritance, 517–518, 526–528
initAutoComplete function, 507
initDialog function, 483
inline error messages, 119
inline style sheets, 224
inner scopes, 330
innerHTML property, 25, 477–478,

493
input element, 430
insecure page warnings, 358
insertBefore method, 89, 94, 297
insertNode method, 501
insertRule method, 221–222, 226
interactive scripting, 267
interfaces (see user interfaces)
Internet Explorer

(see also attachEvent method)
:active pseudo-class, IE 5 and 6, 325
asterisk wildcard support, 98
attribute copying, 93
browser detection, 197, 329
computed styles and, 205
contains method, 332, 361

deleting style sheet rules, 223
eventPhase property support, 349
float property, IE 5, 325
FSCommand and, 463
garbage collection problems, 556
getSelection alternative, 497
insecure page warnings, 358
missing DOCTYPE declarations and

IE 6, 199
mouse cursor position, 249
opacity support, IE 5, 180, 488
references to stored lengths, 537
relatedTarget support, 345
relative positioning quirk, 331
screen readers and, 436
scrollTop property and IE 5, 139
setAttribute method and, 96
tag name uppercasing, 219
XMLHttpRequest support, 468–469

Internet Explorer for the Macintosh
chaining event handlers, IE 5, 17
distinguishing from IE for Windows,

196
drag-and-drop effects and IE 5, 282
dynamically generated content, IE

5, 259, 484, 510
element sizing bug, IE 5, 247
event listener support, 234
memory leaks in IE 5.0, 54
setTimeout function and IE 5, 306,

344
slider control and IE 5, 313
style switching and IE 5, 211
timing functions and IE 5, 269, 273

Internet Explorer for Windows
activate event, 394
alternate style sheet bug, 215
array function support in IE 5.0, 72–

73
asterisk notation and IE 5, 405
child selector support, 336
distinguishing from IE for Mac, 196

576

Index

drag-and-drop bug, 295
errors console, 22
expression syntax, 337
Flash support, 458
IE 5.0, positioning, 301
iframe support, IE 5, 359, 477, 492
navigator.plugins and, 459
positioning in IE 5.0, 299
rules property, 217
select elements, 354, 358

interpreter, efficient use, 11, 537, 544,
548

intuitive values, 175
inverted color scheme style sheet, 212
isNaN function, 41
iteration and code efficiency, 550

J
Java LiveConnect module, 461–462
JAWS screen reader, 441, 444, 448,

451, 455
join method, 71
JSON (JavaScript Object Notation)

format, 481

K
keyboard accessibility, 389–393

drag-and-drop functionality, 400
form validation, 398
menu usability, 421–428
menus, 390, 392, 411–420
mouse accessibility combined with,

395–402
multiple navigation modes, 411
scripted rollovers, 396
simulating the experience, 389
slider controls, 428–436
starting from scratch, 395
user needs, 385, 388

keyboard navigation, 368
menu repositioning and, 425

screen readers and, 437
keyCode property

repeat rates and, 435
testing for arrow key events, 424,

427–428
testing for the Tab key, 369, 371,

450
keydown event, 369, 428
keydown event listeners, 433, 507
keypress event, 428
keypress event listeners, 507
keyup event, 369
keyup event listeners, 433, 450
Konqueror browser, 96, 139, 196–197,

345

L
label element, 120, 441
lang pseudo-class, 404
language attribute, script tag, 14
lastChild property, 86
lastIndexOf method, 52
leap years, 162
left property, style object, 420
length property, 53

iterating through arrays, 68
iterating through collections, 537
limitations, 69
push function workaround, 73

limitations of JavaScript, 2
line breaks, 24, 553, 555
line feed character, 46
link element, 207
links

creation, with the WYSIWYG editor,
493

insertion, DOM methods, 89
keyboard accessibility and, 390
navigation and screen reader identi-

fication, 450
opening in new windows, 133–135

577

screen reader identification of, 439
styled links in slider controls, 430

list item mouseout function, 332, 360
list item mouseover function, 330, 347,

349
lists (see ordered lists; unordered lists)
LiveConnect module, Java, 461–462
load event

rendering completion and, 246
running scripts before, 560–563

load event handler
multiple script problems, 15
script location, 10

loading scripts, 12
local time defined, 152
LocalConnection function, Action-

Script, 464
location property, document object,

447
looping efficiently, 537, 542

(see also for loops)

M
m (multi-line flag), 55
Macintosh versions of IE (see Internet

Explorer for the Macintosh)
Macromedia Corporation (see Flash)
mandatory text fields, 113
Math class

abs method, 278
built-in operators, 32
ceil method, 188
floor method, 36
properties, 32
random method, 32, 35
round method, 35

mathematics (see numeric data)
matrixes, 66–67, 76
media attribute, 215
media types, styling, 226
memory leaks, 54, 556–560

menus, 321
accessibility, 326
adding timers, 338
closing, 417
drop-down menu example, 323–361
expanding menus, 361–371
functional types, 321
keyboard accessibility, 411–420
keyboard usability, 421–428
nested submenus, 412
repositioning, 345, 350
stacking, 351

method creation, 521–526
methods, overriding, 74
MIME type, 88
modal interaction, 454
modifiers, regular expression, 54
modulus operator, 31, 43
motion effects, 270–281

(see also animation)
slider controls, 311–318
user control over, 302

mouse cursor
appearance change, 283
position detection, 248–250, 513

mouse events, screen readers, 370
mouse movements

adding timers to menus, 338
threshold values, 285–286, 293

mousedown event listeners, 511
mousedown events, 450
mouseout event listeners

accessible slider control, 434
menu timers, 339
removing iframe elements, 356

mouseover effects
accessible tooltip display, 402
image swapping, 169
style sheet rule for, 222
tooltip display, 250–257

mouseover event listeners
accessible drop-down menu, 419

578

Index

accessible slider control, 434
creating iframe elements, 355
menu timers, 339

mouseover event sources, 394, 408, 450
movement (see animation; motion ef-

fects; mouse movements)
moveObject function, 272–275
Mozilla browsers

(see also Firefox)
browser detection, 197
distinguishing Safari from, 196
focus event bubbling, 397
script timeouts, 546
strict warnings and, 545

MSXML parser, 469
multi-dimensional arrays, 66–67, 76
multi-line flag, regular expressions, 55
multiple inheritance, 527
multiple scripts

event handlers and, 14, 230
event listeners and, 233

N
named arguments, 547
namespaces, 88, 531–532
naming conflicts, 531, 555
NaN (Not a Number) value, 41
navigation using lists, 322

(see also keyboard navigation; menus)
navigator object properties, 196, 459

browser detection and, 194, 196,
554

nesting
event bubbling and, 243
nested closures, 341
nested divs, 313
nested for loops, 67
nested functions, variable access, 530
nested lists, 323
nested submenus, 412
ternary operators, 539

Netscape, 2, 462
news ticker example (see scrolling news

ticker)
nextSibling property, 86
nodeName property, 87
nodes, DOM

cloning, 91
iterative change warning, 92
node types, 79
relational properties, 85
whitespace nodes, 86

nodeType property, 87
nodeValue property, 88
non-identity operator, 50
noscript element, 6
Number function, 40
numeric data, 31–44

adding ordinal suffixes, 42
base detection, 41
converting dates to strings, 37
converting numbers to strings, 36–

38
converting strings to, 39–42
currency values, 38
random numbers, 35
rounding numbers, 33
sorting and compare function, 75
sorting arrays, 76
sorting in tables, 264
string concatenation risks, 37
testing for, 41, 58
text field validation, 114

O
obfuscation, source code, 18, 553
object based scripting, 71, 518
object detection (see feature detection)
object orientation, 515–533

code efficiency and, 549
example script, 519–520
method creation, 521–526

579

modelling inheritance, 526–528
object based code and, 518–519
principles and benefits, 515–518

object reference creation, 543
object-literals, 70
objects

checking the existence of, 532
created in other event listeners, 254
replication by cloning, 519
storing references to, 536
warnings connected with, 28

offleft positioning, 326
accessible slider control, 429
hiding menus, 327, 368
optional questions, 123
overriding, 381
screen readers and, 440

offset dimensions bug, IE 5 for Mac,
247

offsetHeight property, 245
offsetLeft property, 247, 352
offsetParent property, 247
offsetTop property, 247
offsetWidth property, 245, 301, 332,

352
on* event handlers, 230

(see also * events)
onclick event handler, 124
online application design, 467–514

frameworks, 476
onload event handlers, 328

hiding optional elements, 123
preloading images, 170
progress indicator, 188

onmousedown event handlers, 495
onscroll event handler, 138
onsubmit event handler, 116
opacity property, CSS, 176–177, 180–

181, 295, 488
open method

window object, 131, 134
XMLHttpRequest object, 471, 473

Opera browser
absolutely positioned elements, 300–

301
attribute leading spaces, 331
Content-Type headers, 472
detection, 196–197
spatial navigation features, 403,

407, 421
tooltip display, 253
window sizing, 132

operating systems
browser detection and, 197
distinguishing between IE versions,

196
GUI behaviors, 391

operator precedence, 32
operators, mathematical, 31–33
optimization, 535–564

anticipating load events, 560–563
avoiding memory leaks, 556–560
browser-specific optimizations, 545
compressing production scripts, 552–

556
concise coding, 548–552
faster scripts, 536–548
looping efficiently, 537, 542

ordered lists, 290–298
ordinal numbers, 42, 156
overflow property, 301
overline text decoration, 218, 222
overriding

classnames, 531
methods, 74, 517–518
multiple scripts and, 10, 14
styles, 226
variables, 530, 555

P
page dimensions, 486

(see also viewport size)
page load event, 213

580

Index

page requests, individual, 454
pageX and pageY properties, 249
pageYOffset property, window object,

139
paragraphs, changing to divs, 91
parentheses, effects, 33, 38
parentNode property, 86
parseFloat function, 40, 114
parseInt function, 40–41, 114
pasteHTML method, 502
path setting, cookies, 148
per cent sign

modulus operator, 31
URL coding, 47

performance of scripts (see optimiza-
tion)

persistent style sheets, 207–208, 211
phases, event cycle, 243
phone numbers, 59
photographic slideshows, 173
pipe character, 56
pixels, normalization to, 206
placeholders, 170
plugins (see Flash, Macromedia)
plugins property, navigator object, 459
plus sign, in regular expressions, 56
polymorphism, 518
popups, 128–133, 481–489

error reporting to, 25
ethical use, 129
usability and accessibility, 128

position detection
animation and, 273
elements, 246–248
mouse cursor, 248–250

position inversion, 350
position property, CSS, 248
position rounding, 350–351
positioning

(see also absolute positioning)
list items with CSS, 291

menu repositioning, 345, 425
offleft positioning, 123, 326–327,

368, 381, 429, 440
position detection, 348
tooltips, 254, 408

pow method, Math object, 32
preferred style sheets, 211
preloading images, 167

image swapping, 170
image-based clock, 182
progress indicator, 186

presentation (see separation of con-
tent...)

preventDefault method, 236
previousSibling property, 86
private members, 516, 518
probability distributions, 173
processing power and animation, 279–

280
processor latency, 184
progress indicators, 186
progressive enhancement, 5–7, 439,

455
properties, direct referencing, 520
property creation, object oriented, 520
Prototype JavaScript framework, 476
prototyping, 74, 527

cloning objects by, 526
method creation using, 522
methods for built-in objects, 525
mimicking inheritance, 518–519
object prototyping, 154
prototype object, 523
prototype object functions, 523
prototype property, 523

pseudo-classes, CSS, 169, 325, 396,
404

pseudorandom numbers, 35
push method, 72

581

Q
qualified values, href attributes, 382
question mark, regular expressions, 56
Quirks mode, 140, 198–199
quotes, 45–46, 71

R
radio buttons, 108–109, 115
random image display, 171–172
random method, Math object, 32, 35
random numbers, 35
random sorting, 77
ranges

auto-complete text fields, 502
browser support, 498
cursor position and, 513
getSelection alternative, 497
specifying limits of, 501

readability of code
braces and semicolons, 11
compacting conditions and, 552
nested operators, 540
string concatenation and, 37

readyState property, XMLHttpRequest,
472

recursive functions, 264, 333, 383
redirects, accessibility and, 442
referencing

circular references, 556
direct referencing, 520
eval function, 543
frequently used objects, 536
function definition and, 522
function references, 306

RegExp class, 54–55
regular expressions, 53–63

className property retrieval, 101
comment and whitespace removal,

553
Flash version detection, 460
indexOf and, 53, 546

matching text in strings, 57
searching for and replacing text, 61
special characters, 57
substring location test, 545
testing for email addresses, 60, 115
testing for leading spaces, 331
testing for numeric data, 58
testing for phone numbers, 59
testing for whitespace, 114, 264

rel attribute, 133–134, 215
related property, 557
relatedTarget property, 345, 417
relative positioning, 248, 299, 331
remote procedure calls (see data trans-

mission)
remote scripting

individual page requests and, 454
keyboard accessibility, 401
screen readers and, 446

removeChild method, 93
removeEventListener method, 237
removeRule method, IE, 223
rendering modes, 139–140, 198–199
repeat rates, key events, 435
replace method, 62, 478
replaceChild method, 89–90
repositioning (see positioning)
reset functions, 377
resizing swapped images, 170
responseText property, XMLHttpRe-

quest, 474
responseXML property, XMLHttpRe-

quest, 473
retrieveComputedStyle function, 273
return statements, compacting, 551
returnValue property, 236
rollover effects, 396, 439
rollover styles, 330, 336
round brackets, 56, 62
round method, Math object, 32, 34–35
rounding numbers, 33, 38

582

Index

rules property, IE, 217

S
Safari browser

cancelling link defaults, 237, 483,
495

CSS 2 System Colors and, 403, 410
detection, 197
distinguishing from Mozilla, 196
DOM support limitations, 221–223,

226
events from text nodes, 344
href values, 382
input element problem, 430
lang pseudo-class, 404
scroll event problems, 139
setTimeout support, 344
stopDefaultAction function and, 368
stylesheet collection, 217

Safari Enhancer, 20
Sajax JavaScript framework, 476
scope (see variable scopes)
screen readers

accessible scripts for, 436–456
current sub-branch display, 383
detection through events, 369–370
Flash alternative, 455
form validation, 440
hiding menu elements, 326
identification, 449
link identification by, 439
menu accessibility, 392
modal interaction and, 454
problems with dynamic content,

390, 442, 444, 453
products listed, 436
reading label text, 441
remote scripting and, 446
scripting support, 388, 437–449
simulating the user experience, 436
suggested best practice, 453

tricks and hacks, 449
user needs, 385, 388, 454–455

script element, 12, 14
scripts

anticipating load events, 560–563
concise coding, 548–552
faster running, 536–548
inside iframes, 480
multiple, and DOM 0 event hand-

lers, 230
timing out, 546
Web version optimization, 552–556

scrollBy method, window object, 140
scrolling

menu repositioning and, 353
prevention, accessible menu example,

428
scroll position, 137–141, 249

scrolling news ticker, 298–305
screen readers and, 442, 445
user control, 302, 305

scrollTo method, window object, 140
scrollTop property, 139
security

cross-frame scripting, 137
iframes and, 480
restrictions on JavaScript, 3
XMLHttpRequest and, 471

select boxes, 111
select elements, 354, 358, 442
selectedIndex property, 113
selectionStart property, 513
semicolon terminator, 11, 553
send method, XMLHttpRequest object,

471
separation of content, style, and beha-

vior, 8–11, 321, 323
status of navigation arrows, 337

separators
className property, 100, 102
CSS property values, 308
sub-cookies, 149

583

serif text style sheet, 209, 212
server XMLHttpRequests, 470
server-side scripting, 3, 182
set* methods, Date object, 154
setAttribute method, 95, 98
setInterval function, 183

alternative to onscroll, 139
alternatives, 273
assessing document loading, 562
debugging and, 26
setTimeout compared to, 267
soccer ball animation, 272
stopping execution, 269

setSelectionRange method, 513
setTimeout function, 175

accessible slider control, 435
accessible tooltip example, 408
animation example, 180
auto-complete text example, 507,

513
clip–based transitions, 306
iframes and, 479
menu timers, 339, 341
setInterval compared to, 267
style sheet maintenance script, 213
WYSIWYG editor, 492

shopping cart applications, 34, 281
shortcuts

DOM 0 attributes, 230
forms collection, 104
ternary operator, 131

show attribute, XLink, 142
shrinking transitions, 310
sidebar property, window object, 196
single-letter variable names, 556
slider controls, 311–318

accessible drag-and-drop functional-
ity, 401

example appearance, 316, 318
fixed values, 315
keyboard accessibility, 428–436

slideshows, 173

soccer ball animation, 272–278
sort method, 75–77
sorting

drag-and-drop reordering, 291
list items, real-time effect, 297
random sorting, 77
stable sorts, 77
table sorting , 257–265

source code visibility, 1, 18
source order execution, 213
source order indexing, 217
spaces

className property, 100, 102
global removal, dangers, 554
underscores conversion to, 525

span element, 186
speaking browsers, 370
special characters

avoiding in cookies, 144
escaping in strings, 45
regular expressions, 57, 101
URLs, 47

splice method, 72
split method, 53, 145
spoofing, 194
sqrt method, Math object, 32
square brackets, 57, 65, 544
src property, 358
stable sorting, 77
staggered loading, 173
standardization, 2, 156
Standards mode, 139–140, 198–199
static elements, 287
static HTML, 6
status argument, window.open, 132
status bars, 186
stop button, news ticker, 302, 305
stop method, ActionScript, 462
stopDefaultAction function, 236

drag-and-drop effects, 287
Opera tooltip display, 253
Safari bug, 368

584

Index

slider control example, 316
stopPropagation method, 244
stopwatch example, 184
strict warnings, 26–29, 544
string concatenation, 37, 100, 156
string data type

array indexing using, 69
converting arrays to, 71
converting numbers to, 36–38
converting to numbers, 39–42
cookies as, 144
existence of data, 51
substrings, 51

String function, 36
string manipulation, 45–63

case changes, 47
comparing strings, 48, 264
date formatting, 156, 165
matching with regular expressions,

57
searching for and replacing text, 61
substrings, 51–52, 545
testing for email addresses, 60
testing for numeric data, 58
testing for phone numbers, 59

style object
computed styles and, 205
left property, 420
style attribute and, 201, 203

style property references, 538
style sheet switching, 207

built-in, 211
loading delays and, 563
media types and, 215

style sheets
(see also CSS)
adding new rules, 220
creating, 224
deleting rules, 223
drop-down menu example, 323,

326, 330, 334
expanding menu example, 362

iframes and, 355
maintaining alternate style sheet

states, 212
manipulating, 217
media types and, 226
types of, 211

styleFloat property, 202
styles

changing for a group of elements,
203

changing for a single element, 201
expanding and folder tree menus,

376
rendering modes and, 199
retrieving computed styles, 204

styleSheets collection, 224
sub-cookies, 149
subdomains and cookies, 147
submenus

arrow indicators, 334
constraining within windows, 345
expanded, 374

submission and form validation, 116,
398, 400

substring method, 52
substrings, 51–52, 545
switch menus (see expanding menus)
switch statements, 116, 540–542
synchronous requests, 471
System Colors, CSS 2, 403, 410

T
tab order and accessibility, 391, 402
tab space character, 46, 553, 555
tabIndex attribute, 391, 478
tabIndex property, 358
table sorting by column, 257–265
target attribute, 133
target elements, 238, 252
ternary operators, 539–540

compacting scripts, 551

585

popup overflow example, 130
time comparison example, 162, 166

test method, 58, 545
text boxes and slider controls, 317
text fields

accessing, 105
auto-completing, 502
label location, 121
locating, 103
slider controls and, 311
validating mandatory, 113

text manipulation, 61
(see also string data type)

text nodes
checking for, 87
creating, using the DOM, 88
insertion options, 89
removing or relocating, 93
Safari browser events from, 344

text selections, 295, 496–502
text sizes, tooltips, 410
textarea element, 490
text-only browsers, 436
this variable, 238, 520–521

Safari bug, 170
threshold movement values, 285–286,

293
time based data (see Date object; image-

based clock)
timed effects, 267–270
timers

open and close timers, 338
timer IDs, 269

timing functions (see setInterval func-
tion; setTimeout function)

timing out scripts, 546
title attribute, 207–208, 216

tooltips and, 250, 252, 402–411
title element error reports, 25
toElement property, IE, 417
toGMTString method, 152

toLocaleString method, 152
toLowerCase method, 47, 219
tooltips

accessibility and, 402–411
displaying on mouseover, 250–257
Safari browser, 410

toString method, 37, 39, 152
toUpperCase method, 47
transition effects

clip-based transitions, 305
curtain effect, 309
shrinking effect, 310
squashing an object, 306

treeMenu function, 364–382
try/catch structures, 24, 468, 484
24-hour clock, 157
type attribute, script tag, 14
type conversion testing, 28
typeof command, 16, 28

alert functions and, 23
feature detection using, 192
isNaN function and, 41
string-indexed arrays, 70

U
undefined data type, 16
underscores conversion to spaces, 525
unescape function, 48, 144, 149
uniqueID property, document object,

196
unit normalization, 206
Unobtrusive Flash Objects, 458, 465
unobtrusive scripting, 5, 8–11
unordered lists

auto-complete text example, 508
drag-and-drop repositioning, 282
expanding menus from, 362
menus using, 322
nesting and wellformedness, 323

URL removal with comments, 554
URL-safe characters, 47

586

Index

usability
accessible DHTML menus, 421–428
drag-and-drop effects, 283
frames and, 135
inline error messages, 119
menu repositioning and, 353
menu structure and, 345
menu timers and, 338
online applications, 467
open and close timers, 338
opening current menu branch, 378
popups and, 128
progress indicators, 186
screen reader hidden content, 440

user agent strings, 192, 194, 197
user interfaces

creating with DHTML, 229–266
differing GUI behaviors, 391
drag-and-drop functionality, 281–

290
screen readers, 454–455

UTC (Coordinated Universal Time),
152, 154

UTC epoch, 153, 161

V
validating parsers, 13
validation

(see also form validation)
email addresses, 60, 115
numeric fields, 114
radio buttons, 115

value property, 105, 111
var keyword, 529–530
variable scopes, 528–531

closures, 181, 235, 341, 531
inner scopes, 330
naming conflicts and, 555

variables
(see also global variables)
compacting names, 555–556

direct evaluation avoiding, 551
dynamic and non-dynamic, 537–538
nested functions and, 530
warnings about, 27

VBScript, 463
vendor property, navigator object, 196
vertical navigation bars, 325, 412
vertical overflow, 352
vertically collapsing transitions, 305
viewport size, 141–142

(see also page dimensions)
constraining menus within, 345
drop sheet positioning, 488
tooltip positioning and, 257, 409

visibility property, 368
custom dialog example, 485
drag-and-drop reordering, 295
tooltips, 256–257

W
W3C (World Wide Web Consortium)

addEventListener method, 16
data transmission specifications and,

468
device-independent event handlers,

393
DOM definition, 80
event listeners, 233
event model, 238

warnings, 26–29, 544
WCAG (Web Content Accessibility

Guidelines), 393, 395
weighted random selections, 172–173
whitespace

(see also spaces)
code efficiency and, 552
detection, 114
necessary whitespace, 554
regular expression check for, 264
removal from node trees, 421
source code obfuscation and, 18

587

XMLHttpRequest object and, 474
whitespace nodes, DOM, 86
white-space property, 300
wildcard characters, 56
window area (see viewport size)
window object properties, 128
windowed controls, 354, 358
windows

(see also popups)
aggressive scripting, 127
constraining menus within, 345
opening links in new , 133–135
primary, and popup size, 130

Windows Eyes screen reader, 444, 448–
449, 451, 455

browser compatibility, 436
DHTML Accessibility project, 392–

393
Windows IE (see Internet Explorer for

Windows)
word boundary character, 101
WYSIWYG editor, 489–496, 499

X
XHTML

comments and, 14
forms collection and, 106
navigation list element, 322

XLink, 142
XML

(see also AJAX)
form element access, 106
MIME types, 88

XMLHttpRequest object, 468–476
application development frame-

works, 476
feature detection example, 192
headers, 475
iframe alternative, 476–481
methods, 470
notifying users of updates, 446

properties, 473
Safari browser support, 197

Z
zeroes, 38, 43
z-order, 331, 354

588

Index

	The JavaScript Anthology
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Getting Started with JavaScript
	JavaScript Defined
	JavaScript’s Limitations
	Security Restrictions

	JavaScript Best Practices
	Providing for Users who Don’t Have JavaScript (Progressive Enhancement)
	Separating Content from Behavior (Unobtrusive Scripting)
	Using Braces and Semicolons (Consistent Coding Practice)
	Adding a Script to a Page
	Putting HTML Comments Around Code
	The language Attribute

	Getting Multiple Scripts to Work on the Same Page
	Hiding JavaScript Source Code
	Debugging a Script
	Understanding a Browser’s Built-in Error Reporting
	Using alert
	Using try-catch
	Writing to the Page or Window
	Using an External Debugger

	Strict Warnings
	Summary

	Working with Numbers
	Doing Math with JavaScript
	Rounding a Number to x Decimal Places
	Creating and Constraining Random Numbers
	Converting a Number to a String
	Formatting Currency Values
	Converting a String to a Number
	Converting Numbers to Ordinals (-st, -nd, -rd, -th)
	Summary

	Working with Strings
	Including a Special Character in a String
	Transforming the Character Case of a String
	Encoding a URL
	Comparing Two Strings
	Finding a Substring within a String
	Splitting a String into Substrings
	Creating a Regular Expression
	Testing whether a String Matches a Regular Expression
	Testing whether a String Contains Only Numeric Data
	Testing whether a String is a Valid Phone Number
	Testing whether a String is a Valid Email Address
	Searching and Replacing Text using a Regular Expression
	Summary

	Working with Arrays
	Using Array-literals
	Creating an Array of Arrays
	Indexing an Array with Strings Instead of Numbers
	Turning an Array into a String
	Adding or Removing Members from an Array
	Sorting an Array into Alphabetical or Numeric Order
	Sorting a Multi-dimensional Array
	Sorting an Array Randomly
	Summary

	Navigating the Document Object Model
	Accessing Elements
	Creating Elements and Text Nodes
	Changing the Type of an Element
	Removing an Element or Text Node
	Reading and Writing the Attributes of an Element
	Getting all Elements with a Particular Attribute Value
	Adding and Removing Multiple Classes to/from an Element
	Summary

	Processing and Validating Forms
	Reading and Writing the Data in a Text Field
	Reading and Setting the State of a Checkbox
	Reading and Setting the State of a Radio Button
	Reading and Setting the Value of a Select Box
	Validating a Mandatory Text Field
	Validating a Numeric Field
	Validating an Email Address Field
	Checking for Unselected Radio Buttons
	Stopping a Form Being Submitted Unless all its Fields are Valid
	Validating a Form with an Unknown Number of Fields
	Printing Inline Error Messages when Validating a Form
	Making Form Fields Appear or Disappear, Based on the Value of other Fields
	Summary

	Working with Windows and Frames
	Using Popup Windows
	What’s Wrong with Popups?
	How Do I Minimize the Problems?

	Opening Off-site Links in a New Window
	Communicating Between Frames
	Getting the Scrolling Position
	Making the Page Scroll to a Particular Position
	Getting the Viewport Size (the Available Space inside the Window)
	Summary

	Working with Cookies
	Writing Cookies
	Reading a Cookie
	Setting a Cookie to Expire at a Specific Date and Time
	Making a Cookie Accessible Only from a Specific Domain or Path
	Circumventing Browser Restrictions on the Number of Cookies you can Use
	Summary

	Working with Dates and Times
	Getting the Date and Time
	Formatting a Date into a Sentence
	Formatting the Time into a 12- or 24-hour Clock
	Comparing Two Dates
	Formatting the Difference Between Dates
	Summary

	Working with Images
	Preloading Images
	Swapping One Image for Another
	Displaying an Image at Random
	Making a Slideshow of Several Images
	Making an Image Fade in or out
	Making an Image-based Clock that Updates in Real Time
	Making a Progress Indicator
	Summary

	Detecting Browser Differences
	Identifying Support for a Particular Feature
	Identifying a Particular Browser
	Detecting Quirks Mode and Standards Mode
	Summary

	Using JavaScript with CSS
	Changing the Style of a Single Element
	Changing the Style of a Group of Elements
	Retrieving the Computed Style of an Element
	Making a Style Sheet Switcher
	Maintaining Alternate Style Sheet States

	Making a Style Sheet Switcher that Handles Multiple Media Types
	Reading and Modifying an Existing Style Sheet
	Adding New Style Sheet Rules
	Deleting a Rule from a Style Sheet
	Creating a New Style Sheet
	Summary

	Basic Dynamic HTML
	Handling Events
	The Short Way: Using Event Handlers
	The W3C Way (Event Listeners)
	Referencing the Target Element
	What is Event Bubbling, and How do I Control it?

	Finding the Size of an Element
	Finding the Position of an Element
	Detecting the Position of the Mouse Cursor
	Displaying a Tooltip when you Mouse Over an Element
	Sorting Tables by Column
	Summary

	Time and Motion
	Using setTimeout and setInterval
	Making an Object Move Along a Set Path
	Making Animation Less Jerky
	Animation Frame Times
	Changing Between Frames
	Complexity of the Animation
	The Speed of the Computer
	The Speed of the Browser

	Implementing Drag-and-drop Behavior
	Reordering a List Using Drag-and-drop Functionality
	Making a Scrolling News Ticker
	Creating Clip-based Transition Effects
	Making a Slider Control
	Summary

	DHTML Menus and Navigation
	Making a Drop-down or Fly-out Menu
	Adding Arrows to Indicate the Presence of a Submenu
	Adding Timers so the Menus Don’t Open and Close so Abruptly
	Making Sure the Menus Stay Inside the Window
	Making the Menus Display Over select Elements
	Making a Folder Tree or Expanding Menu
	Indicating Expanded Branches in a Menu
	Allowing Only One Menu Branch to Be Open at Any Time
	Opening the Current Sub-branch Automatically
	Summary

	JavaScript and Accessibility
	Is JavaScript Inaccessible?
	What is Accessibility?
	Who are the Affected Users?

	Making Scripts Accessible to the Keyboard
	Using Device-independent Event Handlers
	Making Scripts Accessible to the Keyboard as well as the Mouse
	Rollovers and Revealing Content
	Form Validation
	Drag-and-drop Functionality
	AJAX and other Remote Scripting Techniques

	Making title Attribute Tooltips Display on Focus
	Making a DHTML Menu Accessible to the Keyboard
	Making a DHTML Menu Usable via the Keyboard
	Making a DHTML Slider Control Accessible to the Keyboard
	Making Scripts Accessible to Screen Readers
	JavaScript Behaviors
	Rollovers and Revealing Content
	Form Validation
	Non-user-initiated Scripts
	AJAX and other Remote Scripting Techniques

	Tricks and Hacks
	Towards Best Practice
	The Mission
	The Joy of Mode
	Reaching toward a Best Practice Approach
	Into the Future

	Summary

	Using JavaScript with Flash
	Detecting whether Flash is Installed in a Browser
	Communicating Between JavaScript and Flash
	FSCommand
	Flash/JavaScript Integration Kit

	Summary

	Building Web Applications with JavaScript
	Retrieving Data Using XMLHttpRequest
	Requesting Data from a Server
	Parsing the Data
	Caching
	AJAX Frameworks

	Retrieving Data without Using XMLHttpRequest
	Creating Custom Dialogs (Such as Popup Forms)
	Creating Editable Elements
	Controlling Text Selections
	Creating an Auto-complete Text Field
	Summary

	Object Orientation in JavaScript
	What’s so Good about Object Orientation?
	Abstraction
	Encapsulation
	Class Inheritance
	Polymorphism

	Object Based Code vs Object Oriented Code
	Writing an Object Oriented Script
	Creating Methods for an Object
	Prototype-based Method Creation

	Modelling Inheritance
	Understanding Scope
	Implementing Namespaces
	Summary

	Keeping up the Pace
	Making Scripts Run Faster
	Saving References to Objects you Use Frequently
	Using Ternary Operators and Switch Statements
	Optimizing Loops
	Avoiding eval
	Avoiding Strict Warnings
	Optimizing for a Particular Browser

	Writing Scripts Using Less Code
	Dividing Tasks into Functions (or Using OO)
	Using Arrays and Iteration to Avoid Code Repetition
	Compacting Conditions and Return Statements

	Optimizing Scripts for the Web
	Removing Comments and Unnecessary Whitespace
	Compacting the Names of Variables and Properties

	Avoiding Memory Leaks
	Avoiding Circular References
	Cleaning Up After the Fact

	Making Scripts Run Before the Load Event
	Summary

	Index

